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WEAKLY HOROSPHERICALLY CONVEX HYPERSURFACES IN

HYPERBOLIC SPACE

VINCENT BONINI, JIE QING1, JINGYONG ZHU2

Abstract. In [2], the authors develop a global correspondence between immersed weakly
horospherically convex hypersurfaces φ : Mn → Hn+1 and a class of conformal metrics
on domains of the round sphere Sn. Some of the key aspects of the correspondence and
its consequences have dimensional restrictions n ≥ 3 due to the reliance on an analytic
proposition from [5] concerning the asymptotic behavior of conformal factors of conformal
metrics on domains of Sn. In this paper, we prove a new lemma about the asymptotic
behavior of a functional combining the gradient of the conformal factor and itself, which
allows us to extend the global correspondence and embeddedness theorems of [2] to all
dimensions n ≥ 2 in a unified way. In the case of a single point boundary ∂∞φ(M) =
{x} ⊂ Sn, we improve these results in one direction. As an immediate consequence of this
improvement and the work on elliptic problems in [2], we have a new, stronger Bernstein
type theorem. Moreover, we are able to extend the Liouville and Delaunay type theorems
from [2] to the case of surfaces in H3.

1. Introduction

In [9] the authors observed an interesting fact that the principal curvatures of a hyper-
surface φ : Mn → Hn+1 satisfying an exterior horosphere condition, which we call weak
horospherical convexity, can be calculated in terms of the eigenvalues of the Schouten tensor
of the horospherical metric ĝ = e2ρgSn via its horospherical support function ρ. This obser-
vation creates a local correspondence that opens a window for more interactions between the
study of elliptic problems of Weingarten hypersurfaces in hyperbolic space and the study of
elliptic problems of conformal metrics on domains of Sn.

In [2] the authors developed the global theory for the correspondence above. They estab-
lished results on when the hyperbolic Gauss map G : Mn → Sn is injective and discussed
when an immersed weakly horospherically convex hypersurface can be unfolded into an em-
bedded one along the normal flow. As applications, they established a new Bernstein type
theorem for a complete, immersed, weakly horospherically convex hypersurfaces in Hn+1 of
constant mean curvature and new Liouville and Delaunay type theorems.

In one direction injectivity of the hyperbolic Gauss map G :Mn → S
n is found to play an

essential role in both the correspondence and the ability to unfold such hypersurfaces into
embedded ones. In the other direction two key issues are the properness of a hypersurface
associated to a conformal metric and the consistency of its boundary at infinity with that of
its hyperbolic Gauss map image. These issues are resolved in [2] with the aid of Proposition
8.1 in [5], which is used to control the asymptotic behavior of conformal factors of conformal

Key words and phrases. weakly horospherically convex, hyperbolic space, support function, embedded-
ness, Bernstein theorem.
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2 VINCENT BONINI, JIE QING1, JINGYONG ZHU2

metrics on domains of Sn and guarantee both the properness of associated hypersurfaces and
the consistency of the aforementioned boundaries. For technical reasons Proposition 8.1 in
[5] is not valid when n = 2, so its use places the dimensional restrictions n ≥ 3 on the global
correspondence and its applications.

In this paper, we first establish a new lemma on the asymptotic behavior of a functional
of the conformal factor for realizable metrics on domains of Sn (see Definition (3.2)).

Lemma 1.1. For n ≥ 2, suppose that ĝ = e2ρgSn is a complete conformal metric on a
domain Ω ⊂ Sn with bounded 2-tensor P = −∇2

gSn
ρ+ dρ⊗ dρ− 1

2
(|∇gSnρ|2gSn − 1)gSn. Then

(1.1) e2ρ(x) + |∇gSnρ|2gSn (x) → +∞ as x→ x0 ∈ ∂Ω.

Using Lemma 1.1 in place of Proposition 8.1 [5], we address the questions in [2] for all
dimensions n ≥ 2 in a unified way. In particular, we can extend two of the main results
in [2] to include the lower dimensional case n = 2. The first is the Global Correspondence
Theorem between admissible hypersurfaces and realizable metrics (see Definition (3.2)).

Theorem 1.2. [Global Correspondence Theorem] For n ≥ 2, suppose that φ :Mn → Hn+1 is
an immersed, complete, uniformly weakly horospherically convex hypersurface with injective
hyperbolic Gauss map G :Mn → S

n. Then it induces a complete conformal metric ĝ = e2ρgSn

on the image of the hyperbolic Gauss map G(M) ⊂ Sn with bounded 2-tensor

(1.2) P = −∇2
gSn
ρ+ dρ⊗ dρ− 1

2
(|∇gSnρ|2gSn − 1)gSn,

where ρ is the horospherical support function of φ and

(1.3) ∂∞φ(M) = ∂G(M).

On the other hand, suppose that ĝ = e2ρgSn is a complete conformal metric on a domain
Ω ⊂ S

n with bounded 2-tensor P defined as in (1.2). Then it induces a properly immersed,
complete, uniformly weakly horospherically convex hypersurface

(1.4) φt =
eρ+t

2
(1 + e−2(ρ+t)(1 + |∇gSnρ|2gSn ))(1, x) + e−(ρ+t)(0,−x+∇gSnρ) : Ω → H

n+1

for t sufficiently large.

The other main result is the Embeddedness Theorem, which shows that a uniformly weakly
horospherically convex hypersurface will eventually become embedded under the geodesic
normal flow when the hypersurface has boundary at infinity with relatively simple structure.

Theorem 1.3. [Embeddedness Theorem] For n ≥ 2, suppose that φ : Mn → H
n+1 is an

immersed, complete, uniformly weakly horospherically convex hypersurface with injective hy-
perbolic Gauss map G :Mn → Sn. In addition, assume that the boundary at infinity ∂∞φ(M)
is a disjoint, finite union of smooth compact embedded submanifolds with no boundary in Sn.
Then φ can be unfolded into an embedded hypersurface along its geodesic normal flow even-
tually.

Equivalently, suppose that ĝ = e2ρgSn is a complete conformal metric on a domain Ω ⊂ Sn

with bounded 2-tensor P defined as in (1.2). In addition, assume that the boundary ∂Ω is
a disjoint, finite union of smooth compact embedded submanifolds with no boundary in Sn.
Then the hypersurfaces

(1.5) φt =
eρ+t

2
(1 + e−2(ρ+t)(1 + |∇gSnρ|2gSn ))(1, x) + e−(ρ+t)(0,−x+∇gSnρ) : Ω → H

n+1
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are embedded for t sufficiently large.

Due to Corollary 4.4 and Proposition 1.3 in [8], when the asymptotic boundary of a
hypersurface φ : Mn → Hn is a single point ∂∞φ(M) = {x} ⊂ Sn, we are able to recover
one direction of the Global Correspondence Theorem 1.2 and the Embeddedness Theorem
1.3 without a prior assuming that the hyperbolic Gauss map G :Mn → Sn is injective.

Theorem 1.4. For n ≥ 2, suppose that φ :Mn → Hn+1 is an immersed, complete, uniformly
weakly horospherically convex hypersurface with the boundary at infinity ∂∞φ(M) = {x} ⊂ Sn

a single point. Then it induces a complete conformal metric ĝ = e2ρgSn on the image of the
hyperbolic Gauss map G(M) ⊂ Sn with bounded 2-tensor P defined as in (1.2) where ρ is
the horospherical support function of φ and

(1.6) ∂∞φ(M) = ∂G(M).

Moreover, φ can be unfolded into an embedded hypersurface along its geodesic normal flow
eventually.

Together with the work on elliptic problems in [2], Theorem 1.4 leads to a stronger Bern-
stein type theorem for hypersurfaces in Hn+1 .

Theorem 1.5. For n ≥ 2, suppose that φ : Mn → Hn+1 is an immersed, complete, uni-
formly weakly horospherically convex hypersurface with constant mean curvature. Then it is
a horosphere if its boundary at infinity is a single point in Sn.

Moreover, with the global correspondence for dimension n = 2 in hand, we can extend the
Liouville and Delaunay type theorems in [2] to the cases of conformal metrics on domains
on the standard 2-sphere S2 and surfaces immersed in hyperbolic space H3. Collectively,
these results demonstrate the usefulness of the global correspondence by providing a bridge
between elliptic problems of hypersurfaces and those of conformal metrics. In particular,
under the correspondence the Bernstein theorem for surfaces is found to be equivalent to the
following Liouville type result for conformal metrics, whose higher dimensional version can
be found in [4].

Corollary 1.6. Let g = e2ρgS2 be a complete, conformal metric on S2 \ {p} with bounded
2-tensor Pg. If the eigenvalues of Pg satisfy a conformally invariant elliptic problem of
conformal metrics as defined in [2], then g must be the Euclidean metric.

At last, we remove the restriction n ≥ 3 on the dimension of the hypersurfaces in the
Delaunay Theorem in [2].

Corollary 1.7. Let φ : M2 → H3 be an immersed, complete, uniformly weakly horospher-
ically convex hypersurface with boundary at infinity ∂∞φ(M) = {p, q} consisting of exactly
two points. If the principal curvatures of φ satisfy an elliptic Weingarten equation as defined
in [2], then φ is rotationally symmetric with respect to the geodesic joining the two points at
the infinity of φ. Equivalently, let g be a complete, conformal metric satisfying a conformally
invariant elliptic problem of conformal metrics on Ω = S

2 \ {p, q}. Then g is cylindric with
respect to the geodesic joining the two points p and q.

Corollaries 1.6 and 1.7 are immediate consequences of the global correspondence in two di-
mensions and the work on elliptic problems in [2]. Since our purpose is mainly to demonstrate
the usefulness of the global correspondence between hypersurfaces and conformal metrics,
we refer the reader to [2] for their precise statements and proofs.
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This article is organized as follows. In section 2, we will recall the local theory developed
in [9]. In section 3, we establish Lemma 1.1 and consequently the Global Correspondence
Theorem 1.2 for all dimensions n ≥ 2. In section 4 we use the global correspondence to
establish the Embeddness Theorem 1.3. In one direction, we are able to improve both of
these results in the special case of hypersurfaces with single point asymptotic boundaries.
Based on the techniques of [2], we then use this improved correspondence to prove our new,
stonger Bernstein type theorem.

2. Local Theory

In this section we introduce the basic constructions and terminology used in [2],[3],[9]
and references therein. We also restate the local correspondence developed in [9] between
hypersurfaces in hyperbolic space Hn+1 and conformal metrics on domains of Sn.

2.1. Weak Horospherical Convexity and the Horospherical Metric. For n ≥ 2, let
us denote Minkowski spacetime by R1,n+1, that is, the vector space Rn+2 endowed with the
Minkowski spacetime metric 〈, 〉 given by

〈x̄, x̄〉 = −x20 +
n+1
∑

i=1

x2i ,

where x̄ = (x0, x1, . . . , xn+1) ∈ Rn+2. Then hyperbolic space, de Sitter spacetime and the
positive null cone are given by

H
n+1 = {x̄ ∈ R

1,n+1|〈x̄, x̄〉 = −1, x0 > 0},
S
1,n = {x̄ ∈ R

1,n+1|〈x̄, x̄〉 = 1},
N

n+1
+ = {x̄ ∈ R

1,n+1|〈x̄, x̄〉 = 0, x0 > 0},

respectively. We identify the ideal boundary at infinity of hyperbolic space Hn+1 with the
unit round sphere S

n sitting at height x0 = 1 in the null cone N
n+1
+ of Minkowski space

R1,n+1.
An immersed hypersurface in Hn+1 is given by a parametrization

φ :Mn → H
n+1

and an orientation assigns a unit normal vector field

η :Mn → S
1,n.

Horospheres are used to define the hyperbolic Gauss map of an oriented, immersed hyper-
surface in Hn+1. In the hyperboloid model Hn+1, horospheres are the intersections of affine
null hyperplanes of R1,n+1 with H

n+1.

Definition 2.1. Let φ : Mn → Hn+1 be an immersed, oriented hypersurface in Hn+1 with
unit normal field η :Mn → S1,n. The hyperbolic Gauss map

G :Mn → S
n

of φ is defined as follows: for every p ∈ Mn, G(p) ∈ Sn is the point at infnity of the unique
horosphere in Hn+1 passing through φ(p) whose outward unit normal agrees with η(p) at φ(p).
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Given an immersed, oriented hypersurface φ : Mn → Hn+1 with unit normal field η :
Mn → S1,n, the light cone map ψ associated to φ is defined

ψ = φ− η :Mn → N
n+1
+ .

With the identification of the ideal boundary at infinity of hyperbolic space Hn+1 with the
unit round sphere Sn sitting x0 = 1, we have

ψ = eρ̃(1, G),

where ψ0 = eρ̃ is the horospherical support function of φ. Note that with our convention given
in Definition 2.1, horospheres with outward orientation are the unique surfaces such that
both the hyperbolic Gauss map and the associated light cone map are constant. Moreover,
if x ∈ Sn is the point at infinity of such a horosphere, then ψ = eρ̃(1, x) where ρ̃ is the signed
hyperbolic distance of the horosphere to the point O = (1, 0, . . . , 0) ∈ Hn+1 ⊆ R1,n+1.

We use supporting horospheres to introduce the following notion of weak horospherical
convexity.

Definition 2.2. [2][9] Let φ : Mn → Hn+1 be an immersed, oriented hypersurface in Hn+1

with unit normal field η :Mn → S
1,n. Let Hp denote the horosphere in H

n+1 that is tangent
to the hypersurface at φ(p) and whose outward unit normal at φ(p) agrees with the unit
normal η(p). We will say that φ :Mn → Hn+1 is weakly horospherically convex at p if there
exists a neighborhood V ⊂Mn of p so that φ(V \ {p}) does not intersect with Hp. Moreover,
the distance function of the hypersurface φ : Mn → H

n+1 to the horosphere Hp does not
vanish up to the second order at φ(p) in any direction.

From the definition above, we have following corollary.

Corollary 2.3. [9] Let φ : Mn → Hn+1 be an immersed, oriented hypersurface in Hn+1.
Then φ is weakly horospherically convex at p if and only if all the principal curvatures of φ
at φ(p) are simultaneously < −1 or > −1.

Let {e1, . . . , en} denote an orthonormal basis of principal directions of φ at p and let
κ1, . . . , κn denote the associated principal curvatures. Then, as in [9], it follows that

(2.1) 〈(dψ)p(ei), (dψ)p(ej)〉 = (1 + κi)
2δij = e2ρ̃〈(dG)p(ei), (dG)p(ej)〉gSn ,

where ρ̃ is the horospherical support function of φ and gSn denotes the standard round metric
on Sn. Hence, the hyperbolic Gauss map of a weakly horospherically convex hypersurface
is a local diffeomorphism and can be used to define the so-called horospherical metric as
follows.

Definition 2.4. [2][9] Let φ : Mn → Hn+1 be an immersed, weakly horospherically convex
hypersurface in Hn+1. Then the locally conformally flat metric

(2.2) gh = ψ∗〈, 〉 = e2ρ̃G∗gSn

on Mn is called the horospherical metric of φ.

When the hyperbolic Gauss map G :Mn → Sn of a weakly horospherically convex hyper-
surface φ :Mn → H

n+1 is injective, one can push the horospherical metric gh onto the image
Ω = G(M) ⊂ Sn and consider the conformal metric

ĝ = (G−1)∗gh = e2ρgSn,
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where ρ = ρ̃◦G−1. For simplicity, we also refer to this conformal metric ĝ as the horospherical
metric. On the other hand, given a conformal metric ĝ = e2ρgSn on a domain Ω in Sn, one
recovers the light cone map

ψ(x) = eρ(1, x) : Ω → N
n+1
+ .

Then one can solve for the map φ : Ω → Hn+1 and the unit normal vector η : Ω → S1,n

so that ψ = φ − η. These facts and the discussion above lead to the local correspondence
developed in [9].

Theorem 2.5 (Local Correspondence Theorem [9]). For n ≥ 2, let φ : Ω ⊆ Sn → Hn+1

be a weakly horospherically convex hypersurface with hyperbolic Gauss map G(x) = x the
identity. Then ψ = eρ(1, x) and

(2.3) φ =
eρ

2
(1 + e−2ρ(1 + |∇gSnρ|2gSn ))(1, x) + e−ρ(0,−x+∇gSnρ).

Moreover, there is a symmetric 2-tensor

(2.4) P = −∇2
gSn
ρ+ dρ⊗ dρ− 1

2
(|∇gSnρ|2gSn − 1)gSn

associated to the horospherical metric ĝ = e2ρgSn whose eigenvalues λi are related to the
principal curvature κi of φ by

(2.5) λi =
1

2
− 1

1 + κi
.

Conversely, suppose that ĝ = e2ρgSn is a conformal metric defined on a domain Ω ⊆ Sn such
that all the eigenvalues of the 2-tensor P defined as in (2.4) are less than 1

2
. Then the map

φ : Ω → H
n+1 given by (2.3) defines an immersed weakly horospherically convex hypersurface

with hyperbolic Gauss map G(x) = x the identity on Ω. Moreover, the horospherical metric
of φ is ĝ and its principal curvatures satisfy the relation (2.5).

Remark 2.6. When n ≥ 3, the symmetric 2-tensor P given by (2.4) is exactly the Schouten
tensor of the conformal metric ĝ = e2ρgSn.

Now for a conformal metric ĝ = e2ρgSn on a domain Ω ⊂ Sn with 2-tensor P bounded from
above, one can consider a family of rescaled metric ĝt = e2tĝ. Choosing t0 sufficiently large
so that e−2tλi <

1
2
for t ≥ t0, it follows from Theorem 2.5 that the family of hypersurfaces

(2.6) φt =
eρ+t

2
(1 + e−2(ρ+t)(1 + |∇gSnρ|2gSn ))(1, x) + e−(ρ+t)(0,−x+∇gSnρ) : Ω → H

n+1

are immersed and weakly horospherically convex with hyperbolic Gauss maps the identity
for t ≥ t0. Moreover, the eigenvalues λti = e−2tλi of the 2-tensor Pt associated to ĝt and the
principal curvatures κti of the associated hypersurfaces φt satisfy the relation

(2.7) λti =
1

2
− 1

1 + κti
.



WEAKLY HOROSPHERICALLY CONVEX HYPERSURFACES IN HYPERBOLIC SPACE 7

3. Global Theory

In this section, we establish a global correspondence between properly immersed, complete,
weakly horospherically convex hypersurfaces and complete conformal metrics on the domains
of Sn for all dimensions n ≥ 2. To ensure a two-sided correspondence, we restrict ourselves
to the cases of uniformly weakly horospherically convex hypersurfaces and conformal metrics
with bounded 2-tensor P .

Definition 3.1. [2] For n ≥ 2, let φ : Mn → Hn+1 be an immersed, oriented hypersurface.
We say that φ is uniformly weakly horospherically convex if there is a constant κ0 > −1 such
that the principal curvatures κ1, . . . , κn are greater than or equal to κ0 at all points in Mn.

One reason why we are interested in uniformly weakly horospherically convex hypersur-
faces is the fact that under such curvature assumptions, the completeness of such hyper-
surfaces is equivalent to that of corresponding conformal metrics on domains of Sn due to
(2.1). It turns out that completeness is very important in establishing the consistency of
boundaries. On the other hand, from the curvature relation (2.5), one can easily see that
given a conformal metric on a domain of Sn with 2-tensor P bounded above, the correspond-
ing immersed hypersurfaces φt given by (2.6) with t sufficiently large are uniformly weakly
horospherically convex if and only if P is also bounded below. Based on these observations
we focus on the classes of hypersurfaces and conformal metrics in the following definition.

Definition 3.2. For n ≥ 2, an oriented hypersurface φ : Mn → Hn+1 is said to be
admissible if it is properly immersed, complete, and uniformly weakly horospherically convex
with injective hyperbolic Gauss map G :Mn → Sn. Meanwhile, a complete metric ĝ = e2ρgSn

on a domain Ω ⊂ Sn is called a realizable metric if its 2-tensor P defined as in (2.4) is
bounded.

Now, we can state our Global Correspondence Theorem.

Theorem 3.3 (Global Correspondence Theorem). For n ≥ 2, an admissible hypersurface
φ :Mn → Hn+1 induces a realizable metric on the hyperbolic Gauss map image Ω = G(M) ⊂
Sn with boundary at infinity ∂∞φ(M) = ∂Ω.

On the other hand, given a realizable metric ĝ = e2ρgSn on a domain Ω ⊂ Sn, the map φt

given by (2.6) defines an admissible surface with ∂∞φ
t(Ω) = ∂Ω for all t sufficiently large.

For higher dimension n ≥ 3, Lemma 3.2 and Corollary 3.1 in [2] are used to obtain the
properness of the immersed hypersurfaces associated to a realizable metric as well as the
consistency of the boundary at the infinity of the hypersurfaces with that of their hyperbolic
Gauss map images. These results are independent of the specific dimension and can be
stated together as follows.

Lemma 3.4. [2] For n ≥ 2, suppose that ĝ = e2ρgSn is a complete conformal metric on a
domain Ω ⊂ Sn with 2-tensor P bounded from above. If

(3.1) β(x) := e2ρ(x) + |∇gSnρ|2gSn (x) → +∞ as x→ ∂Ω,

then φt : Ω → H
n+1 given by (2.6) is a properly immersed, complete, weakly horospherically

convex surface with ∂∞φ
t(Ω) = ∂Ω for all t sufficiently large.

Due to Lemma 3.4 the only issue left in completing the global correspondence is to de-
termine when β(x) goes to +∞ as x approaches the boundary ∂Ω. In [2], the authors
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used Proposition 8.1 in [5], which showed that the conformal factor ρ(x) goes to +∞ as
x approaches the boundary ∂Ω when the scalar curvature of a complete conformal metric
ĝ = e2ρgSn is bounded from below. The proof of Proposition 8.1 in [5] relies on the Moser
iteration and fails to hold in dimension n = 2.

In the remainder of this section, we establish a new key lemma about the asymptotic
behavior of β(x) in (3.1) from which the Global Correspondence Theorem 3.3 follows im-
mediately from Lemma 3.4. We would like to point out that unlike Proposition 8.1 in [5],
the following lemma relies on both the upper and lower bounds of the associated conformal
2-tensor P but its use allows us to treat the global correspondence in all dimensions n ≥ 2
in a unified way.

Lemma 3.5. For n ≥ 2, suppose that ĝ = e2ρgSn is a realizable metric on a domain Ω ⊂ Sn.
Then

(3.2) e2ρ(x) + |∇gSnρ|2gSn (x) → +∞ as x→ x0 ∈ ∂Ω.

Proof. For sake of contradiction, assume to the contrary that {xi} ⊂ Ω is a sequence of
interior points such that

(3.3) xi → x0 ∈ ∂Ω as i→ +∞
and

(3.4) β(xi) = e2ρ(xi) + |∇gSnρ|2gSn (xi) ≤ C, ∀i,

for some positive constant C. Since the 2-tensor P = −∇2
gSn
ρ+dρ⊗dρ− 1

2
(|∇gSnρ|2gSn −1)gSn

is bounded, we find

(3.5) |∇2
gSn
ρ|gSn ≤ K(C0e

2ρ + |∇gSnρ|2gSn (x) + 1),

where |P |ĝ ≤ C0 and K = max{1,
√
n

2
}. Then by Kato’s inequality we have

(3.6)
∂

∂t
|∇gSnρ|gSn (x) ≤ | ∂

∂t
|∇gSnρ|gSn |(x) ≤ |∇2

gSn
ρ|gSn (x) ≤ K(C0e

2ρ + |∇gSnρ|2gSn + 1),

where ∂
∂t

denotes an arbitrary unit tangent vector at x ∈ S
n.

Now consider |∇gSnρ|gSn as a function of t along the geodesic starting from xi in the
direction of ∂

∂t
. In order to contradict the completeness of the conformal metric ĝ = e2ρgSn,

we aim to derive a uniform bound for ρ in a neighborhood of x0 near the infinity. To do
so, we begin by deriving a uniform estimate for |∇gSnρ|gSn in geodesic balls about xi with a
uniform radius independent of xi by comparison of the evolution of |∇gSnρ|gSn with following
ODE along geodesics:

(3.7)

{

Y ′ = dY
dt

= Y 2 + A

Y (0) = |∇gSnρ|gSn (xi) = yi ≤ C,

where A is a positive constant to be determined. The solution to (3.7) is

Y =
√
A tan(

√
At+ arctan(

1√
A
yi))

≤
√
A tan(

√
At + arctan(

1√
A
C)).

(3.8)
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Obviously, arctan( 1√
A
C) < π

2
. Let δ = 1

2
√
A
(π
2
− arctan( 1√

A
C)) > 0. Then Y is strictly

increasing on [0, δ) and

(3.9) Y (t) ≤
√
A tan(

π

4
+

1

2
arctan(

1√
A
C)) =: Ȳ , ∀t ∈ [0, δ).

Let A be a positive constant such that

(3.10) 2KδȲ = K(
π

2
− arctan(

1√
A
C) tan(

π

4
+

1

2
arctan(

1√
A
C)) ≤ ln(

A− 1

C0C
).

For such fixed A, we have δ and Ȳ depending only on C,C0 with

(3.11) C0Ce
2KδȲ + 1 ≤ A.

We claim that

(3.12) |∇gSnρ|gSn (x) ≤ KȲ , ∀x ∈ Bδ(xi) ∩ Ω, ∀i,
which is the desired uniform bound on the gradient of the conformal factor in geodesic balls
about xi with uniform radius δ independent of xi. Otherwise, there exists 0 < δ̃ < δ and
some xi such that

(3.13) max
B

δ̃
(xi)

|∇gSnρ|gSn = KȲ .

But then by the mean value theorem it follows

(3.14) C0e
2ρ(x) + 1 ≤ C0e

2(ρ(xi)+δKȲ ) + 1 ≤ C0Ce
2KδȲ + 1 ≤ A, ∀x ∈ Bδ̃(xi) ∩ Ω,

and therefore from inequality (3.6) we find

(3.15)
∂

∂t
|∇gSnρ|gSn (x) ≤ K(C0e

2ρ(x) + |∇gSnρ|2gSn (x) + 1) ≤ K(|∇gSnρ|2gSn (x) + A).

Given x ∈ Bδ̃(xi) ∩ Ω, let α denote the unit speed geodesic from xi to x with x = α(t) for

some t ∈ [0, δ̃]. Comparing with the solution Y to (3.7), it follows from (3.15) that

(3.16) |∇gSnρ|gSn (x) ≤ KY (t).

But Y is strictly increasing on [0, δ) and 0 < δ̃ < δ so

(3.17) |∇gSnρ|gSn (x) < KȲ , ∀x ∈ Bδ̃(xi) ∩ Ω,

contradicting the assumption (3.13) that the maximum value KȲ was achieved in Bδ̃(xi)∩Ω.
Hence, there is no such δ̃ and our uniform bound (3.12) follows.

Now fix 0 < δ′ < 1
2
δ. By assumption xi → x0 ∈ ∂Ω so there is an i0 such that xi ∈

Bδ′(x0) ∩ Ω for all i ≥ i0. Then for any x ∈ Bδ′(x0) ∩ Ω, we have

(3.18) distSn(x, xi) ≤ distSn(x, x0) + distSn(xi, x0) ≤ 2δ′ < δ, ∀i ≥ i0,

so that

(3.19) x ∈ Bδ(xi) ∩ Ω, ∀i ≥ i0.

Together with (3.12), we have

(3.20) |∇gSnρ|gSn (x) ≤ KȲ , ∀x ∈ Bδ′(x0) ∩ Ω,

and therefore

(3.21) |ρ(x)| ≤ |ρ(xi)|+KδȲ , ∀x ∈ Bδ′(x0) ∩ Ω, ∀i ≥ i0.
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by the mean value theorem. For any j ≥ i0, x = xj satisfies (3.21) so |ρ(xi)| are uniformly
bounded for i ≥ i0. Then we take the infimum to find

(3.22) |ρ(x)| ≤ inf
i≥i0

|ρ(xi)|+KδȲ , ∀x ∈ Bδ′(x0) ∩ Ω,

which is a uniform bound for ρ in Bδ′(x0) ∩ Ω. But then any curve asymptotic to x0 ∈ ∂Ω
would have finite length with respect to the conformal metric ĝ = e2ρgSn, which contradicts
its completeness and finishes the proof. �

4. Normal Flow, Embeddedness and the Bernstein Theorem

An important issue in the theory of hypersurfaces is to know when an immersed hy-
persurface is in fact embedded. From the approach taken in [1] where hypersurfaces were
constructed via the normal flow of a subdomain of the infinity of hyperbolic space, it is nat-
urally expected that immersed hypersurfaces are embedded when the normal flow is regular.
It turns out that one can use convexity arguments to show that an admissible hypersurface
can be unfolded along the normal flow when the structure of the boundary at infinity is
relatively simple [2]. This makes the Global Correspondence Theorem 1.2 more useful.

Before stating the main result we recall that the geodesic normal flow {φt}t∈R in Hn+1 of
an admissible hypersurface φ : Ω ⊂ Sn → Hn+1 is given by

(4.1) φt(x) := expφ(x)(−tη(x)) = φ(x) cosh t− η(x) sinh t : Ω → H
n+1 ⊂ R

1,n+1

and the principal curvatures κti of φ
t are given by

(4.2) κti =
κi + tanh t

1 + κi tanh t

due to the Riccatti equations. Moreover, it is easily seen that the hyperbolic Gauss map
Gt is invariant under the normal flow and that the horospherical metric gth of φt is given by
gth = e2tgh where gh is the horospherical metric of φ.

With the two dimensional correspondence in hand, in particular, the consistency of bound-
aries, the following embeddedness theorem follows immmediately for all dimensions n ≥ 2
from Theorem 3.6 of [2].

Theorem 4.1. [Embeddedness Theorem] For n ≥ 2, suppose that φ : Mn → Hn+1 is an
admissible hypersurface. In addition, assume that the boundary at infinity ∂∞φ(M) is a dis-
joint, finite union of smooth compact embedded submanifolds with no boundary in S

n. Then
φ can be unfolded into an embedded hypersurface along its geodesic normal flow eventually.

Equivalently, suppose that ĝ = e2ρgSn is a realizable metric on a domain Ω ⊂ Sn. In
addition, assume that the boundary ∂Ω is a disjoint, finite union of smooth compact embedded
submanifolds with no boundary in S

n. Then the admissible hypersurfaces

(4.3) φt =
eρ+t

2
(1 + e−2(ρ+t)(1 + |∇ρ|2))(1, x) + e−(ρ+t)(0,−x+∇ρ) : Ω → H

n+1

are embedded for t sufficiently large.

Next note from (2.1) that the weak horospherical convexity of an immersed hypersurface
φ :Mn → Hn+1 guarantees the local injectivity of the hyperbolic Gauss map, which in turn
is sufficient to start the geodesic normal flow. In particular, when ∂∞φ(M) = {x} ⊂ Sn is
a single point, this observation allows us to remove the injectivity of the hyperbolic Gauss
map G assumptions from one direction of the Global Correspondence Theorem 3.3 and the
Embeddededness Theorem 4.1.
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Theorem 4.2. For n ≥ 2, suppose that φ :Mn → Hn+1 is an immersed, complete, uniformly
weakly horospherically convex hypersurface with the boundary at infinity ∂∞φ(M) = {x} ⊂ Sn

a single point. Then it induces a complete conformal metric ĝ = e2ρgSn on the image of the
hyperbolic Gauss map G(M) ⊂ Sn with bounded 2-tensor P defined as in (1.2) where ρ is
the horospherical support function of φ and

(4.4) ∂∞φ(M) = ∂G(M).

Moreover, φ can be unfolded into an embedded hypersurface along its geodesic normal flow
eventually.

Proof. As we mentioned previously in this section, we can still define the geodesic normal
flow with just local injectivity of the hyperbolic Gauss map. Let φt denote the geodesic
normal flow of φ = φ0 for t ≥ 0. From the evolution of the principal curvatures along
the normal flow given by (4.2), we know that φt is uniformly convex when t is sufficiently
large. Then the injectivity of the hyperbolic Gauss map of φt follows from extensions of
Corollary 4.4 and Proposition 1.3 in [8] to higher dimensions. Furthermore, we know φ is
admissible due to the invariance of the hyperbolic Gauss map under the geodesic normal
flow and therefore the result follows from the Global Correspondence Theorem 3.3 and the
Embeddededness Theorem 4.1. �

Finally, we apply Theorem 4.2 and the work on elliptic Weingarten problems in [2] to
establish a new, stronger Bernstein type theorem that does not a priori assume embeddedness
or any additional curvature conditions.

Theorem 4.3. For n ≥ 2, suppose that φ : Mn → Hn+1 is an immersed, complete, uni-
formly weakly horospherically convex hypersurface with constant mean curvature. Then it is
a horosphere if its boundary at infinity is a single point in Sn.

Proof. By Theorem 4.2, for t sufficiently large the hypersurface φt defined by (4.1) is a
properly embedded, uniformly weakly horospherically convex hypersurface with single point
boundary at infinity. Moreover, from (4.2) it follows that φt satisfies an elliptic Weingarten
equation so the theorem follows from the generalized Bernstein Theorem 4.4 in [2]. �
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