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Abstract

Applications of the Intersection Theory of Singular Varieties

by

Daniel Lowengrub

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Vivek Shende, Chair

We develop tools for computing invariants of singular varieties and apply them to the
classical theory of nodal curves and the complexity analysis of non-convex optimization
problems.

The first result provides a method for computing the Segre class of a closed embedding
X → Y in terms of the Segre classes of X and Y in an ambient space Z. This method is
used to extend the classical Riemann-Kempf formula to the case of nodal curves.

Next we focus on techniques for computing the ED degree of a complex projective variety
associated to an optimization problem. As a first application we consider the problem of
scene reconstruction and find a degree 3 polynomial that computes the ED degree of the
multiview variety as a function of the number of cameras. Our second application concerns
the problem of weighted low rank approximation. We provide a characterization of the weight
matrices for which the weighted 1-rank approximation problem has maximal ED degree.
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Chapter 1

Introduction

Before continuing to the main body of this thesis, we’ll motivate each chapter and highlight
our main results.

In chapter 2 we investigate a property of Segre classes which we call cancellation. This
concept is introduced in section 1.2.2, together with a quick introduction to Segre classes
themselves.

The basic situation of interest is when we have a sequence af embeddings of schemes

X
i−→ Y

j−→ Z

where i is a closed embedding and j is a regular embedding and we are interested in com-
puting the Segre class s(X, Y ). If Z is a simple ambient space such as Pn, it is useful to have
a cancellation formula such as

s(X, Y ) = c(NYZ|X) ∩ s(X,Z)

. This formula holds when all three schemes are smooth but, as we will see in section 1.2.2,
there are simple examples in which it fails when Y is not smooth.

Our main contribution in section 2.1 is to identify a class of map j for which the cancel-
lation formula holds.

Definition. Let k be a field of characteristic 0 and let Y and Z be varieties over k. We
call a map Y

f−→ Z a tubular regular embedding if for any closed point y = Spec(k(y))→ Y ,
there exists a smooth map P → Y , a section Y

s−→ P , and an isomorphism ϕ

Ẑ

ϕ∼=
��

Ŷ

f̂ 99

ŝ

%%
P̂

where Ŷ , Ẑ and P̂ are the formal completions of Y , Z and P along the points y, f(y) and
s(y) respectively.
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Theorem. Let k be a field of characteristic zero, and let X, Y and Z be varieties over k.

Suppose that we have a closed embedding X → Y and a tubular regular embedding Y
f−→ Z.

Finally, suppose that Y and Z are equi-dimensional. Then,

s(X, Y ) = c(NYZ|X) ∩ s(X,Z)

After proving the cancellation theorem, in section 2.2 we use it to extend the classical
Riemann-Kempf formula to arbitrary nodal curves.

Theorem. Let k be a algebraically closed field of characteristic 0 and let X be a projective
integral curve of arithmetic genus p over k with at worst planar singularities. Let x be a
k-point of Pp−1−d corresponding to a rank-1 torsion free sheaf I and set r = h1(X, I)−1 (so
that (Adω)−1(x) ∼= Prk). Let Wd be the scheme theoretic image of Adω.

Then

multxWd = multxPp−1−d · (1 + h)p−d+r ∩ [(Adω)−1(p)]

= multxPp−1−d ·
(
p− d+ r

r

)
where h is the first Chern class of the canonical bundle on Prk. In particular, for d = p − 1
we obtain a generalization of the Riemann singularity theorem.

In chapter 3 we develop techniques for computing the Euclidean Distance Degree as
defined in [8]. As explained in section 3.1, the complexity of many non-convex optimization
problems can be measured in terms of the ED degree of an associated complex projective
variety.

The chapter starts with an introduction to the ED degree and the various types of
characteristic classes used throughout the chapter.

Our first contribution in this chapter is a formula relating the hard to compute ED degree
to the classical polar classes :

Proposition. Let X ⊂ P(V ) be a projective variety, let X
π−→ X be a Nash blowup, let EX be

the modified Euclidean normal bundle of X, let L := OEX (1) denote the tautological bundle
associated to P(EX), and let B denote the base locus of

edQ : P(EX) 99K P(V )

Then,
deg(c(L)n ∩ s(B,P(EX)) ≥ 0

and ∑
i

δi(X)− ED(X) = deg(c(L)n ∩ s(B,P(EX))
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Next we focus our attention on two specific optimization problems.
In section we compute the complexity of a problem in computer vision called 3D tri-

angulation or scene reconstruction. As explained in section 3.3.1, the basic idea is that we
want have multiple camera images of a 3D object and we would like to use them to compute
the 3D position of the object. The associated complex variety in this case is the multiview
variety, and we obtain a closed form solution for the ED degree of this variety as a function
of the number of cameras which addresses the projective version of a conjecture posed in [8].

Theorem. The ED degree of the multiview variety with N cameras is

p(N) = 6N3 − 15N2 + 11N − 4

where N ≥ 3 is the number of cameras.

Finally, in section 3.4 we study the problem of weighted low rank approximation. This is
a version of the classical low rank matrix approximation problem and is motivated in section
3.4.1.

The general setup is that we are given an n×m matrix M , and an n×m weight matrix
W . The goal is to find a low rank n×m matrix X which approximates the matrix M using
a Frobenious norm that is weighted by W . When all of the entries of W are equal to 1, this
reduces to the standard low rank approximation problem which can be solved in polynomial
time. On the other hand, for generic W the problem is NP hard.

Our main contribution in this section is to find an explicit condition on the weight matrix
W which guarentees that the corresponding rank 1 approximation problem has the highest
possible ED degree.

Theorem. Let M1 denote the variety of n × n matrices with rank 1. Let W be an n × n
matrix which defines a non-degenerate quadratic form on Cn ⊗ Cn.

Then,

EDW (M1) ≤
∑

δi(X)

and equality holds if and only if all of the minors of W have maximal rank.

1.1 Conventions and Notation

In this paper, we will generally follow the conventions in [12]. In particular, all of our schemes
will be of finite type over a field, and we define a variety to be an integral scheme.

The one exception is with the definition of the projective scheme P(F) associated to a
sheaf F on a scheme X. In order to be consistent with [2], we define

P(F) = Proj
X

(Sym(F))

For example, an epimorphism of coherent sheaves u : E → F on a variety J induces a
closed immersion

P(F)
q−→ P(E)

such that q∗OP(E)(1) ∼= OP(F)(1).
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1.2 Segre Classes

Let X be a proper subvariety of a variety Y . The Segre class s(X, Y ) ∈ A•(Y ) is an invariant
of the embedding of X in Y which has great theoretical and enumerative importance.

From a theoretical viewpoint, the Segre class provides a way of extending fundamental
notions such as the multiplicity of a closed point x ∈ X and the Chern class of the normal
bundle of a smooth embedding X → Y to arbitrary closed embeddings. Furthoremore, as
we will discuss in section 1.2.2, it extends these notions in a way that is functorial under
both proper birational maps and flat maps.

For these reasons, the Segre class is a cornerstone of Fulton’s intersection theory as
evidenced for example in [12, Proposition 6.1].

In addition to it’s theoretical importance, the Segre class shows up in a wide range of
enumerative calculations and formulas. We will see one example of this in section 1.2.2 and
chapter 2 where the functoriality of the Segre class allows us to transform a multiplicity
calculation into an easier Chern class computation.

Another source of examples comes from the key role that the Segre class of the base locus
plays when performing blowups. See for instance the “Blow up Formula” [12, Theorem 6.7].

Finally, Segre classes tend to show up in formulas related to degrees of varieties which
are defined in terms of spans of points. One nice example of this is [11, Proposition 4.2] in
which the degree of the secant variety of a Veronese embedding of the plane is given in terms
of the degree of the Segre class of a certain vector bundle on the Hilbert scheme of points.
We will see another example of this in Proposition 3.2.6.1.

In this expository section we will provide an introduction to Segre classes following [12,
Chapter 4], and work out examples that will provide intuition for some of the material in
later chapters.

1.2.1 Definitions

We start by defining the Segre class of a cone, and then proceed to the Segre class of a
subscheme.

Let X be a scheme. A cone over X is a scheme of the form

C = Spec(S•)→ X

where S• is a graded OX algebra satisfying:

• The map OX → S0 is surjective.

• The module S1 is coherent.

• S• is generated by S1.

The projective completion of a cone C is defined to be:

P (C ⊕ 1) = Proj(S•[z])
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with projection P (C ⊕ 1)
q−→ X and canonical bundle O(1).

The Segre class of a cone C, denoted s(C), is the class in A• defined by:

s(C) = q∗

(∑
i>=0

c1(O(1))i ∩ [P (C ⊕ 1)]

)

The relationship with Chern classes comes from the following proposition, which you can
apply to your favorite definition of the Chern class of a vector bundle.

Proposition 1.2.1.1. [12, Proposition 4.1] If E → X is a vector bundle on a scheme X
then

s(E) = c(E)−1 ∩ [X]

Note that if C is a pure dimensional cone none of the irreducible components of C have
an empty projectivization, it is not necessary to pass to the projective completion of C.
Rather, in this case by [12, Example 4.1.2] we have

s(C) = q∗

(∑
i>=0

c1(O(1))i ∩ [P (C)]

)

which follows from the fact that c1(O(1)) ∩ [P (C ⊕ 1)] = [P (C)].
We now turn to the definition of the Segre class of a closed subscheme. Let X ⊂ Y be a

closed subscheme with ideal sheaf I. The normal cone to X in Y is defined by

CXY = Spec
X

(
∞∑
n=0

In/In+1)

)

The Segre class of X in Y , denoted by s(X, Y ), is defined to be the Segre class of the
cone CXY :

s(X, Y ) = s(CXY ) ∈ A•(X)

By proposition 1.2.1.1, if X → Y is a regular embedding with normal bundle NXY then
s(X, Y ) = c(NXY )−1 ∩ [X].

1.2.2 Basic Properties

In this section we record some basic properties of Segre classes which will be important later
on.

The most important of these is the following functoriality statement.

Proposition 1.2.2.1. [12, Proposition 4.2] Let Y ′ → Y be a morphism of pure dimensional
schemes, X ⊂ Y a closed subscheme, X ′ = f−1(X) the inverse image scheme and g : X ′ →
X the induced morphism.
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1. If f is proper, Y irreducible and f maps each irreducible component of Y ′ onto Y , then

g∗(s(X
′, Y ′)) = deg(Y ′/Y )s(X, Y )

2. If f is flat, then
g∗(s(X, Y )) = s(X ′, Y ′)

The following relationship between Segre classes and blowups is useful in practice.

Proposition 1.2.2.2. [19, Corollary 4.2.2]et X be a proper closed subscheme of a variety
Y . Let Ỹ be the blow-up of Y along X, X̃ = P (C) the exceptional divisor and η : X̃ → X
the projection. Then,

s(X, Y ) =
∑
k≥1

(−1)k−1η∗(X̃
k)

=
∑
i≥0

(c1(O(1))i ∩ [P (C)])

Another important property of the Segre class is that it can be used to compute the mul-
tiplicity of a singular point. More generally, Fulton [12, Section 4.3] defines the multiplicity
of an irreducible subvariety X ⊂ Y , denoted eXY , to be the coefficient of [X] in s(X, Y ).

If X = P is a point and C = CPY is the tangent cone, then from the definition of the
Segre class we see that

ePY = degs(X, Y ) = deg[P (C)]

which shows that ePY agrees with the classical definition of multiplicity in terms of the
degree of the tangent cone.

Finally, we discuss a phenomenon that we call cancellation and will investigate more
carefully in chapter 2.

Let X be a closed subscheme of Y , let E be a vector bundle on Y and let let Y
s−→ E be

the zero section. Then it is not hard to show ([12, Example 4.2.7]) that

s(X, Y ) = c(E|X) ∩ s(X,E)

We call such a phenomenon cancellation as it allows us to compute the Segre class of X
in Y by starting with the Segre class of X in E, and then cancelling out the part of s(X,E)
coming from the embedding of Y in E.

More generally, we say that cancellation holds for a sequence of embeddings

X
i
↪−→ Y

j
↪−→ Z

where i is a closed embedding and j is a regular embedding if

s(X, Y ) = c(NYZ|Z) ∩ s(X,Z)
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However, this kind of cancellation does not always hold, and in fact fails in the following

simple example ([12, Example 4.2.8]). Consider the case where Z = P2, Y
j−→ is a nodal

curve and X
i−→ Y is the node. Then, s(X, Y ) = 2[X] since X is a point of multiplicity 2.

Similarly, s(X,Z) = [X] since X is a smooth point of Z. In addition, since X is a point,
c(NYZ|X) is trivial.

Therefore,
s(X, Y ) = 2[X] 6= [X] = c(NYZ|X) ∩ s(X,Z)

In chapter 2 we will show that there exists a larger class of embeddings Y
j−→ Z for which

cancellation holds.

1.2.3 Riemann-Kempf for Smooth Curves

In this section we work through example [12, Example 4.3.2] which in addition to providing
motivation for chapter 2, is a beautiful demonstration of the power of Fulton’s intersection
theory.

We start by recalling the setup and statement of the Riemann-Kempf formula.
Let X be a projective non-singular curve of genus g over an algebraically closed field k.

Let X(n) denote the n-th symmetric power of the curve and let JX denote the Jacobian of
X. Recall the the Jacobian is defined to be the moduli space of degree zero line bundles on
X. We choose a point p ∈ X.

After choosing a point p ∈ X, for every integer d, we have an Abel-Jacobi map

Ad : X(d) → JX

which takes a degree d divisor D to the line bundle O(D − d · p).
Let Wd denote the scheme theoretic image of Ad. In particular, Wg−1 is the theta divisor.

Theorem 1.2.3.1 (Riemann-Kempf formula, smooth case). Let D be a degree d divisor.
Then the multiplicity of Wd at Ad(D) is(

g − d+ r

r

)
where r + 1 is the dimension of the linear system |D| ∼= Prk.

In particular, when d = g − 1, the multiplicity is r. This is known as the Riemann
singularity theorem.

In [12, p. 4.3.2], Fulton gives a concise proof of this theorem using elementary facts about
Segre classes, together with the following properties of the Abel-Jacobi map which are well
known (and implied by theorem 2.2.1.6 and lemma ??):

1. The scheme theoretic fibers of Ad are the linear systems |D| ∼= Prk.
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2. If d ≥ 2g − 1 then Ad makes X(d) a projective bundle over JX of relative dimension
d− g.

3. If 1 ≤ d ≤ g then Ad maps X(d) birationally onto it’s image.

Let D be a degree d divisor and r an integer such that |D| ∼= Pr. Fulton obtains the
theorem as a corollary of the following more general fact:

s(|D|, X(d)) = (1 + h)g−d+r ∩ [|D|] (1.2.3.1)

where h is the first Chern class of the canonical line bundle on |D| = Pr. This implies the
theorem since the degree of the pushforward of this Segre class is the multiplicity of Ad(|D|)
in Wd, and the degree of (1 + h)g−d+r ∩ [Pr] is precisely:(

g − d+ r

r

)
The proof of equation 1.2.3.1 is done by reduction to the case where d >> 0.
Let d be an arbitrary integer. In order to reduce to the case where d is large, we choose

some integer s such that d+ s ≥ 2g−1. Furthermore, by choosing a point p in X, we obtain
an embedding

X(d) ↪→ X(d+s)

by sending a degree d divisor D to D + sp. The reduction from the degree d+ s case to the
degree d case is motivated by the following commutative diagram with a left (but not right)
fibered square:

|D| //

��

X(d)

Ad

��

// X(d+s)

Ad+s

��
Ad(|D|) //Wd

// JX

Proof when d is large:

When d ≥ 2g−1, then Ad is a smooth map and in particular it is flat. Therefore, since
JX is smooth,

s(|D|, C(d)) = (Ad)∗s(Ad(D), JX)

= (Ad)∗(multAd · JX [Ad(D)])

= multAd · JX [|D|] = [|D|]
(1.2.3.2)
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Calculation of s(|D|, X(d+s)) using s(|D + sp|, X(d+s)) when d+ s is large:

By equation 1.2.3.2, we know that

s(|D + sp|, X(d+s)) = [|D + sp|] = [Pd+s−g]

Since |D| = Pr, we have the following composition of closed embeddings

|D| = Pr → Pd+s−g → X(d+s)

and since everything is smooth, from the conormal sequence we can deduce that

[|D|] = s(|D + sp|, X(d+s))||D|
= c(N|D||D + sp|) ∩ s(|D|, X(d+s))

= (1 + h)d+s−g−r ∩ s(|D|, X(d+s))

(1.2.3.3)

where h is the first Chern class of the canonical bundle on |D| ∼= Pr

Calculation of s(|D|, X(d)) using s(|D|, X(d+s)) when d+ s is large:

Finally, we consider the sequence of embeddings

|D| → X(d) → X(d+s)

It is easy to check that c(NX(d)X(d+s)||D|) = (1 + h)s. Therefore, by a version of
cancellation of Segre classes which can be explicitly shown to hold in this case (or even
more easily, by proposition 2.1.1.1),

s(|D|, X(d)) = c(NX(d)X(d+s)||D|) ∩ s(|D|, X(d+s))

=
(1 + h)s

(1 + h)d+s−g−r ∩ [|D|]

= (1 + h)g−d+r ∩ [|D|]
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Chapter 2

Cancellation of Segre Classes and the
Riemann-Kempf Formula

In [12, Chapter 4], Fulton defines the notion of the Segre class s(X, Y ) ∈ A∗X of a closed
embedding of schemes X → Y over a field k. The Segre class allows us to measure the way
in which X sits inside Y , and is functorial for sufficiently nice maps ([12, Proposition 4.2]).
One important case is the embedding of a closed point, for which the Segre class gives us its
multiplicity.

Suppose we have an embedding X → Y and the schemes in question embed into a simpler
space Z. For example, X and Y could be projective schemes and Z = Pnk . In this setup, it
is natural to ask whether we can calculate s(X, Y ), assuming that we understand s(X,Z)
and s(Y, Z). In other words, can we deduce intersection theoretic invariants of the possibly
complicated embedding X → Y , from the hopefully simpler embeddings into Z?

Fulton [12, Example 4.2.7] provides the answer to this question in the case where the
map Y → Z is the zero section of a vector bundle. More precisely, he shows that if X is a
closed subscheme of Y , E is a vector bundle on Y and Y is embedded into E as the zero
section then,

s(X, Y ) = c(E|X) ∩ s(X,E)

Inspired by this example, one might conjecture that a similar formula holds in the more
general setting described above in which the map Y → Z is not necessarily the zero section
of a vector bundle E over Y . Unfortunately, this is false in extremely simple cases, even
when Y → Z is a regular embedding. See [12, Example 4.2.8] for an example.

Despite this failure in the general case, it is intuitive that the statement should hold when
the embedding of Y into Z “looks like” a zero section of a vector bundle. For instance, it
seems plausible that we could replace the condition of Y → Z being a zero section, with the
condition that Y → Z has some sort of tubular neighborhood.

As a preliminary result along these lines, we show in proposition 2.1.1.1 that an analogous
formula holds when both Y and Z are smooth.
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The primary result of this paper is an extension of [12, Example 4.2.7] to the situation in
which the hypothesis of that example is satisfied only formally locally at each k point. We
formalize this situation in the following definition which is inspired by [9, Definition 3.3].

Definition 2.0.3.1. Let k be a field of characteristic 0 and let Y and Z be varieties over k.
We call a map Y

f−→ Z a tubular regular embedding if for any closed point y = Spec(k(y))→
Y , there exists a smooth map P → Y , a section Y

s−→ P , and an isomorphism ϕ

Ẑ

ϕ∼=
��

Ŷ

f̂ 99

ŝ

%%
P̂

where Ŷ , Ẑ and P̂ are the formal completions of Y , Z and P along the points y, f(y) and
s(y) respectively.

This property of f seems to capture the notion of a tubular neighborhood, as we can
formally locally view it as a section of a vector bundle. We can now state our generalization
of example [12, Example 4.2.7].

Theorem 2.0.3.2. Let k be a field of characteristic zero, and let X, Y and Z be varieties
over k. Suppose that we have a closed embedding X → Y and a tubular regular embedding

Y
f−→ Z. Finally, suppose that Y and Z are equi-dimensional. Then,

s(X, Y ) = c(NYZ|X) ∩ s(X,Z)

We call it a “cancellation theorem” since intuitively, it tells us that in order to calcu-
late s(X, Y ), we can first calculate s(X,Z), and then “cancel out” the contribution of the
embedding Y → Z.

The theorem can be useful in practice, since there exist algorithms which have been
implemented in Macaulay2 that can compute the Segre class of an embedding X → Pnk
[10]. Our theorem allows us to use this algorithm in order to compute s(X, Y ) when both
X and Y are subschemes of Pn and the embedding Y → Pn satisfies our condition. In
particular, proposition 2.1.1.1 allows us to compute s(X, Y ) when Y is a smooth intersection
of hypersurfaces in Pnk since we then know c(NY Pnk) as well.

Theorem 2.0.3.2 is particularly useful when the spaces Y and Z represent functors and
the embedding Y → Z corresponds to a natural transformation of these functors. In this
case, the formal neighborhoods pro-represent local deformation functors which are typically
easy to describe.

Indeed, as the main application of this paper, we will use theorem 2.0.3.2 in order to
extend the Riemann Kempf formula to the case of general integral curves. See [12, Example
4.3.2] for the classical statement of this formula.

As we will discuss in section 2.2.1, Pp−1−d denotes the compactified Picard scheme and
Aω denotes the Abel-Jacobi map.
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Corollary 2.2.2.1. ( Riemann Kempf for planar curves) Let k be a algebraically closed field
of characteristic 0 and let X be a projective integral curve of arithmetic genus p over k with
at worst planar singularities. Let x be a k-point of Pp−1−d corresponding to a rank-1 torsion
free sheaf I and set r = h1(X, I) − 1 (so that (Adω)−1(x) ∼= Prk). Let Wd be the scheme
theoretic image of Adω.

Then

multxWd = multxPp−1−d · (1 + h)p−d+r ∩ [(Adω)−1(p)]

= multxPp−1−d ·
(
p− d+ r

r

)
where h is the first Chern class of the canonical bundle on Prk. In particular, for d = p − 1
we obtain a generalization of the Riemann singularity theorem.

In particular, this provides an affirmative answer to conjecture [7, Equality 0.1].
In section 2.2.2, we use theorem 2.0.3.2 to study the change in various Segre classes as

we vary the degree d. This allows us to deduce facts about the Abel Jacobi map in small
degrees from the simpler Abel Jacobi maps in higher degrees and ultimately prove theorem
2.2.2.1.

2.1 Proof of the Cancellation Theorem

In this section we prove theorem 2.0.3.2. We start by proving it in the special case where
Y is smooth. We then use Artin approximation and Hironaka’s functorial resolution of
singularities to deduce the general case.

2.1.1 The Smooth case

We will now prove the following special case of the cancellation theorem.

Proposition 2.1.1.1. Let X be a finite type k-scheme let Y and Z be smooth k-schemes.
Suppose that we have a closed embedding X → Y and a regular embedding Y → Z. Then,

s(X, Y ) = c(NYZ|X) ∩ s(X,Z)

It seems to be easier to prove the following slightly stronger statement.

Proposition 2.1.1.2. Let X → Y be a closed embedding of k schemes. Let Z1 and Z2 be
smooth k schemes, and suppose we have regular embeddings Y → Z1 and Y → Z2. Then

c(NYZ1|X) ∩ s(X,Z1) = c(NYZ2|X) ∩ s(X,Z2)
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Remark 2.1.1.1. The class in question is reminiscent of Fulton’s canonical class [12, Example
4.2.6], and indeed, the proof of the equality is similar. For the purposes of this paper we will
only use the proposition when Y is also smooth, in which case the asserted equality follows
almost immediately from the independence of Fulton’s class. Indeed, in [12, Example 4.2.6]
Fulton proves the equality

c(TZ1|X) ∩ s(X,Z1) = c(TZ2|X) ∩ s(X,Z2)

multiplying both sides by c(Y )−1 gives the equality stated in the proposition.

Proof. Let X
f−→ Y be a closed embedding of k-schemes, Z1 and Z2 smooth k-schemes and

Y
gi−→ Zi regular embeddings. We want to show that

c(NYZ1) ∩ s(X,Z1) = c(NYZ2) ∩ s(X,Z2)

As in [12, Example 4.2.6], since Z1 and Z2 are dominated by the smooth scheme Z1×Z2,
by replacing Z1 with this product and replacing g1 with the induced map, we can assume
without loss of generality that there exists a smooth map Z1

ρ−→ Z2 such that the following
diagram commutes:

Z1

ρ

��
X

f // Y

g1 77

g2 ''
Z2

Now, by [12, Example 4.2.6], we have the following short exact sequences of cones (in the
sense of [12, Example 4.1.6]).

• 0→ g∗1Tρ → CYZ1 → CYZ2 → 0

• 0→ (g1 ◦ f)∗Tρ → CXZ1 → CXZ2 → 0

Note that in this case, CYZi = NYZi. By pulling back the first sequence of bundles, we
obtain:

0→ (g1 ◦ f)∗Tρ → f ∗NYZ1 → f ∗NYZ2 → 0

Therefore, by [12, Example 4.1.6] and the definition of the Segre class we have:

• s(f ∗NYZ2) = c((g1 ◦ f)∗Tρ) ∩ s(f ∗NYZ1)

• s(X,Z2) = c((g1 ◦ f)∗Tρ) ∩ s(X,Z1)

Since by definition the Chern class is the inverse of the Segre class, the first equality implies
that

c((g1 ◦ f)∗Tρ) = c(f ∗NYZ1) ∩ s(f ∗NYZ2)

By using this equality to replace c((g1 ◦ f)∗Tρ) the second equation listed above, we get
the result.
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We can now easily deduce proposition 2.1.1.1. Recall that by example [12, Example
4.2.7] the proposition holds when Y → Z is the zero section of a vector bundle. The result
now follows by applying proposition 2.1.1.2 to the case where Y → Z1 is the map Y → Z
in proposition 2.1.1.1, and Y → Z2 is the zero section of the bundle NYZ. Note that the
assumption in proposition 2.1.1.1 that Y is smooth is necessary in order for the total space
of the bundle NYZ to be a smooth scheme.

2.1.2 Reduction to the Smooth Case

We will now prove theorem 2.0.3.2 by a reduction to the smooth case which was covered in
the previous section. As usual in intersection theory, it would be enough to dominate the
map f in theorem 2.0.3.2 by a map of smooth schemes. In other words, we want to find
smooth schemes M and N which fit into the following fiber diagram

M //

��

N

��
Y

f // Z

such that the vertical maps are proper birational maps. We formalize this in the following
lemma.

Lemma 2.1.2.1. Let X → Y be a closed embedding and Y
f−→ Z a regular embedding where

X, Y and Z are k-schemes and Y and Z are equi-dimensional. Let Ỹ
f̃−→ Z̃ be a regular

embedding of smooth k-schemes together with a fiber diagram

Ỹ
f̃ //

h
��

Z̃

g

��
Y

f // Z

such that h and g are proper and birational. Then

s(X, Y ) = c(NYZ|X) ∩ s(X,Z)

Proof. Consider the extended fiber diagram

X̃ //

π
��

Ỹ
f̃ //

h
��

Z̃

g

��
X // Y

f // Z

By [12, Proposition 4.2], we know that π∗s(X̃, Ỹ ) = s(X, Y ) and that π∗s(X̃, Z̃) = s(X,Z).
Furthermore, by proposition 2.1.1.1, we know that

s(X̃, Ỹ ) = c(NỸ Z̃|X̃) ∩ s(X̃, Z̃)
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So by proper base change, it suffices to show that in the current scenario, h∗NYZ ∼= NỸ Z̃.
For this, note that for any cartesian diagram as in the statement of the lemma where the

horizontal maps are closed embeddings, the natural map of conormal sheaves h∗(N∨Y Z) →
N∨
Ỹ
Z̃ is a surjection. In our case, both of the conormal sheaves are locally free and of equal

rank, so the surjection is an isomorphism.

We now use a combination of Artin approximation and Hironaka’s functorial resolution
of singularities to produce a map Ỹ → Z̃ which satisfies the requirements of the lemma.

For convenience, we state the relevant proposition from [5].

Theorem 2.1.2.1. ([5, Corollary 2.6]) Let S be a scheme of finite type over an excellent
Dedekind domain, let X1 and X2 be finite type S-schemes and let xi ∈ Xi be points. If the
complete local rings ÔXi,xi are OS-isomorphic, then X1 and X2 are locally isomorphic for
the etale topology. By this we mean that there exists a diagram of etale maps

X ′

!!}}
X1 X2

and a point x′ ∈ X ′ that maps to x1 and x2 respectively and induces an isomorphism of
fraction fields.

We will need a slight generalization of this theorem. The letters denoting the schemes
have been modified in order to clarify the application to our current question.

Lemma 2.1.2.2. Let Y → Z1 and Y → Z2 be maps of finite type S-schemes and let y ∈ Y be
a point that maps to zi ∈ Zi. Suppose there exists an isomorphism ϕ of formal neighborhoods:

Ẑ1

ϕ∼=
��

Ŷ

88

&&
Ẑ2

where Ŷ and Ẑi are the formal completions of Y and Zi and along the points y and zi
respectively. Then the maps Y → Z1 and Y → Z2 have a common etale neighborhood.

By this we mean that we have k-schemes U and V together with the following two dia-
grams:

V
β1 //

φ ��

V1
α1 //

γ1
��

U

δ1
��

V
β2 // V2

α2 //

γ2
��

U

δ2
��

Y // Z1 Y // Z2

such that βi, γi, δi and φ = γ1β1 are etale, α1β1 = α2β2, and V is an etale neighborhood of
y.
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Proof. By Artin approximation (theorem 2.1.2.1), there exists a scheme U and maps δi
satisfying the conditions in the theorem. We denote by u the point in U mapping to z1 and
z2. We also define the schemes Vi = Y ×Zi U together with the points vi = (y, u) ∈ Vi.

Note that the two natural maps from V1 to Z2, namely, V1 → Y → Z1 and V1 → U → Z2

induce isomorphic maps between the formal neighborhoods of v1 and z2. Therefore, after
replacing V1 by an etale cover we can assume without loss of generality that there is a map
V1 → V2 over U that induces an isomorphism between the formal neighborhoods of v1 and
v2.

The lemma then follows from a second application of Artin approximation which is used

to realize this equivalence of formal neighborhoods by the etale maps V
βi−→ Vi.

We will now combine this lemma with Hironaka’s functorial resolution of singularities in
order to achieve the conditions in lemma 2.1.2.1. This will conclude the proof of theorem
2.0.3.2.

Before starting we’ll recall the precise statement of functorial resolutions from [18]. Note
that we are only stating the subset of the theorem that we’ll be using.

Theorem 2.1.2.2. ([18, Theorem 3.36]) Let k be a field with characteristic zero. Then there
exists an assignment BR from finite type k-schemes to schemes such that:

• BR(X)→ X may be constructed from X by a finite sequence of blowups.

• BR(X) is smooth.

• BR commutes with pullbacks along smooth morphisms.

Note that the map BR(X) → X is part of the data of BR(X) as it is simply the
composition of blowups. See [18] for details on the construction.

We now apply this theorem to our situation.

Proposition 2.1.2.1. Let k be a field of characteristic zero, and let X, Y and Z be varieties

over k. Let X → Y be a closed embedding and Y
f−→ Z a tubular regular embedding (cf.

2.0.3.1). Then there is a regular embedding Ỹ
f̃−→ Z̃ of smooth schemes over k together with

a fiber diagram

Ỹ
f̃ //

h
��

Z̃

g

��
Y

f // Z

such that h and g are proper and birational.
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Proof. By lemma 2.1.2.2, for each point y ∈ Y we have k-schemes U and V together with
the following two diagrams:

V
β1 //

ϕ
  

V1
α1 //

γ1
��

U

δ1
��

V
β2 // V2

α2 //

γ2
��

U

δ2
��

Y
f // Z Y s // P

π
ii

such that all vertical and diagonal arrows are etale, α1β1 = α2β2, and V is an etale neigh-
borhood of y.

Now, since π is smooth, by functorial resolution of singularities (theorem 2.1.2.2) we get
that

s∗BR(P ) = s∗π∗BR(Y ) = BR(Y )

By combining this with another application of the resolution of singularities theorem for
the vertical etale maps, we obtain the following chain of equalities:

(fϕ)∗BR(Z) = (δ1α1β1)∗BR(Z)

= (α1β1)∗BR(U)

= (α2β2)∗BR(U)

= (δ2α2β2)∗BR(P )

= (sγ2β2)∗BR(P )

= BR(V )

Therefore, the schemes Z̃ = BR(Z) and Ỹ = Y ×Z Z̃ satisfy the requirements of the
proposition. To see this, note that by theorem 2.1.2.2, Z is smooth and BR → Z is a
proper birational map. Furthermore, by the above chain of inequalities, we see that Ỹ is
etale locally smooth, and that the map Ỹ → Y is birational etale locally on the base. It is
also proper since proper maps are preserved by base change.

Theorem 2.0.3.2 now follows immediately from this proposition combined with lemma
2.1.2.1.

2.2 The Riemann Kempf Formula

2.2.1 Preliminaries

We’ll start by recalling the definition of the compactified Picard scheme in [2], together with
some auxiliary notation. Readers familiar with [2] are encouraged to skip to this section.
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The discussion in [2] takes place in the general setting of a proper morphism X
f−→ S,

whereas we are primarily concerned with integral curves over a field. Nevertheless, we’ll
start by describing the general case since it isn’t any more difficult than the curve case, and
it will allow us to provide cleaner arguments later on.

Let X
f−→ S be a finitely presented morphism of schemes and let F be a locally finitely

presented OX-module. Altman and Kleiman define a collection of functors associated to
such data, which are related to one another by the Abel-Jacobi map.

The first one is the familiar

Quot(F/X/S) : SchS → Set

which maps an S-scheme T to the set of locally finitely presented T -flat quotients of FT
whose support is proper and finitely presented over T .

In addition, if φ is a polynomial in Q[x], we define

Quotφ(F/X/S) ⊂ Quot(F/X/S)

to be the set of such quotients with Hilbert polynomial φ on each fiber.

Definition 2.2.1.1. [2, Definition 2.5] Let X
f−→ S be a finitely presented morphism of

schemes, F a locally finitely presented OX-module, and G an S-flat quotient of F . Define
the pseudo-ideal I(G) as the kernel of F → G → 0.

Remark 2.2.1.1. We require G to be flat so that the formation of the pseudo-ideal commutes
with base change.

Given a line bundle L on a curve, we have the notion of a linear system which is defined to
be the collection of effective divisors D such that O(D) is isomorphic to L. In [2, Definition
4.1], Altman and Kleiman generalize this as follows. Let X → S and F be as before, and
let I be a finitely presented OX-module. We define the functor

LinSyst(I,F) ⊂ Quot(F/X/S)

to be the functor which maps an S-scheme T to the set of quotients G ∈ Quot(F/X/S)

such that there exists a line bundle N on T and an isomorphism

I(G) ∼= I ⊗N

One of the key observations in [2] is that the linear systems functor is representable by a
very natural projective scheme on S. This is precisely analogous to the fact that the linear
system of a line bundle on a curve can be described as the projective space associated to the
module of the line bundle’s global sections.

In fact, the same thing is true in this case when F = OX and I is an ideal of OX . For
arbitrary F and I, we generalize the notion of global sections via the following combination
of lemma and definition.
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Lemma 2.2.1.1. ([2, Section 1.1]) Let X → S be a finitely presented proper morphism of
schemes and let I and F be two locally finitely presented OX-modules with F flat over S.
Then, there exists a locally finitely presented OS-module H(I,F) and an element h(I,F) of
HomX(I,F ⊗OS H(I,F)) which together represent the covariant functor:

M 7→ HomX(I,F ⊗OXM)

from the category of quasi-coherent OS-modules to Set.

Remark 2.2.1.2. It’s easy to see that H(I,J ) is covariant in I and contravariant in J .
Furthermore, it is right exact in each entry. (See [2, page 55])

We can now rigorously state the observation we mentioned above.

Theorem 2.2.1.1. [2, Theorem 4.2] Let X
f−→ S be a proper finitely presented morphism of

schemes and let F and I be two finitely presented OX-modules. Assume that F is S-flat and
that, for each S-scheme T for which IT is T -flat, the canonical map

O×T → (fT )∗IsomXT (IT , IT )

is an isomorphism.
Then, the functor LinSyst(I,F) is representable by an open subscheme U of P(H(I,F))

such that the inclusion is quasi-compact. Moreover, U is equal to P(H(I,F)) if and only
if, for each geometric point s of S, every non-zero OX(s)-homomorphism I(s)→ F(s) is an
injection.

The proof of this theorem is purely formal, and involves writing down the natural functor
represented by P(H(I,F)) and unraveling the definition of H(I,F).

In light of this role played by H(I,F), the following theorem is crucial.

Theorem 2.2.1.2. [2, Theorem 1.3] Let X → S be a finitely presented, proper morphism
of schemes, and let I and F be locally finitely presented S-flat OX-modules. Assume,

Ext1
X(s)(I(s),F(s)) = 0

for some point s in S. Then there exists an open neighborhood U of s such that H(I,F)|U
is locally free with finite rank.

This tells us that in good conditions, the linear systems functor is representable by a
projective bundle.

In order to define the Abel Jacobi map, we’ll need to be more selective in the types of
quotients that we allow. This is done by requiring that the pseudo-ideal of our quotients
satisfy the following condition.
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Definition 2.2.1.2. [2, Definition 5.1] Let X
f−→ S be a morphism of schemes and let I

be an OX-module. Then I will be called simple over S or S-simple if I is locally finitely
presented and flat over S and if for every S scheme T , the canonical map

OT → (fT )∗HomXT (IT , IT )

is an isomorphism.

The following stronger property will also play a central role.

Definition 2.2.1.3. [2, Lemma 3.1] Let X be a geometrically integral scheme over a field
k and let I be a coherent OX module. We call I a rank-1, torsion-free sheaf if it is torsion
free and generically isomorphic to OX .

There is also the relative version.

Definition 2.2.1.4. [2, Definition 5.10] Let X
f−→ S be a finitely presented morphism with

integral geometric fibers. We call an OX-module I relatively rank-1, torsion-free over S if it
is locally finitely presented and flat over S and if for each geometric point s in S, the fiber
I(s) is a rank-1, torsion-free OXs-module.

We can now define the functor which is the target of the Abel-Jacobi map.

Definition 2.2.1.5. [2, Definition 5.5] Let X
f−→ S be a morphism of schemes. We define

the functor
Spl(X/S) : SchS → Set

to be the functor which assigns to each S-scheme T , the set of equivalence classes of T -simple
OXT -modules, where two modules I and J are defined to be equivalent if there exists a line
bundle N on T such that

I ⊗OS N ∼= J

Similarly, we define the compactified Picard functor to be the subfunctor

Pic(X/S) ⊂ Spl(X/S)

which maps an S-scheme T to the classes in Spl(X/S)(T ) which are represented by a relatively
rank-1 torsion-free OXT -module.

As usual, we define Spl(X/S)(ét) and Pic(X/S)(ét) to be the associated sheaves in the étale
topology. However, this distinction will not play a role in our application. Just like with
the Quot functor, after fixing a very ample line bundle on X, for a given polynomial φ we

denote by Splφ(X/S)(ét) and Pic
φ

(X/S)(ét) the subfunctors defined by the additional condition
that the OXT module I have a Hilbert polynomial φ.

Similarly, the source of the Abel-Jacobi map is defined as follow.
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Definition 2.2.1.6. [2, Definition 5.14] Let X
f−→ S be a finitely presented proper morphism

of schemes and let F be a locally finitely presented OX-module. We define the functor

Smp(F/X/S) ⊂ Quot(F/X/S)

to be the functor which assigns to each S-scheme T , the quotients G ∈ Quot(F/X/S)

whose pseudo-ideals I(G) are simple over S.

Finally, we can define the Abel-Jacobi map.

Definition 2.2.1.7. [2, Section 5.16] Let X
f−→ S be a proper, finitely presented morphism

of schemes, and let F be a locally finitely presented OX-module. We define the Abel-Jacobi
map associated to F to be the map of functors:

A(F/X/S) : Smp(F/X/S) → Spl(X/S)(ét)

which takes a quotient G of F to the equivalence class of its pseudo-ideal I(G).

Note that when X is a smooth curve over a field and F = OX , this is the standard
Abel-Jacobi map of a curve. As in that case, the fibers of the Abel-Jacobi map are naturally
linear systems in the following sense.

Theorem 2.2.1.3. [2, Lemma 5.17, Theorem 5.18] Let X
f−→ S be a proper, finitely pre-

sented morphism of schemes with integral geometric fibers, and let F be an S-flat, locally
finitely presented OX-module. Let T be an S-scheme and let I be a T -simple OXT -module.
Furthermore, suppose that the geometric fibers of f are integral and that I and F are rel-
atively rank-1 torsion-free. Then we have the following commutative diagram with a right
Cartesian square:

P(H(I,FT ))

((

∼= // LinSyst(I,FT )

��

// Smp(F/X/S)

AF
��

T
τI // Spl(X/S)(ét)

where P(H(I,FT )) and T stand for the respective functors of points and τI is the map of
functors taking a T -scheme Y to the Y -simple ideal IY on Y ×S X.

In particular, for every geometric point t of Spl(X/S)(ét), if I is a representing OXt-module
then

dim(A−1
F (t)) = dimk(t)(HomX(t)(H(I,F), k(t)))− 1 = dimk(t)(HomX(t)(I,F))− 1

provided that if there exists a non-zero map from I to F(t) then there exists an injective map
from I to F(t).
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This follows almost immediately from theorem 2.2.1.1.
The following theorem is a fairly straightforward corollary as well.

Theorem 2.2.1.4. [2, Theorem 5.20, Remark 5.21] Let X
f−→ S be a finitely presented,

proper morphism of schemes, whose geometric fibers are integral. Let F be a relatively rank-
1 torsion-free OX-module. Suppose that P represents Pic(X/S)(ét). Then:

1. The restriction of AF |P is proper and finitely presented.

2. Assume that f is projective and that the fibers X(s) (resp. F(s)) all have the same
Hilbert polynomial φ (resp. ψ). Then for each polynomial θ, the restriction A|P θ is
strongly projective. This means that it factors as a closed embedding into a projective
bundle over P θ, followed by the projection.

3. Assume there exists a universal OXP -module I such that (P, I) represents Pic(X/S)(ét).
Then AF |P is equal to the structure map of P(H(I,FP )) over P . Furthermore, this
condition holds if the smooth locus of X/S admits a section.

Note that condition in part 3 of the theorem implies in particular that Pic(X/S) is already

an étale sheaf and so Pic(X/S) = Pic(X/S)(ét)

From the discussion up to this point we can see that if we forget the gnarly issue of
representability, the structure of the Abel-Jacobi map as a natural transformation of functors
is fairly transparent and requires minimal machinery. Furthermore, nothing up to this point
depended on special facts about curves. Since our current application will only require access
to this functorial description, using this setup will allow us to obtain cleaner statements and
proofs.

We now narrow our focus to the case where X
f−→ S is a family of integral projective

curves. In other words, f is a flat, locally projective, finitely presented morphism of schemes
whose geometric fibers are integral curves.

The advantage of this is that Riemann Roch now allows us to satisfy the conditions of
theorem 2.2.1.2 fairly easily. Combined with theorem 2.2.1.4, this will force the Abel Jacobi
map to be the structure map of a projective bundle in sufficiently general situations. Another
benefit is that we now have the following representability result.

Theorem 2.2.1.5. [2, Theorem 8.1] Let X → S be a locally projective, finitely presented, flat
morphism of schemes whose geometric fibers are integral curves. Then, Pic(X/S)(ét) is repre-

sented by a disjoint union P =
∐
Pn of S-schemes, Pn = Pic

n

(X/S)(ét), and Pn parametrizes
the rank-1 torsion-free sheaves with Euler characteristic n on the fibers of X/S.

Furthermore, in this case, if F is a locally finitely presented S-flat OX-module, then we
have [2, Equation 8.2.1]:

Smp(F/X/S) = Quot(F/X/S)
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Therefore, in this case the restriction of the Abel-Jacobi map to the compactified Picard
scheme takes the following more familiar form:

AF : Quot(F/X/S) → P = Pic(X/S)(ét)

Where Quot(F/X/S) is the scheme representing the functor Quot(F/X/S).
In addition, if χ(F(s)) is independent of the point s in S, the map decomposes as

AdF : Quotd(F/X/S) → Pn

where n = χ(F(s))− d. For example, this happens if F is the relative dualizing sheaf ω of
X/S and the fibers of f have the same arithmetic genus.

The final result that we will need now follows fairly easily from Riemann-Roch combined
with theorems 2.2.1.2 and 2.2.1.4 as we mentioned earlier.

Theorem 2.2.1.6. [2, Theorem 8.4] Let X → S be a flat, finitely presented, locally projective
morphism whose geometric fibers are integral curves with the same geometric genus p. Let
ω denote the relative dualizing sheaf. Fix an integer d ≥ 2p − 1. Then the d-th part of the
Abel-Jacobi map

Adω : Quotd(ω/X/S) → Pp−1−d

is smooth with relative dimension d− p.

Note that for any line bundle L on X and any integer n, tensoring with L defines an
isomorphism

νL : Pn → Pm

where m = n+ χ(L)

2.2.2 The Riemann Kempf Formula for Integral Curves

In this section we prove a generalization of the Riemann Kempf formula for integral curves.

The notation here is taken from section 2.2.1. In particular, Pd will denote Pic
d

(X/S)(ét) and

Adω : Quotd(ω/X/S) → Pp−1−d

is the d-th part of the Abel-Jacobi map.

Theorem 2.2.2.1. ( Riemann Kempf for integral curves) Let k be an algebraically closed
field of characteristic 0 and let X/k an integral projective k-scheme with arithmetic genus p.

Let d be an integer, Z be an equi-dimensional subscheme of Pp−1−d, Quotd(ω/X/k)Z the

pullback of Quotd(ω/X/k) and AdωZ the pullback of Adω.
Let x be a k point of Z corresponding to a rank-1 torsion free sheaf I and set r =

h1(X, I)− 1 (so that (Adω)−1(x) ∼= Prk).
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Then,

s((AdωZ)−1(x),Quotd(ω/X/k)Z) = multxZ · (1 + h)p−d+r ∩ [(AdωZ)−1(x)]

= multxZ ·
(
p− d+ r

r

)
where h is the first Chern class of the canonical bundle on Prk.

Remark 2.2.2.1. The condition that Z be equi-dimensional comes from the conditions of
proposition [12, p. 4.2]. In general, proper pushforward of Segre classes in ill defined for
schemes with components of varying dimensions.

When X is an integral curve with at worst planar singularities, both the Picard schemes
and the Quot schemes that we are considering are integral ([3, Corollary 7]). This allows us
obtain the following strengthening of the theorem.

Corollary 2.2.2.1. ( Riemann Kempf for planar curves) Let k be a algebraically closed field
of characteristic 0 and let X be a projective integral curve of arithmetic genus p over k with
at worst planar singularities. Let x be a k-point of Pp−1−d corresponding to a rank-1 torsion
free sheaf I and set r = h1(X, I) − 1 (so that (Adω)−1(x) ∼= Prk). As before, let Wd be the
scheme theoretic image of Adω.

Then

multxWd = multxPp−1−d · (1 + h)p−d+r ∩ [(Adω)−1(p)]

= multxPp−1−d ·
(
p− d+ r

r

)
where h is the first Chern class of the canonical bundle on Prk. In particular, for d = p − 1
we obtain the Riemann singularity theorem.

Proof. By [3, Corollary 7], Pp−1−d and Quotd(ω/X/k) are integral. The corollary then follows
immediately from the functoriality of Segre classes and by applying theorem 2.2.2.1 to the
case where Z = Pp−1−d.

Note that in the case where d = p− 1, corollary 2.2.2.1 recovers a theorem proved by S.
Casalania-Martin and J. Kass [7, Theorem A].

We now turn to the proof of theorem 2.2.2.1.
We will follow the strategy of Fulton’s proof in example [12, Example 4.3.2]. As in that

example, the key step will be to reduce the general case to case where d is large. To this
end, for a fixed d, choose s such that d+ s > 2p− 1. For each i and 1 ≤ j ≤ s we will define
natural maps of functors

Quoti(ω/X/k)

qj−→ Quoti+1
(ω/X/k) (2.2.2.1)

. The maps qj all increase the degree by one so the degree i will be implied by the context.
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Let x1, . . . , xs be distinct k-points in the smooth locus of X and let Ixi denote their ideal
sheaves. For each i and 1 ≤ j ≤ s we define the map

Quoti(ω/X/k)

qj−→ Quoti+1
(ω/X/k)

as follows. Let T be an S scheme. Then our map will send a quotient

0→ I(G)→ ω → G → 0

in Quoti(ω/X/k)(T ) to the quotient

0→ I(G)⊗ Ixj → ω → G ′ → 0

in Quoti+1
(ω/X/k)(T ) where G ′ is defined to be the quotient. One way to verify that this is in

fact a morphism of functors is to note that X has an affine cover

X = (X \ xj)
∐

Xsm

such that on the first chart Ixj is trivial, and on the second chart both Ixj and ω are line
bundles.

Remark 2.2.2.2. These morphisms are related by the following fiber diagram

Quoti(ω/X/k)

ql //

qj

��

Quoti+1
(ω/X/k)

qj

��
Quoti+1

(ω/X/k)

ql //Quoti+2
(ω/X/k)

for any i and 1 ≤ j, k ≤ s.
As we’ll soon see, the maps qj are closed embeddings so at the level of the schemes

representing these functors, this implies that composing the maps ql and qj is equivalent to
taking the intersection of the images of these maps.

A key ingredient in the proof of theorem 2.2.2.1 is that the maps qj are tubular regular
embeddings (lemma 2.2.3.3). This fact will allow us to transfer intersection theoretic data
between Quot schemes of different degrees.

Proof of theorem 2.2.2.1:
As we mentioned above, we will follow Fulton’s strategy from [12, Example 4.3.2] of first
proving the theorem in the case where d is large, and then proving it in general by quantifying
what changes as we pass from lower to higher degrees.

Proof when d is large:

When d ≥ 2p− 1, then by theorem 2.2.1.6, Adω is a smooth map and in particular it is
flat. Therefore,

s((AdωZ)−1(x),Quotd(ω/X/k)Z) = (AdωZ)∗s(x, Z) = multxZ · [(AdωZ)−1(x)]
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Calculation of s((AdωZ)−1(x),Quotd+s
(ω/X/k)Z) using s((Ad+s

ωZ )−1(x),Quotd+s
(ω/X/k)Z) when d+ s is large:

By theorem 2.2.1.3, we know that

(AdωZ)−1(x) ∼= Prk
for some r and together with theorem 2.2.1.6 we know that

(Ad+s
ωZ )−1(x) ∼= Pd+s−p

k

For the rest of this step we will identify the fibers with these projective spaces. By the
previous step, we know that

s(Pd+s−p
k ,Quotd+s−p

(ω/X/k)Z) = multxZ · [Pd+s−p
k ]

Furthermore, we have the following composition of closed embeddings

Pr i−→ Pd+s−p → Quotd+s
(ω/X/S)Z

and by lemma 2.2.3.4 the first embedding is regular and the Chern class of its normal
bundle is

(1 + h)d+s−p−r

where h is the first Chern class of the canonical line bundle on Prk. Therefore, by lemma
2.2.3.7

multxZ · [Pr] = i∗s(Pd+s−p
k ,Quotd+s

(ω/X/S)Z)

= (1 + h)d+s−p−r ∩ s(Prk,Quotd+s
(ω/X/S)Z)

Calculation of s((AdωZ)−1(x),Quotd(ω/X/k)Z) using s((AdωZ)−1(x),Quotd+s
(ω/X/k)Z) when d+ s is large:

As before, we have
(AdωZ)−1(x) ∼= Prk

Consider the sequence of embeddings

Prk → Quotd(ω/X/k)Z

q−→ Quotd+s
(ω/X/k)Z

where q is equal to the composition q1 ◦ q2 · · · ◦ qs. By lemma 2.2.3.5 combined with
remark 2.2.2.2, the restriction of the normal bundle of the embedding q to Prk is (1+h)s.

Therefore, by lemma 2.2.3.3 and our cancellation theorem for Segre classes (theorem
2.0.3.2)

s(Prk,Quotd(ω/X/k)Z) = (1 + h)s ∩ s(Pr,Quotd+s
(ω/X/k)Z) =

multxZ · (1+h)s

(1+h)d+s−p−r
∩ [Prk] = multxZ · (1 + h)p−d+r ∩ [Prk]



CHAPTER 2. CANCELLATION OF SEGRE CLASSES AND THE RIEMANN-KEMPF
FORMULA 27

2.2.3 A Collection of Technical Lemmas

The primary goal of this section is to prove that the maps qi defined in equation 2.2.2.1 are
tubular regular embeddings (definition 2.0.3.1). We also prove the additional lemmas which
were used in the proof of theorem 2.2.2.1.

As preparation we first present a fairly well known deformation theory result which we
prove here for completeness.

Lemma 2.2.3.1. ([14, Example 14.3]) Let k be an algebraically closed field, let F be a
functor

F : Schk → Set

and let X0 be an element of F(Spec(k)). We can define a local functor

F : C → Set

where C is the category of finitely generated local Artin rings over k with residue field k,
by sending an element A ∈ C to the subset of F(Spec(A)) consisting of those elements
X ∈ F(Spec(A)) that reduce to X0 ∈ F(Spec(k)) under the natural pull-back morphism. We
call this the functor of local deformations.

If F is representable by a scheme M and a family I ∈ F(M) such that X0 corresponds
to the point x0 in M , then F is pro-representable by the complete local ring ÔM,x0

All of the terms in this lemma are defined in [14, cpt. 14].

Lemma 2.2.3.2. Let x = [ω � G] be an element of Quotd(ω/X/k) and let F be the local
deformation functor of x. Suppose that the support of G is the disjoint union of finite k-
schemes Z1 and Z2 which have lengths d1 and d2 respectively. Let Gi be the subsheaf of G
supported at Zi and let xi = [ω � Gi] ∈ Quotdi(ω/X/k) be the associated quotients. Finally, let
Fi be the local deformation functor of xi. Then,

F ∼= F1 × F2

Proof. We start be constructing a map

φ : F1 × F2 → F

Let A be a local Artin ring over k and let xi = ω � G ′i be elements of Fi(A) for i = 1, 2. By
definition, G ′i is a sheaf on X ×k Spec(A) which is flat over A and the special fiber (ω � G ′i)0

is isomorphic to ω � Gi.
Since the pullback map from X0 to X ×k Spec(A) is a homeomorphism, the support of

G ′1 is contained in an open set U1 which is disjoint from the support of G2 and vice versa.
Therefore, we can define G ′ to be the sheaf on X ×k Spec(A) whose restriction to Ui is equal
to G ′i. We similarly can define the map x = ω � G ′.
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As G ′ is flat over A and ω � G ′ restricts to ω � G on X0, we can define

φ(x1, x2) = x

We now construct a map
ψ : F→ F1 × F2

which will be the inverse of φ. As the construction is similar, we will provide less details
than we did for the definition of φ.

Let A be a local Artin ring over k and let x = ω � G ′ be an element of F(A).
Since (G ′)0 is isomorphic to G, the support of G ′ is the disjoint union of two schemes Z ′1

and Z ′2 which restrict to Z1 and Z2 over the special fiber. Let xi = ω � G ′i be the map
obtained by restricting x to Zi. We can now define ψ(x) as

ψ(x) = (x1, x2)

It is easy to see that ψ is the inverse of φ.

Lemma 2.2.3.3. For any integer i and 1 ≤ j ≤ s, the morphism Quoti(ω/X/k)

qj−→ Quoti+1
(ω/X/k)

induced by the corresponding map of functors is a tubular regular embedding (definition
2.0.3.1) of codimension one.

Proof. To facilitate the notation, we will denote Quotl(ω/X/k) by Ql. Furthermore, we will
prove the lemma for j = 1 and the rest of the lemma will follow by iterating this special
case. We will also denote x1 by x.

Let u = [ω ↪→ OZ ] be a k point of Qi and let v = [ω ↪→ O(Z∪x)] be the image of u under
the map q1. Note that Z ∪ x is well defined since x is a smooth point of X.

We have to prove that there exists an isomorphism ϕ making the following diagram
commute

Spec(ÔQ2,v)

ϕ∼=
��

Spec(ÔQ1,u)

q̂1 44

s
**

Spec(ÔQ2,u[[t]])

where s is the zero section.
By lemma 2.2.3.1, Spec(ÔQ1,u) pro-represents a local deformation functor F1 of u at Q1

and Spec(ÔQ2,v) pro-represents a local deformation functor F2 of v at Q2.
Let Zsm and Zsing be the restrictions of Z to the smooth and singular locus of X respec-

tively. The schemes (Z ∪ x)sing and (Z ∪ x)sm are defined analogously.
Let Gsing

1 and Gsm
1 be the local deformation functors of the restriction of u to Zsing and

Zsm respectively. By lemma 2.2.3.2,

F1
∼= Gsing

1 ×Gsm
1
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By applying the same construction to v we obtain the functors Gsing
2 and Gsm

2 and the
decomposition

F2
∼= Gsing

2 ×Gsm
2

Now, since x ∈ Xsm, the map q1 induces an isomorphism between Gsing
1 and Gsing

2 .
Therefore, it suffices to prove the existence of the isomorphism ϕ on the restriction of q1 to
Gsm

1 .
Let Gx be the local deformation functor of the point x in X. Since x is a smooth point,

Gx is pro-representable by Â1
k so it will be enough to show that there exists an isomorphism

ϕ that makes the following diagram commute:

Gsm
2

ϕ∼=
��

Gsm
1

q1 55

s
))
Gsm

1 ×Gx

However, since we are now working on the smooth locus of X, this follows immediately from
the analogous fact about the attaching map between Hilbert schemes of points on a smooth
curve which is stated in [Stacks, Tag 0B9G].

We continue to discuss the maps qi from equation 2.2.2.1. Recall that before defining
these maps, we fixed an integer d, a large integer s and defined a map qj for each 1 ≤ j ≤ s.

Lemma 2.2.3.4. For each integer i and 1 ≤ j ≤ s, let Quoti(ω/X/k)

qj−→ Quoti+1
(ω/X/k) be the

morphism defined in equation 2.2.2.1. Let pi = [I] be a k-point of Pp−i−1 and let pi+1 =
[I ⊗ Ixj ] denote the corresponding element of Pp−i−2. Let

Prik ∼= (Ad+i
ω )−1(pi)

u−→ (Ad+i+1
ω )−1(pi+1) ∼= Pri+1

k

denote the map on fibers induced by qj where ri and ri+1 are defined to be the dimensions of
the fibers. Then, u is a degree one embedding of projective spaces.

The proof of this lemma will be provided shortly. We also used the following similar
looking lemma. Let Ji denote the tautological rank-1 torsion-free sheaf on X × Pp−i−1.
Recall that by theorem 2.2.1.2 and theorem 2.2.1.4, for each i, Quoti(ω/X/k) is a projective
scheme over Pp−i−1 of the form P(H(Ji, ω)) and the Abel Jacobi map is the structure map.
Furthermore, by our choice of s, H(Id+s−1, ω) and H(Id+s, ω) are locally free.

Lemma 2.2.3.5. For each 1 ≤ j ≤ s, the map Quotd+s−1
(ω/X/k)

qj−→ Quotd+s
(ω/X/k) embeds the pro-

jective bundle Quotd+s−1
(ω/X/k)

∼= P(H(Jd+s−1, ω)) as a degree one Cartier divisor in the projective

bundle Quotd+s
(ω/X/k)

∼= P(H(Jd+s, ω)) and is cut out by a section of OP(H(Id+s,ω))(1).

In the interest of economy and clarity, we will prove both of these lemmas as special cases
of the following general statement about linear systems.
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Lemma 2.2.3.6. Let l be a positive integer and 1 ≤ j ≤ s. Let T be a Pp−i−1 scheme
and denote the induced rank-1 torsion-free sheaf on X ×k T by I. Consider the map

Quotl(ω/X/S)

qj−→ Quotl+1
(ω/X/S) and the induced map on the linear systems as shown in the

following diagram of Cartesian squares:

P(H(I, ω))
∼= //

��

LinSyst(I,ω)
//

��

Quoti(ω/X/S)

qj

��
P(H(I ⊗ Ixj , ω))

∼= // LinSyst(I⊗Ixj ,ω)
//

��

Quoti+1
(ω/X/S)

��

∼= //Quoti+1
(ω/X/S)

Ai+1
ω

��
T

µI // Pp−i−1

νIxj
∼=

// Pp−i−2

Then, the map on linear systems is induced by the canonical map

f : H(I ⊗ Ixj , ω)→ H(I, ω)

coming from the natural map I ⊗ Ixj → I, and f is a surjection.

Proof. The first statement follows from unraveling the identification of linear systems with
projective space in theorem 2.2.1.3. Since this is done in detail in the proof of this lemma
in [3, p. 5.17], we won’t reproduce it here.

We now show that the map

H(I ⊗ Ixj , ω)→ H(I, ω)

is a surjection.
Consider the ideal sheaf sequence of xj ×k T on X ×k T :

0→ Ixj → OX×kT → Oxj×T → 0

Note that we are considering Ixj as an OX×kT -module in the natural way.
By tensoring this sequence with I we obtain the exact sequence

I ⊗OX×T Ixj → I → I ⊗OX×T Oxj×T → 0

In fact, this sequence is also exact on the left. To see this, it suffices to prove the exactness
on the complement of xj ×k T and on Xsm ×k T . On the complement of xj ×k T the map
I ⊗OX×T Ixj → I is isomorphic to the identity map. On the other hand, on Xsm ×k T the
sheaf I is a locally free so tensoring with it is exact.

Let us denote the cokernel I ⊗OX×T Oxj×T by τ . We thus have the short exact sequence

0→ I ⊗OX×T Ixj → I → τ → 0 (2.2.3.1)
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Now, as mentioned in 2.2.1.2, the functor H(•, ω) is covariant and right exact. By
applying it to the sequence 2.2.3.1 we obtain the exact sequence

H(I ⊗ Ixj , ω)→ H(I, ω)→ H(τ, ω)→ 0

Finally, note that since τ is torsion in each fiber of X ×k T over T , for any T -module M
we have

HomX×T (τ, ω ⊗M) = 0

By the definition of H(τ, ω), this implies that H(τ, ω) = 0 as required.

We can now quickly deduce lemmas 2.2.3.4 and 2.2.3.5.

Proof of lemma 2.2.3.4: We apply lemma 2.2.3.6 in the case where T is the k point pi.

Proof of lemma 2.2.3.5: We apply lemma 2.2.3.6 in the case where T is Pp−d−s with the uni-
versal rank-1 torsion-free sheaf Jd+s−1. By the choice of s, both H(Jd+s−1, ω) and H(Jd+s, ω)
are locally free. Furthermore, by lemma 2.2.3.3, the embedding is of codimension one.

We also need the following technical result about the Segre class of a subscheme of a fiber
in a fiber bundle.

Lemma 2.2.3.7. Let X → B be a Zariski-locally trivial fibration of k-varieties. Let b ∈ B
be a k point and let i : Y ↪→ Xb be a regular embedding. Then

s(Y,X) = s(Y,Xb) ∩ i∗s(Xb, X)

Proof. Since all of the Segre classes in question only depend on a Zariski open neighborhood
of Xb in X, we can assume without loss of generality that X ∼= F × B where F = Xb and
that the map π is the projection onto the second factor.

We will now show the following equality of cones:

CYX = CY F ⊕ i∗CFX

where we are using the same definition of the sum of cones as in example [12, Example
4.1.5]. Since CY F is a vector bundle, the lemma will follow from the statement in that
example.

To prove this claim about cones, we will explicitly exhibit the structure sheaf of CYX as
the tensor product of the structure sheaves of CY F and i∗CFX.

Let m denote the maximal ideal defining b and let I ⊂ OF denote the ideal sheaf of Y
in F .
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We also define the following sheaves of graded OY algebras

RY/F =
∞⊕
i=0

(I i/I i+1)

RF/X =
∞⊕
i=0

(mi/mi+1)

RY/X =
∞⊕
i=0

((m + I)i/(m + I)i+1)

With this notation, CY F = Spec
Y

(RY/F ), i∗CFX = Spec
Y

(RY/F ) and CYX = Spec
Y

(RY/X).
Consider the following bilinear map of graded OY algebras:

b : RY/F ×RF/X → RY/X

which is defined by multiplication in RY/X . We claim that with respect to this map RY/X

has the universal property of RF/X ⊗OY RY/F .
Indeed, let f : RY/F ×RF/X →M be a bilinear map of OY -modules. We must show that

there exists a unique morphism f ′ : RY/X →M such that f = f ′ ◦ b.
We will show the existence of f as the uniqueness is clear. Let a·b be an element of (m+I)n

where a ∈ mi, b ∈ Ij and i + j=n. We define f ′(ab) = f(a, b). To show that this is well
defined, we must show that if ab ∈ (m+I)n+1 then f ′(ab) = 0. Suppose that ab ∈ (m+I)n+1.
Then, either a ∈ mi+1 or b ∈ Ij+1, both of which imply that f ′(ab) = f(a, b) = 0.
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Chapter 3

Euclidean Distance Degree

3.1 Introduction

Many engineering problems can be broken down into two fundemantal steps. The first one
it to formulate a model of the system of interest which depends on a collection of unknown
parameters. Next, you solve for the parameters based on observed data. Typically, each
data point will impose a (polynomial) constraint on the parameters, and the hope is that
with enough data points it is possible to uniquely determine the unknown coefficients.

In practice, no model is perfect and it may not be possible to solve for the coefficients
precisely. Instead, one tries to find a collection of parameters that best explain the data.

As a concrete example, suppose you have a collection of n news articles, each of which
comes from either the sports or finance sections. However, the articles are unfortunately
uncategorized, and you would like to categorize them in an automatic fashion.

One technique for doing this is Latent Semantic Indexing (LSI).
The underlying assumption of this method is that the probability of a word appearing

in a document depends only on the documents topic. More precisely, we make the stronger
assumption that the i-th word carries a length 2 vector ui and the j-th document has an
associated length vector vi such that the number of times that the i-th word appears in the
j-th document is uTi vj. Intuitively, ui records how likely the i-th word is to appear in each
topic, and vj represents the relevance of each topic to the j-th document. This description
is a model for the number of times each word appears in each document. The unknown
parameters are the vectors ui and vj.

To applying LSI we first create a v × n matrix M where v is the size of the vocabulary,
i.e, the number of distinct words in the set of documents. The value of Mij is equal to the
number of times that the i-th word appears in the j-th document. The matrix M records
the real world observations.

To compute the parameters of the model, we factor this matrix as:

M = U × V

where U is a v × 2 matrix and V is a 2× n matrix.
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In this case, we can find U and V by solving n2 equations that are polynomial in the 4n
entries of U and V .

However, our models assumptions are clearly an oversimplification, and we can not hope
to literally solve this system. Instead, we try to find U and V which can best explain M ,
without doing so perfectly. This is achieved by minimizing the following loss function:

l(U, V ) = ||U × V −M ||2

Another example comes from the field of computer vision. Under the pinhole camera
model, the map from the 3D world to the 2D image can be represented in projective coordi-
nates by a 3× 4 matrix P . Furthermore, this matrix is determined by the orientation of the
camera and it’s position. The orientation can be represented by a 3 × 3 orthogonal matrix
R and the position by a length 3 column vector T . There are also a collection of intrinsic
parameters that can be collected in a 3× 3 matrix C. The assumption of the pinhole model
implies that

P = C × [R−1|R−1T ]

Now, suppose that we have an image taken by a camera with known intrinsic parameters
and we would like to determine the position and orientation of the camera when the image
was taken. A standard approach is to identify objects in the image and measure their
(projective) 3D world positions. We thus obtain a list of pairs (Xi, yi) where Xi is a length
4 world vector and yi is a length 3 vector representing the projetive coordinates of the image
of Xi under the camera.

Theoretically, we could find R and T by solving the equations:

C × [R−1T |R−1T ]×Xi = yi

As before, this is a system of equations which is polynomial in the coefficients fo T and R−1.
However, the pinhole model is only a rough approximation of how a camera works and even
if it were correct, there is no sense in which one can measure the location of a 3D object
with infinite precision.

Therefore, one typically finds R and T by minimizing the following loss function:

l(R, T ) =
∑
i

||C × [R−1T |R−1T ]×Xi − yi||2

The common theme in these type of models is that one has a set of parameters WRn, and
a function f(W,X) which maps an input data point XRm to an output y = f(W,X) ∈ Rk.
Given a collection of data (Xi, yi), 1 ≤ l, we find W by minimizing the loss function:

l(W ) =
l∑

i=1

||f(W,Xi)− yi||2
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In practice, f(W,X) is frequently a polynomial function. This means that we can think
of the data points Xi as defining an algebraic map

f(W ) : Rn → Rk·l

which sends W ∈ Rn to the concatenation of the vectors f(W,Xi) for 1 ≤ i ≤ l. The image
of this map defines a variety V ⊂ Rk·l. Let y ∈ Rk·l be the concatenation of the vectors yi,
1 ≤ i ≤ l. Assuming a perfect model and data, y would be a point in V . In practice, y is
close to V but not contained in it.

With this perspective, minimizing the loss function l(W ) is equivalent to finding a point
v on the variety V ⊂ Rk·l which minimizes the Euclidean distance to y. Another way of
saying this is that we try to minimize the function

l : Rk·l → R

define by
l(y′) = ||y′ − y||2

on the variety V .
Now that we’ve described the basic setup of the optimization problem, we can discuss

the basic approach to solving it. In the general case, solving for W (or equivalently, a point
on V ) involves solving a non-convex optimization problem. A popular method for solving
these types of problems is to start at a random vector on V , and iteratively update it via
gradient descent. The process terminates when we reach a local minimum of l(v) on V .

If there is only one such local minimum, then we can terminate the process. Otherwise,
we can run the gradient descent procedure multiple times and take the local minimum with
the smallest loss value. If we cared about finding the absolute minimum, we would have to
run gradient decsent until all local minima were found. In this case, the number of iterations
would be bounded below by the number of local minima.

In practice, one usually runs the procedure for a fixed number of times. The likelihood
of finding the absolute minima in this manner is also determined by the overall number of
local minima.

The upshot is that the number of local minima of l(y′) on V is a reasonable gauge for the
difficulty of solving the given optimization problem. However, even calculating the number
of local minima is not usually feasible in practice. Instead, it’s easier to compute the upper
bound given by the number of critical points over the complex numbers.

This brings us to the key observation behind the definition of the Euclidean distance
degree.

Observation. The difficulty of many optimization problems can be estimated by computing
the number of critical points of the Euclidean distance function on an associated complex
projective variety.
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This is the motivation behind the definition Euclidean Distance Degree (ED degree) which
was first defined in [8] and which can be found in 3.2.6.1. Roughly speaking, the ED degree
of a complex projective variety X is equal to the number of critical points of the Euclidean
distance function l(y′) = ||y − y′||2 for a generic choice of y.

The goal of this chapter is to first develop machinery that is useful for computing the ED
degree of varieties that come up in practice, and then apply it to two problems of interest.

The main issue that one encounters when computing the ED degree of a variety X
associated to an optimization problem is that X is not typically smooth. This means that
standard characteristic class computations are not sufficient. On the otherhand, in many
cases X does come with a resolution of singularities that is somehow natural with respect to
the problem it came from. Therefore, our strategy will be to develop methods for relating
the ED degree of a singular variety X to the ED degree of a resolution X̃.

The structure of this chapter is as follows.
In section 3.2 we recall some standard types of characteristic classes that one can define

for singular varieties. Next we define the Euclidean Distance degree, and develop the theory
in a way that will be useful for the applications that follow.

The relevance of the charateristic classes theory comes from proposition 3.2.6.1, which
relates the ED degree of a projective variety to it’s polar classes and a certain Segre class.

Proposition. Let X ⊂ P(V ) be a projective variety, let X
π−→ X be a Nash blowup, let EX be

the modified Euclidean normal bundle of X, let L := OEX (1) denote the tautological bundle
associated to P(EX), and let B denote the base locus of

edQ : P(EX) 99K P(V )

Then,
deg(c(L)n ∩ s(B,P(EX)) ≥ 0

and ∑
i

δi(X)− ED(X) = deg(c(L)n ∩ s(B,P(EX))

By proposition 3.2.3.1, this can reduce the problem of computing the ED degree to one
of computing Mather classes.

Finally, it turns out to be easier to relate the Schwartz-Macpherson classes of X to those
of a blowup X̃ than it is to relate the Mather classes. For this reason, we introduce the theory
of Schwartz-Macpherson classes and Euler obstructions in section 3.2.4 and give some simple
examples of how they can be used to compute Mather classes of singular varieties in section
3.2.5.

In section 3.3 we apply this theory to a problem in computer vision called 3D scene
reconstruction. The objective of scene reconstruction is to recover the 3D geometry of a
scene based of pictures of the scene that were taken from different positions and angles. A
basic question in this field is how the difficulty of the problem varies with the number of
pictures being used.
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The complex projective variety associated to this optimization problem is the Multiview
Variety. In section 3.3.3 we construct a resolution of this variety, and in the remainder of
section 3.3 we use this resolution of compute the ED degree of the multiview variety as a
function of the number of cameras involved.

In section 3.4 we focus on the problem of weighted low rank approximation which is a
version of low rank approximation in which the Euclidean norm being used is not uniform
in the entries of the matrix. This type of problem arrises when not all of the entries of the
matrix we approximating are known with the same degree of certainty. An extreme version
of this is when some of the entries are not known at all and is known as matrix completion.

We focus on the question of how the difficulty of weighted low rank approximation de-
pends on the weight matrix. It is well known that the problem has a small number of critical
points when the weight matrix is rank one. Our main result of section 3.4 is to determine
for which weight matrices the number of critical points is maximal.

3.2 Characteristic Classes of Singular Varieties

3.2.1 Polar Classes

Let X ↪→ P(V ) be a projective variety with dimension r.
We will start with a quick but precise definition of the polar classes of X, and later

explain different points of view.
Recall that the Gauss map is a rational map

φ : X 99K G(r + 1, V ∗)

The value of φ at a smooth point x ∈ X is the r+ 1 dimensional quotient V ∗ � W ∗
x such

that the induced r dimensional linear space P(Wx) ↪→ P(V ) is tangent to X at x.
To resolve this map, let X ↪→ X × G(r + 1, V ∗) be the closure of the graph of φ. The

projection onto the first factor gives us a map X
π−→ X which is called the Nash Blowup of

X. The projection onto the second factor gives a map X
φ−→ G(r + 1, V ∗). Together this

gives us the following commutative diagram

X

π
��

φ

%%
X

φ// G(r + 1, V ∗)

The pullback of the universal quotient of G(r+1, V ∗) via φ gives us a rank r+1 quotient

V ∗
X
� P

We define the k-th polar class of X to be

[Mk(X)] = π∗ck(P)
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It is also possible to define the bundle P in terms of the sheaf of principle parts of X.
Recall that there is a map

V ∗X → P1
X(L)

where L is the very ample line bundle corresponding to the embedding of X in P(V ). This
map is a surjection on the smooth locus of X, and is precisely the pullback of tautological
quotient on G(r + 1, V ∗) along the Gauss map φ.

This means that the quotient VX � P on X extends the quotient VXsm � P1
Xsm(L) on

Xsm.
It is not hard to show that if p : Z → X is any birational map such that there is a rank r

quotient VZ � P extending VXsm � P1
Xsm(L) then p∗ck(P) is equal to the k-th polar class.

The idea is that the map p will have to factor through π, and then the result follows by the
push pull formulas for Chern classes.

3.2.2 Mather Classes

The definition of Mather classes is somewhat similar to the above definition of Polar classes,
but subtly different.

We start with an alternative construction of the Nash blowup. Let G(r,Ω1
X)→ X be the

relative Grassmanian of r quotients of Ω1
X . There is a rational section ψ : X 99K G(r,Ω1

X)
which is defined on the smooth locus of X. In fact, since Ω1

X is itelf locally free with rank r,
the map is given by the “identity” quotient.

Let X̃ be the closure of this section in the Grassmanian. As before, we have the following
commutative diagram

X̃

π̃

��

ψ̃

##
X

ψ // G(r,Ω1
X)

By pulling back the tautological quotient on G(r,Ω1
X) via ψ̃ we get rank r locally free

sheaf Ω on X̃ and and a quotient
π̃∗Ω1

X � Ω

.
We define the Mather class of X to be

cM(X) = π̃∗(c(Ω
∗))

Similarly to what happens for polar classes, if p : Z → X is any birational map with a
rank r quotient

p∗Ω1
X → Ω

then Ω can be used to compute the Mather class of X.
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3.2.3 Relationship of Polar and Mather Classes

In this section we will see that Polar classes and Mather classes contain the same information,
in the sense that one is easily computable from the other.

To see this, we will show that X̃ admits a rank r + 1 quotient V ∗
X̃
� P which extends

V ∗X → P1
X(L). Since P can be used to compute polar classes, we can reduce the problem to

relating Ω to P .
In order to construct P , let i : X ↪→ P(V ) be the projective embedding and consider the

following diagram

0 // ((i ◦ π̃)∗Ω1
P(V ))⊗ L //

����

V ∗
X̃

����

// L // 0

0 // ((π̃)∗Ω1
X)⊗ L // π̃∗P1

X(L) // L // 0

If we pushout the bottom extension by π̃∗Ω1
X � Ω then we get

0 // ((i ◦ π̃)∗Ω1
P(V ))⊗ L //

����

V ∗
X̃

����

// L // 0

0 // ((π̃)∗Ω1
X)⊗ L //

����

π̃∗P1
X(L) //

����

L // 0

0 // Ω⊗ L // P // L // 0

This implies that the polar classes of X are given by

[Mk(X)] = π̃∗ck(P)

On the otherhand, the Mather classes are given by

cM(X) = π̃∗c(Ω)

So using the exact sequence

0→ Ω⊗ L→ P → L→ 0

It is easy to prove the following formula

Proposition 3.2.3.1. [23, Theorem 3]

[Mk(X)] =
k∑
i=0

(−1)k−i
(
r + 1− k + i

i

)
c1(L)icMk−i(X)
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By a similar construction, there is a rank r+ 1 quotient V ∗
G(r,Ω1

X)
� Q on G(r,Ω1

X) which

induces the following map over X:

G(r,Ω1
X) //

$$

X ×G(r + 1, V )

ww
X

It is not hard to show that this map induces an isomorphism between the maps π : X → X
and π̃ : X̃ → X. For this reason we call both of these maps Nash blowups of X.

3.2.4 The Schwartz-Macpherson Class

The Schwartz-Macpherson class, originally defined in [20], is another way to assign a charac-
teristic class to a variety which has the advantage of being functorial with respect to proper
maps. In this section we will give a brief introduction to this class, mostly following [17].

In order to define this class, we must first discuss the constructible functions functor and
the Euler obstruction.

The constructible functions functor is a functor CF from the category of varieties with
proper maps to the category of groups. If X is a variety, then CF(X) is defined to be the
group of integer valued constructible functions on X.

We now define the behavior of CF under proper morphisms. Let f : X → Y be a proper
morphism. In order to define the map

CF(f) : CF(X)→ CF(Y )

it suffices to specify the value it takes on the basis of indicator functions 1W when W is a
closed subvariety of X. Let W ⊂ X be a closed subvariety and y ∈ Y a closed point. We
define:

CF(1W )(y) = χ(f−1(y) ∩W )

where χ is the topological Euler characteristic in the compactly supported homology.
The Schwatrz-Macpherson class, denoted by cSM , is the unique natural transformation

from the constructible functions functor to the Chow functor

cSM : CF→ A∗

which sends the identity function 1X of a smooth variety X to the standard Chern class
c(X) ∩ [X] ∈ A∗(X).

In order to explicitely define cSM , we will first introduce a different basis of the group of
constructible functions called Euler obstructions. Let X be a variety. We will now define a
constructible function EuX on X called the Euler obstruction.

Following [17], let X̃ be the Nash blowup of X as above. Recall that there is a rank
dim(X) locally free sheaf Ω and a quotient:

π̃∗Ω1
X � Ω
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. Let T = Ω∗. For any point p ∈ X define the Euler obstruction to be:

EuX(p) =

∫
π̃−1(p)

c(T |π̃−1(p)) ∩ s(π̃−1(p), X̃)

.

Lemma 3.2.4.1. [17, Lemma 4] Let X be a variety. Then, the function EuX is a con-
structible function.

The following lemma is crucial for the definition of the Schwatrz-Macpherson class.

Lemma 3.2.4.2. [17, Lemma 5] Let X be a variety. As W ranges over the closed subvarieties
of X, the functions EuW form a basis for CF(X).

By the previous lemma, it suffices to define cSM on the constructible functions EuW ,
where W is a variety. In that case, we define:

cSM(EuW ) = cM(W )

where cM(W ) is the Mather class defined above.

Proposition 3.2.4.1. [17, Proposition 2] The map of functors

cSM : CF→ A∗

is a natural transformation.

By an abuse of notation, we will write cSM(X) as a shorthand for cSM(1X).

3.2.5 Examples

In this section we will work out a couple of example showing the interactions between the
characteristic classes defined above.

3.2.5.1 Cusp Curve

Let V be a three dimensional vector space and let C be the cusp curve (y2z − x3) ⊂ P(V ).
To compute cM(C) we must first find a birational map π̃ : C̃ → C together with a rank 1
quotient π̃∗Ω1

C � Ω.
The first step is to consider the normalization map

π̃ : P1 → C

which is defined by [s : t] 7→ [s2t : s3 : t3].
We have the standard contanget sequence on P1:

0→ π̃∗Ω1
C

α−→ Ω1
P1 → Ωπ̃ → 0



CHAPTER 3. EUCLIDEAN DISTANCE DEGREE 42

By [24, lem 1.1], the image of α is locally free iff the Fitting ideal of the cokernel F 0(Ωπ̃)
is locally free. In this case the Fitting ideal is the ideal of a (possibly reduced) point on
a smooth curve so the image of α is indeed locally free. We will denote this image by Ω.
Clearly we have an exact sequence

0→ Ω→ Ω1
P1 → Ωπ̃ → 0

By the definition of the Mather class we have:

cM1 (C) = π̃∗c1(Ω∗) = π̃∗(c1(Ω∗P1) + c1(Ωπ̃)) = π̃∗(c1(P1) + c1(Ωπ̃))

By direct calculation, it is not hard to see that c1(Ωπ̃) = h which means that

degcM(C) = 2 + 1 = 3

We can also calculate cM(C) using Chern-Macpherson classes. For this, recall the the
value of the Euler function EuC at the cusp point p is equal to the multiplicity at that point
which is 2. Therefore,

1C = EuC − Eup

which implies that
c(C) = cM(C)− [p]

so degc(C) = 3− 1 = 2 which is consistent with χ(C) = 2.
In addition, since π̃∗(1P1) = 1C we know that

degcM(C) = degc(C) + 1 = degc(P1) + 1 = 2 + 1 = 3

3.2.5.2 Nodal Curve

Let C be a nodal curve in P2. This is very similar to the cusp case the normalization is also
P1. The only difference is that now Ωπ̃ = 0 so

deg(cM(C)) = degπ̃∗c(P1) = 2

As before, this implies that

degc(C) = degcM(C)− 1 = 1

which is consistent with χ(C) = 1.
Also in this case we can compute cM(C) using only the fact that

1C = EuC − Eup

Indeed, this equality implies that

π̃∗1P1 = EuC

so cM(C) = π̃∗c(P1).
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3.2.5.3 Tangential Variety of the Twisted Cubic

The tangential variety of the twisted cubic C is a degree 4 singular surface i : S ↪→ P3. By
a Macaulay2 computation, the pushforward of its polar class to P3 is 3h2 + 4h.

We will now compute this class using purely topological considerations regarding Euler
obstructions. First of all, note that we have a birational map

π : P1 × P1 → S

which takes ([f ], [g]) to [f 2g] where f and g are degree one polynomials in two variables. In
particular, if h is the generator of A•(P3) and g1 and g2 are generators for A•(P1 × P1) then

π∗h = 2g1 + g2

Note that the restriction of π to the diagonal is the usual map from P1 to the twisted
cubic C.

To compute the Mather classes of S, we will first try to express 1S in terms of Euler
obstructions on S. Since the singular locus of S is the smooth curve C, it is reasonable to
expect that

1S = EuS − (EuS(p)− 1)EuC

where p is some point in C.
Locally at p, S looks like the product of a line with a cusp curve. So it is reasonable to

assume that EuS(p) = 2 which means that

1S = EuS − EuC

Now, since the preimage of any point in S under the map π is a single point, we have

π∗c(P1 × P1) = c(1S) = cM(S)− cM(C)

It is easy to see that c(P1 × P1) = 1 + 2(g1 + g2) + 4g1g2. Therefore,

degπ∗c0(P1 × P1) =deg((2g1 + g2)2 = 4

degπ∗c1(P1 × P1) =deg((2g1 + g2)(2(g1 + g2))) = 2deg(3g1g2) = 6

degπ∗c2(P1 × P1) =deg(4g1g2) = 4

Together, we’ve shown that

i∗π∗c(P1 × P2) = 4h+ 6h2 + 4h3

In addition, since χ(C) = 2 we have

i∗c
M(C) = i∗c(C) = 3h2 + 2h3
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Putting everything together we have obtained the Mather class of S:

i∗c
M(S) = 4h+ 9h2 + 6h3

Finally, we can use the formula from the previous section relating Mather classes to polar
classes to obtain the polar classes of S. Explicitly,

[M0] =cM0 (S) = 4h

[M1] =− cM1 (S) + 3hcM0 (S) = −9h2 + 3h · 4h = 3h2

[M2] =cM2 (S)− 2h · cM1 (S) + 3h2 · cM0 (S) = 6h3 − 18h3 + 12h3 = 0

3.2.6 The Euclidean Distance Degree

3.2.6.1 Definitions

In this section we recall the definition of the Euclidean distance degree from [EDD ]. We
will present it in a way that will be conventient for the remainder of the paper.

Let V be a complex vector space, let Q(v) be a non-degenerate quadratic form on V , and
let 〈, 〉 denote the induced bilinear form. Also, let Q be the hypersurface in P(V ) defined by
Q(v).

If W ⊂ V is a subspace, then we will denote it’s orthogonal complement with respect to
〈, 〉 by W⊥.

Now let X ⊂ P(V ) be a subvariety of P(V ) and let u ∈ V be a general point. Following
[EDD ], the Euclidean distance degree of X is defined to be the number of smooth points
x ∈ C(X) such that

u− x ∈ TxC(X)⊥

Note that this is equal to the number of smooth points [x] ∈ X for which there exists a
scalar λ ∈ C× such that

u− λx ∈ TxC(X)⊥

Finally, since u is general, we can assume that u /∈ TxC(X)⊥ which means that this in
turn is equal to the number of smooth points [x] ∈ X such that

u ∈ Span(TxC(X)⊥, x)

Now, we define the orthogonal complement to T[x](X) to be:

T[x](X)⊥ := P(Span(TxC(X)⊥, x)) ⊂ P(V )

We can now present our definition of the Euclidean distance degree.

Definition 3.2.6.1. Let X ⊂ P(V ) be a projective variety. Let [u] ∈ P(V ) be a general
point. We define the Euclidean distance degree of X, denoted by ED(X), to be the number
of smooth points [x] ∈ X for which

[u] ∈ T[x](X)⊥
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If it is not clear which quadric we are using, the ED degree with respect to a given quadric
Q will be denoted by EDQ(X).

3.2.6.2 The Euclidean Normal Bundle, Smooth Case

In this section we assume that X ⊂ P(V ) is a projective variety with codimension d. Later
we will see how to extend the results of this section to the general case.

Let P 1
X(1) be the sheaf of principal parts of X. There is a natural map

φ : V ∗X → P 1
X(1)

which is a surjection since X is smooth. We will denote the kernel by KX . The sheaf KX is
locally free with rank d.

The Euclidean normal bundle to X is defined to be:

EX := KX ⊕OX(−1)

By composing the embedding KX ↪→ V ∗X with the isomophism V ∗ ∼= V induced by Q we
obtain a map KX ↪→ VX . Together with the natural map OX(−1) ↪→ VX , we obtain a map

ψ : EX → VX

It is easy to see that for any point [x] ∈ X,

T[x](X)⊥ ∼= ψ(P(EX,[x])) ⊂ P(V )

Furthermore, the morphism ψ induces a rational map

P(EX) 99K P(V )

which is defined over X \Q.
The following lemma now follows immediately from the definition of the Euclidean dis-

tance degree.

Lemma 3.2.6.1. Let X ⊂ P(V ) be a smooth projective variety. Then, the Euclidean distance
degree of X is equal to the degree of the natural rational map

P(EX) 99K P(V )

3.2.6.3 The Modified Euclidean Normal Bundle

We now extend lemma 3.2.6.1 to the case of a general projective variety X ⊂ P(V ).
The idea is to modify X by a birational map in a way that allows us to extend KX |Xsm

to a vector bundle.
More formally, we will modify X by a Nash blowup in the following sense.
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Definition 3.2.6.2. Let X ⊂ P(V ) be a projective variety and let π : X → X be a birational
map which is an isomorphism over Xsm.

We say that X is a Nash Blowup of X if there exists a locally free quotient

V ∗
X
� P

on X that extends the surjection

π∗V ∗Xsm � π∗P 1
Xsm

We will call the bundle P the modified bundle of principle parts.

Remark 3.2.6.1. Let X ⊂ P(V ) be a variety of dimension d The map Gauss map

GX : X 99K G(d, V )

is the map defined by
V ∗X → P1(X)

which is a surjection on the smooth locus of X. Therefore, a Nash blowup of X is the same
thing as a birational extension of the Gauss map of X.

We can use the modified bundle of principle parts to define a modified Euclidean normal
bundle.

Definition 3.2.6.3. Let X ⊂ P(V ) be a projective variety, let X → X be a Nash blowup,
and let PX be the modified bundle of principal parts.

Let KX be the kernel of the surjection V ∗
X
→ PX . The modified Euclidean normal bundle

is defined to be
EX := KX ⊕OX(−1)

By composing the embedding K → V ∗
X

with the isomorphism V ∗ ∼= V induced by Q(v),
we obtain a natural map

ψQ : EX → VX

Suppose that π : X → X is a Nash blowup. We will now see that we can use the modified
Euclidean normal bundle EX to compute the Euclidean distance degree of X.

Lemma 3.2.6.2. Let X ⊂ P(V ) be a projective variety, let Q ⊂ P(V ) be a non-degenerate
quadric, let π : X → X be a Nash blowup and let EX be the modified Euclidean normal
bundle. Then, the Euclidean distance degree of X is equal to the degree of the rational map

edQ : P(EX) 99K P(V )

induced by the natural map ψQ.

Proof. Indeed, over the smooth locus of X, π is an isomorphism and E agrees with π∗EX .
So the following lemma follows immediately from lemma 3.2.6.1.
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3.2.6.4 For which quadrics is the ED degree maximal?

We can use lemma 3.2.6.2 to analyze the dependence of the ED degree on the quadric Q.
Set n = dim(V ).

Proposition 3.2.6.1. Let X ⊂ P(V ) be a projective variety, let X
π−→ X be a Nash blowup,

let EX be the modified Euclidean normal bundle of X, let L := OEX (1) denote the tautological
bundle associated to P(EX), and let B denote the base locus of

edQ : P(EX) 99K P(V )

Then,
deg(c(L)n ∩ s(B,P(EX)) ≥ 0

and ∑
i

δi(X)− ED(X) = deg(c(L)n ∩ s(B,P(EX))

Proof. By lemma 3.2.6.2 and proposition [12, Proposition 4.3],

ED(X) = deg(c1(L)n)− deg(c(L)n ∩ s(B,P(E))

By the construction of the Euclidean bundle, it’s easy to see that L is globally generated.
Therefore, by lemma 3.2.6.3 below,

deg(c(L)n ∩ s(B,P(EX)) ≥ 0

Furthermore, by the definition of the Segre class, we know that deg(s(EX)) = deg(c1(L)n),
and it is well known that deg(s(EX)) is equal to the sum of the polar classes δi(X) of X.

Lemma 3.2.6.3. Let X be a variety and set n := dimX. Let L be a line bundle on X and
let V ⊂ H0(X,L) be a subspace of it’s global sections such that dimV ≤ n. Let B ⊂ X be
the base locus of V .

If L|B is globally generated then

deg(c(L)ns(B,X)) ≥ 0

If in addition L|B is ample them

deg(c(L)ns(B,X)) > 0

Proof. Let Di := V (si). Since dimV ≤ n, there are sections s1, . . . , sn ∈ V such that

B =
n⋂
i=1

Di

Therefore, using the notation of [12, Chapter 9],

(D1 · . . . ·Dn ·X)B = c(L)ns(B,X)

The lemma now follows from [12, Theorem 12.2].
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Remark.

1. Note that the base locus B is determined by the quadric Q, but L is independent of
Q.

2. Proposition 3.2.6.1 gives an alternative proof of theorem [EDD ] which states that

ED(X) ≤
∑

δi(X)

3.3 The Multiview Variety

3.3.1 Introduction

Suppose that a collection of cameras are used to generate images of a scene. The problem
of triangulation is to deduce the world coordinates of an object from its position in each
of the camera images. If we assume that the image points are given with infinite precision,
then two cameras suffice to determine the world point. However, due to the many sources of
noise in real images such as pixelization and distortion, there typically will not be an exact
solution and we will instead try to find a world point whose picture is “as close as possible”
to the image points.

More precisely, suppose the cameras are C1, . . . , CN and the image points are p1, . . . , pN ∈
R2. The goal is to find a world point q ∈ R3 that minimizes the least squares error

error(q) =
N∑
i=1

(Ci(q)− pi)2.

One application is the problem of reconstructing the 3D structure of a tourist attraction
based on millions of online pictures. It is difficult to obtain the precise configuration of any
single camera, so it would not make sense to use only a small subset of them and disregard
the rest. A better approach is to solve an optimization problem which incorporates as many
of the cameras as possible. This technique was used in [1] to reconstruct the entire city of
Rome from two million online images.

Since the camera function Ci : R3 → R2 is not linear, the standard method for solving
the triangulation problem is to first find the critical points of error(q) (e.g, with gradient
descent), and then select the one with the smallest error. In order to gauge the difficulty
of this problem, it is important to be able to predict the number of critical points that we
expect to find for a given configuration of cameras.

The goal of this paper is to give an explicit expression for the number of critical points
of error(q) as a function of the number of cameras N . In fact, we compute this expression
for a variation of the problem in which we allow the world points to take complex values,
and we allow these points to be in the projective space P3

C as opposed to the affine space C3.
Our main result is that the number of critical points of error(q) is polynomial in the number
of cameras.
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Theorem 3.3.1.1. The number of critical points of error(q) on P3
C is equal to

p(N) = 6N3 − 15N2 + 11N − 4

where N ≥ 3 is the number of cameras.

By the argument in the proof of theorem 3.3.5.2, the polynomial p(N) is an upper bound
on the number of critical points in the complex affine version of the problem. One can solve
the original real version by first finding these complex affine points, and then discarding the
ones that are not in R3.

In [25], a detailed investigation of the Lagrange multiplier equations which define the
complex affine critical points is used to compute the number of such points for N ≤ 7.
Based on these results, it was conjectured in [8, Conjecture 3.4] that the number of points
should grow as the following polynomial:

q(N) =
9

2
N3 − 21

2
N2 + 8N − 4.

We note that our upper bound p(N) is fairly close.
In order to compute the number p(N), we take a slightly different perspective on the

function error(q). By combining the cameras Ci : R3 → R2 we obtain a rational map

φ : R3 → R2N .

After passing to the complex numbers and taking the projective closure we obtain a
rational map

φ : P3
C → P2N

C .

The image of this map is a three-dimensional variety MVN ⊂ P2N which is known as
the multiview variety. We can now interpret the error function error(q) as measuring the
distance between a point q ∈ P2N and MVN . With this formulation, the number of critical
points is known as the Euclidean distance degree of the variety MVN . The notion of ED
degree was introduced in [8], and the authors remark in [8, ex 3.3] that the triangulation
problem was their original motivation for this concept.

In particular, by using results from [8] we prove in section 3.3.5 that this number can be
computed in terms of the Chern-Mather class cM(MVN). In general, the Chern-Mather class
only provides an upper bound on the ED degree, but in the proof of theorem 3.3.5.2 we show
that this inequality can be promoted to an equality for reasons specific to the multiview
variety. One advantage of this approach is that it depends only on the geometric properties
of MVN , and not on the specific features of the defining equations. Another advantage is
that it reduces most of the difficulty to local calculations on MVN .

One common way of calculating the Chern-Mather class of a singular variety X is to first
find a resolution

X̃
f−→ X
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and then analyze the singularities of f in order to compare the Chern class c(X̃) to the
Chern-Mather class cM(X)

In our situation, it is natural to build a resolution of MVN by resolving the rational map
φ. In section 3.3.3, we construct such a resolution

φ̃ : P̃3 →MVN

and calculate its Chow ring and Chern class.
In order to compare the Chern class of P̃3 to the Chern-Mather class of MVN , we use

the theory of higher discriminants which was introduced in [21]. One aspect of this theory
is that it specifies which parts of the singular locus of X we need to understand in order to
relate c(X̃) to cM(X). A precise statement is given in proposition 3.3.4.1.

As we show in proposition 3.3.4.2, the higher discriminants of φ̃ are surprisingly nice.
Specifically, it turns out that in order to calculate cM(MVN), we only have to compute the
Euler obstruction of a single point x ∈MVN .

Moreover, in section 3.3.5.2 we show that after intersecting MVN with a hyperplane at x,
the resulting surface singularity (S, x) is taut. In particular, the Euler obstruction EuMVN (x)
is determined by the resolution graph of x in S. This allows us to use the enumerative
properties of P̃3 that are worked out in section 3.3.3 to compute EuMVN (x).

In the final section, we put these pieces together and obtain the polynomial p(N).

3.3.2 Definitions and notation

Let P be a 3×4 matrix with values in R. We consider each row l as an affine function on R3.
Explicitly, l sends a vector v = (x, y, z) to the dot product of l and (x, y, z, 1). We denote
these functions by f , g and h.

The matrix P defines a rational map φP : R3 99K R2:

v 7→ (f(v)/h(v), g(v)/h(v))

which corresponds to the operation of mapping the “world coordinates” R3 to the “image
coordinates” R2. In other words, it describes the process of taking a picture of the world
with a camera whose parameters are encoded in P .

It is not hard to prove that this description of a camera is equivalent to the pinhole
camera model. In particular, the camera has a position called the camera center and is
pointing in a certain direction. The plane defined by the camera center and direction is
called the principal plane. It turns out that with the above notation, the principal plane is
the plane defined by the ideal (h), and the camera center is the point defined by (f, g, h).
For the purposes of this paper, this observation will be taken as a definition.

Now, suppose that we have a collection of cameras P1, . . . , PN . By taking a picture of
the world with each of the cameras, we obtain a rational map:

φP1 × · · · × φPN : R3 99K R2 × · · · × R2 ∼= R2N
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This map clearly extends to the complex numbers, giving us a rational map from C3 99K
C2N . Furthermore, by clearing the denominators in the definition of the maps φPi we obtain
a rational map

φ : P3
C 99K P2N

C

defined by

φ ([x : y : z : w]) = (f1h2 . . . hN : g1h2 . . . hN : · · · : h1 . . . hN−1gN : h1 . . . hN) . (3.3.2.1)

The scheme theoretic image of this map is called the multiview variety associated to the
cameras P1, . . . , PN .

Example 3.3.2.1. Consider the following three cameras:

P1 =

1 0 0 −1
0 0 1 −1
0 1 0 0

 , P2 =

0 1 0 −1
0 0 1 −1
1 0 0 0

 , P3 =

1 0 0 −1
0 1 0 −1
0 0 1 0

 .

The associated rational map is

φ([x : y : z : w]) = [(x−w)xz : (z−w)xz : (y−w)yz : (z−w)yz : (x−w)xy : (y−w)xy : xyz]).

We say that a collection of cameras is in general position if the hyperplanes defined by
the linear functions {f1, g1, h1, . . . , fN , gN , hN} associated to the rows of the camera matrices
are in general position.

q1

H1
q2

H2

q3

H3

p123

L23

L12

L13

Figure 3.1: Schematic of three cameras

Finally, we will use the following notation throughout the paper (see figure 3.1). The
principal plane of the i-th camera will be denoted by Hi and the center of the i-th camera will
be denoted by qi. Also, we define Lij = Hi∩Hj for all 1 ≤ i < j ≤ N , and pijk = Hi∩Hj∩Hk

for all 1 ≤ i < j < k ≤ N .
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3.3.3 A resolution of the multiview variety

In this section we describe a resolution of the multiview variety associated to N ≥ 3 cameras
in general position. It is obtained as an iterated blow up along smooth centers. We then
apply standard theorems to compute a presentation of the Chow ring of the resolution, and
identify a couple of important ring elements.

Let P1, . . . , PN be camera matrices for a collection of N cameras in general position, and
let

φ : P3 99K P2N

be the corresponding rational map. We denote the associated multiview variety by MVN ⊂
P2N .

Proposition 3.3.3.1. The base locus B of φ is the reduced scheme supported on the union
of the camera centers q1, . . . , qN and the lines Lij = Hi ∩Hj for all 1 ≤ i < j ≤ N .

Proof. It can be seen directly from the equations of φ (equation 3.3.2.1) that B is supported
on the camera centers union the lines Lij. We will show that the scheme structure of B is
the reduced structure on this set. By a strategic choice of coordinates on P3, we can assume
that h1 = x, h2 = y and h3 = z.

We now analyze the scheme structure of B in a neighborhood of the point p123 = (x, y, z).
First of all, recall that the i-th camera contributes the two equations fi·

∏
j 6=i hj and gi·

∏
j 6=i hj

to the ideal of B.
By our genericity assumptions, all of the fi’s, all of the gi’s, and hi for i ≥ 4 are invertible

in some Zariski neighborhood of p123. This implies that in a neighborhood of p123, the ideal
of B has the form:

(xy, xz, yz).

Thus, the ideal defined by this scheme is reduced and supported on the coordinate axes.
The same argument shows that all of the lines Lij in the base locus have the reduced scheme
structure. A similar argument implies the points qi are reduced.

3.3.3.1 Constructing a resolution of φ

In this section we construct a resolution of MVN in two stages. First, we blow up P3 at the
points q1, . . . , qN and at the points pijk for all 1 ≤ i < j < k ≤ N . This gives us a map

b1 : Y1 → P3.

Let L̃ij ⊂ Y1 denote the proper transform of Lij. Note that these proper transforms are
disjoint lines in Y1.

For the second step, we blow up each of the lines L̃ij and obtain a resolution

b2 : Y2 → Y1
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Let us denote Y2 by P̃3, and denote the composition b1 ◦ b2 by π. Since the pullback of

the base locus π−1(B) is a Cartier divisor on P̃3, there exists a canonical map P̃3 ψ−→ BlBP3

which fits into the following diagram:

P̃3 ψ //

π

""

BlBP3

b
��

BlBφ

##
P3

φ
// P2N

were b is the blowup map and BlBφ is the resolution of the rational map φ.
Finally, we define φ̃ = BlBφ ◦ ψ. Since P̃3 is smooth, we thus obtain the following

resolution of MVN :

P̃3

π
��

φ̃

%%
P3

φ
//MVN ⊂ P2N

By an abuse of notation, we will sometimes think of φ̃ as a map to P2N , and other times
as a map to MVN .

3.3.3.2 The Chow ring of P̃3

Since P̃3 is an iterated blowup of P3 along smooth centers, we can use standard theorems to
compute its Chow ring. We will use a statement in [16] which we state here for convenience.

Theorem 3.3.3.1. [16, Appendix, Thm. 1] Let X
i−→ Y be a closed embedding of smooth

schemes. Let d denote the codimension of X in Y . Let Ỹ be the blowup of Y along X and
let X̃ denote the exceptional divisor. Suppose the map i∗ : A•(Y ) → A•(X) is surjective.
Then, A•(Ỹ ) is isomorphic to

A•(Y )[T ]

(P (T ), T · ker(i∗))

where P (T ) = PX/Y (T ) ∈ A•(Y )[T ] is a degree d polynomial whose constant term is [X],
and whose restriction to X is the Chern polynomial of NX/Y . In other words,

i∗PX/Y (T ) = T d + c1(NX/Y )T d−1 + · · ·+ cd−1(NX/Y )T + cd(NX/Y ).

The isomorphism is induced by the map f ∗ : A•(Y ) → A•(Ỹ ), and by sending −T to the
class of the exceptional divisor.

The polynomial PX/Y is called the Poincaré polynomial of X in Y .

By applying theorem 3.3.3.1 first to Y1
b1−→ P3 and then to P̃3 = Y2

b2−→ Y1 we find that
A•(P̃3) is a quotient of the polynomial algebra

A = Z[{h} ∪ {Qi}1≤i≤N ∪ {Pijk}1≤i<j<k≤N ∪ {Tij}1≤i<j≤N ].
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The meaning of the generators is as follows. Let q̃i ∈ P̃3 denote the exceptional divisor of
the camera center qi, let p̃ijk ∈ P̃3 the exceptional divisor of the point pijk, and let L̃ij ⊂ P̃3

the exceptional divisor of the line Lij.
Then, we have the following identities in A•(P̃3):

[q̃i] = −Qi, [p̃ijk] = −Pijk, [L̃ij] = −Tij.

In the next section, we will need to evaluate the degree map

deg : A3(P̃3)→ Z.

Since P̃3 is irreducible, A3(P̃3) has rank one. In addition, deg(h3) = 1. This means that
calculating the degree map is equivalent to expressing every monomial α ∈ A3(P̃3) as a
multiple of h3:

α = deg(α) · h3.

To simplify the calculation, note that product of two generators that correspond to
disjoint subschemes of P̃3 is zero. For example, Qi · Pjkl = 0 for all i, j, k and l.

Thus, the main difficulty is dealing with self intersections such as T 3
ij. In order to deal

with these, we will calculate the Poincaré polynomials of qi ∈ P3, pijk ∈ P3 and Lij ⊂ Y1.
By theorem 3.3.3.1, this will give us relations involving the self intersections, which in this
case turn out to suffice for the degree calculation.

Since qi ⊂ P3 is a point, its Poincaré polynomial is

Pqi/P3(Qi) = Q3
i + h3,

and similarly,
Ppijk/P3(Pijk) = P 3

ijk + h3.

Finally, note that Lij ⊂ Y1 is a line that passes through N − 2 blown up points. We
deduce from this that

PLij/Y1(Tij) = T 2
ij − 2(N − 3)hTij + h2 +

∑
k/∈{i,j}

P 2
ijk.

Putting this all together the relations defining A3(P̃3) are:

• h4

• h3 +Q3
i for all 1 ≤ i ≤ N

• h3 + P 3
ijk for all 1 ≤ i < j < k ≤ N

• hQi for all 1 ≤ i ≤ N

• hPijk for all 1 ≤ i < j < k ≤ N
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• PijkQl for all 1 ≤ l ≤ N and 1 ≤ i < j < k ≤ N

• T 2
ij − 2(N − 3)hTij + h2 +

∑
k/∈{i,j} P

2
ijk for all 1 ≤ i < j ≤ N

• Tij(h+ Pijk) for all 1 ≤ i < j ≤ N and k /∈ {i, j}

• Tij(Pijk − Pijl) for all 1 ≤ i < j ≤ N and k < l /∈ {i, j}

• TijPabc for all 1 ≤ i < j ≤ N and 1 ≤ a < b < c ≤ N such that {i, j} * {a, b, c}

• TijQk for all 1 ≤ i < j ≤ N and 1 ≤ k ≤ N .

• TijTkl for all 1 ≤ i < j ≤ N and 1 ≤ k < l ≤ N such that {i, j} 6= {k, l}.

3.3.3.3 The Chern class of the resolution

In this section we compute c(P̃3) as an element of A•(P̃3) and find its pushforward to P2N

(proposition 3.3.3.4). Our main tool will be the following proposition.

Proposition 3.3.3.2. [F ] Let Y be a smooth scheme and X ⊂ Y be a closed smooth
subscheme with codimension d. Consider the following blowup diagram.

X̃

g

��

j // Ỹ

f
��

X
i
// Y

Suppose that ck(NX/Y ) = i∗ck for some ck ∈ Ak(Y ), and that c(X) = i∗α for some α ∈
A•(Y ). Let η = c1(OỸ (X̃)). Then,

c(Ỹ )− f ∗c(Y ) = f ∗(α) · β

where

β = (1 + η)
d∑
i=0

(1− η)if ∗cd−i −
d∑
i=0

f ∗cd−i.

One takeaway of this proposition is that the Chern class of the blowup along a dis-
joint union of subvarieties is obtained by summing over contributions from the individual
components.

Proposition 3.3.3.3. The Chern class of the resolution P̃3 is equal to

c(P̃3) = (1 + h)4 +
∑

1≤i≤N

αi +
∑

1≤i<j≤N

βij +
∑

1≤i<j<k≤N

γijk
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where

αi = (1−Qi)(1 +Qi)
3 − 1,

βij = (1 + h)2 · [(1− Tij)((1 + Tij)(−2(N − 3)h) + (1 + Tij)
2)− (1− 2(N − 3)h)],

γijk = (1− Pijk)(1 + Pijk)
3 − 1.

Proof. Our strategy will be to use proposition 3.3.3.2 to compute the contributions to the
Chern class of each of the varieties that are blown up during the construction of P̃3.

We first apply proposition 3.3.3.2 to the situation where Y = P3 and X = qi for some
i. In this case, we can take c0 = 1, ck = 0 for k > 0 and α = 1. By proposition 3.3.3.2 the
blowup at qi will contribute

αi = (1−Qi)(1 +Qi)
3 − 1.

Similarly, γijk represents the contribution from the blowup of the point pijk.
Finally, we compute the contribution from the blowup along a line f : Lij ↪→ Y1. Since

Lij passes through N − 2 of the blown up points in Y1, a quick calculation shows that we
can take c0 = 1, c1 = −2(N − 3)h, and the rest to be zero. In addition, since Lij ∼= P1, we
can take α = (1 + h)2. This implies that the contribution coming from Lij is

βij = (1 + h)2 · [(1− Tij)((1− η)(−2(N − 3)h) + (1 + Tij)
2)− (1− 2(N − 3)h)].

We now compute the pullback of c1(OP2N (1)) in A•(P̃3) along the map φ̃.

Lemma 3.3.3.1. The pullback of c1(OP2N (1)) to P̃3 is

φ̃∗(c1(OP2N (1))) ∩ [P̃3] = N · h+ 2 ·
∑

1≤i<j<k≤N

Pijk +
∑

1≤i≤N

Qi +
∑

1≤i<j≤N

Tij.

Proof. It is well known (e.g [F ]) that if L is a line bundle on X, V ⊂ H0(X,L) is a linear
system and

X̃

π

��

f

""
X // P(V ∗)

is the induced resolution, then

f ∗O(1) = π∗(L)⊗O(−E)

where E ⊂ X̃ is the exceptional divisor.
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In our case, one can show by a local calculation that the preimage in P̃3 of the base locus
B has class

c1(O(−E)) ∩ [P̃3] = 2 ·
∑

1≤i<j<k≤N

Pijk +
∑

1≤i≤N

Qi +
∑

1≤i<j≤N

Tij,

so that c1(φ̃∗(O(1))) = c1(π∗O(N)) + c1(O(−E)) gives the stated expression.

We can now compute the pushforward φ̃∗c(P̃3) as an element of the Chow ring of P2N .

Proposition 3.3.3.4. The pushforward to P2N of c(P̃3) is

φ̃∗c(P̃3) =

(
N3 − (4 +N)

(
N

2

)
−N − 2

(
N

3

))
[P3] +

(
4N2 − 2

(
N

3

)
− 6

(
N

2

)
− 2N

)
[P2]

+

(
6N + (N − 4)

(
N

2

))
[P1] +

(
4 + 2N + 2

(
N

3

)
+ 2

(
N

2

))
[P0]

Proof. Since we have already calculated c(P̃3) ∈ A•(P̃3) and φ̃∗(c1(OP2N (1))) ∈ A•(P̃3), the
calculation of φ̃∗c(P̃3) is reduced to calculating the degrees of the intersections

π∗(c1(OP2N (1)))k ∩ c(P̃3)

for 0 ≤ k ≤ 3. Using the relations in A•(P̃3) that we described in section 3.3.3.2, the result
follows by a direct calculation.

3.3.4 Higher discriminants

Higher discriminants, introduced in [21], provide a framework in which to study the singu-
larities of a map. In particular, we will use them to understand how the Chern class of P̃3

computed above pushes forward along φ̃. We now recall the definitions from [21], and phrase
them in a way that will be easiest to use in our context.

Definition 3.3.4.1. Let f : Y → X be a map of smooth manifolds. The i-th higher
discriminant of the map f is the locus of points x ∈ X such that for every i− 1 dimensional
subspace V ⊂ TxX, there exists a point y ∈ f−1(x) such that:

〈V, f∗TyY 〉 6= TxX

We denote the i-th higher discriminant by ∆i(f).

For example, a point x ∈ X is in ∆1(f) if and only if it is a critical value of f . Indeed,
according to the definition this happens exactly when there is a point y ∈ f−1(x) whose
Jacobian

J(f)y : TyY → TxX
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is not surjective.
On the other extreme, x ∈ ∆dim(X)(f) if and only if for every codimension one subspace

V ⊂ TxX, there exists a point y ∈ f−1(x) that satisfies:

f∗TyY ⊂ V.

It is instructive to consider the blow down map: f : Y = BlpP2 → P2. For every point
y ∈ Ep = f−1(p), f∗TyY is one dimensional. This means that p ∈ ∆1(f). In addition, it is
not hard to see that for every one dimensional subspace V ⊂ TpP2, there is a point y ∈ Ep
such that f∗TyY = V . This implies that p ∈ ∆2(f).

Lemma 3.3.4.1. [21, Rem. 3] Let Y → X be a proper map of smooth manifolds. Then all
of the higher discriminants of f are closed, and we have the following stratification of X:

∆dim(X)(f) ⊂ · · · ⊂ ∆2(f) ⊂ ∆1(f) ⊂ X.

Furthermore,
codim(∆i(X)) ≥ i.

The significance of the higher discriminants is that they tell us which strata appear when
writing f∗1Y in the basis of Euler obstruction functions on X. For background on Euler
obstructions we recommend [20].

Proposition 3.3.4.1. [21, Cor. 3.3] Let f : Y → X be a proper map of complex varieties.
Let {∆i,α} be the codimension i components of ∆i(f). Then,

f∗1Y =
∑

ηi,αEu∆i,α

for some integers ηi,α.

3.3.4.1 Higher discriminants of the resolution φ̃

In this section we describe the higher discriminants of the map

φ̃ : P̃3 →MVN ⊂ P2N .

Since the definition of higher discriminants assumes that the source and target are smooth,
in this section we consider φ̃ as a map to P2N .

Let Xi
∼= P1 ⊂ MVN denote the image of the proper transform of the principal plane

of the i-th camera. The restriction of φ̃ to the complement of the preimage of the Xi’s is
an isomorphism, which means that the set theoretic singular locus of φ̃ is contained in the
disjoint union qiXi.

The following proposition describes the higher discriminants of φ̃.

Proposition 3.3.4.2. The higher discriminants of φ̃ are given as follows:
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• ∆2N−3(φ̃) = ∆2N−2(φ̃) = MVN

• ∆2N−1(φ̃) = qiXi

• ∆2N(φ̃) = ∅

To prove this proposition, we use the following lemma, which follows almost immediately
from the definition of the higher discriminants.

Lemma 3.3.4.2. Let f : Y → X be a map of smooth complex algebraic varieties. Let C ⊂ X
be a smooth curve. Suppose that the restriction of f to f−1(C) has no critical values. Then
C ∩∆dim(X) = ∅.

Proof. Since the restriction of f to f−1(C) has no critical values, for every point x ∈ C
and every point y ∈ f−1(x) the one dimensional space TxC ⊂ TxX is contained in f∗TyY .
Therefore, if V ⊂ TxX is any vector space complement to TxC, then f∗TyY is not contained
in V . By definition, this implies that x /∈ ∆dim(X)(X).

We apply this lemma to each of the P1’s Xi ⊂ P2N . Let f : Y → P1 ∼= Xi denote the
restriction of φ̃ to Xi. Then Y is isomorphic to the blowup of P2 at 1 +

(
N−1

2

)
points: q = qi

and pijk for j, k 6= i.
The map f is obtained as follows. First, let

g : BlqP2 → P1

be the resolution of the projection away from q. Then, let

h : Blq,pijk(P
2)→ Blp(P2)

be the blowup along all of the points pijk for j, k 6= i.
Finally, we claim that f ∼= g ◦h. In particular, f has no critical values. According to the

lemma, this proves proposition 3.3.4.2.

3.3.5 The Chern-Mather class of the multiview variety

In this section we compute the Chern-Mather class of MVN using the theory of higher
discriminants. We then use the result to determine the ED degree of MVN .

3.3.5.1 The basic setup

By propositions 3.3.4.1 and 3.3.4.2, there exists and integer α such that

φ̃∗(1P̃3) = EuMVN + α ·
N∑
i=1

EuXi . (3.3.5.1)
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At a general point x ∈ Xi, the Euler characteristic of the fiber is χ(φ̃−1(x)) = χ(P1) = 2 and
EuXi(x) = 1. This implies that

2 = EuMVN (x) + α⇒ α = 2− EuMVN (x).

For the moment, suppose we knew the Euler obstruction EuMVN (x). Then, by taking the
Chern-Schwartz-MacPherson class (see [20]) of both sides of equation 3.3.5.1 and recalling
that Xi

∼= P1 we obtain

φ̃∗(c(P̃3)) = cM(MVN) + (2− EuMVN (x))cM(P1). (3.3.5.2)

Since we have already calculated φ̃∗(c(P̃3)) for all N , this would give us the Chern-Mather
class of the multiview variety MVN .

3.3.5.2 Calculating EuMVN (x)

To compute EuMVN (x), first note that we can intersect MVN with a general hypersurface H
passing through x. As a result, we obtain a surface singularity:

x ∈ S = MVN ∩H.

By a well known theorem about Euler obstructions (see [6, Sec. 3]),

EuMVN (x) = EuS(x).

Now, suppose we restrict the resolution φ̃ to S.

Lemma 3.3.5.1. φ̃|S is a resolution of S such that the preimage of x is a rational curve
with self intersection −(N − 1).

Proof. Let E be the preimage of x. Note that E is the proper transform of a line in the
principal plane of the i-th camera. To compute the self intersection of E in S̃ = φ̃−1(S)
consider the following embeddings:

E
i
↪−→ S̃

j
↪−→ P̃3.

By the Whitney sum formula, we have

(ji)∗(c(NE/S̃)) = (ji)∗c(NE/P̃ 3) ∩ φ̃∗(OP2N (−1)).

As we have already computed φ̃∗(OP2N (1)) ∈ A•(P̃3), we just have to calculate (ji)∗c(NE/P̃ 3).

By intersecting E with the generators of A2(P̃3) we find

[E] = h2 +Q2
i + h

∑
j 6=i

Tij.
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Using this identity together with our presentation of A•(P̃3) gives

(ji)∗c(NE/P̃3) = [E]− (N − 1)h3.

Plugging everything into the Whitney sum formula shows that the degree of c(NE/S) is
−(N − 1), which completes the proof.

We now show that this self intersection number determines the Euler obstruction EuS(x).

Lemma 3.3.5.2. With x ∈ S the isolated singularity as above, EuS(x) = 3−N .

Proof. Recall ([19]) that a singularity germ (X,x) is taut if the analytic type of (X, x) is
determined by the resolution graph of some resolution of singularities. By [19, p. 2.2] the
vertex of the cone over the rational normal curve with degree n is taut. Let us denote this
singularity by (Xn, 0). Since this singularity has a resolution in which the exceptional divisor
is a P1 with self intersection −n, the resolution graph is a single vertex with weight (0,−n).
It follows that any singularity with this resolution graph is analytically equivalent to (Xn, 0).

In particular, by lemma 3.3.5.1, (S, x) is analytically equivalent to (XN−1, 0) so the Euler
obstruction EuS(x) is equal to the Euler obstruction EuXN−1

(0). By [4, p. 3.17], the latter
is equal to 3−N .

In conclusion, EuMVN (x) = 3−N , so equation 3.3.5.2 becomes

φ̃∗(c(P̃3)) = cM(MVN) + (N − 1)cM(P1)

By plugging in our calculation of φ̃∗(c(P̃3)) we obtain cM(MVN).

Theorem 3.3.5.1. The Chern-Mather class of the multiview variety of N cameras in general
position is∑3

i=0 c
M
i (MVN) where

• cM0 (MVN) = 4 + 4N − 2N2 + 2
(
N
3

)
+ 2
(
N
2

)
• cM1 (MVN) = 7N −N2 + (N − 4)

(
N
2

)
• cM2 (MVN) = 4N2 − 2

(
N
3

)
− 6
(
N
2

)
− 2N

• cM3 (MVN) = N3 − (4 +N)
(
N
2

)
−N − 2

(
N
3

)
and cMi (MVN) =

∫
cM(MVN) ∩ [P2N−i].
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3.3.5.3 The ED degree of the multiview variety

As a corollary of theorem 3.3.5.1, we can compute the Euclidean distance degree of MVN .

Theorem 3.3.5.2. The ED degree of the multiview variety of N ≥ 3 cameras in general
position is equal to

ED(MVN) = 6N3 − 15N2 + 11N − 4.

Proof. We can use the formula in [4] to express the sum of the polar degrees of MVN in
terms of the Chern-Mather classes. Using this formula gives:∑

δi(MVN) = 6N3 − 15N2 + 11N − 4.

Now, by the proof of [8, p. 6.11], if X is an affine cone, then the ED degree of Xv is equal
to the sum of the polar classes of Xv for a general translate Xv of X.

Suppose MVN is the multiview variety associated to the camera matrices P1, . . . , PN .
Recall that MVN ⊂ P2N is the projective closure of a subvariety of C2N which we will call
X. Let (v1, v2, . . . , v2N−1, v2N) ∈ C2N be a vector. We will now show that Xv is multiview
variety associated to a different collection of cameras. Indeed, let Mi be the matrix

Mi =

1 0 v2i−1

0 1 v2i

0 0 1


for 1 ≤ i ≤ N . Then, the variety Xv is the multiview variety associated to the cameras
Mi · Pi for 1 ≤ i ≤ N .

In conclusion, there exists a general configuration of cameras such that the ED degree of
the associated multiview variety MVN is equal to the sum of the polar classes of MVN .

3.4 Weighted Low Rank Approximation

3.4.1 Introduction

Many methods for extracting structure from data can be reduced to the problem of approx-
imating a given matrix with a low rank matrix. Examples include PCA, factor analysis, and
Latent Semantic Analysis which was explained in the introduction to chapter 3.

In the standard formulation of the problem, we are given an n × m matrix X and an
integer r << n,m and would like to find an n × m matrix M with rank at most r that
minimizes the loss function:

l(M) = ||M −X||2

where the norm on the right is the Frobenious norm.
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In another formulation, the goal is to find an n× r matrix U and r×m matrix V which
minimize the loss:

l(U, V ) = ||(U × V )−X||2

If one thinks of the rows of X as distinct measurements of m quantities, then the de-
composition U × V can be thought of as explaining the variation among the m observed
quantities using only r << m underlying factors.

The problem of weighted low rank approximation arrises when not all of the observation
in X should be given equal importance. In this case, in addition to the observation matrix
X we have an additional n×m weight matrix W and we would like to minimize the weighted
loss:

lW (M) = ||M −X||2W =
∑
i

∑
j

Wij((Mij −Xij)
2

with the constraint that rkM ≤ r.
An common example of such a situation is when some of the entires of X have not been

observed at all. In this case, W will be a binary matrix in which the entries corresponding
to unobserved data are set to 0 and the rest are set to 1.

Another situation is when the method used to collect the data returns both a value and
a confidence level. In this case, it is natural to weigh each entry in X proportionally to the
confidence. For example, consider the structure from motion problem in which we have a
collection of 2D observations of n points on an object from m cameras and we would like
to recover the 3D position and orientation of the object. This problem can be reduced to
a rank 4 approximation problem for the 2n ×m matrix X whose i column is equal to the
conncatentation of the image coordinates of all of the points using the j-th camera [15]. In
this case, some entries of X will be missing due to occlusion. Furthermore, if the image points
are obtained by running object recognition software, then not all points will be identified
with the same degree of accuracy.

We now consider the complexity of WLRA.
A first result in this direction is the Eckart-Young theorem which implies that when all

of the entries of W are equal to 1, the problem can be solved by finding a singular value
decomposition. This implies that this version of WLRA can be solved in polynomial time.
It is fairly easy to see that the same is true more generally when W has rank 1.

Conversally, [13] show that the general weighted rank 1 approximation problem is NP-
hard. Moreover, they show that even finding a rank one X for which lW (X) is less than a
perscribed constant is NP-hard.

This raises the question which motivates this section

Question. How does the difficulty of the weighted low rank approximation problem depend
on the weight matrix W?

In keeping with the perspective of this chapter, we formalize this question in terms of an
ED degree calculation.

Let V := Cn ⊗ Cn be the vector space of n × n matrices and let Mr ⊂ P(V ) denote the
projective variety of rank r matrices.
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For a given weight matrix W with no zero entries, we define an associated quadratic form
QW on V by

QW (N) =
∑

1≤i≤n

∑
1≤j≤n

Wi,j ·Ni,j

Note that we can express the number of critical points of lW in terms of the Euclidean
distance degree of Mr with respect to the quadratic form QW . We can therefore rephrase
our motivating question as follows:

Question 3.4.1.1. How does the Euclidean distance degree of Mr with respect to QW depend
on the weight matrix W?

The dichotomy of rank one W versus generic W persists in this version of the question as
well. The Eckart-Young theorem implies that when rkW = 1, weighted Euclidean distance
function from a generic point in V has

(
n
r

)
critical points on Mr. In particular, for r = 1,

the number of critical points grows linearly with n.
However, when W is generic theorem [22, Theorem 3.4] shows that the number of critical

points grows superlinearly.
Our main theorem in this section provides an explicit classification of the weight matrices

for which the rank one approximation problem has the largest number of critical points.

Theorem 3.4.1.1. Let M1 denote the variety of n × n matrices with rank 1. Let W be an
n× n matrix which defines a non-degenerate quadratic form on Cn ⊗ Cn.

Then,

EDW (M1) ≤
∑

δi(X)

and equality holds if and only if all of the minors of W have maximal rank.

One can think of theorem 3.4.1 as providing an explicit characterization of the quadrics
which are generic in the context of the ED degree of M1.

The remainder of this section will proceed as follows. In 3.4.2 we construct an explicit
Nash blowup of the variety of rank at most r matrices.

In 3.4.3 we’ll use this to get a handle on the Euclidean normal bundle which will allow us
to compute the base locus that shows up in proposition 3.2.6.1. Finally, we prove theorem
by finding a necessary and sufficient condition for the base locus to be empty.

3.4.2 A Nash Blowup of Mr

In order to analyze the Euclidean distance degree of Mr ⊂ P(V ) with respect to a quadric
QW , it will be useful to have a reasonable Nash blowup of Mr so that we can take advantage
of lemma 3.2.6.2.

We will first define the blowup M r → M , and we will then define a map M r →
G(dim(Mr), V ) that extends the Gauss map GMr .

To motivate the construction, recall that one can define the Gauss map

GMr : Mr 99K G(dim(Mr), V )
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as follows. Let A ∈Mr be a matrix with maximal rank. Then,

GMr(A) := [{B|B(ker(A)) ⊂ imA} ⊂ V ] ∈ G(dim(Mr), V )

With this in mind, we define the variety M r as:

M r := {(L,A,N)|L ⊂ ker(A), im(A) ⊂ N} ⊂ G(n− r, n)×Mr ×G(r, n)

The variety M r fits into the following diagram

M r

π

��

Gr

&&
Mr

GMr // G(dim(Mr), V )

where the map Gr is defined as

Gr((L,A,N)) := [{B|B(L) ⊂ N} ⊂ V ] ∈ G(dim(Mr), V )

From our previous description of GMr it is clear that the diagram commutes. This shows
that M r is indeed a Nash blowup of Mr.

3.4.3 Weighted rank 1 approximation

We will now consider our motivating question 3.4.1.1 in the case where r = 1. Our con-
tribution here will be to identify the weight matrices W for which the ED degree of M1 is
maximal.

It will be easier to analyze the r = n − 1 case, and deduce the r = 1 case by a duality
theorem that we’ll discuss later.

To this end, we will first describe the modified Euclidean normal bundle EMn−1
on Mn−1.

We will find weight matrices W for which the base locus of

edW : P(EMn−1
) 99K P(V )

is empty. It will then follow from proposition 3.2.6.1 that ED(X) is maximal for these weight
matrices. Finally, we use results from [12, Chapter 12] to prove that the ED degree is not
maximal if the base locus is non-empty.

3.4.3.1 The Base Locus of edW

Let EMn−1
denote the modified Euclidean normal bundle of Mn−1, which is a vector bundle

on Mn−1. In this case,
Mn−1 ⊂ P1 ×Mn−1 ×G(n− 1, Cn)
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In what follows, if N ⊂ Cn is an n − 1 dimensional subspace then we will use αN to
denote the column vector defining a linear function vanishing on N which is defined up to
a scalar. Similarly, if L ⊂ Cn is a one dimensional subspace then vL will denote a column
vector in L, also defined up to a scalar.

In addition, we will use � to denote the element-wise product of two matrices.

Proposition 3.4.3.1. Let
f : P(EMn−1

)→Mn−1

denote the natural projection. Let B denote the base locus of the map

edW : P(EMn−1
) 99K P(V )

.
A point p = (L,A,N) ∈Mn−1 is in f(B) iff

A ∼ W�−1 � (vL(αN)T )

Proof. Recall that the Nash blowup Mn−1 comes with a modified bundle of principle parts
PMn−1

and a surjection
V ∗
Mn−1

� PMn−1

By our construction of Mn−1, we have a natural inclusion

P∗
Mn−1

⊂ VMn−1

where at a point p = (L,A,N),

P∗
Mn−1

|p = {B|B(L) ⊂ N} ⊂ VMn−1

The surjection V ∗
Mn−1

� PMn−1
is simply the dual of this inclusion.

From this it is easy to see that at a point p, the kernel

K ↪→ V ∗
Mn−1

is equal to the span of the n× n matrix vL(αN)T .
Finally, following the construction in section 3.2.6.3, we see that at a point p = (L,A,N),

the image of the map
ψ : E → VMn−1

is equal to the subspace of V spanned by W�−1 � (vL(αN)T ) and A. From this we see that
p will be in f(B) iff W�−1 � (vL(αN)T ) is a scalar multiple of A.
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3.4.3.2 Generic Rank n− 1 Approximation

We will now use proposition 3.4.3.1 to find a set of weight matrices W for which ED(Mn−1)
is maximal. This will follow from the following lemma in linear algebra.

Lemma 3.4.3.1. Let M be an n×n matrix with rank r. Let a and b be column vectors such
that

aTM = Mb = 0

Set N = abT and let W be an n× n matrix.
If W �N = M then there exists an r + 1× r + 1 minor m of M such that

rk(m(W )) = rk(m(M))

Proof. Let Dv denote the diagonal matrix with diagonal v. Then by the assumption

W �N = DaWDb

Now, suppose for contradiction that a1 = · · · = an−r = 0. Then, since aTM = 0, the last
r rows of M are linearly dependent which means that the first n − r rows of M are not all
0. But in this case, the first n − r rows of N , and therefore also W � N , are equal to zero
which contradicts the assumption that W � N = M . We conclude that there exist r + 1
indices i1, . . . , ir+1 such that aik 6= 0.

Similarly, there exist r + 1 indices j1, . . . , jr+1 such that bjk 6= 0.
Now, let m denote the minors with rows i1, . . . , ir+1 and columns j1, . . . , jr+1. For ease

of notation, we define a′ = [ai1 , . . . , air+1 ]
T and b′ = [bj1 , . . . , bjr+1 ]

T .
Then, as Da′ and Db′ are invertible we have

m(W ) = D−1
a′ m(M)D−1

b′

which concludes the proof.

Lemma 3.4.3.2. Let W be an n× n matrix. The following conditions are equivalent.

1. There exists an n× n matrix M with rank r and column vectors a and b such that

aTM = Mb = 0

and W � (abT ) = M .

2. There exists an r + 1× r + 1 minor or W with rank r.

Proof. The direction (1⇒ 2) follows from lemma 3.4.3.1.
We will now prove (2⇒ 1). Without loss of generality, suppose that the top left r+1×r+1

minor of W has rank r. Let u = [u1, . . . , ur+1, 0, . . . , 0]T and v = [v1, . . . , vr+1, 0, . . . , 0]T

satisfy
uTW = Wv = 0
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Choose a and b such that

a� a = u

b� b = v

Then, it is easy to see that M := W � (aT b) and the column vectors a and b satisfy the
conditions of 1.

The following proposition now follows immediately from proposition 3.4.3.1 and lemma
3.4.3.2.

Proposition 3.4.3.2. Let EMn−1
be the modified Euclidean normal bundle of Mn−1. Let W

be an n× n matrix representing a non-degenerate quadratic form on V = Cn ⊗ Cn.
Then, the base locus of

edW : P(EMn−1
) 99K P(V )

is empty if and only if all of the minors of W�−1 have maximal rank.

We can now prove an r = n− 1 version of theorem 3.4.1.

Theorem 3.4.3.1. Let Mn−1 denote the variety of n× n matrices with rank n− 1. Let W
be an n× n matrix which defines a non-degenerate quadratic form on Cn ⊗ Cn.

Then,

EDW (Mn−1) ≤
∑

δi(Mn−1)

and equality holds if and only if all of the minors of W�−1 have maximal rank.

Proof. Let L denote the tautological bundle OEMn−1
(1) and let B denote the base locus of

edW .
By proposition 3.2.6.1,∑

i

δi(Mn−1)− ED(Mn−1) = deg(c(L)n ∩ s(B,P(EMn−1
))

so EDW (Mn−1) =
∑
δi(Mn−1) iff

α := deg(c(L)n ∩ s(B,P(EMn−1
)) = 0.

If we assume that all of the minors of W have maximal rank, then by proposition 3.4.3.2,
B is empty and so α = 0.

For the other direction, we need to show that if B is not empty then α > 0. By lemma
3.2.6.3, it suffices to prove that L|B is globally generated and ample. By definition, this is
equivalent to showing that E∗

Mn−1
has those properties.
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To show this, we recall the definition of EMn−1
. For ease of notation, let X := Mn−1.

Then,
EX = KX ⊕OX(−1)

It is clear that OX(−1)∗ is globally generated and ample, so we will focus on K∗X . The
canonical surjection

V ∗X � K∗X
shows that K∗X is globally generated.

To show that K∗X |B is ample, we will show that it can be used to define a closed embedding
of B into projective space. First of all, we can use the standard identification G(n−1, Cn) ∼=
Pn to embed Mn−1 into a product of projective spaces as follows:

i : Mn−1 ↪→ P1 ×Mn−1 × P1

. Furthermore, let π13 denote the projection from P1 ×Mn−1 × P1 onto P1 × P1. Under this
identification,

K∗X ∼= (π ◦ i)∗O(1, 1)

. Finally, the restriction of π ◦ i to B is a closed embedding. This concludes the proof that
K∗ is ample.

3.4.3.3 Generic Rank 1 Approximation

In this section we finally prove theorem 3.4.1. In fact, it follows immediately from theorem
3.4.3.1 and the following duality theorem.

Proposition 3.4.3.3. [22, Proposition 2.2] Let U be a generic n × n matrix, let W be a
weight matrix and fix an integer 1 ≤ r ≤ n. There there is a bijection between the critical
points of

• Q(X) =
∑

i,j wij(xij − uij)2 on the affine variety of corank r matrices X

• Qdual(Y ) =
∑

i,j
1
wij

(yij − wijuij) on the affine variety of rank r matrices Y .
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