
UC Irvine
ICS Technical Reports

Title
Requirements specification for process-control systems

Permalink
https://escholarship.org/uc/item/8dg859ns

Authors
Leveson, Nancy G.
Heimdahl, Mats P. E.
Hildreth, Holly
et al.

Publication Date
1992-11-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8dg859ns
https://escholarship.org/uc/item/8dg859ns#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

_!lequirements Specification for
Process-Control System!

Nancy G. Leveson
::;::;- :;:;--

Mats P.E. Heimdahl
Holly Hildreth
Jon D. Reese

Technical Report 92-106

Submitted for journal publication.

/f IU.// /(/[S

z
0f 1
t 3
>i o,? J---/rJG

c. v

Requirements Specification for Process-Control
Systems*

Nancy G. Leveson
Mats P.E. Heimdahl

Holly Hildreth
Jon D. Reese

Information and Computer Science Dept.
University of California, Irvine

Irvine, CA 92717

November 10, 1992

Abstract

This paper describes an approach to writing requirements specifications for process­
control systems, a specification language that supports this approach, and an example
application of the approach and the language on an industrial aircraft collision avoid­
ance system (TCAS II) . The example specification demonstrates (1) the practicality
of writing a formal requirements specification for a complex, process-control system
and (2) the feasibility of building a formal model of a system using a specification
language that is readable and reviewable by applications experts who are not com­
puter scientists or mathematicians. Some lessons learned in the process of this work,
which are applicable both to forward and reverse engineering, are also presented.

Index Terms. process control, reactive systems, requirements, blackbox specifi­
cations, formal methods, safety analysis , reverse engineering

Introduction

Embedded software is part of a larger system and has a primary purpose of providing at
least partial control of the system or process in which it is embedded. Most such software

*This work has been partially supported by NSF Grant CCR-9006279, NASA Grant NAG-1-668, and
NSF CER Grant DCR-8521398.

1

is real-time and reactive (i.e., required to interact with and respond to its environment
in a timely fashion during execution). A high cost is associated with determining the
correctness of such software and a still higher cost associated with its incorrectness. The
requirements for complex, embedded software systems are particularly difficult to specify
and validate.

The very first stages of software development have the fewest formal procedures to aid
the analyst, and this is also the time at which the most costly errors are introduced in
terms of being the last and most difficult to find. Most software requirements validation
techniques involve building prototypes or executable specifications or waiting until the
software is constructed and then testing the whole system. Although certainly much can
be learned by "testing" a specification through executing it, or a prototype built from
it, the confidence that the system will have certain properties is limited to the test cases
that were executed. Our approach is to model the required software blackbox behavior
along with the assumptions about the behavior of the other components of the system, and
then to apply formal analysis procedures to the model in order to ensure that the software
requirements model satisfies required system functional goals and constraints, including
safety.

Several different safety analysis procedures have been developed by members of the
Irvine Safety Research Group [LH83, LS87, LHH+91, JLHM90], but they work on diverse
models and have not been validated on real software. Our long-term goal is to develop a
coherent, complete, and practical methodology for building safety-critical systems. This
paper concentrates on the earliest part of the methodology, i.e., requirements specification,
and demonstrates it on a real system.

Most of the information to be included in our system requirements model already is
collected by system engineers or software engineers. However, the information is commonly
scattered throughout the system documentation, is usually informally specified, and is not
in a form amenable to formal analysis. In addition, the information is often specified using
multiple different and incompatible models within the same specification (e.g., Statemate
[HLN+90], Hatley /Pirbhai [HP87], Ward/Mellor [WM85]). For example, Statemate uses
Statecharts, Activity Charts, and Structure Charts; Hatley /Pirbhai uses data flow dia­
grams, control flow diagrams, control specifications (finite state machines), and a process
activation table. ·

Our approach is to build one state-based model that includes all of the information
needed to describe the black-box behavior of the components of the system (including
but not only the computer) and the interface between the components and no more. By
having all the requirements information in one model, formal analysis of the entire system ,
becomes feasible and redundancy is reduced . The latter reduces the difficulty of changing
the specification without introducing inconsistency.

Furthermore, a black box model separates the specification of requirements from design,
simplifying the model and making the requirements model easier to construct, review, and

2

formally analyze. Most software requirements specification languages include software
design information; the A-7 specification [Hen80] is a notable exception. The modeling
language described in this paper differs from the A- 7 language, however, in the use of
higher-level, global abstractions of the entire system and in the goal of providing formal
system analysis procedures to operate on the underlying formal model.

Finally, the language defined here has analysis goals similar to the ProCoS system
[RR91] but uses state machines whereas ProCoS uses process algebras. Consequently, the
analysis procedures applicable to our model are related to ongoing work in automated state
space analysis [Hol91, CES86] while the ProCoS approach relies on traditional methods of
theorem proving to analyze their models. Our approach is also similar to some recent work
by Parnas [PW89] which also uses tables and state machines but uses trace semantics for
analysis.

The most important result of our research is verification that building a formal require­
ments model for a complex process control system is possible and that such a model can be
readable and reviewable by non-computer scientists. Few examples exist of the application
of formal methods to a complex, reactive system requirements specification. In order to
evaluate our safety analysis ideas , we needed to build a model of a realistic system to use
as a test bed. This paper describes the resulting formal system modeling method and
its use to specify the system requirements of an aircraft collision avoidance system called
TCAS II. In the midst of this effort , our model was adopted as the official requirements
specification for TCAS II, so the research effort and the resulting model had to be indus­
trial quality. The unique part of this effort, at least in terms of university research, is that
the specification language was developed with continual feedback and evaluation by FAA
employees, airframe manufacturers, TCAS manufacturers , airline representatives, pilots,
and other external reviewers. Most of the reviewers were not software engineers or even
computer scientists; this helped in producing a specification language that is easily learned
and used by application experts.

Although we describe a particular language that we used for this model, the details
of the actual language features are less important than the other results of the research:
(1) the general criteria that any such modeling method and language must satisfy, (2) the
type of information that must be included in such a system requirements model in order
for it to be analyzable for safety, and (3) the required features of such a language in order
to make it possible to model real systems and to be usable by application experts. All
of these are described in this paper. Future papers will describe the actual application of
safety analysis techniques to the model.

Our results have both forward engineering and reverse engineering implications. A
detailed design specification written in low-level pseudocode (about 300 pages long) already
existed for most of our application. Other parts, however, had only an English language
description. Some of the lessons learned about reverse engineering are described in this
paper.

3

The next section briefly describes the application, a collision avoidance system called
TCAS II. This is followed by an overview of the specification approach and descriptions of
both the language and the system requirements specification.

The Traffic Alert and Collision Avoidance System (TCAS)

A real aircraft collision avoidance system (called TCAS II) was used as a testbed to provide
immediate evaluation and feedback for our modeling and analysis ideas. TCAS II has
been described by the head of the program at the FAA as the most complex system to be
incorporated into the avionics of commercial aircraft. It therefore provides a challenging
experimental application of formal methods to a real system.

TCAS is a family of airborne devices that function independently of the ground-based
air traffic control (ATC) system to provide collision avoidance protection for a broad spec­
trum of aircraft types (commercial aircraft and larger commuter and business aircraft).
TCAS I provides proximity warning (traffic advisories) to assist the pilot in the visual
sighting of intruder aircraft and is intended for use by smaller commuter and general avi­
ation aircraft. TCAS II provides traffic advisories and recommended escape maneuvers
(resolution advisories) in a vertical direction to avoid conflicting aircraft. TCAS III will
add resolution advisories in a horizontal direction.

Development of aircraft collision avoidance systems started over 20 years ago. In 1981,
the FAA decided to develop and implement TCAS II, and a Minimal Operational Perfor­
mance Standards (MOPS) document was produced using a combination of English and
pseudocode. Since its adoption in 1983, the MOPS has been extensively revised six times
to fix errors or improve the specification. In 1989, the FAA required that TCAS II be
installed on commercial aircraft with more than 30 seats by December 1991 and on com­
mercial aircraft with 10 to 30 seats by 1995. The FAA relaxed the first deadline to require
installation on half the commercial aircraft fleet by 1991 and on the remainder by 1993.

The MOPS document contains information that we would classify as system design (in
English) and software design (in English and pseudocode). Because of perceived deficiencies
in this document and the difficulty of FAA certification without real system or software
requirements, an effort was begun in 1990 to provide a requirements document for TCAS
II. An industry /government committee began to write a fairly standard English language
specification while we started an experimental formal specification and safety analysis. Our
specification was subsequently adopted by the committee as the official TCAS requirements
specification and the other specification effort was abandoned.

Specifying Requirements for Process Control Systems

A system is a set of components working together to achieve some common purpose or
objective. The requirements specification language being described in this paper was de-

4

..

,---
Disturbances

D
i

Process
~ I ~

Input System

Is
~

F;. Syste
Manipulated Variables Controlled Variables

v v
m c

~

Actuators Sensors

~ ~

Controller

Output ~
....

Input
0 1 I

Command Signal
c

Figure 1: A basic process control model

signed for process control systems, where the goal is to maintain a particular relationship
or function F over time (t) between the input to the system (Is) and the output from the
system (Os) in the face of disturbances ('D) in the process (see Figure 1). These relation­
ships will involve fundamental chemical, thermal, mechanical, aerodynamic or other laws
as embodied within the nature and construction of the system.

Besides the basic objective or function implemented by the process, these types of
systems may also have constraints on their operating conditions. Constraints may be
regarded as boundaries that define the range of conditions within which the system may
operate. Another way of thinking about constraints is that they limit the set of acceptable
designs with which the objectives may be achieved.

Constraints may arise from several sources , including quality considerations, physical
limitations and equipment capacities (e.g., avoiding equipment overload in order to reduce
maintenance), process characteristics (e.g. , limiting process variables to minimize produc­
tion of byproducts), and safety (i .e., avoiding hazardous states). In some systems, the
functional goal is to maintain safety, so safety is part of the overall objective as well as
potentially part of the constraints.

As an example, for an airborne collision avoidance system like TCAS, Ia can be viewed
as all aircraft that fly into the airspace of the TCAS-equipped aircraft and 0 6 as all
aircraft that fly out of the airspace of the TCAS aircraft. The goal of the TCAS system is

5

m Output

Os

to maintain a minimum separation function between the aircraft. Constraints include such
things as not interfering with the ground-based air traffic control (ATC) system, operating
with an acceptably low level of unwanted alarms (advisories to the pilot), and minimizing
the amount of deviation of the aircraft from their ATC-assigned tracks.

Note that the goals of a system are just that, i.e., they may not be entirely achievable.
Although the goal of TCAS II is to eliminate near-misses (i.e., aircraft violating minimum
separation standards), this cannot be a requirement since it is not possible to achieve: It
is, however, a legitimate goal. Another way of stating this goal is to minimize the number
of near-misses. The latter, however, is not a measurable goal since its achievement cannot
be determined. Another possibility that theoretically can be evaluated is to reduce near­
misses. The amount of reduction that is actually achieved then becomes a criterion for
whether the system can be justified based on cost and possible increased risk with respect
to other hazards in the system. The point here is that goals are different from requirements
because the goals may not be achievable. The actual required and achieved behavior can
be evaluated with respect to the goals and constraints to determine whether the system,
as specified and designed, is acceptable.

Early in the development process, tradeoffs between functional goals and constraints ·
that are conflicting or not completely achievable must be identified and resolved according
to the priorities assigned to them. Identifying these conflicts and resolving them is a major
task in both the system and software requirements analysis process. A second task is
ensuring that the specified (or required) behavior of the process-control system will achieve
the goals to an acceptable degree while satisfying the constraints. Semantic analysis of our
system requirements model can potentially address both of these elements of correctness
since it includes a model of the behavior of all the components of the system.

A typical process-control system can be divided into four types of components: the
process, sensors, actuators, and controller.

The behavior of the process is monitored through controlled variables (Ve) and controlled
by manipulated variables (Vm)· The process can be described by the process function Fp,
a mapping from Vm x Is x 'D x t -+ (] 3 x Ve· Unfortunately, it is usually difficult to
derive a mathematical model of the process due to the fact that most processes are highly
nonlinear (i.e., the process characteristics depend on the level of operation), and, even at
a constant operating level, the process characteristics change with time (i.e., the process is
nonstationary). Any attempt to provide a mathematical expression describing the process
involves simplifying assumptions and therefore will be imperfect. Some of the process
characteristics, however, can be described, and this description can be used to derive and
validate the control function.

Sensors are used to monitor the actual behavior of the process by measuring the con­
trolled variables. For example, a thermometer may measure the temperature of a solvent
in a chemical process or a barometric altimeter may measure altitude of an aircraft above
sea level. The sensor function Fs maps Ve x t -+I.

6

Actuators are devices designed to manipulate the behavior of the process, e.g. valves
controlling the flow of a fluid or a pilot changing the direction and speed of an aircraft.
The actuators physically execute commands issued by the controller in order to change
the manipulated variables. The functionality of the actuators is described by the actuator
function FA mapping 0 x t --t Vm.

The controller is an analog or digital device used to implement the control function.
The functional behavior of the controller is described by a control function (Fe) mapping
Ix C x t --t 0, where C denotes external command signals. The process may change state
not only through internal conditions and through the manipulated variables, but also by
disturbances ('D) that are not subject to adjustment and control by the controller. The
general control problem is to adjust the manipulated variables so as to achieve the system
goals despite disturbances .

This model is an abstraction - responsibility for implementing the control function
may actually be distributed among several components including analog devices, digital
computers, and humans. Furthermore, the controller may have only partial control over
the process - state changes in the process may occur due to internal conditions in the
process or because of external disturbances or the actuators may not perform as expected.
For example, the pilot in a TCAS system may not follow the resolution advisory (escape
maneuver) issued by the TCAS controller.

The purpose of the control-system requirements specification is to define the system
goals and constraints, the function Fe (i.e., the required blackbox behavior of the con­
troller), and the assumptions about the other components of the process-control loop that
(1) the implementors need to know in order to correctly implement the control function
and (2) the system engineers and analysts need to know in order to validate the model
against the system goals and constraints.

A blackbox, behavioral specification of the function Fe uses only:

(1) the current process state inferred from measurements of the controlled variables,
(2) past process states that were measured and inferred,
(3) past corrective actions output from the controller, and
(4) prediction of future states of the controlled process

to generate the corrective actions (or current outputs) needed to maintain F.
Information about the process state has to be inferred from measurements. For example,

in TCAS, relative range positions of other aircraft are computed based on round-trip
message propagation time. Theoretically, the function Fe can be defined using only the
true values of the controlled variables or component states (e.g., true aircraft positions).
However, at any time, the controller has only measured values of the component states
(which may be subject to time lags1 or measurement inaccuracies), and the controller

1Time lags are delays in the system caused by the reaction time of the sensors, actuators, and the
actual process.

7

Desired

process

control

behavior

------------- --------- d4 ', --- ' ~

Black-box Specification of

specification of controller design
~

behavior of based on
di d2 d3

controller functional

decomposition

--- ---
------ d

----------~---
Figure 2: Semantic distance

Implementation

--.-

, , fr

must use these measured values to infer the true conditions in the process and possibly
to output corrective actions (0) to maintain F. In the TCAS example, sensors include
on-board devices such as altimeters that provide measured altitude (not necessarily true
altitude) and antennas for communicating with other aircraft. The primary TCAS actuator
is the pilot, who may or may not respond to system advisories. Pilot response delays are
important time lags that must be considered in designing the control function. Time lags
in the actual process may be caused by aircraft performance limitations.

We specify the blackbox behavior of the controller (i.e., the function Fe to be computed
by the controller) using a state machine model. The outputs of the controller are specified
with respect to state changes in the model as information is received about the current state
of the controlled process via the controlled variables Ve. In the TCAS example, the control
function is specified using a model of the state of all other aircraft within the host aircraft's
airspace, the state of the on-board components of its own aircraft (e.g., altimeters, aircraft
discretes, cockpit display), and the state of ground-based radar stations in the vicinity.
Information about this state is received from the sensors (e.g., antennas and transponders)
and commands are sent to the actuators (e.g., the pilot, antennas, and transponders).

The state machine model of the control function Fe is iteratively fine tuned during
requirements specification development to mimic the current understanding of the real­
world process and the required controller behavior. The state machine model is essentially
an abstraction of the behavior of the system function F since it models all the relevant
aspects of the components of the process control loop. Errors in the state machine model
represent mismatches between this model and the desired behavior of the control loop,
including the process. We believe that in order to maximize the application expert's
ability to find errors in the requirements specification, the semantic distance (d1 in Figure
2) between their understanding of the desired process control behavior and the specification
of that behavior must be minimized.

8

The requirements review process involves validating the relationship between changes
in the real-world process and the specified changes and response in the control function
model. Therefore, reviewability will be enhanced if the requirements specification explicitly
shows this relationship. Moreover, when the description of the required controller behavior
includes more than just its black box behavior (e.g., includes software design information
and functional decomposition), then the semantic distance (d4) between the process control
behavior and the specified controller behavior increases, and the relationship between them
becomes more difficult to validate.

TCAS application experts who know very little or nothing about computers or software
have been able to read our requirements model of TCAS and find errors in it. In addition, a
formal black box, behavioral model of the requirements makes possible (1) a mathematical
verification of various desired properties such as consistency of the control model with the
system goals and constraints, (2) the generation of standard system engineering and system
safety analyses such as fault trees [Mel91] and (3) the application of formal correctness and
robustness criteria to the specification model [JLHM90].

Although we believe that this type of blackbox specification is easier for application
experts to review and easier to validate using formal analysis procedures, the semantic
distance (d5) between the requirements and an implementation based on functional de­
composition is increased. To alleviate this problem, the specification step can be divided
into separate requirements and design specifications or special software designs that result
naturally from this type of blackbox specification may be used. Given the error-proneness
of the requirements specification step and the few tools available to find these errors, the use
of pure black box specifications (as advocated here and by Parnas et.al. [Hen80]) appears
justified.

Specification Language

The first step in designing a specification language or modeling method is to determine
goals and criteria for the language. This section describes general design criteria for such
a requirements specification language and the language actually used to specify TCAS.

Design Criteria for the Specification Language

We identified several criteria that were important with respect to our goals and that we
believe apply in general to this type of specification language.

The first criterion, as described in the previous section, is that the language specify
blackbox behavior of the software only and not include internal design information. Be­
cause of the safety and other types of formal analysis we planned to perform on the model,
it also had to be based on a state machine as the underlying model; this is obviously not
a requirement for all languages.

9

Two other criteria are minimality and simplicity. Minimality implies that the specifica­
tion should contain only the information needed by the developers and analysts. Otherwise,
time is wasted in specifying things that are not used. Many of the popular real-time re­
quirements specification languages include facilities that are not strictly necessary. The
problem with the "kitchen sink" approach is that the specification language becomes un­
necessarily complex and the specification process becomes unnecessarily tedious and time­
consuming. Also, for readability, information that is of limited help at a particular point
in the specification should be omitted; the specification should help the reader focus on
what is important.

To enhance simplicity, we tried to avoid specification language features that complicated
the analysis and the specification. Language features that are semantically simple and
straightforward to define are usually also easy to use and result in more readable and
reviewable specifications.

Related to the minimality and simplicity criteria are coherency, consistency, and con­
ciseness. Other specification languages for reactive systems, e.g., Statemate (HLN+90),
Hatley /Pirbhai [HP87], ·and · Ward/Mellor [WM85], include a variety of diverse models,
some of which are not formally defined. Our goal was to specify all the required informa­
tion using one formally-defined modeling language based on one underlying state-machine
model. We also wanted our language to represent information as economically as possible
while still maintaining readability.

Because of our goal to provide a safety analysis of the specification, the language must
be unambiguous and the underlying model must have a mathematical foundation. At the
same time, the requirements specification must be readable, reviewable, and usable. In
some respects, these criteria may be conflicting but it is possible to satisfy both if there is
a separation between the actual specification language and the underlying formal model.
The specification must be unambiguous and translatable into mathematical notation, but it
need not itself include arcane mathematical symbols that are unfamiliar to the application
experts and software developers. We spent considerable time and energy developing a
notation that was readable yet maintained the underlying formal state-machine model.
This notation has graphical, symbolic, and tabular aspects depending on which was best
for specifying a particular type of information (FG79). Because readability and writability
are often conflicting goals, we chose readability in cases where a conflict existed: The added
investment in constructing the requirements specification pays off in terms of discovering
more requirements-level errors.

The specification language was developed while specifying TCAS for the FAA, and
we therefore received continual feedback by airframe manufacturers, component subcon­
tractors, FAA certification experts, airline representatives, and pilot group representatives
during development. This feedback provided invaluable information about the practicality,
feasibility, and usability of the modeling language during its development. It helped us
both with determining what did and did not need to be in the language and with satisfying

10

our language design criteria.
One of the advantages of the feedback was to help us overcome our individual pref­

erences. When devising the specification language, we usually had ourselves in mind as
the user. However, our familiarity with certain notations, especially mathematical nota­
tions such as predicate calculus, hid their weaknesses. Our first attempts at devising our
language, therefore, were failures: the notation was clear to us but not to others. The
feedback from a diverse group of users helped us to evaluate the evolving specification
language more objectively.

A final criterion for our specification became obvious only after trying to specify a
complex system. We first used unrestricted hierarchical abstraction in our model, thinking
this would aid in understanding the specification. We found that the use of what Harel
[Har87] calls "clustering" (grouping states into superstates) indeed made the specification
more readable. On the other hand, the use of what Harel calls "abstraction," a type
of information hiding that allows showing only the superstate and not the component
substates, often had an undesirable effect on readability. One of the purposes of such
abstraction is that lower-level information, i.e., substates, can be hidden from the reader
and in that way the system is presented in digestible chunks. Our first modeling attempts
hid as much information as possible at every level. As a result, transition predicates
that "crossed" levels (referred to nonvisible states) became very difficult to understand.
Understanding is enhanced by providing as much context as possible and necessary for the
information that is being described. We call this criterion "information exposure." For the
most part, our final TCAS specification has only two levels of abstraction - a top level to
provide an overall global view and one lower level to model each major component in the
controlled system. In a few places, a third level became necessary to aid understanding
and ensure that each subcomponent model fit on one page.

Specification Language Description

Previously, we defined a formal state machine model called RSM (Requirements State
Machine) for modeling the blackbox behavior of process-control systems along with for­
mal criteria and heuristics to check the model for completeness, robustness, and safety
[JLHM90]. RSM, while appropriate for formal analysis, has few of the desirable character­
istics of a specification language. So we needed a usable specification language to put on
top of the underlying RSM model.

Because our original goal was not to design a new specification language, we evalu­
ated our criteria against existing languages, decided that Statecharts came the closest, and
started specifying TCAS II using it. However, we soon realized that reviewers had diffi­
culty understanding some aspects of pure Statecharts specifications and that some things
we needed to specify were not easily described using it. Our specification language evolved
as we got feedback on our drafts until it no longer is reasonable to refer to the language

11

B

c D

Figure 3: A Basic State Machine

as Statecharts. We call our current formulation RSML (Requirements State Machine Lan­
guage). This section describes the syntax and semantics of RSML and how it differs from
S tatecharts.

A basic state machine is composed of states· connected by transitions (see Figure 3).
Default or start states are signified by states · whose connecting transition has no source.
In the example, state A is the start state. Transitions define how to get from one state
to another. In the example, states B and C are directly reachable from A. State D is
not directly reachable from A (no transitions connect the two states); however, state D is
reachable from A via state C.

Statecharts are finite state machines augmented with hierarchy, parallelism, and mod­
ularity. An introduction to basic statechart notation can be found in [Har87] . RSML
borrows the notions of superstates, AND decomposition, broadcast communication, state­
chart arrays, and conditional connectives from Statecharts. Other features of Statecharts,
e.g., history and event selector connectives, were left out either because they were unnec­
essary or the semantics were too complicated to allow for formal analysis. We then added
some features, such as interface descriptions and directed communication between state
machines , and changed the syntactic notation to make it easier for our reviewers to read
and. review the specification. Some of the syntactic extensions were found to be necessary
to cope with a specification that is several hundr.ed pages long. We also changed somewhat
the semantic definition of a "step," i.e. , the semantics of state transitions. The rest of this
section first describes the features in common with Statecharts and then our changes and
extensions.

Features in common with Statecharts

Superstates. In Statecharts (and RSML), states may be grouped into superstates (see
Figure 4). Such groupings reduce the number of transitions by allowing transitions to and
from the superstate rather than requiring explicit transitions to and from all of the grouped

12

"

R

s

A

B

c

D

Figure 4: A superstate example.

states (substates). There are two ways to enter a superstate. r :rst, the transition to the
superstate may end at the superstate's border (transition A in Figure 4). In this case, a
default state must be specified within the superstate. In the example, state S is entered
upon taking transition A. Alternatively, the transition may be made to a particular state
inside the superstate (transition Bin Figure 4). Note that the same superstate may have
transitions ending at the border and at any number of the inner states. The superstate
may be exited in two ways (transitions C and D in Figure 4). Analogous to transitions
into the superstate, transitions out of the superstate may originate from the border or from
an inner state. The same superstate may contain both types of exiting transitions.

AND Decomposition. One of the most important innovations in Statecharts is the
parallel state2 which contains two or more components, separated by dashed borders (Fig­
ure 5). When the parallel state Sis entered, all of the components A, B, C, and D within
it are entered. All components are exited when any transition is taken out of the parallel
state. The use of parallel states greatly reduces the size of the specification. For example,
we estimate that the TCAS system (i.e., the underlying RSM model) contains at least
1040 states whereas the graphical state diagram in our RSML specification of TCAS has
approximately 100 states and fits on five pages. Although the syntax of parallel states is
the same in both Statecharts and RSML, the semantic definition is different, as described
in the Step Semantics section below.

Arrays. Both Statecharts and RSML allow the use of state-machine arrays (see Figure
6) .. State machine arrays are semantically equivalent to identical parallel states uniquely
identified by an index. Each of the array elements is entered or exited when the array
is entered or exited. Individual array elements are referenced by the array name and
an index value. For example, Other-Aircraft[3] refers to the third array element in the

2 Parallel states are also known as "orthogonal products", "product states", and "AND states".

13

s
A

~
ic
I
I
I
I
I
I
I
I

-------------~--------------B :o ~

~!
I
I

Figure 5: The parallel state

Other-Aircraft, i:[l..30)

Figure 6: A State Machine Array

example. We found that defining a special token 'THIS' that references the element value
from within that element is useful for passing the identity of the element to a function,
e.g., Traffic-Score(THIS).

Connectives. Conditional connectives are used when transitions out of a particular state
into two or more different states are taken based on the same event but guarded by different
conditions (Figure 7 (a)). The transition from the source state to the connective is taken
at the occurrence of the event. The appropriate destination state is determined based
on guarding conditions that are defined on the transitions from the connective to the
destination states (Figure 7 (b)). Some guarding conditions may be placed on the transition
from source state to connective if all the destination states share those conditions. For a

14

A

c

(a) State machine without
a conditional connective

e

(b) Same state machine using
a conditional connective

(c) Conditional connective used
to select default state

Figure 7: In the diagrams , "e" is the triggering event and "X", "Y", and "Z" are the
guarding conditions.

complete specification, the guarding conditions from the connective to the destination
states must be mutually exclusive and must form a tautology [JLHM90].

A transition must begin and end in a state; therefore, the actual state transition is
the transition from the source state to the connective combined with the transition from
the connective to the destination state. Conditional connectives often appear as default
"states" (Figure 7 (c)) in RSML , even though they are not states. The actual default state
is chosen based on the conditions on the transitions out of the conditional connective.

Changes to Statecharts

Both syntactic and semantic changes and additions were made to these basic features of
Statecharts.

Directed Communication. RSML includes the ability to model the behavior of all
control loop components (not just the controller) and the communication between them.
Physically distinct components are modeled as separate (communicating) state machines.
Broadcast communication, as defined in Statecharts, is an inappropriate abstraction for
communication between physically distinct components (e.g., two aircraft). lntercompo­
nent communication in RSML is modeled as directed messages sent and received over
unidirectional channels between component state machines. This limited access is denoted
by thick borders around the component state machines, see Figure 8.

15

Events. The language includes two types of events - internal and external. Internal
events are used only for one very specific purpose: RSML specifications are pure blackbox
specifications of a mathematical fun ction; internal events are used to order the evaluation of
the function. Basically they serve the same function as parentheses in algebraic equations.
Internal events are communicated within the component state machine using the Statechart
broadcast mechanism. Any transition may trigger a generated internal event.

External events, on the other hand, represent real communication (message passing)
between TCAS and the other components (sensors, actuators, etc) of the system. They
are required only because we include in our model the external interface to the system (in
this case, TCAS) and the assumed behavior of the other components of the process control
loop. The language does not prohibit the use of external events as triggering events on
transitions; however , in the TCAS II specification, external event triggers are restricted to
system component interface definitions .

Interface Definitions. The interface description is an important part of any require­
ments specification language. RSML includes an interface description for each separately
modeled component , which describes all external communication for that component. Our
underlying model is communicating state machines: SEND events in one component trig­
ger RECEIVE events in another component . Each communication specifies its source and
destination. Unlike CSP [Hoa78] and some communicating state machine models, e.g.,
[Sha92], RSML does not require synchronous intercomponent communication.

The receipt of a message by a component state machine is signalled by the occurrence of
an external RECEIVE event . These events may trigger state changes within the receiving
component, i.e., values are assigned to input variables based on information communicated
in the message. Because the state diagrams representing such state transitions are trivial
and provide no useful information , only the transition descriptions are included in the
RSML specification . The interface description includes the source and destination of the
message, the triggering RECEIVE event and guarding condition, the mapping of message
field names and values to variable names and values, and any internally generated events
resulting from the receipt of the message. Note again that interface descriptions describe
transitions within the receiving component state machine. Thus, guarding conditions will
never block receipt of a message but may prevent the assignment of message field values
to input variables.

Output variable value assignments and the sending of messages to other control-loop
components are triggered by the occurrence of internal events. Each output interface de­
scription (representing a transition within the sending component state machine) contains
the message source and destination , the internal triggering event and guarding condition,
the mapping of output variable names and values to message field names and values, and
the internally generated external SEND event.

16

Component-Name

Input:
Input-Variable : Type
Input-Variable : Type
Input-Variable : Type

I
I
I
I
I
I
I
I
I
I
I -----------------r---------------

Output:
Output-Variable: Type
Output-Variable : Type
Output-Variable : Type

Figure 8: State Machine with Associated Variables

Component State Machines. Each component state machine in RSML is divided into
three parts separated by double solid lines (see Figure 8). The middle part contains the
graphical state machine. The top and bottom parts contain input and output variables,
respectively. All RSML inputs are non-derived, black-box inputs while outputs are derived,
black-box outputs.

Definitions must be provided for all input and output variables. Each definition con­
tains:

• Location (the associated RSML state machine, e.g. Own-Aircraft).
• Source or Destination (external component, e.g. altimeter).
• Type (e.g., integer).
• Expected Range (e.g., -10 ,000 .. . 10,000).
• Granularity (e.g., 10).
• Units (e.g., feet).
• Load (e.g., one per second) .

17

• Exception Handling Information (e.g., out of range values are treated as zero).
• Traceability information (e.g., MOPS Reference).

In addition to the above items, output variable descriptions also contain triggering
events and value assignments .

Transition Definitions. Transition definitions in RSML contain five parts: (1) the
identification, (2) the location, (3) the triggering event, (4) the guarding condition, and (5)
the output action. The identification, location, and triggering event are the only required
parts. Figure 9 shows the form of a transition definition in RSML.

Each transition is identified by its source and destination states (l~ S-t-at-e--S~l ~ l State-D l).
Transitions split by a conditional connective are defined in two parts. The first part of the
definition is identified by the connective destinati,n, while the second part is identified by
the connective source, (!State I ~ @ or @ ~ State). If several transitions have the
same definition (i.e., the same location, trigger, condition, and output action), then they
may be defined together. Sometimes a single transition definition applies to all transitions
into a particular state. The special symbol ANY may be used as a shorthand for all source
states.

For example, the following transition identification

Transition(s): I North I~ I East I
South ~1 1 Easl I
West ~ East

might be rewritten using:

Transition(s): ANY~ I East I
The location field of the transition definition shows where in the state machine the

transition may be found. The location is given as a hierarchical path, using the "t>"
symbol to separate the RSML labels. For example,

Location: United-States t> California t> Irvines- 76

means that the transition in question may be found in "Irvine", which is in "California",
which is in "United-States" in the state machine shown on page 76 of the specification.

Transitions are taken upon the occurrence of the trigger event, provided that the guard­
ing condition is true. Internally generated events may be either internal or external events,
i.e. they are either broadcast within the component state machine or are explicitly sent to
another component.

The condition defines what must be true before the transition can be taken and is
specified using AND/OR tables, described below.

18

Transition(s): (Source state) I ---+ j (Destination State)

Location: {path to the transition being considered.)

Trigger Event: {The event that causes this transition to be taken.)
Condition: {Optional guarding condition on the transition.)

Output Action: (Optional output action.)
Description: (Optional English description of the transition information)

MOPS Ref. (Used for tracing requirements to software design)

Comments: (Optional comments.)

Figure 9: Transition definition .

Output actions identify events that are generated when the transition is taken.
The rest of the transition definition is for explanation and documentation only. The

description includes any English language description of the transition definition that may
be appropriate to include and the MOPS Ref. is a reference to the pseudocode (design
specification) that implements this transition. The latter provides traceability and was
used in the independent verification performed on our TCAS specification. An optional
Comments section can be used to provide extra explanatory information. For example, we
sometimes used it to explain why a particular decision was made.

AND/OR Tables. Our first attempt to write the conditions for the state transitions
used pure predicate calculus (Figure 10), as this was what we had seen in previous stat­
echarts examples [BGFG86, Har87] and it was natural to us . Our external reviewers,
however, did not find it natural or reviewable and told to us to come up with something
else. In fact, we found that we had difficulty in writing and reading complex predicate
calculus expressions ourselves even though we were familiar and comfortable with the no­
tation; while developing another notation, we found logical errors in our first attempt at
specifying a part of TCAS that were not at all obvious in the original form.

Our second attempt replaced logical phrases with English phrases and a list of English­
to-logic mappings. Although this is superficially more readable, we found that annotating
the logic with English did not provide an appreciable advantage in terms of the underlying
complexity of the logical expressions.

19

True-Tau-Cappedr_362 ~Time-To-CPA A

(Other-CapabilitYv-212 -::/: TCAS-TA/RA v
(Other-VRCv-209 =No-Intent A Two-Of-Threem-321)) A

((Down-Separationr.337 (low-firm) ~Alt-Threshold A

Up-Separationr.362 (1ow-firm) ~Alt-Threshold) V

Current-Vertical-Separationr.332 > 150 ft A
((Inhibit-Biased-Climbr.339(1ow-firm) > Down-Separationr.337(1ow-firm) /\

Own-Tracked-Altr.349 < Other-Tracked-Altr.344) V
Inhibit-Biased-Climbr.339(1ow-firm) ~ Down-Separationr.331(1ow-firm) /\
Own-Tracked-Altr.349 > Other-Tracked-Altr.344))))

A
N
D

Figure 10: Transition Condition written in Predicate calculus

Other-CapabilitYv-212 = TCAS-TA/RA
Other-VRCv-209 = No-Intent
Two-Of-Threem-327
True-Tau-Cappedr.362 <Time-To-CPA
Down-Separationr_337(low-firm) ~ Alt-Threshold
Up-Separationr.362 (1ow-firm) ~ Alt-Threshold
Inhibit-Biased-Climbr.339(low-firm) > Down-Separationr.331Ilow-firm}
Own-Tracked-Altr_349 < Other-Tracked-Altr.344
Own-Tracked-Altr.349 > Other-Tracked-Altr.344

Current-Vertical-Separationr-332 > 150 ft

Figure 11: The AND/OR table

20

T T T
T T T
F F F F F F
T T
T T

F

The notation we finally chose is a tabular representation of disjunctive normal form
(DNF) that we call AND/OR tables.

A Expression-!
N Expression-2
D Expression-3

The far left column of the AND/ 0 R table lists the logical phrases; each of the other
columns is a conjunction of those phrases and contains the logical values of the expressions.
If one of the columns is true, then the table evaluates to true. A column evaluates to true if
all of its elements are true. To make all these relationships clearer, we physically separated
the columns, the far-left column a little more than the others. The AND/OR tables do not
eliminate the need for existential and universal quantifiers; however, their scope is limited
to a disjunct term or to the entire table, making it much easier to parse the expressions.
We also discovered that omissions became apparent when application experts were forced
to consider the explicit "don't cares" (·) that ap_f)eared in the tables.

The above table is equivalent to

((Expression-! /\ -. Expression-2) V (Expression-! /\ Expression-3))

The AND /OR table for the predicate calculus expression in Figure 10 is shown in Figure
11.

Some evidence of the readability and reviewability of the AND /OR tables is that errors
we made in our first representation of the system were quickly discovered by the applica­
tion experts after only a very minimal (ten minute) tutorial on our notation. Below the
AND/OR tables, we later added an English language description of the guarding conditions
on each transition.

Macros and Functions. As we wrote the TCAS requirements, we discovered that some
of the AND/OR tables became very complicated. Also, some of the logic is repeated in
several tables. We solved both problems by using macros, which are just labeled AND/OR
tables. These macros, for the most part, correspond to typical abstractions used by the
application experts in describing the TCAS requirements and therefore add to the under­
standability of the specification. We did , however, try to use them sparingly in order not
to provide too many levels of indirection in the specification. To increase flexibility, macros
may be parameterized. Also, rather than including complex mathematical functions di­
rectly in the transition tables, such functions are specified separately and referenced in the
tables.

Transition Buses. One of the advantages of Statecharts over other state machine models
is the ability to reduce a large number of states to a conceptually manageable number by

21

A

B
A B

c

D

Figure 12:

using superstates and parallel states (AND-decomposition). We kept both of these features,
but we found it helpful to introduce more constructs to reduce clutter. For example,
many parts of the TCAS model are fully- or almost fully-interconnected, i.e., there is a
transition from each state to nearly every other one. Showing each transition explicitly is
confusing and can make the graphical diagram unreadable (see Figure 12A); the transition
bus (Figure 12B) provides the same information. A transition must be defined for each
source-state/ destination-state pair on the transition bus , where a source state is a state
with a transition to the bus and a destination state is a state with a transition from the
bus.

Cross Referencing and Identifier Types. Another problem arose with writing transi­
tion information on the arrows between states. This is fine for relatively simple transitions
and relatively simple statecharts. Even marking the arrows with a short tag that identifies
the transition logic elsewhere was found to complicate the graphics and make it more diffi­
cult to comprehend when the statechart was complex. Such tags are symbolic "noise"; the
information is not salient, even when using supposedly mnemonic tags, and the resulting
clutter is more harmful than helpful. We opted instead at first to put page references
on the arrow and later under each diagram, indicating where the transition logic could
be found in the document. Like many of our decisions, this was a compromise between
showing important information but not too much information and reducing the number of
synonyms and names that the user must remember. Paging through the document when
reading transition definitions in order to view the corresponding statechart was minimized
by including fold-out pages of the graphical part of the statecharts visible from anywhere
in the document.

Cross referencing was used liberally elsewhere in the language as well. No matter how

22

concise the notational style, requirements specifications for large systems span many pages
(and sometimes volumes) and usually contain references to other parts of the specification.
We wanted to reduce redundancy while still making easily accessible all information that is
needed to understand or review each part of the document. Liberal use of page references
as subscripts on names defined elsewhere was a practical compromise.

Another problem is how to identify the types of identifiers that are used in the spec­
ification. Solutions that have been used in the past include surrounding the name with
special symbols as in the A-7 specification [Hen80] or using special fonts. Both of these
solutions have drawbacks in terms of readability and learnability. The RSML approach
is to use subscripts. Each identifier in the specification is subscripted with a single letter
denoting its type (v for variable, s for state, m for macro, f for function, and e for event)
and a page number where that element is defined. Page numbers are updated automati­
cally when changes are made to the specification. For example, altitudev_ 176 is a variable
whose type definition can be found on page 176. An alphabetized index also is included
that shows all the pages on which the name is used in the document and denotes the page
on which the name is originally defined.

Identity Transitions. Identity transitions originate and terminate in the same state and
generate output actions without causing a state change. The need for identity transitions
arises when output actions on other transitions out of the state are necessary for synchro­
nization. All identity transitions are guarded by the negation of the disjunction of all the
conditions guarding transitions that are triggered by the same trigger event and that origi­
nate in the same state. Identity transitions are not included in the state-machine graphical
diagram in order to reduce clutter since they are not needed for reviewing the specification
but for analysis and completeness reasons . Instead, they are grouped in tables.

Timing. During the specification of TCAS, we needed only three temporal functions:
the value of a variable at some previous point in time, the truth value of a condition at
some point in the past, and an implicitly generated event based on time (i.e., a timeout
relative to state entry). Rather than treating timeouts specially and defining triggering
events for them, all timing functions are written as expressions in uarding conditions.
An example of such an expression is t 2: (t(entered(Threat)) + 5.0 secs). This expression

states that the current time ('t' without an argument) is greater than or equal to the time
that state Threat was entered plus 5.0 seconds. Such expressions evaluate to true or false
and generally appear as logical phrases in AND/OR tables.

TCAS is required to operate based on a cycle, called a surveillance cycle, started by
an event (Surv-Comp-Event) and all temporal requirements are based on this cycle. In
the TCAS requirements document the function PREYj(x) has been overloaded to apply to
both variable values, functions, and predicates:

23

• PREY j(v) refers to the value of variable (or function) v at j surveillance cycles back
in time.

• PREVj(p) refers to the truth value of pat j surveillance cycles back in time.

Step Semantics. The semantics of Statecharts have been described in detail in several
papers [HP85, Har87]. Unfortunately the descriptions are not consistent with each other;
small (but significant) differences exist. The following comparison between Statecharts
and RSML semantics is based on the latest description of Statecharts available, the formal
description by Pnueli and Shalev [PS].

The semantic description of Statecharts in [PS] is based on the notion of steps. A step
is initiated when an external event occurs and is assumed to be completed before another
external event arrives, i.e., there is no delay in the response to an external stimulus (this
assumption is called the synchrony hypothesis). The beginning of a step can only be
initiated by the arrival of an external event. The main difference between Statecharts and
RSML is in the way a step is constructed. A short summary of the step construction in
Statecharts is given here; for a complete (and formal) description the reader is referred to
[PS].

The construction of a step in Statecharts is based on an enabling function En that
determines which transitions can be taken given a set of external events (/), a set of
transitions (T) that are already designated as transitions that will be taken, and the con­
figuration C. In the Statecharts step creation C is considered to be fixed and independent
of the creation of the step.

En(T, C, I) =relevant(C) n consistent(T) n triggered(! u generated(T)).

The set relevant(C) is the set of all transitions whose source are contained in the
current configuration (state) C. The set consistent(T) contains all transitions that are
compatible with the transitions in T, e.g., the transition triggered by a in Figure 13 is not
consistent with the transition triggered by b since only one of them can be taken. The
set generated(T) contains all events generated as output by the transitions in T and the
set triggered(E) contains all transitions triggered by the events in E. Thus, the enabling
function En calculates a set of transitions that can be taken without conflicting with the
transitions (T) already selected as part of this step.

24

Figure 13: Transitions a and b are inconsistent

A c

ti : x/y t2 : x/y t4 : x/z

B D

Figure 14: A Statechart and RSML example

The construction of a Statechart step can be described by the following operational
definition:

Procedure Step-Construction(Var C : configuration, I : setofevents) ;
begin

end

T ·- 0 . . - '
while T C En(T, C, I) do

nondeterministically pick a transition t E (En(T, C, I) - T) and add it to T ;
C := NextConfig(C ,T) ; { Calculate the new configuration }

The function NextConfig calculates the new state configuration given the old state
configuration C and the set of transitions T . The construction of a step is best illustrated
by an example. The statechart to be used can be seen in Figure 14 and the construction of a
step is summarized in Table 1. The configuration at the beginning of the step is defined by
the set {A, C} and it is assumed that I = { x}. Note here that due to the nondeterministic
nature of the step construction (i.e., the selection of the transition to put in T is made
nondeterministically), there are (in this case) three different ways of constructing a step;
two yielding different results are illustrated in the table.

25

Construction 1
loop# T En(T) generated(T)

0 0 {t1,t4} 0
1 {ti} {t1 , t3 , t4} {y}
2 {t1 , t3} {t1 , t3} {y,z}

Construction 2
loop# T En(T) generated(T)

0 0 {t1 , t4} 0
1 { t4} {t1,t4} {z}
2 {t1 , t4} {t1 , t4} {y ,z }

Table 1: Two possible step constructions in Statecharts

The behavior defined in construction 1 in Table 1 is counterintuitive since transition
t 4 , which should "obviously" be triggered by the input event x , is not taken.

The semantics of RSML is slightly different and enforces a more rigorous causal ordering
of the transitions taken within a step. The enabling function in the RSML step construction
does not consider the transitions triggered by the output events of the transitions in T to
be enabled, i.e.,

En(T, C, I)= relevant(C) n consistent(T) n triggered(!).

The step construction in RSML can now be described by:

Procedure Step-Construction-RSML(Var C : configuration, Var I: setofevents) ;
begin

T' := 0;
repeat

T ·- rll •
• - YJ '

while T c En(T u T', C, I) do
nondeterministically pick a transition t E (En(T U T', C, I) - T) and add it to T ;

C := NextConfig(C,T) ; { Calculate the new configuration }
I := generated(T) ; { Calculate the internal events generated by the transitions

T' :=T;
until T = 0;

end

in T and use them to continue the construction of the step }

26

I inner loop # I outer loop # I T T' I En(T) I I c
1 0 0 0 {t1 , t4} {x} {A,C}
1 1 {ti} 0 {t1,t4} {x} {A,C}
1 2 {t1 , t4} 0 {t1 , t4} {x} {A,C}
1 Exit {t1 , t4} {t1 , t4} 0 {y,z} {B ,D}
2 0 0 {t1,t4} 0 {y,z} {B,D}

Exit - 0 {t1,t4} 0 {y,z} {B,D}

Table 2: The step construction in RSML

This definition forces an RSML state machine to take first all transitions triggered
by the external event starting the step and then the transitions triggered by the yield of
that first micro-step. The process is repeated until no more transitions are triggered by
the yield of the preceding micro-step. Note that the enabling function does not allow the
RSML state machine to make transitions in the same arena3 in two successive micro-steps.
Table 2 shows the construction of a step according to the semantics of RSML.

This approach has one disadvantage compared to the Statecharts step construction. It
can easily be seen that the Statecharts step construction will always terminate since En(T)
is a finite set. The step construction in RSML state machines can potentially be infinite as
is shown in Figure 15 and Table 3. The events in Figure 15 will get alternately generated
forever.

The advantage of the RSML approach is that it is more consistent with our intuitive
notion of a step. In the example (Figure 14), the Statecharts step semantics allows transi­
tion t3 to be taken, even though event y is generated after x . A reviewer could be mislead
by such a specification, not realizing that the specification is inconsistent with what is
intended. We felt that reviewability, in this case, was more important than the ability to
force termination. A similar type of dilemma arises when considering the option of design­
ing programming languages that will disallow any type of infinite loop versus the possible
disadvantages with respect to other desirable features of programming languages.

The System Requirements Specification

The RSML language was developed using TCAS II as a testbed. The resulting specification
not only acts as a model of what we consider a good process-control system requirements
specification but also as an example of a real-life, successful application of formal methods
to a complex system.

3 arena(t) is the smallest or-state affected by the transition t. For a complete description the reader is
referred to [PS)

27

A c

t2 : x/y t3 : y/x t4: y/x

B D

Figure 15: An RSML state machine that will not terminate

I inner loop # I outer loop # I T T' I En(T) I I C
1 0 0 0 {ti} {x} {A,C}
1 1 {ti} 0 {ti} {x} {A,C}
1 Exit {ti} {ti} {ti} {y} {B,C}
2 0 0 {ti} { t3} {y} {B,C}
2 1 { t3} {ti} { t3} {y} {B,C}
2 Exit { t3} { t3} { t3} {x} {B,D}
3 0 0 { t3} { t2} {x} {B,D}

Table 3: An example of a RSML state machine leading to an infinite step construction.

28

Figure 16 shows the contents of the TCAS specification4 (all figures in this section are
located at the end of the paper). There are similarities in content with the A-7 require­
ments document [Hen80], but we include behavioral descriptions of the other components
in the process control loop as well as system goals and constraints. Physical requirements
for the TCAS box (e.g., size, weight and materials) and some I/O devices (e.g., TCAS
antennas) are contained in the MOPS and should be in our document, but currently are
not. The A-7 specification includes sections on possible subsets of the program and the
characteristics of the computer, which we do not include. Both specifications include re­
quirements for timing, accuracy, and response to undesired events , but we do not separate
them from the functional behavior; instead they are included where the functional be­
havior is specified. Jaffe [Jaf88] has argued that functional and timing information is too
inextricably connected to be usefully separated.

The goals and constraints in the first section of the document are written in English.
In general, they would be the first thing specified when developing the system, although
they may be modified as the system engineering process progresses.

Normally, the next step in system engineering involves identifying and designing (if nec­
essary) the components of the control loop. In the case of TCAS, most of the components
already exist. Early in the system design process , a detailed description of the allocation
of high-level functional requirements to each physical component along with the interfaces
between them is generated.

The environment section of the specification includes a high-level system component
and communication diagram (see Figure 17). Note that this diagram is a directed graph
and not a state machine diagram. The TCAS system consists of various sensors (e.g., radio
altimeter and Mode-S transponder) and actuators (e.g., a pilot display and transmitters)
aboard the aircraft. Some of these communicate with other aircraft (which have varying
collision avoidance capabilities) and ground radar stations.

The black-box behavior of each control loop component (except TCAS) and the relevant
behavior of each process component is modeled in the environment section. The RSML
specifications of the physical components other than TCAS itself reflect the assumptions
that the designers of TCAS can make about the components' behavior including their
failure behavior. Including these assumptions in the specification is useful in designing
the controller software to be robust against the effects of design changes to the other
components and against failures in the environment.

As an example, Figure 18 shows the RSML state machine description of the radio
altimeter. This device provides CAS with own (the host) aircraft's altitude above the

4 Most (about 90%), but not all of the specification has been completed at the time this technical
report was written . The entire CAS logic specification is complete (and has gone through independent
verification) as well as the interface specification and one of the other component specifications. The
surveillance and other component specifications are just more of the same and should be completed within
a few months.

29

ground. An accompanying status message indicates, to some extent, the reliability of
the altitude data based on an altimeter self-test mechanism. Under normal operating
conditions, the radio altitude is correct (within a certain tolerance) and the status indicates
"okay." In one possible failure mode, the radio altitude is correct, but the status indicates
a failure. In a second failure mode, the radio altimeter produces no output, neither altitude
data nor status information. Finally, in the third failure mode, the radio altitude sent is
incorrect, but the status indicates "okay." In this mode, the altimeter may send all zeroes,
repeatedly send the maximum, repeatedly send the same value, or send random values.

The environment section also includes the description of the communication interface
between the components of the control loop. This includes CAS inputs and outputs al­
though other communication (such as between other aircraft) would be included if it were
relevant to the operation of TCAS. Figures 19 and 20 show examples of an input interface
and output interface specification, respectively.

TCAS has three logical subcomponents (see Figure 17): the collision avoidance sub­
system (CAS) that contains the actual collision-avoidance logic , a surveillance subsystem
that handles communication with other aircraft and the ground radar stations, and a per­
formance monitor. All three could have been specified together as one logical component,
but for historical and political reasons we were required to specify the behavior of each
separately. The three models are therefore specified as separate components with defined
external interfaces. CAS is by far the most complex of the three and is used here as the
example. The following overview of the CAS specification guides the reader through exam­
ples of the various parts of the specification although the description is greatly simplified
in order to make it understandable to those unfamiliar with collision avoidance systems.

The highest level CAS state machine is shown in Figure 21. At this level, CAS is
either on or off; if it is on, it may be either fully operational or in standby mode. As
explained previously, the control function is specified only in terms of the state of the
controlled process and the states of relevant control loop components. In the case of the
CAS logic, the states of three types of process components are modeled: our own aircraft,
other aircraft, and mode-S ground radar stations. Each of the three subcomponents of
CAS is elaborated in more detailed RSML models.

Figure 22 shows the expanded Own-Aircraft portion of the CAS model. The top portion
of the diagram lists variables that represent inputs to CAS from the TCAS sensors that
are associated with the state of Own-Aircraft . The bottom portion of the diagram lists
variables that represent outputs from CAS to TCAS actuators. The middle portion of the
diagram represents the parts of the derived Own-Aircraft state necessary for the evaluation
of the CAS control function.

Effective-SL (sensitivity level) controls the dimensions of the protected airspace around
own aircraft. It is used to control the trade-off between necessary protection and unnec­
essary pilot advisories. Higher sensitivity levels increase protection, but also increase the
incidence of unnecessary alerts.

30

There are two primary means that CAS uses to determine Effective-SL: ground-based
selection and pilot selection. Ground-based selection of sensitivity level is not envisioned
for use in the U.S. airspace at this time; however, the capability for such selection has
been included in the CAS logic. The pilot, on the other hand, can select three modes of
operation (STANDBY, TA-ONLY, and TA/RA) which are converted to sensitivity level by
the logic. In STANDBY mode, neither traffic advisories (TA's) nor resolution advisories
(RA's) are output by CAS. The pilot normally selects STANDBY when on the ground. In
TA-ONLY mode, only traffic advisories are output by CAS. This mode is often selected
by the pilot to avoid unnecessary distractions while at low altitudes on final approach to
an airport. When the pilot selects TA/RA mode (also called AUTOMATIC), CAS selects
sensitivity level based on the current altitude of own aircraft (Auto-SL state).

Alt-Layer effectively divides vertical airspace into layers (e.g., Layer-3 is approximately
equal to the range 20,000 feet to 30,000 feet). State changes are made using a hysteresis:
the criteria for transitioning into the Layer-2 state is different depending on whether the
current state is Layer-1 (own aircraft is climbing) or Layer-3 (own aircraft is descending).
Alt-Layer and Effective-SL are used in the determination of individual other aircraft threat
classification (see Figure 25).

Due to aircraft climb performance limitations at high altitude or in the landing config­
uration, the CAS logic may inhibit a climb maneuver. Descend maneuvers are inhibited
if own aircraft is too close to the ground to safely command the pilot to descend. The
increase inhibits (Increase-Climb-Inhibit and Increase-Descend-Inhibit) prohibit the com­
mand of higher rate maneuvers (e.g. 2500 fpm vs. 1500 fpm), and therefore use more
stringent altitude thresholds. The Advisory-Status part of the Own-Aircraft model Figure
23 shows the CAS resolution advisory (RA), if there is one, that is currently displayed to
the pilot.

Figure 24 shows the expanded Other-Aircraft portion of the CAS model. Again, the top
portion of the diagram lists variables that represent inputs to CAS from the TCAS sensors,
and the bottom portion of the diagram lists variables that represent outputs from CAS to
TCAS actuators. The middle portion of the diagram contains state machines representing
the derived Other-Aircraft state necessary for the evaluation of the CAS control function.

RM-Send-Status synchronizes coordination interrogations with other TCAS-equipped
aircraft. Coordination interrogations contain information about an aircraft's intended ver­
tical maneuver or "intent" with respect to a threat. This information is expressed in the
form of a complement; e.g., if own aircraft has selected a climb maneuver against the threat
(see Figure 25), it will transmit a message in its coordination interrogation restricting the
threat aircraft to descend maneuvers against own aircraft.

CAS can track up to 30 aircraft simultaneously (it can track more but is limited by
the number of conflicting flight scenarios it can resolve simultaneously). The Track-Status
state reflects whether a particular Other-Aircraft is currently being tracked or not. Figure
25 shows the expanded Tracked portion of the Other-Aircraft RSML model.

31

The Intruder-Status state within Tracked reflects the current classification of Other­
Aircraft (Other-Traffic, Proximate-Traffic, Potential-Threat, and Threat). Intruder-Status
is determined using (among other criteria) Own-Aircraft Effective-SL and Alt-Layer. When
an intruder is classified as a threat, a two-step process is used to select a Resolution
Advisory (RA). The first step is to select a sense (Climb or Descend). Based on the range
and altitude tracks of the intruder , the CAS logic models the intruder's path until Closest
Point of Approach (CPA). The CAS logic computes the predicted vertical separation for
both climb and descend maneuvers , and selects the sense that provides the greater vertical
separation.

The second step in selecting an RA is to select the strength of the advisory. The
least disruptive vertical rate maneuver that will still achieve safe separation is selected.
Possible advisory strengths are Nominal-1500fpm (1500 feet per minute), VSL-2000, 1000,
500, and 0-fpm (vertical speed limits of 2000, 1000, 500 and 0 feet per minute; 0-fpm
means level flight). Advisory strength is continuously evaluated and modified, if necessary,
during the course of the encounter. After CAS has chosen an RA, occasionally the threat
aircraft maneuvers vertically in a manner that -thwarts · the RA. In this case, CAS may
increase the strength of the advisory from 1,500 feet per minute to 2,500 feet per minute
(Increase-2500fpm) or it may reverse sense (from Climb to Descend or vice versa).

The Mode-S-Ground Station model is quite simple and, therefore, is not shown here.
Although theoretically the CAS logic uses input from the ground stations, these are not
operational at this time.

The specification must include a description of each input and output variable. Exam­
ples are shown in Figures 26 and 27.

As an example of a transition definition, Figure 28 contains the definition of the tran­
sition from the state Threat to the state Other-Traffic, substates of Intruder-Status. In
order for an intruder to be classified as a Threat, it must be reporting its altitude, it
must be airborne, and it must satisfy the threat altitude and threat range tests. Once
classified as a Threat, it may not be downgraded (to Potential-Threat, Proximate-Traffic,
or Other-Traffic) based on the threat altitude test. It may be downgraded based on the
threat range test, but only if it fails on two consecutive attempts - represented by a sep­
arate transition. However, if the intruder stops reporting altitude, or if it reports that it
is on the ground, it can no longer be classified as a threat . The first and last rows of the
AND/OR table represent this criteria. Note that this transition represents a downgrade
directly to Other-Traffic, bypassing the intermediate classifications of Potential-Threat and
Proximate-Traffic. This happens when the intruder is no longer airborne (column 4) or
when altitude reporting is lost and either the bearing or range inputs are invalid (columns
1 and 2) . Column 3 represents a situation in which a partial downgrade to Potential­
Threat or Proximate-Traffic might have been possible, i.e., altitude reporting is lost, but
both the range and bearing inputs are valid. If either the Potential-Threat-Condition
or the Proximate-Traffic-Condition were satisfied , the intruder classification would have

32

been downgraded to Potential-Threat or Proximate-Traffic, respectively. However, in this
transition, neither criteria are satisfied , so the classification is downgraded all the way to
Other-Traffic.

As an example of a macro, Figure 29 contains the Potential-Threat-Condition macro
referenced in the above transition. In order for an intruder to be classified as a Potential­
Threat, it must satisfy the Potential-Threat-Range-Test. In addition, if it is reporting
altitude and is airborne, it must satisfy the Potential-Threat-Altitude-Test. If it is not
reporting altitude, own aircraft must be below 15,500 feet.

Functions and macros are used in a similar way, but functions return values. Figure 30
contains an example of an RSML function, Vertical-Resolution-Complement. This function
is related to the coordination interrogations described earlier (Other-Aircraft t> RM-Send­
Status). If CAS has selected a climb maneuver against this particular intruder (Other­
Aircraft in state Climb) , the Vertical Resolution Complement (YRC) is Don't Climb. A
value of 2 will be assigned to the YRC field of the Mode S message.

The appendices to the document contain additional information to make the specifi­
cation more readable or changeable. The first appendix defines constants. Everywhere a
constant is used in the document, a label is attached as a subscript, e.g., 300ft·(MINSEP)

associates the constant 300 feet with a label that designates this is the minimum verti­
cal distance allowed between aircraft. A change of the value of this constant (e.g., the
FAA decides in the future that minimum vertical separation should be 350 feet) can be
automatically and easily made throughout the document . An alternative solution to the
maintenance and change problem for constants (and the more common one) would be to
use the label alone throughout the document and put the values associated with the labels
into a table. However, the latter solution makes the document much less readable and re­
quires constant flipping to the constant definition section to determine the actual numbers
associated with the labels.

The second appendix, Table Definitions, is used for constants that are more naturally
stored in a tabular form, e.g., potential-threat minimum-range threshold indexed by our
own aircraft sensitivity level.

We found that a list of events associated with the state transition that generates them
and the state transitions that are triggered by them was helpful in producing the document
and included this list in a third appendix.

The Glossary contains definitions of technical terms and abbreviations used throughout
the document, and the Notation Appendix provides a tutorial on the RSML language.

The Reference Algorithms appendix contains tracking and other algorithms that are not
required but are used to define criteria for accuracy of the actual algorithms selected. For
example, a tracker chosen by the designer might be required to have at least the accuracy
of the alpha-beta tracker specified in the appendix.

Finally, an index to the document is provided that includes an entry for every name
used in the document giving the pages on which it is used and the page where it is defined.

33

Currently, there are over 500 entries in the index.

Evaluation and Future Goals

This paper has defined (1) an approach to specifying system requirements for real-time,
reactive systems, (2) the criteria that should be used in designing a language for such
requirements, (3) a language demonstrating the approach and criteria, and (4) the neces­
sary and desirable contents and organization of a system requirements specification using
this approach. These were developed while writing a system requirements specification for
an aircraft collision avoidance system, which provided continual evaluation and feedback
during development and demonstrated the practicality of writing a formal requirements
specification for a complex process-control system.

Because the specification (which was originally intended merely to be experimental) was
adopted by the FAA during the development of RSML, deadlines required us to deliver
parts of the specification before we were completely satisfied with the notation. For ex­
ample, the overall event sequencing and synchronization is difficult to conceptualize from
the specification as it currently exists. Although we added an event table, a graphical
specification would probably be better for conveying this type of information.

Reviews of our document for correctness by users during development made clear that
specifications should include graphical, symbolic, tabular and textual notation, depending
on the type of information being conveyed. For example, the graphical state machines
were a great help during reviews for finding certain types of errors as were the tables for
finding other errors. A language that contains only graphics or only tables or only symbolic
strings is probably less useful than one in which different notational techniques are used
to communicate different types of information. More research is needed to determine the
most appropriate notations for each type of information that needs to be conveyed.

One result of this effort was a demonstration that formal specifications can be applied
to complex, reactive systems and that such specifications can be readable and reviewable
by application experts with a minimal knowledge of mathematics and computer science.
A lesson to be learned from the experience is that formal specifications can be usable if
their design takes into consideration the training and backgrounds of those who are to read
and review the specification. Some engineers working with us on the TCAS specification
reported that they liked the AND /OR table description of the transition conditions because
it resembles the logic tables that they are used to using and that the state machines and
logic tables fit the ' way they think about systems.

Although formal specification languages obviously have to be defined in an unambigu­
ous and mathematical way, the syntax itself does not have to contain obscure mathematical
symbols that are familiar and comfortable to neither the application expert nor the im­
plementor of the system. There must simply be an unambiguous translation from the
specification language (in our case RSML) to the formal model (RSM for our language)

34

underlying it. Currently, formal specification languages are designed primarily by math­
ematicians who use a notation with which they are comfortable but which is foreign to
those who must use the language. One solution is to train hardware and software engineers
to think like mathematicians while another is to provide languages that allow the user to
think about the system in the way that they have been trained in their discipline. We
hypothesize that providing a model of a system that is closer to the mental model that
the reviewer and implementor have of the system and closer to the way they have thought
about such systems in the past will aid in finding errors in the specification itself and
reduce the numbers of errors that are introduced in implementing the specification. This
hypothesis, of course, still needs to be experimentally validated, although our experience
provides some empirical support.

Because the specification from which we built our TCAS model was low-level pseu­
docode, the exercise had many features of reverse engineering. The pseudocode used is a
low-level language containing only:

• simple data types (bits, bit strings, character strings, integers, pointers, and floating
point variables) ,

• arithmetic expressions,

• the structured control statements IF-THEN-ELSE, IF-ELSEIF-OTHERWISE, REPEAT­

WHILE, REPEAT-UNTIL, and LOOP-EXITIF-LOOP, and

• subroutines (without local variables).

All variables are global: There are no local variables but there is provision for passing
parameter names to subroutines to show which variables are used by the subroutine (few
subroutines actually use this feature in the TCAS specification). The only complex data
structure allowed is a "group" that provides for grouping related variables into a "data
structure," i.e. , giving them a group name.

In many ways, the TCAS reverse engineering was even more difficult than the usual
reverse engineering exercise since the language was so low-level and difficult to read. This
specification has acted as the requirements specification for TCAS from 1983 to 1992
and was continually changed as errors were found and changes made to the requirements.
Several lessons can be learned from our experience that are applicable to both forward and
reverse engineering efforts in general.

First, we had difficulty abstracting away from the design. Even when we did not look at
the pseudocode, we found it difficult in the beginning to eliminate functional decomposition
and flowchart-like logic, i.e., to specify the problem without trying to solve it. With practice
we became better at omitting design information, but the struggle never entirely abated.
The very low level of the pseudocode also made the process of abstraction more difficult

35

as many purely implementation features, such as flags , had to be used extensively in
the pseudocode. After the specification of the CAS logic was completed, an independent
verification and validation was performed to compare the pseudocode specification and the
RSML specification. The verifiers experienced the same problems that we did, and a large
number of identified discrepancies resulted in no change to the RSML specification because
they merely represented design peculiarities of the pseudocode and not requirements.

Second, although it may be a function of the particular system we were reverse en­
gineering, we found it impossible to derive the requirements specification strictly from
the pseudocode and an accompanying English language description. Although the basic
information was all there, the intent was missing. Therefore, distinguishing between re­
quirements and artifacts of the implementation was not possible in all cases. As has been
discovered by most people attempting to maintain such systems, an audit trail of decisions
and the reasons why decisions were made is absolutely essential. This was not done for
TCAS over the 15 years of its development and those responsible for the system today
are currently attempting to reconstruct decision-making information from old memos and
corporate memory.

Third, the final requirements specification model would have been different and much
simpler if we had been starting from scratch. Because the TCAS pseudocode specifica­
tion had evolved over a period of more than 15 years, the current version contains more
complexity than is necessary. What was originally a simple conceptual model degraded as
changes were made to the pseudocode that simplified the process of making the change or
minimized the amount of code that needed to be changed but complicated or degraded the
original conceptual model. As Parnas said in [Par79]: "The problem is that the subsets and
extensions are not the programs that we would have designed if we had set out to design
just that product." This is a common maintenance dilemma and TCAS was no exception.
When changes are made to design or code without backing up all the way to requirements,
such problems arise and increase as time passes. For TCAS, the highest-level specification
was the pseudocode.

The problem of increasing complexity and lack of conceptual coherency in the underly­
ing model were exacerbated as more and more changes were made over the years and more
errors introduced due to the increasing difficulty in determining the consequences of the
changes. What we did for the TCAS system was to make the current underlying concep­
tual model explicit. Because of the necessity of building a requirements specification that
matches the TCAS systems actually in use (which were certified against the pseudocode
specification), our resulting model is more complicated than necessary, includes more than
the minimum required behavior, and is harder to understand than is strictly necessary.
This was frustrating as we first built a nice, simple model and found that we had to com­
plicate it for no better reason than that it had to match some errors or poor decisions
in the pseudocode. Once our specification is complete, future versions of the system will
hopefully return to a simpler model.

36

If a black box behavioral model of our type had been built originally, we believe that not
only would the final specification be simpler and more understandable, but making changes
without introducing errors or unnecessarily complicating the resulting requirements also
would have been easier. Even this, however, would not have solved all the problems involved
with change. We are using what we have learned from this experience to investigate how
to model and specify requirements to enhance extensibility so that changes or extensions
do not result in a model that is more difficult to understand than if the system originally
had been designed with all future extensions included.

Currently we are implementing a simulator for the specification language so that we
can execute the specification. We are also working on analysis procedures (1) to perform
semantic analysis on the underlying RSM formal model to find omissions and inconsistency
[JLHM90], (2) to analyze the entire system model for safety [LS87], and (3) to perform
standard system engineering risk analyses such as fault tree analysis [Mel91] directly from
the system requirements specification.

Acknowledgements

Important contributions to this effort were made by Ruben Ortega and Rueven Greenberg,
both of whom were graduate students at UCL We would also like to acknowledge the
help of Mike DeWalt, Jim Treacy, Larry Nivert, and Tom Choyce of the FAA and the
members of the RTCA Working Group on TCAS Requirements, especially Kathryn Ybarra
of Honeywell, David Lubkowski and Uma Satyen of MITRE, Gus Kryiakos of Bendix, Amy
Johnson and Jose Perez of Rockwell Collins, Ann Drumm of Lincoln Labs, and Captain
Ross Beins (United Airlines) of the TCAS Pilots Working Group.

37

1 Introduction 1
2 Goals and Constraints 11

2.1 High Level Goals. 11
2.2 High Level Constraints. 16

3 Environment 23
3.1 Components . 25
3.2 Input Interfaces . 58
3.3 Output Interfaces . 66

4 TCAS Physical Requirements 73
5 Surveillance Requirements 97
6 CAS Requirements 125

5.1 Own Aircraft 130
5.1.1 Own Aircraft Inputs 132
5.1.2 Own Aircraft Outputs. 147

5.1.3 Own Aircraft Transitions............. .. . 156
5.2 Other Aircraft . 200

5.2.1 Other Aircraft Inputs 207

5.2.2 Other Aircraft Outputs. 223
5.2.3 Other Aircraft Transitions. 230

5.3 Ground Station . 293
5.3.1 Ground Station Inputs 294

5.3.2 Ground Station Outputs................. 294

5.3.3 Ground Station Transitions. 295
5.4 CAS Macros . 296
5.5 CAS Functions. 330

7 Performance Monitor Requirements 365
A Constant Definitions 367
B Table Definitions 371
C Event Definitions 379
D Glossary 383
E Notation 391
F Reference Algorithms 403
G Index 410

Figure 16: The table of contents

38

Radio
Altimeter

Display-Unit

AIC Dlscretes

Receiver

Own-Aircraft

TCAS

Performance Monitor

CAS

Surveillance

Mode-S Transponder

Intruder

Figure 17: Component Communication

39

Pressure
Altimeter

Mode Selector

Air Data Comp.

Radio Altimeter

~
(Operating-Normally L

(Failed-Self-Test
./

(Not-Sending-Output L

Malfunctioning-Undetected

--(Sending-Zeroes [
..r

(Sending-Max-Value r

(Stuck-On-Single-Value r
/

(Sending-Random-Values

, __
r

/

Figure 18: Altimeter component

40

Interface:

Source: Mode-S-Transponder
Destination: CAS

Trigger Event: RECEIVE(Sensitivity-Level-Command(IIS, SLC))
Condition:

A N 2 ::; SLC $ 7
D SLC = 15

OR

tj tij

Assignment(s):

{
Cancel

Mode-S-Ground-Station[IIS] C> Ground-Commanded-SLv-294 = SLC

Output Action: None
Description:

If a sensitivity level command is received from own transponder, then set
Ground-Commanded-SL of the appropriate ground station parallel state.

MOPS Ref.: SL_command_processing (p . 3-P21)

if SLC = 15
if 2 $ SLC $ 7

Figure 19: An example of an input interface definition

41

Interface:

Source: CAS
Destination: Mode-S-Transponder

Trigger Event: Received-Intruder-Intent-Evente-381
Condition: true

Assignment(s):

VRC = Encode-RACr-336(Vertical-RACv-154,
Horizontal-RACv-255)

ARA = Encode-ARAr.33s(Climb-RAv-1s1,
Descend-RAv-1 52)

Output Action: SEND(Coordination-Update(VRC, ARA))

Description: This sends a coordination update message to own transponder.

MOPS Ref.: RESOLUTION_MESSAGEYROCESSING (p . 3-Pll).

Comments: ARINC 735 specifies the format of the coordination update message. It contains
additional fields, such as sensitivity level, that are not specified in the pseudocode.

Figure 20: An example of an output interface definition

42

TCASCONTROLLER

----t Power-Off

Power-On

Inputs:

TCAS-Operational-Status : {Operational, Not-Operational }

Fu 11 y-Operational

Own-Aircraft

Other-Aircraft, i:[l..30)

Mode-S-Ground-Station, i: [1 .. 15)

Figure 21: Highest level description

43

Own-Aircraft
Input:
Own-Alt-Radio: Integer
Standby-Discrete-Input: {True, False}
Own-Alt-Barometric: Integer
Mode-Selector: {TAIRA, Standby, TA-Only, 3, 4, 5, 6, 7)
Radio-Altimeter-Status: {Valid, Not-Valid}
Own-Air-Status : {Airborne, On-Ground}
Own-Mode-S-Address : Integer
Barometric-Altimeter-Status : {Fine, Coarse}

Effective-SL Auto-SL Alt-Layer

Layer-I

Traffic-Display-Permitted : {True.False}
Aircraft-Altitude-Limit : Integer
Prox-Traffic-Display : {True.False}
Own-Alt-Rate : fnteger
Config-Climb-Inhibit: {True.False}
Altitude-Climb-Inhib-Active: {True, False}
Increase-Climb-Inhibit-Discrete : {True.False}

1 Climb-Inhibit
I
I
1 Inhibited
I
I
I

: Not-Inhibited
I
I I

Descend-Inhibit

Inhibited

Not-Inhibited

r-----------------r---------------
1 Increase-Climb-Inhibit I Increase-Descend-Inhibit
I I
I I
I Inhibited 1 Inhibited
I I
I I
I I
1 Not-Inhibited 1
I I

Not-Inhibited
I I

r---------J-----------------~----------------

Output:

Sound-Aural-Alarm : {True.False}
Aural-Alarm-Inhibit : {True.False}
Combined-Control-Out : Enumerated
Vertical-Control-Out: Enumerated

: Advisory-Status (expanded in section)

I
I
I
I

Climb-RA: Enumerated
Descend-RA : Enumerated
Own-Goal-Alt-Rate : Integer
Vertcal-RAC : Enumerated
Horizontal-RAC : Enumerated

Figure 22: Own-Aircraft

44

..

Advisory-Stlltus

Composite-RA

RA
No-RA

Positive

Climb

Descend

Negative

Climb-VSL Descend-VS L

No-Climb-VSL No-Descend-VSL

~~~~ 
~@~@ 
~~ 
~~ 

Corrective-Climb 

L.-----------1 

: Corrective-Descend 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I -------------------,-------------------,-----------

Combined-Control 

No-Advisory 

Corrective-Climb 

Corrective-Descend 

Preventive 

Altitude-Lost 

Track-Dropped 

Clear-of-Conflict 

( ertical-Control 

Other 

Increase 

Crossing 

Maintain 

Reversal 

Figure 23: Advisory status 

45 



Other-Aircraft [i] 

Input: 
Other-Alt : Integer 
Other-Mode-S-Address : Integer 

Other-Sensitivity-Level: {Not-Known, 1, 2, 3, 4, 5, 6, 7} 
Other-Capability: (Non-TCAS,TCAS-TA,TCAS-TA/RA} 
Other-Transponder-Equippage : { ATCRBS,Mode-S} 
Other-Alt-Reporting : {True.False} 

Surveillance-ID : Integer 

Other-Range : Integer 
Range-Report-Time-Stamp : Time 

Other-Range-Valid : {True.False} 
Other-Alt-Valid: {True.False} 
Other-Bearing : Integer 
Other-Bearing-Valid: (True.False} 
TA-In-Sens-Level-2 : {True.False} 
Other-YRC : ( None, Dont-Descend, Dont-Climb } 
Other-HRC: { None, Dant-Turn-Left, Dont-Turn-Right} 

Track-Status RM-Send-Status 

Not-Attempting-RM 

Waiting-To-Coordinate 

Tracked 

(Expanded next page.) Waiting-For-Reply 

Output: 

Display-Arrow-Out : ( U p,Down} 
Other-Relative-Alt-Out : Integer 

Other-Range-Out: Integer 
Other-Bearing-Out : Integer 
Other-Bearing-OK-Out: (True.False} 
Other-Alt-Reporting-Out: {True.False} 
Advisory-Code: {Other,PA,TA,RA} 

Figure 24: Other Aircraft Overview 

46 

" 

'• 



Tracked 

Intruder-Status ~ 

~-...---~~) 

Threat 

Potential-Threat 

1 Crossing 
I 
I 
I 
I 
I 

Non-Crossing 

Proximate-Traffic (Other-Traffic ) 

-------------------r----~-------------------------------------------
Reversal S~ ...... -----:;:;::::::::====~-, 
~ Climb 

Not-Reversed 

Delay 

s~ 
~- •(Established) 

Figure 25: Tracked 



Input: Other-Mode-S-Address 

Location: Other-Aircrafts-202 

Source: Surveillance 

Type: Integer 

Expected Range: 1 ... (224 - 2) 

Granularity: 1 (unit) 

Units: N/A 

Load: N/A 

Exception handling information: Mode-S addresses outside the valid range (i.e., all 
Os or all ls) are presently ignored. It is assumed that no such addresses will occur 
because administrative procedures will preclude this event. Duplicate addresses are 
treated similarly. 

MOPS Reference: IDINTR 

Description: The unique address of the Other-Aircraft. 

Comments: This field has no meaning for non-Mode-S-equipped aircraft. No decision 
has been made about what to do about addresses that are outside the valid range or 
duplicate addresses due to failures of administrative procedures. 

Figure 26: Input variable definition 

48 

•l 



Output: Display-Arrow-Out 
Location: Other-Aircrafts-202 

Destination: Display-Unit 

Type: Enumerated 

Expected Range: {No-Arrow, Up, Down} 

Granularity: N /A 

Trigger: Display-Arrow-Evaluated-Evente-38l 

Value: Value Condition 
--~~~~-------,~~~~,..-~~--,.--.,.-~-

No-Arrow Display-Arrow in state No-Arrow 
Up Display-Arrow in state Up 
Down Display-Arrow in state Down 

Units: N/A 

Load: 1/s for CAS. 
MOPS Reference: ARROW 

Description: From ATA-STD-TCAS II/lA 4.2.1.10: "A vertical arrow shall be placed 
to the immediate right of the traffic symbol if the vertical speed of the intruder is equal 
to or greater than 500 fpm with the arrow pointing up for climbing traffic and down for 
descending traffic." 

Comments: 

Figure 27: Output variable definition 

49 



Transition( s): I Threat I -+ I Other-Traffic I 
Location: Other-Aircraft C> Tracked C> Intruder-Statuss-237 

Trigger Event: Air-Status-Evaluated-Evente-379 
Condition: 

A 
N 
D 

Alt-Reportings-202 in state Lost 
Bearing-Validm-298 
Other-Range-Validv-218 = True 
Proximate-Traffic-Conditionm-317 
Potential-Threat-Conditionm-314 
Other-Air-Statuss-202 in state On-Ground 

Output Action: Intruder-Status-Evaluated-Evente_379 
Description: 

OR 
T T T 
F T 

F T 
F 
F 

T 

Columns 1-2 Lost altitude reporting and either the bearing or range inputs are invalid. 

Column 3 Lost altitude reporting and both range and bearing are valid, but neither the proxi­
mate nor potential threat classification criteria are satisfied. 

Column 4 Aircraft is on ground. 

MOPS Ref. Section 7.1. TRAFFIC...ADVISORY. 

Figure 28: Transition definition 

50 

" 

.· 



Macro: Potential-Threat-Condition 
Definition: 

Other-Air-Statuss_202 in state Airborne 
A Potential-Threat-Range-Testm-315 
N Other-Alt-Reportingv-214 = True 
D Own-Tracked-Altr-349 2:: 15500 ftcAaovNMc) 

Potential-Threat-Alt-Testm-313 

Description: To be considered a Potential-Threat, the intruder must satisfy the 
potential threat range criteria. If the intruder is altitude reporting, it must also satisfy 
the potential threat altitude criteria. If the intruder is not altitude reporting, then it is 
considered a potential threat only if own altitude is below 15500 ft(AaovNMc)· 

MOPS Ref. TRAFFIC.ADVISORY.Traffic....advisory _detection, RangeJiiLprocessing. 

Figure 29: Macro definition 

51 



Function: Vertical-Resolution-Complement(i) 
Return type: { 0, 1, 2 } 
Definition: 

Vertical-Resolution-Complement = 

{ 

0 if Other-Aircraft5_202 [i] not in state Threat 
1 if Other-Aircraft5_202 [i] in ~tate Threat t> Descend 
2 if Other-Aircraft5_202 [i] in state Threat t> Climb 

Description: This function returns the value of the Vertical-Resolution-Complement 
Mode S message field . Its values have the following meaning: 

Value 
0 
1 
2 

Meaning 
No vertical resolution advisory complement sent. 
Don't descend. 
Don't climb. 

Explanation of value selection criteria: If Other-Aircraft is not in state Threat, then 
Vertical-Resolution-Complement has value 0 (no vertical RA complement). If TCAS has 
selected a Descend sense RA against the intruder, then Vertical-Resolution-Complement 
is set to 1 (don't descend). Likewise, if TCAS has selected a Climb sense RA against the 
intruder, then Vertical-Resolution-Complement is set to 2 (don't climb). 

MOPS Ref.: SendjnitiaUntent (p. 6-P57). 

Figure 30: Function definition 

52 

II 

" 



References 

[BGFG86] G. R. Bruns, S. L. Gerhart, I. Forman, and M. Graf. Design tecnology assess­
ment : The statecharts approach. Technical Report STP-107-86, MCC , March 
1986. 

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite­
state concurrent systems using temporal logic. Transacrions on Programming 
Languages and Systems, 8(2):244-263, April 1986. 

[FG79] M. Fitter and T. R. G. Green. When do diagrams make good computer lan­
guages. International Journal on Man-Machine Studies, 11, 1979. 

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of 
Computer Programming, 8:231-274, 1987. 

[Hen80] K. L. Heninger. Specifying software for complex systems: New techniques and 
their application. IEEE Transactions on Software Engineering, 6(1), January 
1980. 

[HLN+90] D. Harel , H. Lachover , A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull­
Trauring, and M. Trakhtenbrot. Statemate: A working environment for the 
development of complex reactive systems. IEEE Transactions on Software En­
gineering, 16( 4) , April 1990. 

[Hoa78] C. A. R. Hoare. Communicat ing sequential processes. Communications of the 
ACM, 21(8):666-677, 1978. 

(Hol91] G. J. Holzmann. Design and validation of computer protocols. Prentice Hall, 
1991. 

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In K.R. Apt, 
editor, Logics and Models of Concurrent Systems, pages 477-498. Springer­
Verlag, 1985. 

[HP87] D. Hatley and I. Pirbhai. Strategies for Real Time System Specification. Dorset 
House Publishing, 1987. 

[Jaf88] M.S. Jaffe. Completeness, Robustness, and Safety in Real-Time Software Re­
quirements and Specifications. PhD thesis, University of California, Irvine, 
1988. 

53 



[JLHM90] M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. Melhart. Software 
requirements analysis for real-time process-control systems. IEEE Transactions 
on Software Engineering, 17(3), March 1990. 

[LH83] N.G. Leveson and P.R. Harvey. Analyzing Software Safety. IEEE Transactions 
on Software Engineering, SE-9(5):569-579, September 1983. 

[LHH+91] N. G. Leveson, M. Heimdahl, H. Hildreth, J. Reese, and R. Ortega. Experiences 
using statecharts for a system requirements specification. In Proceedings of the 
Sixth International Workshop on Software Specification and Design, 1991. 

[LS87] N. G. Leveson and J. L. Stolzy. Safety analisys using petri nets. IEEE Trans­
actions on Software Engineering, 13(3), March 1987. 

[Mel91] B. E. Melhart . An external interaction model for specifying requirements of 
embedded software. Technical Report Draft, Texas Christian University, Jan 
1991. 

[Par79] D.L. Parnas. Designing software for ease of extension and contraction. IEEE 
Transaction on Software Engineering, SE-5(2):128-138, March 1979. 

[PS] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. 

[PW89] D. L. Parnas and Y. Wang. The trace assertion method of module interface 
specification. Technical Report 89-261, Queen's University, Kingston, Ontario 
K713N6, 1989. 

[RR91] A. P. Ravn and H. Riscel. Requirements capture for embedded real-time sys­
tems. In !MACS Symposium MCTS, 1991. 

[Sha92] A. C. Shaw. Communicating real-time state machines. IEEE Transactions on 
Software Engineering, 18(9), September 1992. 

[WM85] P. Ward and S. Mellor. Structured Development for Real-Time Systems. Your­
don Press, 1985. 

54 




