Lawrence Berkeley National Laboratory

 Recent WorkTitle
CONCERNING THE MAGNETIC MOMENTS OF DEFORMED NUCLEI

Permalink

https://escholarship.org/uc/item/8df5k0dg

Authors

Rasmussen, John O.
Chiao, Lung-wen.
Publication Date
1960-08-29

UNIVERSITY OF CALIFORNIA

Ernest O. Caurence

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California
 Contract No. W-7405-eng-48

CONCERNING THE MAGNETIC MOMENTS OF DEFORMED NUCLEI
John O. Rasmussen and Lung-wen Chiao
Aug. 29 -Sept. 3, 1960

INTISRNAMIONAL CONFERRBCE ON HUCLEEAR STRUCTURES
 AUCOUST 29-SEPTLHETKR 3
 1960
 Secretery: Dr. L. G. Elliott
 Atomic Energy of Cenada Limited Chalk River, Ontario, Canada
 RESEARCH CONTRIBUTIOM

Propored gession Rio. \qquad
TAtle:
Author (s):
Concerning the Magnetic Noments of Deformed Nuclei
John 0. Rasmussen and Lung-wen Chiao
Institation:

Adaress:
E. 0. Lawrence Radiation Laborstory and Department of Chemistry

Hnivexatiy of Gaiifomia, Berkeley, C lifornia

Abstract:
A comparison of experimental and celculated magnetic moments of odd-A
spheroidal nuclet gives strong evidence that there is a reduction of the magnitude of the effective g_{g} factors by ~ 1.5 units below the magnitudes for free nucleons. The seriousness of Coriolis interaction effects on μ for one class of nuclei is also illustrated.

COMCERNIMG TGE MACNETIC MOMANIS OF DEFORMED NUCLEI*

John O. Resmussen and Lung-wen Chiso
Lawrence Radiation Laboratory
and
Department of Chemistry
University of California, Berkeley, California

Mottelson and Nilsson have given a compilation of calculated and experimental magnetic moments of the odd-mass deformed muclei. ${ }^{1}$ We bave examined the diaggreements therein with respect to two principal questions: First, is there evidence that g_{s} factors "quenched" or reduced in magaitude are more appropriate than the free mucleon values traditionaily assumed for such calculations? second, are there significant deviations to be asbociated with configuration admixture of weve function components with differing K (angular momentum projection) quantum numbers?

That class of nuclei having particularly large f values for the odd nucleon will be expecially susceptible to appreciable Coriolis mixing of different K-values. ${ }^{2,3}$ Somewhat arbitrarily we shall single out in this class states of odd parity in the $50-82$ sheil ($h_{11 / 2}$), even parity in the $82-126$ shell ($1_{13 / 2}$), and odd parity in the >126 shell $\left(J_{15 / 2}\right)$. We list in Table I those nuclei not felling into the above class, and heace expected to be less subject to magnetic moment corrections arising from Coriolis effects. Also excluded are $I=\frac{1}{2}$ nuclei, which need a special analysis. The nuclei are grouped in the Table according to the asymptotic quantum number Σ (projection of intrinsic apin) in order best to display the contributions of the intrinsic spin to the manetic monent calculations; 1.e. $\left.\langle\underline{s})^{\prime}\right\rangle$ is positive or negetive accordingly as Σ is positive or negative.

We note that the deviation are of the same sign within each group. In the final column we calculate the g_{g} value that would be required to give exact agreement with the experimental moment. For the calculations we used Nilsson's wave functions, ${ }^{1,4}$ at a deformation of $\delta=0.3$ and assumed somewhat arbitrarily a g_{R} of z / A for odd-Z and $a g_{R}$ of $z / 2 A$ for odd-N.
*This work was carried aut under the aucpices of the U.6. Atomic Energy Comission.

TABLE I

a. This is the g_{g} value required to give exact agreement with the experimental magnetic moment using Nilsson's wave functions at $8=0.3$ and assuming for odd-2 that $g_{R}=2 / A$ and for odd-N that $E_{R}=2 / 2 A$.
b. These μ values determined by parsmagnetic resonance are probably too small in mafnitude because $\left\langle r^{-3}\right\rangle$ values used were too large according to calculations by B. R. Judd and I.P.K. Lindgren (University of Califormia, Lawrence Radiation Iaboratory Report 9188, Nay 1960, unpublished).

The proton data of Table I etrongly suggest that the effective g_{s} factor for protons in nuclear metter is roughly ~ 4 instead of the free value 5.585 customarily used. Such a change would brigg the proton values of table I into remarkably good asreement.

The neutron data are fewer and scatter more. This scatter is perhaps a reflection of the relatively greater Coriolis admixture in the neutron cases, or it may reflect an inadequacy of the Milsson weve functions themselves. The sense of each deviation does, however, indicate that the magnitude of the effective g_{B} factor for the neutron in nuclear matter is less than the free value ($\boldsymbol{F}_{\mathrm{s}}$) $=3.8 \mathrm{B6}$) used in the calculations. The fact that the $\Sigma=+1 / 2$ peutron group deviates less than the $\Sigma=-1 / 2$ group suggeste that the effective g_{R} value for the odd neutron nuclei should be reduced below the Z / A value.

At first thought the reduction of the collective motion g_{R} factor for odd- \mathbb{N} and not for odd-Z nuclei seems unsymmetricel and unnstural. We would point out that E_{g} values determined for even-even nucled in the rare earth region show values averaging less than Z / A. Thus the effective f_{R} for odd-Z nuclei may be scmewhat larger than for neighboring even-even nuclei, and the g_{R} for odd-N nuclei, somewhat maller. A rationsile for such a En shift may be provided by considerations of the pairing correlations. that is, if we add an odd neutron to a deformed even-even nucleus we block one orbital from the neutron fairing correlation, reducing the effective energy gap for neutrone and altering the population of neutron orbitals by pairs in such a may to increase the share of rotational anguiar momentum carried by the neutron pairs, relative to proton pairs. Such a change would reduce g_{R}. The same argument for odd-Z nuclei would give an increased g, Bernotein and deBoer have made an analybis of magnetic properties of defomed nuclei and find evidence for e_{R} being lower than $2 / A$ for both odd-Z and odd-N but lowest in the odd N. ${ }^{2}$.

Magnetic moment calculations for odd-oad deformed nuciei such as Eu ${ }^{154}$, 160 Tb , and L^{176} have shown rather setisfactory agreement. ${ }^{6}$ It should be pointed out that these nuclei, and indeed most of the ground states of odd-oad nuclei, Obey the Gallagher-MOszkowaki coupling rule, ${ }^{7}$ that the intrinsic spins of proton and neutron are parallel. In thls state the proposed reductions of g_{s} for proton and neutron will nearly cancel. Those odd-odd nuclear states with proton and neutron spins anti-parallel, such as the long-lived isomer in H^{166}, should show magnetic moments shifted from calculations using free-space g_{g} values.

The analysis of monents of the odd-A nuclei with larger Coriolis admixtures needs to take into account important odd-dtagonal contributions to the magnetic moment. For example, the calculations ${ }^{8}$ of Marshall fitting the even parity levels of Pa^{233} give a weve Punction for the 87 kev level ($I=5 / 2+$) of $\psi=0.94 \mid K=5 / 2$) $+0.34 ;|K=3 / 2\rangle+.09|K=1 / 2\rangle$. The principal effect of this K edmixture on the magnetic moment comes from an off-diagonal contribution between $K=5 / 2$ and $3 / 2$ components. This contribution we estimate as about +1.1 nm . The colculated moment for the pure $K=5 / 2$ state at defomation $8=0.2$ usins Nilsson's wave functions and $\delta_{s}=4$ is +2.6 mm . Taking into account all components we predict a magnetic moment of 3.8 nm . for the $87-k e v$ gtate in P_{a}^{233}. This state has a half-life of 37 millimicro seconds, and its magnetic moment may be measurable by external field attenuation of $\alpha a r$ angular correlation with Mp^{237}. As another example the coriolis mixing is not expected to be as large in the $5 / 2+$ ground state of Np^{237}, perhaps a $3 / 2 \sim 0.1$, leading to a calculated magnetic moment of around +3.0 mm . It will be noted that our theoretical moment is the same as that of Mottelson and Nisson, ${ }^{10}$ the effects of lowered g_{S} and Coriolis mixing exactly cancelling each other. Experimental neasurements are $+6 \pm 2.5 \mathrm{~nm} .^{9}$ and $\mu=2.70 \mathrm{~nm} .10$

REFYRENCES

1. B. R. Mottelson and S. G. Nilsson, Mat. Fys. Skr. Dan. Vid. Selsk. 1, Mo. 8 (1959).
2. A. K. Kerman, Dan. Kat. Fys. Medd. 30, No. 15 (1956); Kollander, Smith, and Rasmussen, Phys. Rev. 102, 1372 (1956).
3. 0. Prior, Arkiv för Fysik, 14, No. 28 (1958).
1. S. G. Milsson, Dan. Mat. Fys. Medd. 29, No. 16 (1955).
2. B. M. Bernstein and J. deBoer, Kuclear Physics (to be published).
3. J. O. Resmussen (unpublished calculations). Regarding tb ${ }^{160}$ see C. E. Johnson, J. F. Schooley, and D. A. Shirley, UCRI-9267, Phys. Rev. (to be published).
4. C. J. Gallagher, Jr., and S. A. Moszkowski, Phys. Rev. 111, 1782 (1958).
5. T. V. Marshail, Ph.D. Thesis, University of California, 1960 (umpublished) UCRL-8740.
6. Bleaney, Llewellyn, Price, and Hall, Phil. Mag. 45, 992 (1954).
7. C. A. Hutchison, Jr., and B. Weinstock, J. Chem. Phys. 32, 56 (2960).
