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Cameraless Image Flow Cytometry and Image-Activated Cell Sorting Using 

Artificial Intelligence 

 

by 

 

Rui Tang 
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High-throughput cellular image processing and analysis based on imaging flow cytometry 

(IFC) technology can bring significant insight to biology and medicine. The ability to classify, 

map and isolate cells based on a high-content cellular image provides a powerful tool for biological 

and biomedical researchers and doctors to understand the connection between the phototype and 

genotype among the heterogeneous cell populations. This dissertation details the approach to 

conducting high-throughput cellular image analysis and low-latency real-time image processing 

using the IFC and artificial intelligence. As a result, we demonstrated the workflow for conducting 

high-throughput label-free cell study on IFC systems. In addition, we developed a low-latency 

image-activated activated sorting (IACS) system using artificial intelligence and machine vision, 
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opening a new venue for high-throughput cellular analysis and cell sorting based on machine 

vision and artificial intelligence. 
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 Chapter 1 Introduction to Cameraless 

Imaging Flow Cytometry and Image-

Activated Cell Sorting 

Flow cytometer and fluorescence-activated cell sorter (FACS) are widely used biological 

instrument for a various biomedical and clinical study that reveals the cell-related phenotype and 

genotype information. To meet the increasing demand of understating the heterogeneity of cellular 

phenotype and relating phenotype with the genotype information, the development of cameraless 

imaging flow cytometry (IFC) and image-activated cell sorter (IACS) has become a competitive 

research field. This chapter introduces the concept of cameraless IFC and IACS. In particular, a 

2D IACS and 3D IFC system will be reviewed, and the potential need to analyze high-content 

image information will be discussed. The scope of this dissertation will be presented at the end of 

this chapter. 

1.1  Introduction 

A central challenge of biology is to correlate the phenotype of heterogeneous individuals 

in a population to their genotype in order to understand whether they conform to the observed 

population behavior or stand out as exceptions that drive disease or become threats to health [1]–

[4]. While optical microscopy is a cornerstone method for studying biological specimens' 

morphology and molecular composition, flow cytometry is a gold standard for quantitative high-

throughput single-cell characterization in numerous biomedical applications [5], [6]. Recognizing 

the need to merge these two powerful platforms, several groups have proposed techniques for 
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imaging flow cytometry (IFC) [7]. IFC simultaneously produces ensemble-averaged 

measurements and high-content spatial metrics from individual cells in a large population of cells 

without perturbation due to experiment condition change. In addition to the ability to obtain high-

content cell images under a high-throughput approach, classification and isolation of different cell 

types among cell populations based on phenotype features can bring significant insight to biology 

and medicine [8], [9]. Image-activated cell sorter (IACS) combines the IFC system with cell-

sorting capabilities and enables isolating cells based on high-content image features. 

To facilitate high photon sensitivity and fast response of the photodetector, the so-called 

cameraless IFC and IACS system use photomultiplier tubes (PMTs) to replace CMOS or CCD 

cameras to form the image based on the temporal signal from PMTs. The cameraless design makes 

the system more compatible with conventional FACS and user-friendly. The cell image features 

can be directly extracted from the temporal waveforms or the reconstructed cell images via 

temporal-spatial transformation [8]. A cameraless 2D IACS system and a 3D IFC system will be 

introduced in the following sections. 

1.2  Cameraless 2D image-activated cell sorter 

A cameraless 2D image-activated cell sorter (IACS) system utilizes a high-speed linear 

laser scanner, coupled with cell flow, to form a 2D scanning system that surveys every single cell 

passing the interrogation area. The 2D scanning process encodes the cell image into a temporal 

signal, which can be transformed mathematically to reconstruct the 2D cell image. The system 

contains a dual-wavelength excitation laser and four photomultiplier tubes (PMTs) to detect 

fluorescent and transmission signals for each cell. The signal from each PMT detector can be 

constructed into a single modality 2D image, which can be overlaid to produce multi-color, multi-

parameter cell images similar to the images generated by a fluorescent microscope. To perform 
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image-guided cell sorting with single-cell resolution, we integrate a piezoelectric on-chip actuator 

with the microfluidic channel and adopt a hybrid signal/image processing architecture where 

FPGA is used for real-time image processing and CPU (or GPU) is used for image feature 

extraction in parallel. High sorting purity (>96%), high enrichment factor (~1200), and a decent 

throughput of >350 cells/s, limited by the response of the on-chip piezoelectric cell sorting actuator, 

have been demonstrated 

The overall system architecture of the 2D image-activated cell sorter is shown in Fig. 1.2.1 

(a). Each traveling cell in the microfluidic channel is illuminated by the scanning laser excitation 

beams, which generate temporal fluorescent and transmission signals. Photomultiplier tubes 

(PMTs) convert the optical signals to electronic waveforms, which are sent to a field-

programmable-gate-array (FPGA) for real-time cell image reconstruction. The image features are 

then extracted and compared against the cell sorting criteria. If the cell falls within the gated region, 

the FPGA will send a voltage signal to activate the on-chip piezoelectric actuator (PZT), which 

bends upward or downward mechanically. The cytometry cell sorter provides two sorting modes. 

In the population sorting mode, the PZT deflects the flow to the designated channel and sorts 

selected cells to a specific collection tube. In the single-cell sorting mode, each deflected cell exits 

the designated channel in a cartridge and enters a programmable cell-placement unit that places 

each cell into one well of a 386-well plate.  

Fig. 1.2.1 (b) shows the design of the imaging system. Suspended cells are hydro-

dynamically focused to the center of the microfluidic channel by a sheath flow 6. At the optical 

interrogation zone, each cell is illuminated simultaneously by a scanning dual-wavelength 488/561 

nm laser for imaging, and a non-scanning 455 nm LED for cell speed measurement. The 488/561 

nm wavelength laser is coupled to an Acousto Optic Deflector (OAD948, Isomet) to create a 
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scanning beam along the y-direction (width of the microfluidic channel) with a spot size of 1µm 

in diameter. Two 10X (NA=0.28) objective lenses (378-803-3, Mitutoyo) on opposite sides of the 

microfluidic channel are used, one for focusing the scanning laser illumination beam and the other 

to collect the fluorescent or transmitted light. A series of dichroic mirrors with different reflection 

bands separate the LED, transmission, and fluorescent signals to different channels, which are 

detected by PMTs (H10721-20, Hamamatsu). A spatial mask, with two slits separated in the cell 

flow direction, is placed at the image plane of the optical system to generate speed information. 

The field of view, dependent on the scanning range of AOD and the signal recording time period, 

is chosen to be 30µm by 30µm, which covers the size of most biological cells.  

An FPGA-CPU hybrid design is adopted to meet the requirement of real-time processing 

and computation of cell image features with high throughput. The FPGA reconstructs the cell 

images from the acquired signals, and the reconstructed cell images are transferred to the CPU for 

imaging feature extraction, including area, perimeter, circularity, aspect ratio (major axis 

length/minor axis length), integrated intensity, mean intensity (intensity divided by area), standard 

variation of intensity over space, granularity, spot count, etc. Features directly related to the cell 

sorting criteria are then transferred back to the FPGA. The image reconstruction and feature 

extraction are completed in less than 1ms in most cases 
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Figure 1.2.1. 2D IACS system overview. (a). Overall system architecture. The scanning laser beam and the 

cell travel produce an equivalence of a 2D raster scanning system. The bright field and fluorescent signals 

of the cell are detected by PMTs and the temporal signals are reconstructed to form cell images. Meanwhile, 

the features of each cell image are extracted by a PC. According to the sorting criteria (gating) based on 

user-selected image features, the on-chip piezoelectric (PZT) actuator is triggered to sort out cells that have 

the target features. (b). Design of imaging system. AOD, acousto-optic deflector; DM, dichroic mirror; OL, 

10X/0.28 objective lens; PMTs, photomultiplier tubes; SM, the double-slit mask for cell speed detection 

with its design shown on the left. (c). Microfluidic chip design. Suspended cells are focused to the center 

of the microfluidic channel by a sheath flow. The on-chip piezoelectric actuator bends upward or downward 

mechanically, deflecting the flow and the target cell within the flow into the designated channel 
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1.3  Cameraless 3D imaging flow cytometer 

A significant limitation of 2D IFC systems is that, regardless of the optical detection 

method and computation algorithm is used, only 2D cell images can be obtained [10]–[12]. The 

absence of 3D tomography results in the occlusion of objects, blurring by focal depth, loss of z-

axis spatial resolution, and artifacts due to the projection of a 3D cell into a 2D image. For a range 

of applications, such as internalization measurements, probe co-localization, and spot counting, 

relative to 2D imaging that is dependent on the cellular orientation to the imaging plane, 3D images 

provide complete and accurate phenotyping of cell and organelle morphology, as well as nucleic 

acid and protein localization to support biological insights [13]. 

Here, a cameraless high-throughput three-dimensional imaging flow cytometry (3D-IFC) 

based on optical sectioning microscopy [14] is introduced. The combination of light-sheet 

scanning illumination technique and spatial-temporal transformation detection technique enables 

fluorescent and label-free 3D cell image reconstruction from single-element photodetector readout 

without a camera [8], [15]. Building upon the speed and sensitivity benefits of the photomultiplier 

tube (PMT), the 3D-IFC uses multiple scanning techniques to add spatial information in a 

conventional flow cytometry architecture. 3D imaging is achieved by laser scanning across the 

first (z-) axis, the cell translating by flow across the second (y-) axis, and the use of multiple 

pinholes arranged along the third (x-) axis to produce fluorescent and label-free information from 

6,000 voxels per scanning volume. By precisely mapping time to space, the photodetector readout 

at one timepoint corresponds to one voxel in a 3D space. Here we demonstrate 3D-IFC of 

fluorescence and 90-degree label-free side-scattering (SSC) imaging of single cells in the 

microfluidic channel at a velocity of 0.2 m/s, corresponding to a throughput of approximately 500 

cells per second. 
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A schematic of the 3D-IFC system is shown in Fig. 1.3.1 (a). In the 3D-IFC system, 

suspended cells form a 2D hydrodynamically focused single file in a quartz flow cell with a square 

cross-section [16]. Laser excitation is via a light sheet (x-y plane) with a diffraction-limited beam 

waist and a height of 200 to 400 µm, scanning in the z-direction at 200 kHz. When a cell flows 

through the whole optical interrogation at 0.2 m/s, a pixelated field of view is represented by a 3D 

space with X by Y by Z voxels, as shown in Fig. 1.3.1 (c).  A pinhole array on the spatial filter is 

aligned at a tilting angle, ϑ, to the flow stream, so the pinhole array also steps along the x-direction. 

In this manner, each pinhole allows light from voxels with a distinct x-index to reach the PMT 

detector (see Fig. 1.3.1 (g) for details of the pinhole mask design). The imaging process begins 

when a flowing cell appears at the first pinhole of the spatial filter. During the first light-sheet 

scanning period (5 µs), the light intensity of voxels 1 Zz −  with 1 1x y  index is collected. As the cell 

flows downstream in the y-direction to the next position, 1 2x y , the corresponding 1 Zz −  voxels are 

produced. In this manner, when a cell completely passes pinhole 1, the entire 2D yz-slice at 1x  is 

imaged. As the cell travels farther downstream the y-direction and passes through all the following 

pinholes, yz-slices of at 2x  to Xx  are recorded.  
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Figure 1.3.1. Implementation of the 3D imaging flow cytometer (3D-IFC). (a) Schematic diagram of the 

3D-IFC system. AOD, acousto-optic deflector; CL, cylindrical lens; IO, 50X/0.55 illumination objective 

lens (Mitutoyo, Plan Apo Infinity Corrected Long WD Objective); DO, 10X/0.28 detection objective lens 

(Mitutoyo, Plan Apo Infinity Corrected Long WD Objective); SF, spatial filter; DMs, dichroic mirrors; 

PMT, photomultiplier tube; DIG, 125 MS s-1 digitizer. The AOD and CL produce a scanning light sheet. 

The sample is 2D hydrodynamically focused by a sheath flow before entering the square cross-section 

quartz flow cell. (b) Optical interrogation area. H, the height of the light sheet; ϑ, tilt angle between flow 

(y-axis) and vertical line. Illumination light sheet propagates horizontally and scans in the z-axis, the sample 

flows in the y-axis, x is the orthogonal axis. The spatial filter at the image plane uses pinholes to produce 

line scans across the x-axis. (c) 3D reconstructed space. The resolution on the X-axis is determined by the 

number of pinholes (pixelated field of view in the x-direction); resolution of Y by the distance between two 

slits (pixelated field of view in the y-direction); and resolution of Z by the light-sheet scanning range 

(pixelated field of view in the z-direction). (d) One light sheet scan period produces a 1D light intensity 

profile in the z-axis. The PMT voltage readout of one sample point corresponds to the light intensity of one 

voxel in the z-axis. (e) While the object travels along the y-axis, multiple scans produce a 2D profile in the 

yz-plane within one pinhole scan period. Each section—separated by dotted lines—corresponds to the light 

intensity of one row in the 2D image stack. (f) When an object completely passes through the spatial filter 

covering the area, the time-domain signal contains the complete information of the 3D profile in the xyz-

space. Each section corresponds to one 2D image slice. AOD, tuning voltage of the AOD driver; FL1, PMT 

readout of fluorescence detection channel 1; FL2, PMT readout of fluorescence detection channel 2; SSC, 

PMT readout of side-scattering light detection channel. (g) Spatial Filter Design. Two examples of spatial 

filters placed at the image plane. The top two and bottom two long slits with dimensions of 10 µm by 200 

µm are for speed detection. The other pinholes on the spatial filter are 10 µm by 20 µm (left) and 10 µm by 

10 µm (right), for 3D image capturing with a pixel size of 2 µm and 1 µm in the x-direction, respectively. 
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1.4 Single-cell position and image mapping techniques using 3D-IFC system 

To relate single-cell position with its images from the 3D IFC system, we develop a high 

throughput technique to relate positions of individual cells to their 3D imaging features with 

single-cell resolution. The technique is particularly suitable for non-adherent cells where existing 

spatial biology methodologies relating cell properties to their positions in a solid tissue do not 

apply. Our design consists of two parts: recording 3D cell images at high throughput (500 to 1000 

cells/s) using a custom 3D imaging flow cytometer (3D-IFC) and dispensing cells in a first-in-

first-out (FIFO) manner using a robotic cell placement platform (CPP). To prevent errors due to 

violations of the FIFO principle, we have invented a method that uses marker beads and DNA 

sequencing software to detect errors. Experiments with human cancer cell lines demonstrate the 

feasibility of mapping 3D side scattering and fluorescent images, as well as 2D transmission 

images of cells to their locations on the membrane filter for around 100,000 cells in less than 10 

minutes. While the current work uses our specially designed 3D imaging flow cytometer to 

produce 3D cell images, our methodology can support other imaging modalities. The technology 

and method form a bridge between single-cell image analysis and single-cell molecular analysis. 

Figure 1.4.1 shows the overall design and workflow of our approach. The system consists 

of two interconnected hardware modules, a 3D imaging flow cytometer and a robotic cell dispenser. 

Cells and beads were pre-mixed and examined using the 3D-IFC system. The 3D 

hydrodynamically focused sample flow establishes a single-cell stream with a sample 

concentration of ~500 samples/uL. When a cell or bead passes through the laser interrogation area, 

it is illuminated by a scanning light sheet at a 200kHz scanning rate. The spatial filter placed at the 

image plane contains a series of spatially positioned pinholes aligned with the cell flow direction 

by a predetermined separation. The emitted light from a specific portion of a cell is detected by 
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photomultiplier tubes (PMTs). The spatial-temporal transformation is applied to reconstruct the 

3D tomographic images. The forward spatial filter contains a long slit aligned with the laser 

scanning range. The transmitted light is collected by a PMT and the signal can produce a 2D 

transmission image. In this cameraless design with a scanning light-sheet and spatial masks, the 

3D-IFC system can produce 3D side scattering and fluorescent images plus a 2D transmission 

image of traveling cells at a rate of 1000 cells/s. The details of the 3D-IFC can be found in our 

earlier publications29,30. 

The cell sample was premixed with three non-fluorescent beads of different sizes: 10um 

beads which we represented as nucleobase A, 20um beads which we represented as nucleobase T, 

and 30um beads which we represented as nucleobase C. Hence the sequence consists of these 3 

types of marker beads and cells. By matching the marker bead sequences between the 3D-IFC 

signals and cell placement platform, we were able to align the two sequences, which subsequently 

enabled us to map the cells between marker beads. To keep the average number of cells between 

marker beads to be a relatively small number (𝑛̅ = 2) and minimize the chance of error, we kept 

the ratio between cells and the total number of marker beads to be 2:1.  

When the cells and beads passed the laser interrogation area of the 3D-IFC and exited the 

flow cell, they were dispensed in a first-in-first-out (FIFO) manner on a template consisting of a 

12 𝜇m thick transparent porous film (Sterlitech, SKU. 1300026) on a holder with an array of 

groves. The liquid out of the 3D-IFC (at around 300 𝜇L/min) was immediately absorbed by the 

porous membrane filter through the capillary effect and drained by vacuuming the groves under 

the membrane. Only the beads and cells were left on the wetted porous membrane. The moving 

speed of the template was programmed according to the cell density in the sample to achieve an 

average cell-to-cell spacing of 250 𝜇m along the line of travel and a spacing of 500 𝜇m between 
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two adjacent lines of cells. In this design, a filter plate of the same size of a 384-well plate can 

house around 6x104 cells. For a 30-minute run of the 3D-IFC at a throughput of 300 cells/s, we 

can record around 500,000 3D images of single cells deposited on 10 cell plates with full 

knowledge of the position of every single cell and its 3D image. 

 

1.5 High-throughput signal and image processing needs 

Compared with Conventional FACS only a few intensity features can be extracted from 

the examined cell, IFC systems need to analyze high-content image feature that comprises 

thousands to hundreds of thousands of pixel intensity values and the spatial distribution of pixels. 

Such complex image-based features lead to a tremendous burden for back-end data transmission 

and image processing. For example, the 3D-IFC system generates at least 1GB of data per second 

at a throughput of 500 cells per second, each cell with more than 6,000 voxels. Such a large volume 

is challenging for traditional data and image processing workflow. In addition to the computation 

requirements for processing the large volume of image data, the IACS system also faces the real-

time constraints that all data processing and image features extraction must be completed during 

the milliseconds time window when the cell travels from the optical interrogation region to the 

sorting junction. Tradition intensity-based processing algorithms adopted by the FACS system and 

conventional image-feature extraction approaches cannot meet the above requirements. With the 

recent advances in real-time processing hardware like field-programmable gate arrays (FPGA) and 

graphical processing units (GPU) and evolving development of deep learning algorithms, 

analyzing the big data generated from IFC and IACS systems could be possible and become 

artificially intelligent.  
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Figure 1.5.1. Single-cell analysis and isolation workflow based on 3D imaging flow cytometer (3D-IFC) 

and robotic cell dispensing and pickup. Workflow: (i) Three types of marker beads are mixed with cell 

mixture to help map cell images from the image stream to cell locations. Run the sample through a 3D-IFC 

that can capture 3D fluorescent and side-scattering (SSC) images as well as 2D cell transmission images. 

(ii) After cells exit the 3D-IFC, they are dispensed by a robotic dispenser in a first-in-first-out (FIFO) 

manner on a template. (iii) Marker beads sequences from the 3D-IFC signal and the cell placement platform 

(CPP) are extracted using developed sequence extraction pipelines described in supplementary Fig. S1 and 

Fig. S2. (iv) Two sequences are compared and matched using a sequencing bioinformatics tool. (v) Marker 

beads sequence errors (including deletion and misplacement errors) are detected, and for the correctly 

registered marker beads, the number of cells between two marker beads is identified. In this manner, one 

can relate hundreds of thousands of individual cells to their respective 3D fluorescent and scattering images 

in high accuracy. If certain cells with specific image features are of interest, one can locate and pick up 

those cells individually for downstream analyses. Legends: AOD, acousto-optic deflector; CL, cylindrical 

lens; IO, 20X/0.42 illumination objective; SDO, 10X/0.28 side detection objective; SSP, side spatial filter; 

DMs, dichroic mirrors; FDO, forward detection objective; FSP, forward spatial filter; PMT, photomultiplier 

tube; DIG,125 MSs−1 digitizer; SE1, Sequence Extraction from 3D-IFC, SE2: Sequence Extraction from 

cell placement platform (CPP). 

 

1.6 Scope of Dissertation 

This dissertation focuses on the development of cameraless imaging flow cytometry and 

image-activated cell sorting technology using artificial intelligence (AI). The development of deep 

learning algorithms and the real-time implementation of AI models enables high-throughput data 
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analysis image processing in the IFC system and supports AI-guided image-activated cell sorting 

in the IACS system. 

Earlier in Chapter 1, we introduced the cameraless IACS and 3D-IFC systems and 

indicated the current limitation on data and image processing for IFC and IACS technologies. 

Chapter 2 presents the development of label-free cell analysis using the 3D imaging flow 

cytometer (3D-IFC) and convolutional neural network (CNN) and demonstrates the clinical 

application of multimodal NASH prognosis using 3D-IFC and CNN. This chapter also describes 

the capability of conducting label-free intracellular structure segmentation using the IFC system. 

Chapter 3 extends the implementation of the AI model to meet the sorting processing time 

constraint and presents the development of morphology-based artificial intelligence (AI)-guided 

image-activated cell sorting system. 

Chapter 4 summarizes the dissertation and briefly discusses the future direction of research. 

 

Chapter 1, in part, is a reprint of the material as it appears in Optica 2019, Y. Han, R. Tang, 

Y. Gu, A. Zhang, W. Cai, V. Castor, S. Cho, W. Alaynick and Y.-H. Lo. "Cameraless high-

throughput 3D imaging flow cytometry". The dissertation author was the second author of this 

paper. 

Chapter 1, in part, is a reprint of the material as it appears in High-Speed Biomedical 

Imaging and Spectroscopy V, Proceeding of SPIE 2020, R. Tang, X. Chen, Z. Zhang, L. Waller, 

J. Chen, Y. Gu, Y. Han, C. Lee, I. Gagne, A. Zhang, S. Cho and Y.-H. Lo. "2D image-guided cell 

sorter and 3D imaging flow cytometer". The dissertation author was the first author of this paper. 

Chapter 1, in part, is a reprint of the material as it appears in Proceedings of the National 

Academy of Sciences 2022, Z. Zhang, R. Tang, X. Chen, L. Waller, A. Kau, A. Fung, B. Gutierrez, 
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C. An, S. Cho, L. Shi and Y.-H. Lo. “A high-throughput technique to map cell images to cell 

positions using a 3D imaging flow cytometer”. The dissertation author was the second author of 

this paper. 
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 Chapter 2 Label-Free Cell Analysis Using 

Imaging Flow Cytometer and 

Convolutional Neural Networks 

Compared with conventional fluorescence biomarker labeling, the classification of cell 

types based on their stain-free morphological characteristics enables the discovery of new 

biological insight and simplifies the traditional cell analysis workflow. Most artificial intelligence 

(AI) aided image-based cell analysis methods primarily use transmitted bright-field images or 

holographic images. Here, we present the first study of the convolutional neural network (CNN) 

analysis on three-dimensional side scattering cell images out of a unique three-dimensional (3D) 

imaging flow cytometer study. Human cancer cell lines and leukocyte classifications were 

performed to investigate the information carried by the spatial distribution of side scattering 

imaging of single cells. We achieved a balanced accuracy of 98.8% for cancer cell line 

classification and 92.3% for leukocyte classification, respectively. The results demonstrate that the 

side scattering signals can produce not only general information about cell granularity following 

the common belief but also carry rich information about the properties and functions of cells, which 

can be uncovered by the availability of side-scattering imaging flow cytometer and the application 

of CNN. In addition, we extended the analysis to the cell classification of key regulated cell types 

involved in the development of non-alcoholic steatohepatitis (NASH) and demonstrated the 

capability of intracellular structure segmentation of CHO cells. Thereby we have opened a new 

avenue for cell phenotype analysis in biomedical and clinical research. 
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2.1 Introduction 

Characterization and classification of different morphologies and phenotypes in a 

heterogeneous cell population generate biomedical applications and significant insight in 

biological research to correlate cell phenotype and genotype information [2], [4], [17]. Although 

cell classification is beneficial for understanding cell heterogeneity, it usually requires the 

revelation of spatial information of the intercellular structures of single cells and the analysis of a 

large amount of data. In recent years, significant advances have been made in both the hardware 

of producing the cell imaging data from single cells and the data processing algorithms based on 

deep learning. The rapid development and proliferation of imaging flow cytometry (IFC) facilities 

data-driven cell analysis as IFC can generate a large amount of cell imaging data at a very high 

rate [12]. Most IFC systems (e.g., the Amnis® ImageStream IFC system) can generate label-free 

images by detecting the transmitted light from cells without fluorescent biomarker labeling, which 

complicates the workflow and might disturb the cell morphology and viability during the staining 

process [18]. On the other hand, the advances in the fields of deep learning and artificial 

intelligence have transformed the traditional cell image processing by greatly enhancing our ability 

of discerning and classifying cell features unattainable by traditional cell features, such as size, 

shape, etc. Recently, in combination with the advances in artificial intelligence, IFC has driven the 

exploitation of cell classification pipelines for biomedical practice using high-content single-

modal or multi-modal cell images [19]–[21]. 

Several recent works have applied imaging techniques with the IFC systems and data-

driven machine learning algorithms to demonstrate label-free cell classifications. Chen et al. 

reported a time-stretch quantitative phase imaging (TS-QPI) system and the artificial neural 

network model to identify white blood cells from colon cancer cells with a 96.4% balanced 
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accuracy[22]. Wu et al. demonstrated an intelligent frequency-shifted optofluidic time-stretch 

quantitative phase imaging (OTS-QPI) system that applies a convolutional neural network (CNN) 

autoencoder to extract image features from the captured image intelligently and achieved high 

accuracy of over 96% to classify leukemia cells among healthy white blood cells [23]. Though 

OTS-QPI methods facilitate label-free binary and multi-class classification, they only capture cell 

images with a single modality, lacking companion fluorescent images for verification and ground 

truth determination. Li et al. presented an IFC system that implements digital holographic 

microscopy (DHM) imaging for 3-part leukocyte recognition using machine learning algorithms 

with a high balanced classification accuracy of 99% [24]. However, the adopted machine learning 

method is prone to over-fitting because of the random shuffle and split of the dataset when 

evaluating the prediction model. In the reported methodology, the classifier might have already 

seen a particular subject during the training step and then predicted the same subject in the 

validation step [25]. The latest approaches with improved reliability and repeatability include 

adopting commercially available IFC systems to conduct label-free multi-class human white blood 

cells (WBC) classification. Nassar et al. established a label-free WBC approach using the Amnis® 

ImageStream IFC system to capture the two-dimensional (2D) transmission (bright-field) and side-

scattered (dark-field) images of human WBC to achieve four-class WBC classification with an 

average F1-score of 97% [26]. Lippeveld et al. also used the bright-field and dark-field 2D images 

captured by the Amnis IFC system to compare the human WBC classification performance using 

conventional machine learning with that using the deep learning approach. They have reported an 

eight-class classification accuracy of 77.8% and 70.3% for classical machine learning and deep 

learning approaches, respectively [27].  
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All label-free IFC technologies are developed based on the understanding that light 

scattering properties are related to cell morphology since the 1970's [28], [29]. Until the past two 

decades, very few studies examined the correlation between the intracellular structure and 

scattered light patterns. A theoretical study on three-dimensional (3D) simulation of light 

scattering patterns from biological cells shows that cells with a slightly different intracellular 

structure can be differentiated by measuring the side-scattered light at optimal angles[30]. A recent 

experimental study also demonstrated that while cellular organelles contribute to the side-

scattering pattern, the nucleus has the largest contribution [31]. However, cell classification based 

on only the side-scattering pattern has not been demonstrated yet, mainly because the side-

scattering images are hard to obtain from most custom-designed systems, and the SSC dark-field 

images obtained from the commercial system appear to be much darker and less informative than 

the bright-field images. A more general and significant limitation of the existing IFC technologies 

is that the captured 2D images from 3D cells are suffering from projection problems, and the 

collapsed 2D images cannot fully reveal the 3D spatial information. Utilizing the label-free 3D 

cell tomographic images for cell classification had not been demonstrated, due to a lack of IFC 

technology to generate a label-free 3D tomographic cell. In order to utilize label-free 3D cell 

tomographic images for cell classification, our group produced a flow cytometer design capable 

of capturing 3D 90-degree side scattering and fluorescent images [32]. 

In this chapter, we demonstrate an intelligent label-free cell type analysis workflow that 

utilizes 3D cell tomography of the side-scattered light captured by a recently developed camera-

less high-throughput 3D imaging flow cytometry (3D-IFC) system [32]. This offers a new 

modality to reveal the 3D internal structures of cells through tomographic imaging from the side-

scattered light. The 3D side-scattering (SSC) tomographic image is captured along with the 3D 
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fluorescent tomographic images from the assayed cell sample. Then, the SSC image and ground-

truth label extracted from corresponding fluorescence images are used as the input for the deep 

learning process. Experiments were conducted to evaluate our workflow performance for multi-

class classification of human cancer cell lines and white blood cells, respectively. Our results 

demonstrate a three-part classification balanced accuracy of 98.8% and 92.3% for cancer cell lines 

and human WBC type classification using customized 3D CNN models, respectively. We also 

found that models with 3D SSC images as inputs outperform the ones using the projected 2D SSC 

images, confirming that the 3D SSC tomographic image encodes a greater depth of information 

on internal cellular structure than the 2D SSC image. 
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2.2 Methods and materials 

2.2.1 Intelligent 3D-IFC-based cell type analysis workflow 

The three-stage workflow of intelligent 3D-IFC-based cell type analysis is illustrated in 

Figure 2.2.1. First, a mixture of cells is labeled with fluorescent biomarkers in the sample 

preparation process, targeting each cell type with corresponding biomarkers. The cell mixture is 

examined using the 3D-IFC system. The cell flow stream is 3D hydrodynamically focused by a 

2D sheath flow confinement in a flow cell cuvette (Hamamatsu, Cat. J11020-000-004). Such flow 

confinement establishes a single-cell stream with a cell concentration of approximately 1000 cells 

per microliter in the sample flow stream. When a cell is flowing through the optical interrogation 

area at 0.2m/s, it is illuminated with a scanning light sheet (at 200 kHz). With a series of spatially 

positioned (10 to 20) pinholes aligned with the cell flow direction by a predetermined angle, the 

emitted fluorescent and scattered light from a specific spatial position of a cell is detected by 

photomultiplier tubes (PMTs) chronologically with a series of dichroic mirrors and spectral filters 

to separate the detection light spectra. The single-cell stream is examined with a throughput of 

approximately 500 cells per second. 3D tomographic images are reconstructed based on the 

detected temporal signal intensity by applying the temporal-spatial transformation method [8], [32]. 

The temporal-spatial transformation was implemented using MATLAB, and the acquired raw 

waveforms were processed offline. The reconstructed 3D images were inspected through image 

gradient analysis. The truncation check step eliminates the truncated events. (see Figure 2.2.2 for 

image reconstruction pipeline). The intensity features are then extracted from the images and are 

analyzed by manual gating to identify the ground truth label for each cell in a sample mixture, 

analogous to phenotyping by conventional flow cytometry. At the last stage, the preprocessed 3D 

SSC images, together with the ground truth labels, are used as the input of customized deep CNN 
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models for the training and evaluation process compared with the state-of-the-art architecture as a 

benchmark. The classification performance is evaluated by the balanced prediction accuracy and 

confusion matrices of the test dataset. 

 

 

Figure 2.2.1. Intelligent three-dimensional imaging flow cytometry (3D-IFC) based cell type analysis 

workflow. 3D-IFC system images targeted biomarkers labeled cell mixture, it generates fluorescent and 

side-scattering (SSC) 3D tomographic images through temporal-spatial transformation. In order to find the 

ground truth labels, cells are fluorescently labeled, while the label-free 3D SSC images are used for training 

and classification. Convolutional neural network (CNN) models use SSC images to make predictions of the 

cell type. Classification performance is evaluated through confusion matrices and balanced prediction 

accuracy. AOD,acousto-optic deflector; Cyl. lens, cylindrical lens; IO, illumination objective lens; DO, 

detection objective lens; DMs, dichroic mirrors; PMT, photomultiplier tube; FL1, fluorescent channel 1; 

FL2, fluorescent channel 2; SSC, side-scattering channel. 
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Figure 2.2.2. Batch processing pipeline for automatic image reconstruction using temporal-spatial 

transformation 
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2.2.2 Cell preparation and image acquisition 

2.2.2.1 Human cancer cell type classification experiment 

The human embryonic kidney 293 (HEK-293) cells, the Michigan Cancer Foundation-7 

(MCF-7) cells, and the cervical cancer cells (HeLa) were used in the human cancer cell type 

classification experiment. Each cell line was cultured and harvested separately and then separated 

into three batches for targeted fluorescence staining. Two batches were fluorescently stained with 

the CFSE Cell Proliferation Kit (Ex/Em 492/517nm, Cat. 34554, Thermo Fisher) and the CellTrace 

Yellow Proliferation Kit (Ex/Em 546/579nm, Cat. 34567, Thermo Fisher), respectively. Both 

stained and unstained cells were fixed by 4% paraformaldehyde. Three cell lines were evenly 

mixed with one unstained cell line and two fluorescently stained cell lines with separate emission 

bands and then were analyzed by the 3D-IFC system in multiple image acquisition experiments. 

For each image acquisition experiment, the 3D SSC images from the unstained cell type were 

isolated based on the detected fluorescence intensity and were used for deep learning. A total of 

10,270 images were acquired from the unstained cancer cells for the cancer cell dataset. The 

dataset contains 3191 HEK-293 cells, 3315 HeLa cells, and 3764 MCF-7 cells. 

2.2.2.2 Human white blood cell type classification experiment 

This experiment used Veri-Cells™ Leukocyte Kit (Cat. 426003, BioLegend), prepared 

from lyophilized human peripheral blood leukocytes. Before the image acquisition experiment, the 

WBC sample was immuno-stained with the following antibodies cocktail for phenotyping: CD3, 

CD14, CD19, CD66b. Three WBC types were phenotyped using the antibody cocktail: 

lymphocytes, granulocytes, and monocytes. Detailed staining protocols are described in the 

supplementary materials. The 3D-IFC system analyzed the phenotyped cell sample in multiple 
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image acquisition experiments. In each image acquisition experiment, the 3D SSC images from 

the three WBC cell types were isolated based on the detected fluorescence intensity and were used 

for deep learning. A total of 24,230 images were acquired from the unstained cancer cells. For the 

human WBC dataset, the dataset contains 13,573 granulocytes, 3,061 lymphocytes, and 7,596 

monocytes. 

For both cell type classification experiments, the captured 3D SSC image was stored as a 

3D image stack with a field of view of 20 × 20 × 20 µm space. The 3D image stack was 80 × 80 

× 80 pixels. In the meantime, a 2D projection image was generated by collapsing the depth 

dimension of the 3D image stack. Figure 2.2.3 shows the 3D SSC image stacks of human cancer 

cells in comparison with the 2D SSC projection and bright-field microscopic images. 

 

 

Figure 2.2.3. SSC images of cancer cells by 3D-IFC. (a) Example 3D SSC image stacks of HEK-293, HeLa 

and MCF-7 cells and corresponding 2D projections. (b) Example microscope images of HEK-293, HeLa 

and MCF-7 cells. Scale bar: 5 µm. 

 

2.2.2.3 NASH disease characterization experiment 

Cell samples were harvested and prepared from two healthy donors and two NASH patients. 

For the image acquisition experiment, each batch of cell samples was independently run by the 

3D-IFC system. Hepatic stellate cell (HSC) and liver endothelial cell (LEC) samples were 
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analyzed separately for every subject. Each cell produced an image pair of a 2D transmission and 

a 3D side-scattering image. The captured 3D side-scattering image was stored as a 3D image stack 

of 40 × 40 × 40 voxels with a field of view of 40 × 40 × 40 µm3. The acquired 2D transmission 

was stored to 80 × 80 pixels with a field of view of 40 × 40 µm2. The label-free dual-modality 

3D-IFC system illustration is shown in Figure 2.2.4. The representative LEC and HSC cells 

acquired from the 3D-IFC system are presented in Figure 2.2.5. 

 

 

Figure 2.2.4. 3D imaging flow cytometer (3D-IFC) dual-modality imaging system. AOD, acousto-optic 

deflector; CL, cylindrical lens; IO, 20X/0.42NA illumination objective; SDO, 10X/0.28 NA side detection 

objective; SSP, side spatial filter; DM, dichroic mirror; FC, flow cell; FDO, 50X/0.55 NA forward detection 

objective; FSP, forward spatial filter; PMT, photomultiplier tube; DIG, 25MSps digitizer 
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Figure 2.2.5. 2D transmission and 3D SSC images of liver cells by 3D-IFC. (a) Example 3D SSC image 

stacks of healthy (top stack) and diseased HSC cells (bottom stack) and corresponding 2D transmission 

images. (b) Example microscope images of healthy and diseased HSC cells. (c) Example 3D SSC image 

stacks of healthy (top stack) and diseased LEC cells (bottom stack) and corresponding 2D transmission 

images. (d) Example microscope images of healthy and diseased LEC cells. Scale bar: 10 µm. 

 

2.2.2.4 Preparation of CHO-K1 cells for cell body and nuclear segmentation 

CHO-K1 (ATCC CCL-61) was used for nuclear staining. The cells were harvested when 

they were at a confluency of around 80%. The cells were centrifuged at 350 x g for 5 minutes to 

remove the supernatant to perform a wash. After washing the cells with PBS (Genesee Scientific, 
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CA, USA), the cells were centrifuged at 350 x g for 5 minutes. The supernatant was removed and 

100 µL of 4% formaldehyde, methanol-free (Cell Signaling Technology, Massachusetts, USA) 

was added for every million cells to be fixed. The cells were incubated for 15 minutes at 37ºC. 

After fixation, the cells were washed again and resuspended in PBS with 0.5% BSA (Thermo 

Scientific) to a concentration of 1.0x106 cells/mL. Lastly, the cells were stained with 0.5 µM 

Vybrant DyeCycle Green Stain (Invitrogen) for 30 minutes and filtered with a 35 µm strainer cap 

(Genesee Scientific, CA, USA) before analysis. 

 

2.2.3 Ground truth labeling and data preparation 

The detected fluorescence and SSC intensity levels were extracted from the 3D images 

after image acquisition. A manual gating process was implemented to identify the ground truth 

cell type based on the detected fluorescence intensity. For each experiment, an unstained cell type 

and two stained cell types were assayed with different fluorescence emission bands. Therefore, 

different cell types could be gated manually based on the detected fluorescence intensity level, and 

the ground truth cell type labels were assigned to each 3D SSC image. 

In the data preparation process, we first removed the background noise, leaving only the 

pixels of interest in the 3D SSC images through intensity thresholding. Then, the pixel intensity of 

3D SSC images was normalized globally to the highest intensity level of the dataset. As many deep 

learning classifiers are sensitive to class imbalance, we augmented the imbalanced WBC dataset 

before training to balance the class occurrence frequencies [33]. We applied a rotational 

augmentation to the minority classes for the training dataset. For each 3D SSC image, a 2D SSC 

projection image was generated by collapsing the depth dimension of the corresponding 3D SSC 

image. 
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2.2.4 Deep learning models and validation 

Three CNN models were used to take the SSC images as input and make the cell type 

prediction. ResNet is a state-of-the-art architecture in image classification. It eases the weight 

parameters optimization by reformulating the convolutional layers as learning residual functions, 

with the layer inputs as a reference. ResNet architecture converges faster and contains fewer 

parameters compared with other neural network architectures like VGG or InceptionNet, while 

ResNet could maintain a lower error rate compared with others [34]. In this work, a variant of 18 

layers (ResNet18) was used as a benchmark architecture. We conducted a transfer learning with 

the ResNet18 model with the modification of the fully connected and Softmax layer. The output 

of the Softmax layer can be written as 

𝒚̂𝒊 =
𝑒𝒙𝒊

∑ 𝒙𝑗
𝐶
𝑗=1

, 𝑖 = 1,2, … , 𝐶   (1) 

where 𝒙 is the input vectors, 𝐶 is the number of classes. 

In our work, the ResNet18 model optimizes the averaged cross-entropy loss between the 

predicted class and ground-truth class through mini-batch gradient descent. The averaged cross-

entropy loss 𝐿𝐶𝐸 can be expressed as 

𝐿𝐶𝐸 = −
1

𝑁
∑ 𝒚𝒊(𝒙) ∙ log⁡(𝒚̂𝒊(𝒙))
𝑁
𝑖=1    (2) 

where 𝒚𝒊 is the ground truth class vector, 𝒚̂𝒊 is the predicted class vector, and 𝑁 is the data 

size in the mini-batch. 

In comparison with the contracting architecture of ResNet, a "fully-connected" 

convolutional neural network, the so-called UNet architecture was applied for biomedical image 

classification and segmentation. UNet supplements the usual contracting network by successive 

up-sampling and convolution layers, and the high-resolution features from the contracting path are 

combined with the upsampling output. A successive convolution layer can then learn to assemble 
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a more precise output based on the passed information [35]. UNet requires very few labeled images 

and has reasonable training time. In the meantime, recent research demonstrated that using an 

autoencoder and the latent space to conduct could improve classification performance [36], [37]. 

However, none has attempted to use the latent activation of a dense UNet architecture for both 

classification and image regeneration. In this work, we have developed two customized 

autoencoder models based on UNet architecture: (i) 2DCNN UNet that contains 2D convolution 

layers from single-channel 3D images and multi-channel 2D images; (ii) 3DCNN UNet that uses 

3D convolution layers from multi-channel 3D images. For both UNet architectures, the contracting 

path takes the image as input. Image features are extracted by the convolution layers and encoded 

to subsequent layers through max pooling. A fully connected layer and Softmax layer are 

connected to the latent space to make a classification decision. The upsampling path takes the 

features from the latent space in combination with the high-resolution features that are passed from 

the convolution layers to generate an output image with the same dimension as the input image. 

This path is trained such that the generated images look similar to the input image while 

suppressing the noise. In both UNet architectures, the contracting path works as an encoder, while 

the upsampling path works as a decoder. We use a weighted loss that incorporates the mini-batch 

averaged cross-entropy loss between the predicted class and ground-truth class (Eqs. (2)) and the 

mean-square error loss between the input and generated output image pixel values. The mini-batch 

averaged mean-square error loss 𝐿𝑀𝑆𝐸  can be expressed as 

𝐿𝑀𝑆𝐸(𝒙, 𝒙̂) =
1

𝑁
∑ ∑ (𝑥𝑖,𝑗 − 𝑥̂𝑖,𝑗)

2𝑀
𝑖=1

𝑁
𝑗=1    (3) 

Where 𝒙 and 𝒙̂ are the input image and generated image vectors, respectively, M is the 

flattened image vector dimension, and 𝑁 is the data size in the mini-batch. 

The weighted total loss 𝐿 is defined as 
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𝐿 = 𝑤 ∙ 𝐿𝐶𝐸 + (1 − 𝑤) ∙ 𝐿𝑀𝑆𝐸    (4) 

where 𝑤 is the weight coefficient to balance the loss function. 

The overall structures of 2DCNN and 3DCNN UNet are illustrated in Figure 2.2.6. 

A stratified 5-fold cross-validation (CV) approach is used to train the deep learning models 

and evaluate their performance. For each fold, training data were augmented by rotating the 3D 

image matrix to balance the class occurrence frequencies and used to train a model. The model 

was then validated using the instance from the validation set. The predictions made on the 

validation set were summarized in a confusion matrix per fold. more information on the CV 

training curves can be found in Figure 2.2.7-2.2.18. Apart from the confusion matrix, balanced 

classification accuracy was reported. The balanced accuracy 𝜎 is the arithmetic mean of class-

specific accuracies and is calculated as 

𝜎 =
1

𝐶
∑ 𝜎𝑖
𝐶
𝑖=1    (5) 

where 𝜎𝑖  is the class-specific accuracy, and 𝐶  is the number of classes. The balanced 

accuracy does not favor a classifier that exploits class imbalance by biasing toward the majority 

class [38]. 

For each classification experiment, ResNet18 and 2DCNN UNet use 2D SSC projections 

and 3D SSC images as the input to train the model separately, while 3DCNN UNet uses only 3D 

SSC images as the input. For 2DCNN UNet, the 3D SSC images were sliced along the depth 

direction and the 2D slices were treated as the multi-channel input of the 2DCNN UNet model. 

The deep learning models were trained for 100 epochs with the Adam optimization algorithm [39]. 

2DCNN and 3DCNN UNet used a learning rate of 1e-4 and 5e-5 in the initial training epochs for 

human cancer cell line and leukocyte classification, respectively. ResNet18 adopted an initial 

training learning rate of 5e-6 for the first five epochs to avoid getting stuck into the local minimum 
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and then increased to 5e-5. The exponential decay parameters for Adam optimizer were set as 

𝛽1 = 0.9 , 𝛽2 = 0.999 . In order to allow the optimization to converge, the learning rate was 

reduced by half if the validation metric stopped improving for five epochs. The parameters of the 

trained deep learning models were stored and validated using the validation dataset to generate the 

confusion matrix of the classification results, and balanced classification accuracy was calculated 

based on the confusion matrix. In addition, the activation output of the fully connected layer was 

projected to a 2D plane as the t-distributed stochastic neighbor embedding (t-SNE) plot [40] 

All deep learning models were implemented using the PyTorch framework and trained on 

a 12-core machine with an Intel® Core™ i9-10920X processor running at 3.50GHz. The deep 

learning experiments were run on an NVIDIA Titan RTX GPU with 24GB of VRAM. 
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Figure 2.2.6. 2DCNN and 3DCNN UNet structures. (a) 2DCNN UNet structure with multi-channel 2D 

input. (b) 3DCNN UNet structure with single-channel 3D input. Each box corresponds to a multi-channel 

feature map. The number of channels is denoted on top of the box. The feature map size is shown at the 

lower-left edge of the box. The arrows denote the different operations 
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Figure 2.2.7. Learning curves and learning rate schedules during training for human cancer cell 

classification 

 

 

Figure 2.2.8. Learning curves and learning rate schedules during training for human leukocyte 

classification 

 

 

Figure 2.2.9. Learning curves and learning rate schedules for all folds in cross-validation acquired during 

training for human cancer cell classification using ResNet model with 2D input 
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Figure 2.2.10. Learning curves and learning rate schedules for all folds in cross-validation acquired during 

training for human cancer cell classification using ResNet model with 3D input 

 

 

Figure 2.2.11. Learning curves and learning rate schedules for all folds in cross-validation acquired during 

training for human cancer cell classification using UNet2D model with 2D input 

 

 

Figure 2.2.12. Learning curves and learning rate schedules for all folds in cross-validation acquired during 

training for human cancer cell classification using UNet2D model with 3D input 
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Figure 2.2.13. Learning curves and learning rate schedules for all folds in cross-validation acquired during 

training for human cancer cell classification using UNet3D model with 3D input 

 

 

Figure 2.2.14. Learning curves and learning rate schedules for all folds in cross-validation acquired during 

training for human leukocyte classification using ResNet model with 2D input 

 

 

Figure 2.2.15. Learning curves and learning rate schedules for all folds in cross-validation acquired during 

training for human leukocyte classification using ResNet model with 3D input 
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Figure 2.2.16. Learning curves and learning rate schedules for all folds in cross-validation acquired during 

training for human leukocyte classification using UNet2D model with 2D input 

 

 

Figure 2.2.17. Learning curves and learning rate schedules for all folds in cross-validation acquired during 

training for human leukocyte classification using UNet2D model with 3D input 

 

 

Figure 2.2.18. Learning curves and learning rate schedules for all folds in cross-validation acquired during 

training for human leukocyte classification using UNet3D model with 3D input 
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2.2.5 Fused UNet CNN for NASH cell characterization 

To exploit the high information content in the dual-modality cell images from the 3D-IFC 

system, a customized autoencoder model, Fused UNet, was developed based on UNet architectures 

introduced in the previous section. The previous section examined the utilization of side-scattering 

images for cell classification. However, the side-scattering image only reflects the 90-degree 

scattering light profile of the cell, while the light loss information caused by the occlusion of the 

cell when it passes through the optical interrogation area can only be captured by the 2D 

transmission image. Therefore, combining the two imaging modalities could provide a complete 

light profile information of the cell, which leads to our 'Fused UNet' architecture. Fused UNet 

architecture combines two UNet structures (2D UNet and 3D UNet), each taking a single image 

modality as the input. Image features are extracted by the convolutional layers and encoded to 

subsequent layers by the max-pooling kernels during the contracting paths. The latent spaces from 

the two UNets are concatenated together with a Softmax layer to make a classification decision 

for the classifier. The images generated by the upsampling paths are also used to optimize the loss 

function during the model training process. The Fused UNet structure is illustrated in Figure 2.2.19. 
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Figure 2.2.19. Fused UNet autoencoder model architecture 

 

The output of the Softmax layer can be written as 

𝒚̂𝒊 =
𝑒𝒙𝒊

∑ 𝑒
𝒙𝑗𝐶

𝑗=1

, 𝑖 = 1,2, … , 𝐶   (2) 

where 𝒙 is the input image pair vectors, 𝐶 is the number of classes. 

The Fused UNet uses a weighted loss that consists of the mini-batch averaged cross-

entropy loss (Eqs. (3)) between the ground truth class and the predicted class and the weighted 

mean-square error loss (Eqs. (4)) between the input and generated output images pixel values. The 

averaged cross-entropy loss 𝐿𝐶𝐸 can be expressed as 

𝐿𝐶𝐸 = −
1

𝑁
∑ 𝒚𝒊(𝒙) ∙ log⁡(𝒚̂𝒊(𝒙))
𝑁
𝑖=1    (3) 

where 𝒚𝒊 is the ground truth class vector, 𝒚̂𝒊 is the predicted class vector, and 𝑁 is the data 

size in the mini-batch. 

The mini-batch averaged mean-square error loss 𝐿𝑀𝑆𝐸  can be expressed as 

𝐿𝑀𝑆𝐸(𝒙, 𝒙) = 𝑤1𝐿𝑀𝑆𝐸,2𝑑 + (1 − 𝑤1)𝐿𝑀𝑆𝐸,3𝑑 
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=
1

𝑁
∑ (

𝑤1

𝑀2𝑑
∑ (𝑥2𝑑,𝑖,𝑗 − 𝑥̂2𝑑,𝑖,𝑗)

2𝑀2𝑑
𝑖=1 +

1−𝑤1

𝑀3𝑑
∑ (𝑥3𝑑,𝑖,𝑗 − 𝑥̂3𝑑,𝑖,𝑗)

2𝑀3𝑑
𝑖=1 )𝑁

𝑗=1    (4) 

Where 𝒙 and 𝒙̂ are the input and generated image pair vectors, respectively, 𝑀2𝑑  is the 

flattened transmission image vector dimension, 𝑀3𝑑 is the flattened side-scattering image vector 

dimension, 𝐿𝑀𝑆𝐸,2𝑑 is the mean-square error loss between the input and generated transmission 

image, 𝐿𝑀𝑆𝐸,3𝑑 is the mean-square error loss between the input and generated 3D side-scattering 

image, 𝑁 is the data size in the mini-batch, 𝑤1 is the mean-square error loss weight assigned to the 

two image modalities. 

The weighted total loss 𝐿 is defined as 

𝐿 = 𝑤2 ∙ 𝐿𝐶𝐸 + (1 − 𝑤2) ∙ 𝐿𝑀𝑆𝐸    (5) 

where 𝑤2 is the weight coefficient to balance the loss between the averaged cross-entropy 

loss and the mean-square error loss. 

The same stratified 4-fold cross-validation (CV) approach used in the conventional 

machine learning approach is also applied to prepare the image pair dataset for the training of the 

Fused UNet autoencoder model and the performance evaluation. The predictions made on the 

validation set were summarized in a confusion matrix per fold. More information on the CV 

training curves can be found in Figure 2.2.20-2.2.21. In addition to the confusion matrix, the 

balanced classification precision, recall, and F1 score are reported for cell morphology 

characterization. The balanced accuracy 𝜎 is the arithmetic mean of class-specific accuracies and 

is calculated as 

𝜎 =
1

𝐶
∑ 𝜎𝑖
𝐶
𝑖=1    (6) 

where 𝜎𝑖 is the class-specific accuracy, and 𝐶 is the number of classes. 

For the cell characterization experiment, the Fused UNet model was trained for 50 epochs 

with the Adam optimization algorithm [39]. The initial learning was set to 1 × 10-5 for the first five 
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epochs and then increased to 5 × 10-5 to avoid getting stuck into the local minimum. The 

exponential decay parameters for the Adam optimizer were set as β1 = 0.99 and β2 = 0.9999. To 

allow the optimization to converge, the learning rate was reduced by half if the validation metrics 

stopped improving for five epochs. 

The Fused UNet model was implemented using the PyTorch framework and was trained 

on a 12-core machine with an Intel® Core™ i9-10920X processor and an NVIDIA Titan RTX 

GPU with 24GB of VRAM. 

 

 

Figure 2.2.20. Fused UNet learning curves and learning rate schedules during training for stellate cells 

characterization 

 

 

Figure 2.2.21. Fused UNet learning curves and learning rate schedules during training for endothelial cells 

characterization 
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2.2.6 Image segmentation UNet for intracellular structure segmentation 

In addition to the cell type classification application, we developed an image segmentation 

UNet model to conduct pixel-level classification and delineate the intracellular structure based on 

the image captured from the 2D IFC system. The image segmentation UNet takes 2D transmission 

images and the binary segmentation maps generated from the fluorescence detection channels. 

Image features are extracted by the convolutional layers and encoded to subsequent layers by the 

max-pooling kernels during the contracting paths. The upsampling path takes the features from the 

latent space in combination with the high-resolution features that are passed from the convolution 

layers to generate a predicted segmentation mask 

The image segmentation UNet uses a weighted loss that consists of the mini-batch averaged 

binary cross-entropy loss (Eqs. (1)) between the ground truth class and the predicted class and the 

Dice loss (Eqs. (2)) between the input and predicted segmentation mask pixel values. The averaged 

cross-entropy loss 𝐿𝐶𝐸 can be expressed as 

𝐿𝐵𝐶𝐸 = −
1

𝑁
∑

1

𝐶
∑ 𝒙𝒄,𝒊 ∙ 𝑙𝑜𝑔⁡(𝒚̂𝒄,𝒊)
𝐶
𝑐=1

𝑁
𝑖=1    (1) 

where 𝒙𝒄,𝒊 is the ground truth class vector, 𝒚̂𝒄,𝒊 is the predicted class vector, and 𝑁 is the 

data size in the mini-batch, 𝐶 is the class number in the mini-bath. 

The Dice loss 𝐿𝐷𝑖𝑐𝑒 can be expressed as 

𝐿𝐷𝑖𝑐𝑒 = 1 −
1

𝐶
∑

2∑ 𝑥𝑐,𝑖𝑦̂𝑐,𝑖
𝑁
𝑖=1

∑ 𝑥𝑐,𝑖
2𝑁

𝑖=1 +∑ 𝑦̂𝑐,𝑖
2𝑁

𝑖=1

𝐶
𝑐=1    (2) 

Where, 𝑥𝑐,𝑖 and 𝑦̂𝑐,𝑖 are the input and predicted pixel values. 𝑁 is the data size in the mini-

batch, 𝐶 is the class number in the mini-bath. 

The weighted total loss 𝐿 is defined as 

𝐿 = 𝑤 ∙ 𝐿𝐵𝐶𝐸 + (1 − 𝑤) ∙ 𝐿𝐷𝑖𝑐𝑒   (5) 
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where 𝑤 is the weight coefficient to balance the loss between the averaged binary cross-

entropy loss and the Dice loss. 

The same stratified 5-fold cross-validation (CV) approach used in the conventional 

machine learning approach is also applied to prepare the image pair dataset for the training of the 

Fused UNet autoencoder model and the performance evaluation. The predictions made on the 

validation set were summarized using the intersection-over-union (IoU) score and F1 score for 

each CV fold. 

The image segmentation UNet structure is illustrated in Figure 2.2.22. 

 

 

Figure 2.2.22. Image segmentation UNet architecture 
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2.3 Results 

We started with the ResNet18 model for the classification experiments by setting a 

benchmark performance on the human cancer cell lines and white blood cell datasets, trained on 

2D SSC projection images and 3D SSC tomographic images, respectively. We then used our 

customized 2D CNN and 3D CNN UNet models to conduct the same classification and found that 

they achieved better performance for both datasets than the benchmark ResNet18 model with the 

feedback of the upsampling path in the model architectures. We also found that 3D SSC 

tomographic images as input outperform 2D SSC projection images substantially for the same 

deep learning model. For NASH disease cell type characterization, we found that the Fused UNet 

returns a high classification F1 score compared with the conventional machine learning results 

based on morphological statistics. In addition, our image segmentation UNet returns high IoU and 

F1 scores for cell body and nuclear area segmentation for CHO-K1 cells. 

2.3.1 Classifying human cancer cells 

This experiment aims to evaluate the classification performance of the SSC image for cells 

with different sizes and internal structures. The confusion matrics and corresponding t-SNE 

visualizations for all classification experiments are presented in Figure 2.3.1. It is observed that all 

deep learning models were able to differentiate three cancer cell types using the SSC images, while 

the performance varies with the model architecture and the input dimension. Regarding the model 

performance, both UNet models outperform the benchmark ResNet18 by a large margin in terms 

of 2D and 3D input classification. For 2D input, 2DCNN UNet shows better classification 

accuracies for all cell types (2DCNN UNet: 0.865, versus ResNet18: 0.796, balanced accuracy). 

For 3D input, 3D CNN UNet achieved a very high performance among the three architectures 

(3DCNN UNet: 0.988, 2DCNN UNet: 0.955, versus ResNet18: 0.865, balanced accuracy). The 
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balanced accuracy improvement of using the 3D input instead of 2D input for ResNet18 and 

2DCNN UNet is 8.67% and 10.40%, respectively. In addition, we observed a more apparent 

separation in the t-SNE plots with 3D input compared with 2D input. The improvement of 

classification performance using 3D input implies that 3D SSC tomographic images contain more 

spatial information, especially along with the depth dimension, than 2D SSC projection images. 

Such information is beneficial for cell type detection based on side-scattering images. 

 

 

Figure 2.3.1. Confusion matrices and t-SNE visualizations from cross-validation experiments on the human 

cancer cell dataset 

 

2.3.2 Classifying human white blood cells 

WBC differential count is a widely adopted clinical test that measures the percentage 

number and percentage of the WBC types [41]. Conventional methods require fluorescent antibody 

tagging that is known to label the WBC population differentially. However, this method provides 

low content cell phenotype information and can only be applied to the cell type with the known 
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antibody tagging. Cells in the WBC population have different sizes and different cell types vary 

in the intracellular structure. Distinguishing WBCs using the stain-free morphological information 

could avoid the biomarker labeling process and enable the discovery of new subtypes that cannot 

be labeled by fluorescent biomarkers. In this experiment, we demonstrate a three-part WBC cell 

type classification to identify granulocytes, lymphocytes, and monocytes based on the SSC images. 

We conducted the same classification experiments in the cancer cell line dataset using the 

benchmark and customized models with both 2D and 3D SSC inputs. Figure 2.3.2 shows the 

confusion matrices and corresponding t-SNE visualizations for all classification experiments. 

From the results, all deep learning models were able to classify the WBC, though the performance 

varies with model architectures and input dimensions, showing similar trends compared with the 

cancer cell line dataset. In terms of model architectures, 3DCNN UNet achieved the highest 

performance compared with 2DCNN UNet and the benchmark ResNet18 with 3D input (3DCNN 

UNet: 0.923, 2DCNN UNet: 0.918, versus ResNet18: 0.883, balanced accuracy). For the 

experiments on the input dimension, models with 3D input (0.923, balanced accuracy) outperform 

the ones with 2D input for both ResNet18 (0.836, balanced accuracy) and 2DCNN UNet models 

(0.883, balanced accuracy). Apart from the accuracy performance, we also found that the t-SNE 

visualization has better separation among each cell type for the models with 3D input. Overall, we 

found that the classification performance for the WBC dataset is not as high as the cancer cell line 

dataset. One of the contributing factors is that there is a more significant variation of the cell 

morphology for the WBC dataset compared with the cancer cell line dataset. The primary WBC 

types identified in this experiment could be further divided into several subtypes. For example, 

granulocytes can be further separated into neutrophils, eosinophils, basophils. Nevertheless, we 



 

46 

 

observed multiple well-separated clusters within the single cell type, especially in the t-SNE 

visualization of 2DCNN and 3DCNN UNet with 3D input. 

 

 

Figure 2.3.2. Confusion matrices and t-SNE visualization from cross-validation experiment on the human 

white blood cell dataset 

 

2.3.3 Fused UNet CNN NASH cell characterization based on the dual-modality 

image input 

We conducted the cell characterization on both HSC and LEC cells datasets using the 

Fused UNet CNN model. The confusion matrices for HSC and LEC cells characterization are 

presented in Figure 2.3.3 and Figure 2.3.4, respectively. The results show that our Fused UNet 

model was able to characterize both HSC and LEC cells with high accuracy between NASH and 

healthy donors with the dual-modality image inputs acquired by the 3D IFC system. For HSC 

characterization, Fused UNets return a high balanced characterization F1 score (0.975-0.987, mean 

F1 score: 0.982) for all CV folds. The characterization of LEC cells generally returns a balanced 
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characterization F1 score (0.939-0.959, mean F1 score: 0.949) for all CV folds. Our result shows 

that we can separate the cells based on the physical structure, which suggests that there are 

fundamental changes that occur during the disease process that alter the structure and likely the 

function of these cells during disease progression. 

For comparisons between the Fused CNN UNet and conventional machine learning, we 

also conducted the cell characterization based on the morphological features of HSC and LEC cells 

datasets using conventional machine learning techniques. Our experiment shows that conventional 

machine learning classification algorithms generally return relatively high F1 scores for the HSC 

cells dataset but yielded lower F1 scores for the LEC dataset. The best conventional classifier 

model based on morphological features is the Gaussian process classifier model. It returns a mean 

F1 score of 0.905 for the HSC cells dataset and a mean F1 score of 0.81 for the LEC cells dataset. 

Figure 2.3.5 shows the comparison between the Fused CNN UNets and different conventional 

machine learning methods. The Fused CNN UNet outperforms all conventional machine learning 

algorithms by a significant margin for the detection of early-stage NASH.   

 

 

Figure 2.3.3. Confusion matrices from cross-validation experiments on the HSC characterization dataset. 
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Figure 2.3.4. Confusion matrices from cross-validation experiments on the LEC cells characterization 

dataset. 

 

 

Figure 2.3.5. Model performance comparison. (a) Model performance comparison for HSC cells 

characterization; (b) Model performance comparison for LEC cells characterization. 

 

2.3.4 Image segmentation UNet CHO-K1 cell body and nuclear area segmentation 

We conducted pixel-level cell body and nuclear area segmentation based on the 2D 

transmission images of CHO-K1 cells captured by the 2D-IFC system. We use the image 

segmentation UNet to predict the cell body area, nucleus, and chromosome area using a data set 

of 10,000 images. An example visualization of image segmentation UNet prediction visualization 

is presented in Figure 2.3.6. The predicted segmentation masks from the 2D transmission images 

are very similar to the segmentation masks generated from the ground truth fluorescence channel. 

The IoU and F1 score metrics of all CV folds are included in Table 2.3.1. It is observed that the 
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image segmentation UNet can accurately predict the cell area and nucleus area of CHO-K1 cells 

with a high F1 score (mean cell body area F1 score: 0.914, mean nucleus area F1 score: 0.923). The 

mean IoU score for the prediction mask is 0.826. 

 

Table 2.3.1 CHO-K1 cell body and nuclear segmentation performance metrics 

Performance 

metrics 

Fold-0 Fold-1 Fold-2 Fold-3 Fold-4 

IoU score 0.822 0.831 0.828 0.823 0.825 

Chromosome 

area F1 score 

0.817 0.826 0.822 0.820 0.821 

Nucleus area  

F1 score 

0.921 0.926 0.924 0.922 0.922 

Cell body area F1 

score 

0.912 0.916 0.915 0.912 0.913 
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Figure 2.3.6. Example CHO-K1 cell segmentation output visualization compared with the ground truth 

segmentation map 
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2.4 Discussion 

Leveraging the unique 3D tomographic side-scattering imaging capability of the 3D-IFC 

system, we present an intelligent cell type analysis workflow enabled by customized 2DCNN and 

3DCNN UNet deep learning neural networks, demonstrating for the first time that 3D tomographic 

side-scattering patterns can be applied to distinguish different cell types based on the 

morphologically separable features. Two multi-class cell type classification experiments have been 

demonstrated with high performance using only the SSC images from biological cells. For the 

human cancer cell type experiment, 3DCNN UNet achieves an accuracy of 98.8% for classifying 

HEK-293, HeLa, and MCF-7 cells. In the human white blood cell experiment, 3DCNN UNet can 

differentiate granulocyte, lymphocyte, and monocyte from the WBC population with an accuracy 

of 92.3% and the potential to further identify subtypes. In the NASH cell characterization 

experiment, Fused UNet can differentiate the healthy and diseased HSE and LSC with an average 

F1 score of 0.982 and 0.949, respectively. In the CHO-K1 cell body and nuclear segmentation 

experiment, the image segmentation UNet can accurately delineate the cell body and nucleus area 

of CHO-K1 cells with high average F1 scores (cell body: 0.914, nucleus: 0.923). 

The current 3D imaging IFC has some constraints that limit its performance for label-free 

cell classification and cell type discovery.  

A significant constraint is the image resolution for the SSC images. The current optical 

resolution for the 3D-IFC system is 1µm, 2 µm, and 2 µm for the horizontal, vertical, and depth 

directions. An improvement in the optical resolution of the 3D-IFC system can improve the 

resolving power of the subtle morphological differences among different cell types, which might 

be beneficial for identifying cell types that are challenging for the current IFC system to identify 

morphologically (e.g., helper T cells versus killer T cells) 
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In terms of the machine learning aspect, a natural next step for future work is to apply deep 

learning methods with the aim of increasing the performance of the model. The current deep 

learning model uses simple data preprocessing approaches. The impacts on different data 

preprocessing approaches to deep learning performance have not been quantified yet. In addition 

to the data preprocessing methods, one could examine different deep learning approaches to 

improve model performance. Semi-supervised, unsupervised learning approaches and other 

methods of dimensionality reduction and visualization could be used for cell type analysis. Such 

approaches could potentially define new subpopulations and provide insights when combined with 

quantitative and qualitative clustering techniques. Furthermore, semi-supervised and unsupervised 

machine learning approaches can be applied to further investigate the label-free classification 

potential of new cell type discovery and improve the supervised machine-learning models and 

provide a better understanding and explanation of the morphology-based cell type characterization 

and classification studies. 

 

Chapter 2, in part, is a reprint of the material as it appears in APL Photonics 2020, R. Tang, 

Z. Zhang, X. Chen, L. Waller, A. Zhang , J. Chen, Y. Han, C. An, S. Cho and Y.-H. Lo. "3D side-

scattering imaging flow cytometer and convolutional neural network for label-free cell analysis". 

The dissertation author was the first author of this paper. 

Chapter 2, in part, is a reprint of the material as it is under peer review in Scientific Reports 

2022, R. Subramanian, R. Tang (co-first), Z. Zhang, V. Joshi, J. Miner, Y.-H. Lo. “Multimodal 

NASH prognosis using 3D imaging flow cytometry and artificial intelligence to characterize liver 

cells”. The dissertation author was the co-first author of this paper. 
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 Chapter 3 Low-latency label-free image-

activated cell sorting using fast deep 

learning and AI inferencing 

Classification and sorting of cells using image-activated cell sorting (IACS) systems can 

bring significant insight into biomedical sciences. Incorporating deep learning algorithms into 

IACS enables cell classification and isolation based on complex and human-vision uninterpretable 

morphological features within a heterogeneous cell population. However, current realizations of 

deep learning–assisted IACS systems either have insufficient capabilities or complicated 

implementation to make the utilization of such systems unfeasible for wide adoption in biomedical 

research. Here, we present image-activated cell sorting by applying fast deep learning algorithms 

to conduct cell sorting without labeling. The overall sorting latency, including signal processing 

and AI inferencing, is less than three milliseconds, and the training time for the deep learning 

model is less than 30 minutes with a training dataset of 20,000 images. The utility of the system 

was demonstrated in a 3-part white blood cell sorting, showing purities of 92.0%, 89.05%, and 

98.4%, for lymphocyte, monocyte, and granulocyte, respectively, using the label-free, brightfield 

cell images captured by the system. The system provides a compact, sterile, low-cost, label-free, 

and low-latency cell sorting solution based on real-time AI inferencing and fast training of the 

deep learning model. 
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3.1 Introduction 

Image-based detection, classification, and separation of target cells among the total cell 

population can bring phenomenal insight to biomedical research and application [9], [19], [42]–

[46]. Conventional fluorescent-activated cell sorting (FACS) technology optically interrogates 

each cell in a single-cell flow stream and isolates cells based on scattering and fluorescence 

intensity features of the interrogated cells [47], [48]. In comparison, image-activated cell sorting 

(IACS) systems can classify and sort cells based on spatial features obtained from cell images, 

which offer much greater information content than conventional FACS which is limited to a single 

value per parameter. By extracting the spatial and morphological features carried by light 

transmission, scattering, and fluorescent properties of cells, IACS can classify and isolate the 

targeted cell types from a large heterogeneous cell population using image-feature based gating 

(e.g., cellular size and shape, nuclear size, and shape, nucleus-to-cytoplasm ratio, DNA and RNA 

localization, cellular organelle localization, cellular aggregation, as well as non-intuitive features) 

[49]–[52]. The emergence of the image-activated cell sorting (IACS) technique provides a 

powerful biomedical research tool for cell cycle analysis, cell-cell interaction, protein localization, 

DNA and RNA localization, and exploiting the relationship between cellular phenotype to 

genotype [45], [46], [53]–[57]. 

The IACS system requires real-time data processing and sorting actuation to process high-

content image data at a high data transfer rate and extract many image-related features based on 

which sorting decisions are made [53], [58]. The computing power of the processor limits the 

number of cell image features that can be extracted in real-time as many image-related features 

require heavy computation [43], [58], [59]. Perhaps the most important concern is that in some 

cases, cell phenotypical and morphological features can be complex and convoluted, not resolvable 
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or correctly identifiable by human vision or some subjective criteria, partly because humans can 

only process a very small set of images out of a very large sample size. As a result, mathematical 

representations of image features driven by human-vision-based gating can have deficiencies and 

miss important biological insight [9], [22], [23]. In this paper, we try to address this limitation by 

artificial intelligence (AI) derived gating and sorting with real-time AI inferencing. 

With the recent advances in deep learning algorithms and artificial intelligence (AI) 

computing hardware, convolutional neural networks (CNN) can solve complex image-driven 

pattern recognition problems. Conducting a real-time AI model inference computation with 

millisecond latency has become feasible with the state-of-art graphical processing unit (GPU) 

hardware [12], [49], [60]–[65]. The recent advent of AI image-activated cell sorting (AI-IACS) 

achieved cell sorting based on CNN predicted sorting decision at a speed of 82.8 events per second 

(eps) with a sorting latency of 32 ms using a field-programmable gate array (FPGA) processor, 

one personal computer (PC) for distributed data processing, and a two-PC cluster deep learning 

module[53]. An updated version based on the same design achieved a cell sorting throughput of 

1133 eps using a nine-PC cluster deep learning processing module for parallel computing.  

Increasing the PC cluster size to achieve a higher throughput has limited scalability due to cost 

and complexity. An alternative hardware design of the IACS system used a high-speed CMOS 

camera and a fast deep learning algorithm to reduce the CNN model inference time to less than 3 

ms and the overall sorting latency to 5.5 ms [57]. However, the camera-based optics design suffers 

from sensitivity and motion blur issues, and the system does not support fluorescence detection 

due to its optics design. Apart from hardware limitations, none of the reported systems disclosed 

the training time for their CNN model in the learning process even though the CNN model training 

turnover time is a critical factor in the overall workflow. 



 

56 

 

In this chapter, we present a low-latency image-activated cell sorting platform based on a 

fast, deep-learning approach and low-latency AI inference. The system enables label-free cell 

classification and sorting by AI gating, while it also offers fluorescent imaging for labeled 

applications. Our system integrates a scanning microscopy technique (200-350 kHz scanning rate) 

with a disposable microfluidic chip containing an on-chip piezoelectric (PZT) cell sorting actuator. 

To leverage the photocounting sensitivity of the photomultiplier tubes (PMTs), the transmitted and 

fluorescent light was detected by the PMTs as a temporal readout. The detected cell images were 

reconstructed from the temporal signals by a field-programmable-gate-array (FPGA) and then sent 

to a PC with a dedicated GPU for conducting real-time AI model inference based on an optimized 

UNet CNN autoencoder model [35], [66]. Instead of running conventional image feature 

algorithms which varies in computing power need, the image features were extracted by a deep 

learning model in less than 1ms to enable real-time cell sorting with a deterministic computing 

power request. The entire sorting latency, including the data processing time and piezoelectric 

actuation time, was less than 3 ms for a sorting throughput of greater than 200 eps. Unlike most 

IACS systems that require extraction of image features in real time to generate image features and 

scatter plots for “sort gate” determination, our system replaces the conventional image feature 

extraction unit with an AI module and uses machine vision to automatically extract image features 

in combination with user inputs in the offline analysis. The AI module can learn the image features 

through a fast-training process and use the trained model to make sorting decisions. The entire 

learning and sorting gate definition process takes less than 30 minutes, which is the shortest time 

among any AI learning for IACS to the best of our knowledge. 

To demonstrate the system's capability, we used the deep learning framework to sort 

polystyrene beads and three classes of human white blood cells without labeling (cells and beads 
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were fluorescently labeled only for post-sorting evaluation of the performance of the AI inference 

model). Using brightfield images of cells without accessing any fluorescent signals, our system 

achieved 96.6% sorting purity for 7 µm and 15 µm beads, and sorted granulocytes, lymphocytes, 

and monocytes in human leukocyte samples with 98.4%, 92.0% and 89.05% purity, respectively. 

With an optimized CNN model and a small dataset of around 20,000 images, the optimized three-

part human white blood cell classification CNN model training can be completed and ready for 

deployment in less than 40 minutes using a single PC, showing a marked improvement in training 

and inferencing time and computing resources compared to any AI-based IACS demonstrated to 

date. 
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3.2 Methods 

3.2.1 Design of the imaging system 

Suspended cells are hydrodynamically focused to the center of the microfluidic channel by 

a sheath flow in the microfluidic chip [67]. An acousto-optical deflector (AOD) (OAD948, Isomet) 

controlled scanning 488nm laser (W488-25FS-025, 25mW, PIC) optically interrogates each cell 

in the single-cell core flow stream. The beam size is adjusted by a series of beam-shaping lenses. 

Two 10x (0.28NA Plan Apo, Mitutoyo) objective lenses are positioned on the opposite sides of 

the microfluidic chip. The illumination laser forms a Gaussian illumination laser beam with a focal 

depth of approximately 25 µm and a full-width-half-maximum (FWHM) circular spot size of 1.6 

µm on the object plane where the cells are being examined. A series of dichroic mirrors and band-

pass optical filters separate the transmitted laser light and laser-excited fluorescent light into 

different PMT detection channels. The laser scanning range and scanning speed can be adjusted to 

accommodate samples of different cell sizes for a suitable image field of view. The maximum field 

of view of the system is 60 x 60 µm and the maximum laser scanning speed is 350kHz. The optical 

schematics and CAD layout is illustrated in Figure 3.2.1. All the image acquisition and sorting 

experiments demonstrated in this paper were conducted at a laser scanning frequency of 200kHz 

and an image field of view of 35 x 35 µm. 
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Figure 3.2.1. Major optical components of the low-latency IACS platform. (a) Optics schematics of the 

ultrafast raster scanning microscope. (b) CAD layout of the major optical components in low-latency IACS 

platform 

 

We conducted optical calibration experiments to measure the illumination spot size, and 

depth of focus with a CMOS camera (DCC1645C, Thorlabs). The detection optics resolution limit 

was measured using a high-resolution optical test target (HIGHRES-1, Newport). The measured 

spot size, illumination beam depth of focus, and detection optics resolution limit are presented in 
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Supplementary Figure 3.2.2–3.2.3. The detection optics was diffraction-limited by the objective 

lens numerical aperture (NA) and excitation laser light wavelength. 

 

 

Figure 3.2.2. Optical performance measurement of low-latency IACS system. (a) Illumination spot size 

measurement. (b) Measured illumination light depth of focus measurement at YZ plane. (c) Measured 

illumination light depth of focus measurement at XZ plane. X: laser scanning direction, Y: cell traveling 

direction, Z: laser propagation direction 
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Figure 3.2.3. Detection optics resolution limit measurement with resolution target under scanning laser 

illumination 

 

3.2.2 Real-time data processing 

To achieve low data processing latency with AI inference, an FPGA-CPU-GPU hybrid 

design is adopted to meet such a requirement. The architecture of the real-time data processing 

system is illustrated in Figure 3.2.4. The digitizer (NI-5783) samples and converts the voltage 

waveforms at a sampling speed of 25MSps. The digitizer continuously streams the waveforms to 

FPGA (PXIe-7975R) which segments the streaming waveforms by a moving sum cell detection 

algorithm and then undergoes image reconstruction using a temporal-spatial transformation 

algorithm [8]. FPGA corrects the image phase shift due to the electronic delay between the AOD 

control signal and detected PMT readout waveforms. The reconstructed images are then 

transferred through the PCIe bus to the dynamic random-access memory (DRAM) in the AI 

module consisting of a stand-alone multi-core PC workstation with a dedicated Nvidia GPU 

module. The AI module offers a graphical user interface (GUI) that displays the reconstructed 
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images. Two operation modes are provided to users. In analysis mode, users can save the image 

data to an internal or external solid-state storage disk for offline image processing and AI model 

training. In sorting mode, users can set the sorting criteria (i.e., cell class, confidence level) and 

the pre-trained AI model conducts real-time inference to automatically determine the cell class 

along with a prediction confidence level. After generating the sorting decision, AI modules send 

the sort trigger to the sorting module. The sorting module subsequently triggers the on-chip PZT 

actuator to deflect the cell to user-defined downstream channels. An optical sorting verification 

detector detects the sorting outcome and sends the feedback signal to the AI module to show users 

the sorting yield on the GUI. The real-time data processing software is developed based on 

LabVIEW with a customized Python Node calling Python code that conducts real-time AI 

inference in sorting mode. The real-time data processing pipeline is presented in Figure 3.2.5. 
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Figure 3.2.4. Real-time data processing system architecture. OSV, optical sorting verification detector; 

PZT, piezoelectric transducer; PMT, photomultiplier tube; AOD, acoustic optical deflector; FPGA, field-

programmable gate array; CPU, central processing unit; GPU, graphics processing unit; DRAM, dynamic 

random-access memory; NVMe SSD, non-volatile memory express solid-state disk. 

 

 

Figure 3.2.5. Real-time data processing pipeline 

  



 

64 

 

3.2.3 Image preprocessing for CNN model training 

In the CNN model training process, a custom MATLAB image preprocessing code is used 

to conduct the conventional image feature extraction steps to produce human interpretable image 

features and generate the preprocessed image dataset. The list of extracted features is imported to 

the FCS Express software, where the user can define the gating to select targeted image data for 

the CNN model training. FCS Express exports the selected image indices, and the selected images 

are prepared for CNN model training using a custom MATLAB code. The image features list 

extracted by the MATLAB program is presented in Table 3.2.1. The typical processing time for a 

20,000-image data set is approximately 5-10 minutes using the current approach. 

 

Table 3.2.1. Human-vision image features extracted in the image preprocessing step 

Feature Category Image feature Name 

Intensity Raw Integral Intensity, Raw Maximum Intensity, Raw Average 

Intensity, Masked Integral Intensity, Masked Maximum Intensity, 

Masked Average Intensity 

Size Major Axis Length, Minor Axis Length, Area 

Shape Aspect Ratio 

Texture Root-Mean-Square Gradient Magnitude 

 

3.2.4 CNN model training and optimization for real-time inference 

To achieve fast CNN model training and low-latency model inference for sorting, we 

developed a customized 2D UNet by significant improvement of our previously reported work 

[66]. UNet requires very few labeled images and has reasonable training time. In the meantime, 

recent research demonstrated that using an autoencoder and the latent space to conduct could 

improve classification performance [36], [37]. Our previous work also demonstrated that the 
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customized UNet model had better performance than the state-of-art ResNet-18 CNN architecture, 

which has a faster convergence rate and fewer model parameters than other CNN architectures like 

VGG, or InceptionNet [34], [66]. 

 

 

Figure 3.2.6. 2D CNN UNet Architecture. The number of channels is denoted on top of the box. The feature 

map size is shown at the lower-left edge of the box. The arrows denote the different operations. 

 

The architecture of the 2D UNet is illustrated in Figure 3.2.6. Our UNet model contains a 

contracting path to encode the image features and takes the input images. Image features are 

extracted by the convolution layers and encoded to subsequent layers through max pooling. A fully 

connected layer and Softmax layer are connected to the latent space to make a classification 

decision. The upsampling path takes the features from the latent space in combination with the 

higher resolution features passing the convolution layers to generate an output image of the same 
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dimension as the input image. This path acts as a confirmation to ensure the UNet can extract 

image features effectively. The contracting path works as an encoder, while the upsampling path 

works as a decoder. The fully connected layer and the Softmax layer act as a classifier. The output 

of the Softmax layer can be written as 

𝒚̂𝒊 =
𝑒𝒙𝒊

∑ 𝑒
𝒙𝑗𝐶

𝑗=1

, 𝑖 = 1,2, … , 𝐶   (1) 

where 𝒙 is the input vectors, 𝐶 is the number of classes. 

During the model training process, we use a weighted loss that incorporates the mini-batch 

averaged cross-entropy loss between the predicted class and ground-truth class (Eqs. (2)) and the 

mean-square error loss between the input and generated output image pixel values. The averaged 

cross-entropy loss 𝐿𝐶𝐸 can be expressed as 

𝐿𝐶𝐸 = −
1

𝑁
∑ 𝒚𝒊(𝒙) ∙ log⁡(𝒚̂𝒊(𝒙))
𝑁
𝑖=1    (2) 

where 𝒚𝒊 is the ground truth class vector, 𝒚̂𝒊 is the predicted class vector, and 𝑁 is the data 

size in the mini-batch. 

The mini-batch averaged mean-square error loss 𝐿𝑀𝑆𝐸  can be expressed as 

𝐿𝑀𝑆𝐸(𝒙, 𝒙̂) =
1

𝑁
∑ ∑ (𝑥𝑖,𝑗 − 𝑥̂𝑖,𝑗)

2𝑀
𝑖=1

𝑁
𝑗=1    (3) 

Where 𝒙 and 𝒙̂ are the input image and generated image vectors, respectively, M is the 

flattened image vector dimension, and 𝑁 is the data size in the mini-batch. 

The weighted total loss 𝐿 is defined as 

𝐿 = 𝑤 ∙ 𝐿𝐶𝐸 + (1 − 𝑤) ∙ 𝐿𝑀𝑆𝐸    (4) 

where 𝑤 is the weight coefficient to balance the loss function. 

To optimize the UNet model architecture, a CNN model architecture search was performed 

to reduce the initial convolutional kernel number in the UNet model. We examined the impact on 
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model size, model parameters, training time, inference time, and classification accuracy. In the 

model optimization process, A stratified 5-fold cross-validation (CV) approach was used to train 

the UNet models and evaluate their performance. For each fold, training data were augmented by 

conducting random horizontal and vertical flips on the image data. The model was then validated 

using the instance from the validation set. The model performance was evaluated using balanced 

classification accuracy. The balanced accuracy 𝜎  is the arithmetic mean of class-specific 

accuracies and is calculated as 

𝜎 =
1

𝐶
∑ 𝜎𝑖
𝐶
𝑖=1    (5) 

where 𝜎𝑖  is the class-specific accuracy, and 𝐶  is the number of classes. The balanced 

accuracy does not favor a classifier that exploits class imbalance by biasing toward the majority 

class. We used a 15,000-image dataset acquired in the white blood cells imaging experiment to 

conduct the model architecture search. 5,000 cell images were used for each cell type to balance 

the data occurrence. To investigate the impact on the inference time utilizing different GPU 

acceleration frameworks, a comparison of using Pytorch and TensoRT frameworks was performed 

during the UNet architecture search. 

All deep learning model training and model performance tests were conducted on the same 

PC workstation in the AI module of the low-latency IACS platform. The deep learning 

development was conducted under Python 3.6.8, Pytorch 1.10.2, and TensorRT 8.2.2.1 

frameworks. 

3.2.5 Sorting experiment 

Two sorting experiments were performed to demonstrate the system's capability. In the 

bead sorting experiment, we sorted beads with the targeted size out of a mixture of 7 µm and 15 

µm polystyrene (PS) fluorescent microsphere beads sample. To demonstrate the cell sorting 
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capabilities, we performed 3-part human white blood cells (WBCs) sorting experiments to sort out 

the targeted WBC type from leukocyte samples (Veri-Cells, BioLegend). 

In the beads sorting experiment, we prepared 7 µm and 15 µm PS beads samples separately 

and ran them through our system under the analysis mode to obtain the training dataset. A total of 

4,000 images were obtained, with 2,000 images for 7 µm PS beads and 2,000 images for 15 µm 

PS beads. A two-part image classification training was performed to train the UNet model with an 

80/20 train/validation split of the dataset. The pre-trained model performance was evaluated by 

generating the confusion matrix of the classification results using the validation dataset. In addition, 

the activation output of the fully connected layer was projected to a 2D plane as the t-distributed 

stochastic neighbor embedding (t-SNE) plot [40]. We then deployed the pre-trained CNN model 

to sort the beads when the prediction confidence level of the AI model was higher than 99%. We 

sorted 15 µm PS beads out of the mixture and analyzed the collected outputs from the target and 

waste channels using a commercial flow cytometer (Accuri C6 plus, BD Biosciences). We also 

used centrifugation to enrich the output samples from the sorting channel and the waste channel 

and examined them under a fluorescence microscope.  

In the WBC sorting experiments, the WBC samples were immunostained with antibodies 

panels (See Table 3.2.2) to provide a ground truth label for each cell type. Lymphocytes, 

granulocytes, and monocytes were phenotyped using an antibody panel. We processed the 

immunostained WBC samples to obtain the training dataset. A total of 17,876 cell images were 

used, with 6,788 lymphocytes images, 5,001 granulocytes images, and 6,087 Monocytes images. 

A three-part image classification training was performed to train the UNet model with a stratified 

80/20 train/validation split of the dataset. We then deployed the pre-trained CNN model to sort 

cells when the AI model prediction confidence level was higher than 99%. Three sorting 
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experiments were performed. For each sorting experiment, we fluorescently labeled the target cell 

type with one color and other cell types with another color using the antibodies panel for the sole 

purpose of post-sorting performance evaluation (See Table 3.2.3) while the AI inference and the 

sorting decision were entirely based on the label-free, transmission images. To verify the system 

performance, we ran the sorted sample and the waste sample through a commercial flow cytometer 

(Accuri C6 plus, BD Biosciences) and used the fluorescent signals of each WBC cell type to 

evaluate the sorting purity. 

The sorting purity measurement was evaluated by counting the ratio between the sorted 

target particle number and the total sorted particle number described by Eqn. (6): 

𝑆𝑜𝑟𝑡𝑖𝑛𝑔⁡𝑃𝑢𝑟𝑖𝑡𝑦 =
𝑁𝑡𝑎𝑟𝑔𝑒𝑡

𝑁𝑡𝑎𝑟𝑔𝑒𝑡+𝑁𝑛𝑜𝑛−𝑡𝑎𝑟𝑔𝑒𝑡
   (6) 

Where 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 is the sorted target particle number and 𝑁𝑛𝑜𝑛−𝑡𝑎𝑟𝑔𝑒𝑡 is the sorted non-target 

particle number. 

During the sorting experiment, we also observed and recorded the event processing time 

to evaluate the sorting latency. 

 

 

 

 

Table 3.2.2. Antibody panel design for human white blood cell training data collection ground truth 

labeling 

  Ground Truth Labelling 1 Ground Truth Labelling 2 Unlabeled 

Panel 1 Monocytes (PE 

anti-human CD14 Antibody) 

Lymphocytes (BB515 

Mouse Anti-Human CD3 

and CD19) 

Granulocytes 

and others 
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Panel 2 Granulocytes (PE 

 anti-human CD66b 

Antibody) 

Lymphocytes (BB515 

Mouse Anti-Human CD3 

and CD19) 

Monocytes and 

others 

Panel 3 Lymphocytes (PE Mouse 

Anti-Human CD3 and CD19 

antibodies) 

Granulocytes (BB515 anti-

human CD66b Antibody) 

Monocytes and 

others 

 

Table 3.2.3. Antibody panel design for human white blood cell sorting ground truth labeling 

  Ground Truth Labelling 1 Ground Truth Labelling 2 Unlabeled 

Panel 4 

(Sorting target: 

Monocytes) 

Monocytes (BB515 CD14 

Antibody) 

Lymphocytes (PE Mouse Anti-

Human CD3 and CD19) 

Granulocytes (PE Mouse Anti-

Human anti-human CD66b) 

others 

Panel 5 

(Sorting target: 

Granulocytes) 

Granulocytes  

(BB515 Mouse Anti-

Human anti-human CD66b 

Antibody) 

Lymphocytes (PE Anti-Human 

CD3 and CD19) 

Monocytes (PE CD14 

Antibody) 

others 

Panel 6 

(Sorting target: 

Lymphocytes) 

Lymphocytes (BB515 

Mouse Anti-Human CD3 

and CD19) 

Granulocytes (PE anti-human 

CD66b Antibody)  

Monocytes (PE CD14 

Antibody) 

others 

 

3.2.6 Image acquisition and sorting experiment sample preparation 

3.2.6.1 Preparation of fluorescent polystyrene particles 

The evaluate the imaging and sorting performance of the low-latency IACS, fluorescent 

PS beads were used. A 1:6 mixture of 15 µm PS particles (Fluorescent microspheres, Dragon 

Green, Cat. No. FSDG009, Bangs Laboratories, Inc.) and 7 µm PS particles (Fluorescent 

microspheres, Dragon Green, Cat. No. FSDG007, Bangs Laboratories, Inc.) was fed from the 
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sample inlet of the microfluidic chip. The concentration of the particles was adjusted to be 500 

particles µL-1. 

3.2.6.2 Preparation of CHO-ES cells and DNA staining 

CHO-K1 (ATCC CCL-61) were used for DNA staining. The cells were harvested when 

they were at a confluency of around 80%. The cells were centrifuged at 350 x g for 5 minutes to 

remove the supernatant to perform a wach. After washing the cells with PBS (Genesee Scientific, 

CA, USA), the cells were centrifuged at 350 x g for 5 minutes. The supernatant was removed and 

100 µL of 4% formaldehyde, methanol-free (Cell Signaling Technology, Massachusetts, USA) 

was added for every million cells to be fixed. The cells were incubated for 15 minutes at 37ºC. 

After fixation, the cells were washed again and resuspended in PBS with 0.5% BSA (Thermo 

Scientific) to a concentration of 1.0x106 cells/mL. Lastly, the cells were stained with 0.5 µM 

Vybrant DyeCycle Green Stain (Invitrogen) for 30 minutes and filtered with a 35 µm strainer cap 

(Genesee Scientific, CA, USA) before analysis. 

3.2.6.3 Preparation of MCF7 cells and mitochondrial staining 

To image the mitochondria of MCF7 cells (ATCC HTB-22), the cells were harvested when 

they were at a confluency of 70%. The cells were diluted to a concentration of 1.0x106 cells/mL 

using a buffer composed of PBS, 0.5% BSA, 12.5 mM HEPES (Gibco) and 5 mM EDTA 

(Invitrogen). The diluted cells were stained with 100 mM of MitoView Green (Biotium, San 

Francisco, USA) and incubated for 15 minutes at 37ºC. After incubation, the cells were filtered 

with a 35 µm stainer cap and analyzed. 
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3.2.6.4 Preparation of human iPSC cells and viability staining 

Human iPSCs reprogrammed from fibroblasts were cultured in DMEM/F-12 50/50 1X 

(Corning™, #10-092-CM) supplemented with HiDef B8 500X (Defined Bioscience, #LSS-201). 

Non-TC treated 6-well plates (CELLTREAT, #229506) were treated with vitronectin (Gibco™, 

#A14700), a recombinant human protein that provides a defined surface for feeder-free culture. 

Samples were maintained with a visual assessment of <30% differentiation per well. Cells were 

passaged in aggregates ranging from 50-100 µm, using the enzyme-free Gentle Cell Dissociation 

Reagent (STEMCELL Technologies, #100-0485). Healthy iPSC colonies were determined by 

examining the morphology under phase microscopy for colony compactness, defined borders, 

well-outlined edges, and a large nucleus-to-cytoplasm ratio. A single-cell suspension was obtained 

using Accutase® (Innovative Cell Technologies, Inc. #AT104), centrifuged at 200 x g for 3 

minutes, and resuspended in sheath buffer (basal media + 10% Accutase) at a concentration of 3.0 

x 105 cells/mL. Live calcein AM (Invitrogen™, # C3099) stained iPSCs were imaged by capturing 

conversion of the green, fluorescent calcein (Ex/Em: 494/517 nm). 

3.2.6.5 Preparation of human white blood cells and immune staining 

The Veri-Cells™ Leukocyte Kit, prepared from lyophilized human peripheral blood 

leukocytes were sused (BioLegend Cat. 426003). These cells have been verified to work with 

commonly tested cell surface markers such as CD3, CD14, CD19, and CD66b. CD66b is a 

glycosylphosphatidylinositol (GPI) linked protein with a molecular weight of 100 kDa expressed 

on granulocytes. CD3 and CD19 are expressed on T-cell and B-cell, respectively. CD14 is 

expressed at high levels on monocytes. In this experiment, we used different combinations of the 

following antibodies: BB515 Mouse Anti-Human CD66b (Ex/Em 490/515nm, Clone G10F5, Cat. 

564679, BD Biosciences), PE anti-human CD66b Antibody (Ex/Em 496/578nm, Clone 6/40c, Cat. 
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392903, BioLegend Biomedical Inc), Alexa Fluor 488 anti-human CD14 Antibody (Ex/Em 

498/520nm, Clone 63D3, Cat. 367129, BioLegend Biomedical Inc), PE anti-human CD14 

Antibody (Ex/Em 496/578nm, Clone 63D3, Cat. 367103, BioLegend Biomedical Inc), BB515 

Mouse Anti-Human CD3 (Ex/Em 490/515nm, Clone UCHT1, Cat. 564466, BD Biosciences), PE 

anti-human CD3 Antibody (Ex/Em 496/578nm, Clone UCHT1, Cat. 300407, BioLegend 

Biomedical Inc.), BB515 Mouse Anti-Human CD19 (Ex/Em 490/515nm, Clone HIB19, Cat. 

564457, BD Biosciences), and PE anti-human CD19 Antibody (Ex/Em 496/578nm, Clone HIB19, 

Cat. 302207, BioLegend Biomedical Inc.), Table 3.2.5.1-3.2.5.2 show the panel design used for 

leukocyte phenotyping. The concentration of the particles was adjusted to be 500-1000 particles 

µL-1 to achieve an event rate of approximately 100-200 eps. 

 

3.3 Results 

3.3.1 Low-latency IACS system overview and functionality 

The low-latency IACS platform uses a scanning laser beam to interrogate the cell that is 

traveling in a microfluidic channel and PMTs to detect the signal, which is then transformed into 

cell images via a temporal-spatial transformation (Figure 3.3.1). The image characteristics are 

analyzed by an AI inference model to determine whether the cells meet the sorting criteria defined 

by the trained deep learning model. If so, an actuation signal is sent to the on-chip piezoelectric 

(PZT) actuator to deflect the cells into the sorting channel(s) while the unselected cells leave the 

microfluidic device via the waste channel. The details of the optical and microfluidic hardware 

and the image reconstruction algorithms of the IACS were implemented as previously described 

[58]. 
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The major enhancement of the system presented here is the method of deep learning and 

AI-guided cell sorting without image feature extraction. We will elucidate the hardware and 

software design that supports this approach in detail here. The temporal waveforms are sampled 

by an analog-to-digital converter (NI-5783, National Instruments) and then are sent to a field-

programmable-gate-array (FPGA, PXIe-7975R, National Instruments) for real-time cell image 

reconstruction using a temporal-spatial transformation [68]. The reconstructed cell image data are 

transferred to a stand-alone PC workstation (AI module) through a wide-band PCIe bus for 

conducting real-time AI model inference on a dedicated GPU (Quadro RTX A6000, Nvidia). The 

AI module predicts the cell types with a prediction confidence level on the AI inference prediction. 

The sorting decisions are made by comparing the AI inference prediction with the user-specified 

cell classes and the classification confidence level. A clock is used to register the latency for the 

process. If the overall processing time is within the set value, then the sorting action can be 

triggered and the sorting decision is sent through the PCIe bus to the FPGA that controls the action 

of the on-chip piezoelectric actuator. In our system, the entire data processing including AI model 

inference and PZT actuation for 99% of cells is shorter than 3 ms to enable sorting. 

 



 

75 

 

 

Figure 3.3.1. Schematics and functionality of low-latency IACS system. The scanning laser beam and the 

cell travel produce the equivalence of a 2D raster scanning system. The bright field and fluorescent signals 

of the cell are detected by PMTs and the temporal signals are reconstructed to form cell images via real-

time processing by an FPGA. Meanwhile, each cell image is fed to a convolutional neural network (CNN) 

to conduct real-time AI inference. According to the CNN prediction output, the on-chip PZT actuator is 

triggered to sort out cells. AOD: acousto-optic deflector; DM: dichroic mirror; IO: 10X/0.28NA 

illumination objective lens; DO: 10X/0.28NA detection objective lens; PMT: photomultiplier tube. 

 

3.3.2 Imaging beads and cells using the low-latency IACS system 

Our system can produce both transmission and fluorescent images of objects traveling in 

the microfluidic channel at approximately 20 cm/s, as shown in Figure 3.3.2. We have used our 

system to capture single and multiple 7 µm and 15 µm fluorescent bead images (Figure 3.3.2 a-b), 

resolved intracellular DNA and mitochondrial localization distribution of fluorescently labeled 

CHO-ES and MCF7 cells (Figure 3.3.2 c-d), and imaged human iPSC (Figure 3.3.2 e) of which 

the bright-field images showed intracellular structures. In the experiment with white blood cells, 

we used the system to capture the surface antibody distribution of immunostained cells (Figure 

3.3.2 f-h). To summarize, our system can capture particles of different sizes ranging from 1 to 40 

µm. Our system also clearly shows images of doublets. 
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3.3.3 CNN model optimization 

Through a CNN model architecture search, we have optimized an UNet CNN model to 

conduct 2-part or 3-part particle classification. During the CNN model architecture search, we 

found that the initial convolutional kernel number has a significant impact on the model size, 

parameter number, training time, and inference time; while it has a relatively low impact on model 

prediction accuracy for our system. By reducing the initial convolutional kernel number from 64 

to 4, we reduced the model parameter and model size by approximately 100-fold (Figure 3.3.3 a). 

The reduced model parameter and model size decreases the total training time and the model 

inference time. We achieved a 4-fold reduction in model training time from 7200 seconds to less 

than 1800 seconds in a CNN training process with a dataset of 15,000 images while maintaining a 

high model prediction accuracy of 0.977. In addition, by leveraging the optimized GPU 

acceleration framework under the TensorRT framework [69], [70], we achieved approximately 5-

fold reduction in the model inference time compared to the Pytorch framework. By shrinking the 

initial convolutional kernel number from 64 to 4, we also improved the model inference time from 

1.735 ms to 0.518 ms under the TensorRT framework, further reducing the sorting latency for real-

time CNN inference during the sorting experiment (Figure 3.3.3 c). Additional details about CNN 

model training and inference time optimization are found in Figure 3.3.4-3.3.13. 
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Figure 3.3.2. Image gallery of example beads and cell images captured by the low-latency IACS platform. 

A. 15 µm fluorescent beads; B. 7 µm fluorescent beads; C. CHO-ES cells with DNA staining (Vybrant 

DyeCycle Green); D. MCF7 cells with mitochondrial staining (MitoView Green); E. Human iPSC with 

vitality dye staining (Calcein AM; F. Human granulocytes with anti-CD66b BB515 immunostaining; G. 

Human lymphocytes with anti-CD3 and anti-CD19 PE immunostaining; H. Human monocytes with anti-

CD14 BB515 immunostaining. Scale bar: 5 µm. 
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Figure 3.3.3. Custom UNet model optimization on model size, training time, and inference time. A. Model 

size and parameter number vs. Initial convolutional kernel number. B. Model training time vs. Initial 

convolutional kernel number. C. Model inference time under Pytorch and TensorRT frameworks vs. Initial 

convolutional kernel number. Error bars ± SD. 
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Figure 3.3.4. UNet training curves with initial convolutional kernel size = 4 

 

 

Figure 3.3.5. UNet inference time with initial convolutional kernel size = 4 

 

 

Figure 3.3.6. UNet training curves with initial convolutional kernel size = 8 

 

 

Figure 3.3.7. UNet inference time with initial convolutional kernel size = 8 
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Figure 3.3.8. UNet training curves with initial convolutional kernel size = 16 

 

 

Figure 3.3.9. UNet inference time with initial convolutional kernel size = 16 

 

 

Figure 3.3.10. UNet training curves with initial convolutional kernel size = 32 
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Figure 3.3.11. UNet inference time with initial convolutional kernel size = 32 

 

 

Figure 3.3.12. UNet training curves with initial convolutional kernel size = 64 

 

 

Figure 3.3.13. UNet inference time with initial convolutional kernel size = 64 
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3.3.4 7 µm and 15 µm bead sorting 

In the bead sorting experiment, we evaluated the training progress and the classification 

performance of the pre-trained CNN model. We completed the model training process within 540 

seconds using a dataset of 4,000 images to conduct a 2-part classification. The pre-trained CNN 

model returns a balanced prediction accuracy of 100% and the tSNE visualization shows two 

distinctly separated clusters of 7 µm and 15 µm beads events (Figure 3.3.14 a-b). The model 

training detail for beads sorting is included in Figure 3.3.15. 

During the bead sorting experiment, we monitored the data processing time of the deployed 

pre-trained CNN model. The processing time of 1,118 sorting events was recorded and the rank-

ordered processing time distribution is presented in Fig. 3.3.14 c. It was observed that 98.4% of 

the events can be processed within 2,287 µs and the average data processing time was 1,802 µs. 

To measure the purity of the AI-inferred bead sorting, we confirmed particle composition analysis 

on the collected sample post sorting by a commercial cytometer (Accuri C6, BD Biosciences) and 

achieved 96.6% purity (See Figure 3.3.16-3.3.17). The microscopic images of pre-sort, post-sort, 

and waste samples are presented in Figure 3.3.18, and the results are consistent with confirmatory 

flow cytometer results. 

 

 

Figure 3.3.14. 7 µm and 15 µm bead sorting results. A. Confusion matrix for bead sorting experiment. B. 

t-SNE visualization on the beads classification. C. Beads sorting experiment data processing time. 
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Figure 3.3.15. UNet training curves for beads sorting experiment 

 

 

Figure 3.3.16. Beads sorting experiment pre-sorting Accuri particle composition analysis 
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Figure 3.3.177. Beads sorting experiment post-sorting Accuri particle composition analysis 

 

 

 

Figure 3.3.18. fluorescence microscopy images of the pre-sorting, post-sorting, and waste beads mixture, 

15 µm (target, red) and 7 µm (non-target, light green) beads. Scale bar: 200 µm 

 

3.3.5 Three-part white blood cell sorting 

The white blood cell (WBC) differential is a broadly used in clinical test and usually 

requires fluorescence antibody labeling[71]. Conducting label-free WBC classification and sorting 

can avoid the biomarker labeling process and minimize cell degradation or morphological changes 

during labeling. Although CNN-based label-free white blood cell type classification has been 

demonstrated using both research and commercial imaging flow cytometer systems [24], [26], [27], 
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[66], none of these systems supported AI-based cell sorting with a real-time AI inferencing process. 

This AI-enabled cell sorting capability not only enables broad biomedical research applications, 

but also allows us to evaluate the effectiveness of the deep learning model and discover new 

biology such as identifying new cell types and their variation under health and disease. 

Using our customized UNet CNN model, we achieved a high-accuracy and feasible 3-part 

WBC type classification. The CNN model training was completed within 40 minutes with a 

training set of approximately 18,000 images. This pre-trained CNN model yielded a balanced 

classification accuracy of 99.5% for a three-part WBC type classification and the tSNE 

visualization using the validation dataset that was reflected in well-separated clusters of the cell 

groups (Figure 3.3.19 a-b). The model training detail for WBC sorting is included in Figure 3.3.20. 

In the AI-inferred WBC sorting experiments, we sorted relatively small numbers of cells: 

2,082, 2,840, and 10,124 for lymphocyte, monocyte, and granulocyte, respectively. More than 99% 

of sorting events were processed within 2.312 ms and the average data processing time ranged 

from 1.687 to 1.834 ms (Figure 3.3.19 d-f). Three replicates of the sorted samples were collected 

for sorting purity analysis. The average sorting purity for lymphocytes, monocytes, and 

granulocytes were 92.0%, 89.05%, and 98.4%, respectively (Figure 3.3.19 c). Because of the 

sorting mechanism and Poisson factors,  sorting purity variation was influenced by the cell 

compositions of the initial samples which had the percentage for lymphocytes, monocytes, and 

granulocytes to be 13.12%, 6.51%, and 79.48%, respectively. The post-sorting cell composition 

analysis details are illustrated in Figure 3.3.20-3.3.32. 
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Figure 3.3.19. Human white blood cell sorting results. A. Confusion matrix for white blood cell sorting 

experiment. B. t-SNE visualization on the white blood cell classification C. White blood cell sorting purity 

plot; D. Lymphocytes sorting experiment data processing time; E. Monocytes sorting experiment data 

processing time; F. Granulocytes sorting experiment data processing time 

 

 

Figure 3.3.20. UNet training curves for human white blood cell sorting experiment 
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Figure 3.3.21. Lymphocyte sorting experiment pre-sorting Accuri particle composition analysis 

 

 

Figure 3.3.22. Lymphocyte sorting experiment post-sorting Accuri particle composition analysis for post-

sorting batch 1 solution 

 

 

Figure 3.3.23. Lymphocyte sorting experiment post-sorting Accuri particle composition analysis for post-

sorting batch 2 solution 
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Figure 3.3.24. Lymphocyte sorting experiment post-sorting Accuri particle composition analysis for post-

sorting batch 3 solution 

 

 

Figure 3.3.25. Monocyte sorting experiment pre-sorting Accuri particle composition analysis 
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Figure 3.3.26. Monocyte sorting experiment post-sorting Accuri particle composition analysis for post-

sorting batch 1 solution 

 

 

Figure 3.3.27. Monocyte sorting experiment post-sorting Accuri particle composition analysis for post-

sorting batch 2 solution 

 

 

Figure 3.3.28. Monocyte sorting experiment post-sorting Accuri particle composition analysis for post-

sorting batch 3 solution 
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Figure 3.3.29. Granulocyte sorting experiment pre-sorting Accuri particle composition analysis 

 

 

Figure 3.3.30. Granulocyte sorting experiment post-sorting Accuri particle composition analysis for post-

sorting batch 1 solution 
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Figure 3.3.31. Granulocyte sorting experiment post-sorting Accuri particle composition analysis for post-

sorting batch 2 solution 

 

 

Figure 3.3.32. Granulocyte sorting experiment post-sorting Accuri particle composition analysis for post-

sorting batch 3 solution 
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3.4 Discussion 

In this study, we demonstrated a low-latency AI-inferencing microfluidic image-activated 

cell sorting system using a fast-learned customized UNet CNN model and a single FPGA-PC 

processor. Our system achieved less than 3 ms sorting latency from image acquisition to sorting, 

including data processing with AI. We used the system to achieve label-free sorting with a 

throughput greater than 200 cells/s and sorting purity of 96.6% for beads and 92.0%, 89.05%, and 

98.4% lymphocyte, monocyte, and granulocyte in 3-part human white blood cell sorting 

experiments, all based on the CNN model inference prediction from the brightfield transmission 

images. Our system provides a compact, sterile, low-latency, and low-cost IACS platform for 

biomedical research with superior performance compared with other reported CNN-assisted IACS 

systems (See Table 3.4.1). 

 

Table 3.4.1. Comparison of imaging-activated cell sorters using CNN. Sorting purities were compared 

using the best cell sorting results 

 

 

One constraint of the current system is that the AI-assisted IACS system generates only 2D 

cell images, which cannot reveal the tomographic information of cells as 3D bodies and may 

experience occlusions and dependence on viewing perspective. A natural net is to incorporate the 

deep learning and AI-inference model, as well as the soring capability into the 3D imaging flow 
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cytometer design reported in our earlier publications [32], [66], [72]. Second, the current data 

processing system is constructed based on a generic FPGA-PC architecture for cost advantages, 

but the design is not optimized for specific data processing algorithms of the image-activated cell 

sorting. We observed relatively large event-to-event processing time variations and large data 

transfer latency (>1.2 ms) from the FPGA module to the PC-GPU system using a generic data 

transfer framework (National Instruments API). The data transfer overhead can be reduced by 

developing a customized System-on-Chip (SOC) board and transferring the current data 

processing software to hardware description languages such as Verilog. Regarding the deep 

learning aspect, different deep learning algorithms can be used in addition to supervised learning 

methods. Semi-supervised, unsupervised learning approaches and other methods could be used for 

cell analysis and sorting. Such approaches could potentially define new subpopulations and 

provide insights to researchers when combined with cell sorting techniques. 

Despite the areas for further improvements, our system has substantially advanced state of 

the art for image-activated cell sorting (IACS) that is viewed as a paradigm-shifting technology 

for biomedical research by: 1) incorporating deep learning and AI-inferencing for the sorting gate, 

a fundamental change from conventional approaches of sorting by image processing and pattern 

recognition; 2) setting a record for the shortest AI inferencing latency by using a single FPGA-PC 

for a low-cost solution; 3) achieving short training time of ~30 minutes for high performance deep 

learning models via network architecture optimization. These accomplishments make the AI-

assisted IACS system a unique and attractive tool for biomedical experiments that involve the 

detection and isolation of cell types or cell properties from large cell images with or without 

presumptive image features for cell classification in a labeled or label-free manner. 
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Chapter 3 has been submitted for publication of the material, R. Tang, L. Xia, B. Gutierrez, 

I. Gagne, A. Munoz, K. Eribez, N. Jagnandan, X. Chen, Z. Zhang, L. Waller, W. Alaynick, S. Cho, 

C. An, Y.-H. Lo. “Low-latency label-free image-activated cell sorting using fast deep learning and 

AI inferencing’. The dissertation author is the first author of this paper. 
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 Chapter 4 Summary and Outlook 

4.1 Summary 

This dissertation enabled the high-throughput label-free cellular image analysis based on 

the IFC technology and demonstrated the low-latency image-activated cell sorting using the deep 

learning CNN models. We have developed a label-free cellular analysis workflow based on the 

3D-IFC system and artificial intelligence to support high-throughput image processing and 

analysis, explored the clinical and biological application of this cellular analysis workflow, and 

constructed a low-latency IACS system using the fast deep learning and AI inference. In contrast 

of conventional cellular image analysis workflow that is limited by the number of morphological 

features defined by human vision, the AI solution driven by machine vision provides a highly 

versatile and scalable solution to address the high-throughput and low-latency real-time image 

requirements in the IFC and IACS technologies, opening a new venue for relating cell phenotype 

and genotype in biology and biomedical fields where cell heterogeneity is recognized. 

4.2 Outlook: Predictive cellular analysis and high-throughput single-cell 

manipulation 

One of the major challenges of cellular biology is to conduct predictive cellular analysis 

from existing data. The IFC technology enables high-throughput data acquisition and analysis for 

discrete observation intervals. However, the utilization of the IFC technology to conduct the time-

lapse study is very useful for evaluating drug response, developing cancer therapy, and isolating 

target cell groups. In addition, the approach to conducting data-driven predictive cellular analysis 

has not been explored due to a lack of enabling technology or tools. Fortunately, this dissertation 
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provides a path to bridge the gap between high-throughput image acquisition and data analysis 

using artificial intelligence approaches, yet we only explore the possibility of using supervised 

learning approaches for high-throughput real-time image analysis. One can extend the scope of 

artificial intelligence methods to explore the possibility of using semi-supervised and unsupervised 

learning techniques for high-throughput predictive cellular analysis using the IFC and IACS 

platforms. Such techniques also reduce or eliminate the requirement of ground truth label 

generation during the training process. The ground truth label is usually technically challenging to 

obtain during the predictive cellular analysis or time-lapse study. 

Compared with the cell population sorting techniques in the majority of the IACS system, 

high-throughput single-cell manipulation based on high-throughput image processing can provide 

an unprecedented bridge between single-cell molecular analysis and single-cell image analysis to 

connect phenotype and genotype analysis with single-cell resolution. One can explore the 

possibility of integrating single-cell isolation and manipulation technology with the IFC platform 

based on high-throughput image processing and a real-time cellular image analysis pipeline. 

Possible approaches to couple closed-loop high-precision cell isolation and manipulation robotics 

platform with the IFC system to achieve single-cell level manipulation and isolation. 
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Appendix 

The human cancer cell and leukocyte datasets used in Chapter 2 are available on request. 

The PyTorch implementation of all deep learning models and training code is publicly available 

on Github: https://github.com/rut011/3D-IFC-ML.git 

The CHO-K1 dataset used in Chapter 2 is available on request. The PyTorch 

implementation of the deep learning model and training code is publicly available on Github: 

https://github.com/rut011/TIGSImageSegmentation 

The liver cells datasets used in Chapter 2 are available on request. The PyTorch 

implementation of the deep learning model and training code is publicly available on Github: 

https://github.com/rut011/LiverCellML 

The white blood cells dataset used in Chapter 3 are available on request. The MATLAB 

implementation of image preprocessing code and the Pytorch implementation of the deep learning 

model and training code is publicly available on Github: https://github.com/rut011/CNN-assisted-

IACS 
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