
UC Berkeley
UC Berkeley Previously Published Works

Title
Assembly and function of branched ubiquitin chains

Permalink
https://escholarship.org/uc/item/8df5412x

Journal
Trends in Biochemical Sciences, 47(9)

ISSN
0968-0004

Authors
Kolla, SriDurgaDevi
Ye, Mengchen
Mark, Kevin G
et al.

Publication Date
2022-09-01

DOI
10.1016/j.tibs.2022.04.003

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8df5412x
https://escholarship.org/uc/item/8df5412x#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Trends in
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Review
Assembly and function of branched
ubiquitin chains
SriDurgaDevi Kolla,1,4 Mengchen Ye,1,4 Kevin G. Mark,1,4 and Michael Rapé1,2,3,*
Highlights
Branched ubiquitin chains are abundant
in cells and produced in response to
specific signals.

Branched chains can be assembled by
multiple mechanisms that often require
collaboration between ubiquitylation
enzymes.

Branched ubiquitin chains are dynamic,
and deubiquitylases can edit, rather
than terminate, signaling by branched
Post-translational modification with ubiquitin is required for cell division, differ-
entiation, and survival in all eukaryotes. As part of an intricate signaling code,
ubiquitin is attached to its targets as single molecules or polymeric chains,
with the distinct modifications encoding a wide range of outcomes. After
early work focused on homotypic ubiquitin chains, such as the K48-linked poly-
mers that drive proteasomal degradation, recent studies noted abundant con-
jugates that contained ubiquitin molecules modified on two or more sites. Such
branched ubiquitin chains are produced in response to specific signals and
they exert functions that are critical for cellular and organismal homeostasis.
In this review, we will discuss our rapidly evolving understanding of the assem-
bly and function of branched ubiquitin chains.
chains.

Branched ubiquitin chains encode
diverse functions that range from im-
proving the efficiency of protein degra-
dation to organizing large signaling
complexes.

Small molecule-induced protein degra-
dation often requires branched ubiquitin
chains for efficient removal of a thera-
peutic target.
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The basics of ubiquitin chain topology
Most cells in our bodies are primed to rapidly adjust their behavior to changes in their environment.
Key to successful adaptation are signaling pathways that respond to outside events by changing
the activity or stability of regulatory factors within cells. In most, if not all cases, this information
flow relies on posttranslational modifications that are implemented by specific enzymes, or writers,
and decoded by dedicated effectors, or readers. An important signaling modality is ubiquitylation,
which is essential for cell division, differentiation, and homeostasis in all eukaryotes [1].

Ubiquitylation centers on the highly conserved protein ubiquitin, which between yeast and man
differs in only three out of 76 amino acids. Nature left ubiquitin with little room for evolutionary
diversification: while the carboxy-terminal tail of ubiquitin is essential for its attachment to targets,
its α-amino group, all seven Lys residues, and some of its three Ser or seven Thr residues, serve
as sites for ubiquitin polymerization [2,3] (Figure 1A). Surfaces around Phe4, Ile36, Ile44, or Asp58
of the compact ubiquitin molecule are recognized by hundreds of ubiquitin-binding proteins that
translate this modification into a specific cellular response [4,5]. Even buried residues are impor-
tant, as they presumably allow unfolding of the otherwise stable ubiquitin molecule by the effector
p97/VCP [6].

A central step in ubiquitin-dependent signaling is the covalent attachment of the modifier, ubiquitin,
to proteins [7], although lipopolysaccharides can be targeted as well [8]. When attached to pro-
teins, the carboxy terminus of ubiquitin ismost frequently linked to the ε-amino group of a substrate
lysine via an isopeptide bond. Proteomic analyses identified thousands of Lys residues that are
ubiquitylated in human cells [9,10], a list that could grow as more cell types, tissues, and develop-
mental states are investigated. Ubiquitin can also be connected as an oxyester to the hydroxyl
group of Thr or Ser residues [11–13], to a protein’s α-amino group via a peptide bond [13–15],
or to Cys residues as a thioester [16]. Moreover, bacteria can attach ubiquitin to Ser residues in
host proteins through a phosphoribosyl link [17,18]. Although ubiquitylation has long been viewed
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Figure 1. Branched ubiquitin chains are part of the ubiquitin code. (A) Ubiquitin is a highly conserved protein, with Lys (red) and Ser/Thr (orange) residues that are
used as attachment sites for ubiquitin chain formation. Various surfaces of ubiquitin (Phe4, Ile36, Ile44, and Asp58 patches; blue) are recognized by effector proteins, which
translate a specific ubiquitin modification into a particular cellular outcome (PDB ID: 1UBQ). (B) Ubiquitin can be assembled into polymeric conjugates of distinct topology
and function. Only one example of each chain type is shown. The different colors denote different linkages between ubiquitin molecules (red: K48 linkages; orange: K11
linkages) or distinct modifiers (pink: SUMO1). (C) Structure of a K11/K48-branched ubiquitin trimer (PDB ID: 6OQ1).

Trends in Biochemical Sciences
as a Lys-directed modification, we now appreciate that multiple acceptors can receive this modi-
fication through distinct chemistry.

Reflecting ubiquitin’s versatility towards substrate residues, cells also assemble multiple conjugates
with distinct structures and functions [2,3,19]. Transfer of a single ubiquitin, or mono-ubiquitylation,
can alter the interaction landscape of a target or impact the folding stability of the modified protein
[20–23]. In addition, proteins are often decorated with ubiquitin chains that are connected through
a side chain in one ubiquitin and the carboxy terminus of another ubiquitin molecule (Figure 1B). In
homotypic chains, the same ubiquitin residue is used throughout the polymer. In mixed conjugates,
each ubiquitin ismodifiedwith one subunit, but different sites serve as acceptors, while hybrid chains
contain both ubiquitin and a ubiquitin-like protein, such as SUMO [24]. By contrast, branched chains
possess ubiquitin molecules that are modified on two or more sites, which results in a bifurcation of
the polymer structure [25–27] (Figure 1B,C). Distinguishing mixed from branched ubiquitin chains
can be difficult, as it still requires specialized proteomic or biochemical analyses [25,28,29].

Early work focused on homotypic K11- and K48-linked conjugates that elicit proteasomal degra-
dation [30,31], K63-linked chains that control ribosome biogenesis and DNA repair [32–34], or
M1-linked polymers that regulate inflammatory signaling [35]. However, chemical, proteomic, or
760 Trends in Biochemical Sciences, September 2022, Vol. 47, No. 9

CellPress logo


Trends in Biochemical Sciences
immunological detection methods have revealed that heterotypic chains are also abundant in
cells [24,28,29,36,37]. These studies showed that up to 20% of ubiquitin molecules in polymers
are part of branched conjugates [28,38] and some ubiquitin linkages might even predominantly
exist within the context of heterotypic and branched polymers [39,40]. As the abundance of
branched chains increases in response to changes in cellular state, such asmitosis or proteotoxic
stress [28,36], such conjugates are likely to guide cellular information flow. In this review, we will
discuss our rapidly evolving knowledge of the synthesis, function, and disassembly of branched
ubiquitin chains.

Synthesis of branched chains
As with every ubiquitin polymer, the assembly of branched chains requires an enzymatic cascade
that is composed of E1 ubiquitin activating enzymes, E2 conjugating enzymes, and E3 ligases
[41–43]. Human cells possess ~600 E3 ligases, which determine the substrate specificity of this
modification. E3 ligases with homologous to E6AP C terminus (HECT), RING-in between-RING
(RBR), or RING Cys relay (RCR) domains are charged with ubiquitin before they modify the target.
These enzymes often cooperate with the E2 UBE2L3, which can transfer ubiquitin to the catalytic
Cys residue in the E3 ligase, but not to Lys residues in substrates [44]. Most E3 ligases, however,
contain really interesting new gene (RING) or U-box domains that activate E2 enzymes to directly
modify a substrate [45–48]. In contrast to HECT-, RBR-, or RCR-E3 ligases, RING-E3 ligases
rely on their E2 enzymes to determine the connectivity of their ubiquitin chains [45,49–51].

The signature motif of a branched chain is a ubiquitin molecule that is modified on at least two sites.
The synthesis of branched polymers therefore either requires an enzyme with relaxed linkage speci-
ficity or a collaboration between enzymes that differ in their preference for acceptor sites in ubiquitin. In
an example of the former mechanism, the bacterial E3 ligase NleL produces K6/K48-branched
chains based on its ability to synthesize each linkage [52,53], a property that is shared with the E2
enzyme UBE2D3 or the E3 ligases Parkin, HUWE1, WWP1, and HECTD1 [28,37,54–56]. The E3
ligase anaphase-promoting complex (APC/C) is also sufficient to produce branched ubiquitin chains,
but requires two E2 enzymes of distinct specificity, UBE2C andUBE2S, to accomplish this [25].While
UBE2C initiates short chains that contain K11, K48, and K63 linkages [57–59], UBE2S branches
off specific K11-linked polymers [25,45,60–63] (Figure 2A). This results in (K11, K48, K63)/
K11-branched chains that strongly accumulate upon APC/C activation during mitosis [29,36,64]
(see Box 1 on the nomenclature of branched chains). The yeast APC/C also produces branched
chains by using two E2 enzymes, UBC5 and UBC1, but in this organism, the topology is swapped
and K48-linked polymers branch off an initial chain to yield (K11, K48, K63)/K48-branched conju-
gates [65–67]. The mechanism of APC/C-dependent synthesis of branched chains synthesis re-
quires that the E3 ligase binds two E2s at the same time [68–71] (Figure 2A), which for human
APC/C allows the branching enzyme, UBE2S, to stimulate chain initiation by UBE2C [72].

Akin to the engagement of distinct E2 enzymes, two catalytic subunits of a constitutive E3 ligase
complex can work together to synthesize branched chains. This approach is used by LUBAC,
which relies on its RBR-subunit HOIP to produce M1-linked chains and a second RBR compo-
nent, HOIL-1L, to branch off oxyester-linked ubiquitin [73] (Figure 2B). HOIL-1L also extends
oxyester-linked ubiquitin oligomers [12,73]. To facilitate branching, the LUBAC complex is orga-
nized so that the catalytic domains of HOIP and HOIL-1L are in close proximity to each other [73].

In what could be the most prevalent scenario, two E3 ligases come together to decorate a
substrate with branched chains. While one partner attaches a first ubiquitin chain to the target,
the second E3 ligase branches off conjugates of a distinct topology (Figure 2C). This activity
was alluded to in classical yeast studies, where a fused ubiquitin triggered protein degradation
Trends in Biochemical Sciences, September 2022, Vol. 47, No. 9 761
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Figure 2. Branched ubiquitin chains are assembled by specific enzymes. (A) The E3 ligase anaphase-promoting complex (APC/C) uses two E2 enzymes with
distinct linkage specificity for branched chain assembly. UBE2C initiates short chains containing multiple linkages, while UBE2S branches off specific K11-linked
conjugates. Both E2 enzymes bind to the APC2 subunit of the APC/C and are activated by interaction with the really interesting new gene (RING)-domain subunit
APC11. (B) LUBAC is a constitutive complex of multiple E3 ligase activities provided by the RING-in between-RING (RBR)-subunits HOIP and HOIL-1L. While HOIP
triggers M1-linked chain production, HOIL-1L branches off oxyester-linked ubiquitin molecules. (C) Two E3 ligases can collaborate in producing branched ubiquitin
chains. While initiating E3 ligases add the first conjugate, branching E3 ligases bind the chain intermediate through a ubiquitin-binding domain (UBD) and branch off
ubiquitin polymers of a distinct linkage. (D) Small molecule-dependent formation of branched ubiquitin chains. PROTAC-dependent formation of K48-linked ubiquitin
chains by the E3 ligases CUL2VHL or CUL4CRBN is followed by introduction of K29-linked branches by the homologous to E6AP C terminus (HECT)-E3 ligase TRIP12.

Trends in Biochemical Sciences
only if it contained both Lys29 and Lys48 [74,75]. It was ultimately found that the E3 ligases UFD4,
TOM1, and UFD2 mark the ubiquitin-fusion substrate with K29/K48-branched chains [76,77].
The combination of E3 ligases determines the resulting chain topology: if UBR5 teams up with
762 Trends in Biochemical Sciences, September 2022, Vol. 47, No. 9
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Box 1. The nomenclature of branched ubiquitin chains

The explosion in the discovery of distinct branched chain types necessitates that we develop a nomenclature to describe
these conjugates more precisely. This should acknowledge our limited understanding of the exact architecture of
branched chains and allow for incorporation of new findings without having to reinvent how we refer to such conjugates.
In the following text, we propose such a nomenclature of branched ubiquitin chains.

To synthesize a branched chain, enzymes first ubiquitylate a substrate Lys residue and produce a short conjugate that we
describe as the initiating chain. An internal subunit of the initiating chain is thenmodified to produce the branch point ubiquitin,
which is often extended into a polymer that we refer to as the branching chain. A branched conjugate is the combination of an
initiating and at least one branching chain.

The initiating chain can either be homotypic or it might be of mixed topology and consist of multiple linkages. Branching
chains often have a single topology. For example, the initiating E2 enzyme of human APC/C, UBE2C, produces short mixed
chains that contain K11, K48, and K63 linkages, while the branching E2 UBE2S adds homotypic K11-linked polymers. To
denote all linkages in the initiating chain, we propose to refer to the resulting conjugates assembled as (K11, K48, K63)/
K11-branched chains. This differentiates such chains from those produced by the yeast APC/C, which uses the E2 UBC4
to assemble initiating conjugates containing K11, K48, and K63 linkages and the E2 UBC1 to branch off K48-linked conju-
gates. These conjugates would be best described as (K11, K48, K63)/K48-branched chains. If a branching chain possesses
multiple linkages, this could easily be incorporated: (Kinitiating 1, Kinitiating 2,…)/(Kbranching 1, Kbranching 2,…). The linkage(s) within
the initiating chain should always be noted before those in the branching chain.

In most cases, the precise topology of branched chains has not been determined and we do not know all linkages within
initiating or branching chains. As additional linkages are discovered, they can be added to the description of a branched
conjugate. Until the architecture of a branched chain has been delineated more precisely, we propose to refer to such
conjugates as ubiquitin chains with KX/KY branches, with KX and KY referring to the linkages detected on the branch point
ubiquitin. Based on our current knowledge, ubiquitin conjugates assembled on misfolded proteins by UBR4 and UBR5
would thus be best described as chains with K11/K48-branches. If UBR4 would also produce K27-linkages on such
substrates, as it has recently been suggested to do on oxidized proteins [125], the resulting conjugates would be
described as (K11, K27)/K48-branched chains.

In addition to our incomplete knowledge about linkages, we do not understand the number or sequence of branches
within complex ubiquitin chains. If multiple blocks of branching chains are added to an initial conjugate, this could be de-
noted through a subscript. For example, UBE2S appears to add multiple blocks of K11-linked chains to an initial chain. If
this would be two blocks, then the description of branched chains assembled by APC/C, UBE2C, and UBE2S would
evolve to (K11, K48, K63)/(K11)2. However, expanding this nomenclature in this way will have to await the development
of methods to sequence branched ubiquitin chains.

Trends in Biochemical Sciences
UBR4, it synthesizes K11/K48-branched chains [36], yet its collaboration with ITCH results in
K63/K48-branched polymers [78]. Moreover, TRAF6 works with HUWE1 to build K63/K48-
branched chains [79], while it engages LUBAC to assemble K63/M1-linked chains [40,80,81].
Such crosstalk between E3 ligases was also observed in a therapeutic setting, where the E3
ligases CUL4CRBN or CUL2VHL partner with TRIP12 to modify targets of small molecule-induced
protein degradation with K48/K29-branched chains [82] (Figure 2D). Given these observations,
we anticipate that complex formation between E3 ligases, as it was noted in the N-end rule path-
way [83], facilitates assembly of branched conjugates.

Irrespective of its initiating partner, the branching enzyme acts on a ubiquitin polymer and all
known branching enzymes accordingly harbor ubiquitin-binding motifs. In line with assembling
chains containing K48/K11 branches, the APC/C engages K48-linked ubiquitin for exposure to
K11-specific UBE2S [84]. UFD2 uses amino-terminal loops to detect K29-linked ubiquitin for
the synthesis of K29/K48-branched chains [76]. The yeast E2 UBC1 and its human counterpart
UBE2K rely on a UBA domain to bind K63-linked chains for K63/K48-branched chain production
[85], while the E3 UBR5 uses a UBA domain to assemble branched chains of the same topology
[78]. Some branching E3 ligases possess multiple ubiquitin-binding domains, as seen with the
UBA and UIM domains of HUWE1 [36,56,86,87], or the UBA and NZF domains of LUBAC
[73]. Even if a responsible domain has not been identified, the binding of a branching E3 ligase
to ubiquitin has still been noted [88].
Trends in Biochemical Sciences, September 2022, Vol. 47, No. 9 763
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Together, these studies converge on a model in which many branched ubiquitin chains are
assembled through a collaboration of ubiquitylation enzymes with distinct linkage specificity.
While the two partners can engage each other either transiently or constitutively, the branching
enzyme typically contains a ubiquitin-binding domain to coordinate chain initiation with branching.
Both identifying E3 ligase complexes or finding enzymes that bind ubiquitin could thus point to
new branching enzymes [75].

Disassembly of branched chains
As ubiquitylation is a reversible modification, it did not come as a surprise that deubiquitylases
(DUBs) edit or erase branched ubiquitin chains. Akin to the Ovarian Tumor (OTU)-family DUBs
that show specificity for homotypic chain types [89], some DUBs preferentially cleave branched
polymers. This includes UCH37, which is activated by binding to the proteasomal lid subunit
RPN13 [90,91] (Figure 3A). UCH37 removes K48 linkages from branched ubiquitin molecules,
while leaving the variable second linkage intact [92,93] (Figure 3B). Although it is not fully under-
stood how UCH37 gains its specificity for branched chains, it does recognize both moieties that
are attached to the shared ubiquitin molecule [93] (Figure 3C). Debranching by UCH37 is required
for continued proteasomal activity, potentially by keeping ubiquitin receptors accessible for
further rounds of substrate engagement [92,93].

In addition to UCH37, other DUBs cleave branched ubiquitin conjugates. At least in vitro, mito-
chondrial USP30 shows preference for chains with K6/K48 branches over homotypic conjugates
TrendsTrends inin BiochemicalBiochemical Sciences Sciences

Figure 3. Branched ubiquitin chains can be specifically dismantled by deubiquitylases. (A) Structure of the
debranching enzyme UCH37 bound to its activator, the proteasomal lid subunit RPN13, and a single ubiquitin molecule
(PDB ID: 4WLR). (B) UCH37 specifically cleaves the K48 linkage of branched ubiquitin molecules. (C) UCH37 can bind
both distal ubiquitin molecules that are attached to a central branch point ubiquitin.
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[37]. Befitting this specificity, USP30 counteracts the E3 ligase Parkin that induces mitophagy by
plastering defective mitochondria with a ubiquitin carpet containing many branched subunits
[28,94,95]. TRABID erases K29/K48-branched chains to protect the E3 ligase HECTD1 from
autoubiquitylation and degradation [54], while another OTU family member, the usually K11-
specific Cezanne, also cleaves oxyester-linked branches [73]. It will be interesting to determine
whether other linkage-specific DUBs of the OTU family can act on branched ubiquitin chain
types [89].

Similar to E3 ligases, debranching DUBs could provide unique regulatory features. As they cleave
off branched molecules while leaving the remainder of the ubiquitin mark intact, they edit, rather
than terminate, ubiquitin signaling. This differentiates debranching enzymes from members of
the USP family, which do not show much linkage preference and erase entire chains [96]. On
the flipside, inhibition of DUBs through branching can prolong ubiquitin-dependent signaling
[79,80]. The discovery of debranching DUBs therefore suggests that cells can toggle between
distinct ubiquitin modifications, revealing a ubiquitin code that is much more dynamic than
previously appreciated.

Functions of branched chains
Akin to homotypic ubiquitin chains, branched polymers exert specific functions that are dependent
on their topology. Branched conjugates can elicit qualitatively different outcomes, as some induce
degradation and others stabilize protein interactions. In addition, branched chains can amplify the
signal of a homotypic polymer and thereby play a quantitatively distinct role. Aswe are yet unable to
sequence ubiquitin chains, it is unclear whether the number or sequence of branches impact the
output of these modifications. With research into branched chains still in its infancy, the full spec-
trum of cellular outcomes encoded by these conjugates remains unknown and we expect that
many functions of branched ubiquitin chains are awaiting discovery.

Proteolytic functions
In the first example of signaling by branched ubiquitin chains, (K11, K48, K63)/K11-branched
conjugates were found to act as proteasomal priority signals that allow for rapid and efficient
protein clearance [25,36] (Figure 4A). These chains rise in abundance during mitosis or upon
proteotoxic stress, when many proteins must be quickly turned over [36]. Substrates of ubiquitin
chains with K11/K48 branches are often caught in very stable interactions, such as histones that
are tightly bound to each other yet need to be rapidly removed from transcription start sites in
early mitosis [64]. In addition to acting on cytosolic and chromatin-bound proteins, the same
ubiquitin chain types help eliminate proteins of the endoplasmic reticulum [97,98], which upon
translocation into the cytosol become prone to aggregation [99]. The ability of branched chains
to induce efficient degradation during mitosis and proteotoxic stress has been conserved from
yeast to humans [67,100].

Other branched polymers also drive efficient proteasomal degradation. Having noted that most
K29 linkages are part of conjugates that contain K48 connections [39], polymers with K29/K48
branches were found to trigger the elimination of long-studied model substrates of the ubiquitin
proteasome system [76,97]. Similar chain topologies also allow for proteasomal recognition of
the VPS34 kinase [101], a crucial regulator of proteotoxic stress, and they elicit the efficient
removal of PROTAC-dependent substrates of CUL2VHL and CUL4CRBN [82]. The K29-specific
branching E3 ligase TRIP12 also helps degrade the FBW7 substrate adaptor of SCF E3 ligases
[88]. Akin to chains with K11/K48 or K29/K48 branches, K63/K48-branched conjugates assem-
bled by the E3 ligases ITCH and UBR5 trigger proteasomal degradation [78]. It is interesting to
note that all proteolytic branched conjugates contain blocks of K11 or K48 linkages, which within
Trends in Biochemical Sciences, September 2022, Vol. 47, No. 9 765
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Figure 4. Branched chains encode diverse functions. (A) Branched ubiquitin chains act as proteasomal priority signals that elicit preferential recognition by the
ubiquitin-selective segregase p97/VCP and by multiple receptor subunits of the proteasomal cap. (B) Branched chains can act as signaling scaffolds through independent
recognition of the different linkages by distinct effector proteins. (C) Branched chains can protect a ubiquitin signal from deubiquitylase (DUB)-mediated disassembly, while
still allowing for recognition by downstream effector proteins. (D) Branched chains can prevent effector engagement, requiring prior debranching for efficient signaling.

Trends in Biochemical Sciences
homotypic chains also instigate proteasomal degradation [30,31]. Branched chains are therefore
not only a very strong, but also a broadly used, proteasomal delivery signal.

The improved ability of branched chains to elicit degradation might in part be due to their enhanced
detection by proteasomal receptors, as seen with K11/K48-branched ubiquitin trimers that are rec-
ognized by RPN1 with tenfold higher affinity than their linear counterparts [102] (Figure 4A). As the
proteasome contains three ubiquitin receptors with slightly distinct linkage preferences [103–105],
simultaneous recognition of multiple linkages in a branched chain, as well as the high local ubiquitin
concentration at the substrate, could also increase the affinity of a modified protein for the protea-
some. Becausemultivalent interactions often delay complex dissociation, the synergistic recognition
of branched chains might explain the need to trim such conjugates at the proteasome to preserve
the degradation capacity of this essential machine [92,93].

In addition to efficient proteasomal recognition, branched chains are preferred substrates of the
p97 segregase [36] (Figure 4A). This enzyme unfolds proteins starting with the ubiquitin tag and
thereby separates them from stable partners at chromatin, membranes, or aggregates [6,106].
While yeast CDC48 can unfold substrates decorated with very long homotypic chains, human
p97 strongly prefers branched conjugates [25,36,107,108]. Unfolding by p97 prepares proteins
for proteasomal degradation [109], which is likely relevant for substrates of small molecule-induced
degradation that lack evolved proteasomal initiation sites [82,110]. p97 further improves substrate
turnover by recruiting E3 ligases that add more ubiquitin molecules to ensure persistent protea-
somal recognition [111,112] and by handing over ubiquitylated proteins to shuttle factors of the
26S proteasome [113]. Thus, processing by p97 likely contributes in multiple ways to the improved
ability of branched chains to elicit proteasomal degradation.
766 Trends in Biochemical Sciences, September 2022, Vol. 47, No. 9
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Outstanding questions
Can we sequence complex ubiquitin
chains to decipher their precise
topology, including the number and
sequence of branches?

How many types of branched ubiquitin
chains are produced in cells and
how many of these encode unique
biological information?

Do cells toggle between ubiquitin
modifications to establish a much
more dynamic ubiquitin code than
previously appreciated?

Are there E3 ligases that are specialized
on producing branched ubiquitin chains
and how are these regulated?

Are there effector proteins that directly
bind to branched ubiquitin molecules to
provoke a particular cellular response?
As proteasomal degradation is a key defense mechanism against aggregation, an event that often
wreaks havoc in the brain, mutations in writers or readers of branched chains cause neurological
disease. UBR4 is mutated in episodic ataxia [114], while UBR5 is within a genomic island determin-
ing the age of onset of Huntington’s disease [115]. TRIP12 has been associated with Clark-Baraitser
syndrome and Parkinson’s disease [116] and mutations in HUWE1 cause Turner type mental retar-
dation and X-linked intellectual disability [117]. VCP, which encodes p97, is mutated in amyotrophic
lateral sclerosis, frontotemporal dementia, multisystem proteinopathy, and tauopathies [118]. These
observations highlight the role of branched chains in preserving organismal homeostasis and they
raise the exciting possibility that increasing branched chain production or recognition may yield
new therapeutic approaches against protein aggregation diseases.

Nonproteolytic functions
As K11- and K48-linked chains themselves trigger proteasomal degradation [30,31], it might not
be surprising that a combination of these linkages produces a strong proteolytic signal. However,
branching can also involve chain topologies that provoke nonproteolytic outcomes and, in these
cases, the distinct ubiquitin linkages can be detected by effector proteins independently of each
other to allow for combinatorial decoding [119]. As an example, ubiquitin chains with K63/M1
branches help activate the NF-κB transcription factor by bringing a kinase, which binds to K63-
linked chains, into proximity of its target that is recruited via the M1 linkages [40,81] (Figure 4B).

In addition to scaffolding, branching can impact the persistence of a ubiquitin signal, as it was
observed when ubiquitin chains with K63/K48 branches were first detected [79]. These chain
types are assembled on the E3 ligase TRAF6 in a reaction that requires the activity of TRAF6 itself
as well as the branching enzymeHUWE1. Rather than driving degradation, K48 branches protect
K63-linked chains on TRAF6 from recognition by the DUB CYLD, but they do not prevent
the same conjugates from recruiting downstream kinases that activate NF-κB [79] (Figure 4C).
M1-linked ubiquitin molecules that branch off K63-linked chains similarly protect these polymers
from disassembly by A20 [80]. By inhibiting a DUB without impacting a downstream effector,
branching effectively preserves the ubiquitin signal. In a variation on this mechanism, it can be
the removal of a branch that allows for recognition of ubiquitin conjugates by linkage-specific
effector proteins, as seen during DNA repair [120] (Figure 4D). Branching can therefore modulate,
rather than amplify, the information flow through ubiquitin-dependent pathways.

Such a function could be at play in yeastmethioninemetabolism, which requires theMET4 transcrip-
tion factor.Whenmethionine is abundant,modification ofMET4with a short K48-linked chain blocks
expression of genes involved in methionine biogenesis [121]. This nonproteolytic function of a K48-
linked chain relies on a ubiquitin-binding domain in MET4 that detects the conjugate on the same
molecule and generates a closed transcription factor conformation. Attaching K11-linked ubiquitin
to MET4 disrupts this autoinhibitory conformation and thus allows transcription to proceed [122].
Although more work is required to dissect the MET4 modifications, this study further suggests
that branching can rewire ubiquitin-dependent signaling and it raises the provocative idea that
some ubiquitin chains with K11/K48 branches might fulfill nonproteolytic functions.

Concluding remarks
Driven by novel technologies, such as bispecific antibodies, middle-down mass spectrometry, or
ubiquitin clipping [28,29,36,52,92], we have witnessed an explosion in our understanding of
branched ubiquitin chains. However, without being able to sequence ubiquitin chains in the
same way as we do with nucleotide polymers, we are still unable to decipher the number and
sequence of branches in such conjugates. The architecture of branched chains therefore remains
somewhat mysterious and what is currently described as a single chain type might turn out to be
Trends in Biochemical Sciences, September 2022, Vol. 47, No. 9 767
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a diverse collection of distinct conjugates. In fact, ubiquitin chains with a signature K11/K48
branch can either contain blocks of K11-linked polymers, as seen for substrates of the APC/C,
or possess multiple K48-linked polymers, as noted for misfolded proteins [36]. It remains
unknown whether such differences in the architecture of branched chains are read out by dedi-
cated effectors and provoke unique outcomes in cells.

Understanding the precise topology of branched chains will be critical, as the complexity of these
conjugates can be staggering: only taking the eight major ubiquitin linkages into account, 28
branches can be produced and many more branched ubiquitin molecules or chain types might
be formed if an enzyme can use three or four linkages to assemble a conjugate. The complexity
of branched chains further increases as we begin to consider oxyester-linked or phosphorylated
ubiquitin [123]. In addition, ubiquitin molecules modified on more than two sites have been
detected in cells [28] and in vitro [26], and whether triple branches serve signaling roles will be
an interesting question for future studies.

While enriching branched polymers of a specific architecture is still challenging, purifying E3 ligase
complexes could provide a route to discovering new functions of branched chains. Recent
proteomic approaches to systematically map protein interactions have uncovered many E3
ligases that work together and might assemble branched ubiquitin marks on their substrates
[124]. Some E3 ligase combinations are bound to produce new branched chain types and fulfill
still unknown roles in signaling. Even if such enzymes provoke the most canonical output for
branched chains and drive rapid proteasomal turnover, their discovery will be of high interest
for improving induced protein degradation as a therapeutic approach. Deciphering signaling by
branched chains is therefore not only bound to increase our understanding of how information
travels in cells, but it might also produce tangible outcomes for the many patients of neurodegen-
erative diseases that could benefit from efficient protein degradation to improve their condition
(see Outstanding questions).
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