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Inter-valley coherent order and isospin
fluctuation mediated superconductivity
in rhombohedral trilayer graphene

Shubhayu Chatterjee 1 , Taige Wang1,2, Erez Berg 3 & Michael P. Zaletel1,2

Superconductivity was recently discovered in rhombohedral trilayer graphene
(RTG) in the absence of a moiré potential. Superconductivity is observed
proximate to a metallic state with reduced isospin symmetry, but it remains
unknown whether this is a coincidence or a key ingredient for super-
conductivity. Using a Hartree-Fock analysis and constraints from experiments,
we argue that the symmetry breaking is inter-valley coherent (IVC) in nature.
We evaluate IVC fluctuations as a possible pairing glue, and find that they lead
to chiral unconventional superconductivity when the fluctuations are strong.
We further elucidate how the inter-valleyHund’s couplingdetermines the spin-
structure of the IVC ground state and breaks the degeneracy between spin-
singlet and triplet superconductivity. Remarkably, if the normal state is spin-
unpolarized, we find that a ferromagnetic Hund’s coupling favors spin-singlet
superconductivity, in agreement with experiments. Instead, if the normal state
is spin-polarized, then IVC fluctuations lead to spin-triplet pairing.

The experimental discovery of robust superconductivity in graphene-
basedmoiré heterostructures has placed graphene in the spotlight for
studying the physics of strong electronic correlations1–8. Very recently,
superconductivity was observed in an even simpler system — ABC-
stacked rhombohedral trilayer graphene (RTG) without any moiré
pattern9. Near charge neutrality, just likemonolayer graphene, the low-
energy electrons of RTG are characterized by an isospin index that
includes valley and spin10,11. Superconductivity emerges on the cusp of
isospin symmetry breaking transitions in hole-doped RTG in the pre-
sence of a perpendicular displacement field. In particular, there are
two superconducting phases (referred to as SC1 and SC2 in Ref. 9) that
flank two distinct isospin symmetry-broken phases [called a ‘partially
isospin polarized’ (PIP) phase in Ref. 9]. While SC1 is suppressed by in-
plane Zeeman fields and respects the Pauli paramagnetic limit12,13, SC2
appears to strongly violate this limit. Further, the low level of disorder
in the sample, as evidenced by μm-scale mean-free path of electrons,
leaves open the possibility for unconventional superconductors.

These remarkable observations naturally lead to important
questions. What is the nature of isospin symmetry-breaking in the
metallic phases of RTG? What are the pairing symmetries of SC1 and

SC2 that emerge on the verge of isospin symmetry-breaking? What
role, if any, do electronic correlations play in aiding or suppressing
superconductivity?

In this paper, we propose isospin fluctuations as an all-electronic
mechanism of superconductivity in RTG. We first argue that the
experimental data strongly constrains the nature of spontaneous
symmetry-breaking in the correlated metallic states. In particular, we
demonstrate using self-consistent Hartree-Fock calculations that a
promising candidate state near SC1 is an inter-valley coherent (IVC)
metal that spontaneously breaks the U(1)v valley conservation sym-
metry, but lacks net spin or valley-polarization. Depending on the sign
of the inter-valley Hund’s coupling, such an IVC metal is either a time-
reversal symmetric spin-singlet charge-density wave (CDW), or a col-
linear spin-density wave (SDW) that breaks time-reversal and global
spin-rotation symmetry: both triple the unit cell14,15. Near SC2, we
propose that a spin-polarized IVC state, which microscopically corre-
sponds to a ferromagnetic CDW, may be realized.

Next, we investigate superconducting instabilities that arise from
fluctuations of the IVC order parameter. Interestingly, we find that the
leading superconducting instability, as determined by solving a mean-
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field Bardeen-Cooper-Schrieffer (BCS) gap equation, shows a transi-
tion as a function of the IVC correlation length ξIVC. At large ξIVC, i.e.,
closer to criticality, the dominant instability is towards a chiral fully-
gapped superconductor, while at smaller ξIVC the dominant instability
is towards a non-chiral nodal superconductor. Because of the presence
of an additional valley degree of freedom, both these states could
either be spin-singlet or triplet. Within a model accounting only for
intra-valley Coulomb scattering, spin-singlet and triplet super-
conductors are degenerate due to an enhanced SU(2)+ × SU(2)− spin-
rotation symmetry (valleys labeled by ±). However, we argue that the
inter-valley Hund’s coupling arising from lattice-scale effects deter-
mines the spin-structure. The existence of valley-unpolarized, spin-
polarized phases in RTG implies that the Hund’s coupling is ferro-
magnetic. Remarkably, we find that such a Hund’s coupling prefers a
spin-singlet superconductor, consistent with SC1. In contrast, SC2 is
likely a non-unitary spin-triplet which inherits the spin-polarization of
the ferromagnetic normal state.

The rest of this paper is organized as follows. In Sec-
tion “Hamiltonian and symmetries”, we introduce the interacting
Hamiltonian for RTG and its symmetries. In Section “Inter-valley
coherent order”, we argue in favor of an IVC phase near SC1 using both
Hartree-Fock and analytical calculations, and discuss its real-space and
momentum space structures. In Section “Hund’s coupling”, we discuss
how the inter-valley Hund’s coupling has an unusual formwhich favors
spin-triplet IVC over spin-polarization when ferromagnetic. In Sec-
tion “IVC fluctuation mediated superconductivity”, we analyze super-
conducting instabilities arising from IVC fluctuations, and study the
role of the Hund’s term in splitting the degeneracy between spin-

singlet and triplet superconductors. We conclude in Section “Discus-
sion”with a summary of ourmain results, comparison to experimental
data and recent theoretical work, and an outlook.

Results
Hamiltonian and symmetries
ABC-stacked RTG is most accurately described using a six-bandmodel
per valley ðK=K 0Þ and spin10,11. All numerical calculations presented in
this work use the six-band model with tight-binding parameters taken
from Ref. 16 (See Supplementary Material for further details). How-
ever, it is useful to develop some intuition for theband structurewithin
an approximate 2-bandmodel which describes the low-energy physics
in each valley. The wave-functions of the two bands closest to the
Fermi level reside mostly on the non-dimerized sites on the top/bot-
tom layer (denoted by σ =A1/B3 respectively, see Fig. 1a). In this pseu-
dospin basis, the effective Hamiltonian can be written as:

H =
X
τ,s,k

cyτ,s,k,σ ½hτ ðkÞ�σσ0 � μδσσ0
� �

cτ,s,k,σ 0 +HC,

hτðkÞ
� �

σσ0 =
�u v30

γ21
Π3 + γ2

2

v30
γ21
ðΠ*Þ3 + γ2

2 u

0
B@

1
CA

σσ 0

ð1Þ

whereΠ = τkx + iky, τ = ± denotes valley, s =↑/↓ labels spin, and μ is the
chemical potential. The band structure parameter v0 is the Dirac
velocity of monolayer graphene, γ1∼ 300meV quantifies the strength
of interlayer dimerization, γ2∼ − 15meV is the direct hopping between
A1/B3 that contributes to trigonal warping, and u∼ 10s of meV is the

Fig. 1 | Band structure and real space description of inter-valley coherent (IVC)
phases. a 1D cut of the Hartree-Fock band structure of the for a self-consistent HF
IVC state close to the onset of the spin-singlet/triplet IVC phase, with the bare band
structure in the two valleys shown by dotted lines below (displaced below for
clarity). Inset shows the unit-cell of RTG, with {Bi,Ai+1} being strongly hybridized
(i = 1, 2) such that the active sublattices A1/B3 form a triangular lattice. b Real space
structure of the spin-singlet/CDW IVC (left) and the spin-triplet/SDW IVC (right) on

the effective triangular lattice, with dotted lines showing the tripledunit cell in each
case. c Fermi surface of the single-particle band structure in theK valley at different
electron densities ne, assuming fourfold isospin degeneracy. d 2D depiction of the
reconstructed Fermi surface of the same IVC state as panel a, showing two annular
pockets. Different colors indicate the number of filled HF bands. The dashed black
curves are the Fermi surfaces of HF self-consistent symmetricmetal at identical
filling.
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potential difference between the two layers due to the perpendicular
electric field. When γ2 = 0, the electric field u gaps out the cubic-band
touchings, leading to a large density of states (DOS) at the band
extrema centered on K=K 0. Symmetry-breaking is only seen at
sufficiently large u, presumably because the increased DOS leads to
stronger interaction effects16. The γ2 term then splits the band extrema
into three shallow pockets related by C3 rotations about K=K 0. As
shown in Fig. 1c, as the electron density is reduced below neutrality,
the topology of the Fermi surface within each valley first transitions
from three C3-related pockets to an annulus via a van-Hove singularity,
and finally to a distorted disc via a Lifshitz transition. For hole-dopings
large enough such that ðv0kF Þ3=γ21 ≳u,γ2, the DOS at the Fermi surface
is low and interesting interaction effects disappear.

The interacting Hamiltonian HC is given by:

HC =
1
2A

X
q

VCðqÞ : ρðqÞρð�qÞ : ð2Þ

where A is the sample area, VCðqÞ= e2 tanhðqDÞ=ð2ϵqÞ is the repulsive
dual gate-screened Coulomb interaction with sample-gate distance D,
and ρðqÞ=Pk,τ,s,σc

y
τ,s,k,σcτ,s,k+q,σ is the Fourier component of the

electron density operator, with ∣k∣ and ∣q∣ being restricted to small
values relative to the inverse lattice spacing a−1.

The symmetries of H include charge conservation U(1)c, valley-
charge conservation U(1)v generated by τz, time-reversal T , transla-
tions T1,2, mirror reflection Mx, and rotation C3. Note there is no
inversion symmetry whenever u ≠0, the case of interest, reducing the
point group symmetry from D3d to C3v

17,18. The absence of spin-orbit
coupling allows us to define a spinless time-reversal ~T = τxK which
relates dispersions of the nth bands in the two valleys as ετ,n(k) =
ε−τ,n(−k). However, trigonal warping splits the valleys locally in
momentum space, so ετ,n(k) ≠ ε−τ,n(k). Finally, for the interaction
definedbyHC there is a separate spin-rotation symmetry in each valley,
denoted by SU(2)+ × SU(2)−. In reality, this symmetry is broken by
lattice-scale effects such as optical phonons and inter-valley Coulomb
scattering19 to a global SU(2) spin rotation; we will return later to the
effect of this ‘Hund’s’ coupling JH.

Inter-valley coherent order
Isospin symmetry breaking. We begin by reviewing the experimental
constraints on isospin symmetry breaking in the vicinity of SC19,16. Upon
approaching charge neutrality from the hole-doped side, a series of
phase transitions is observed. The phase transitions are accompanied
by Fermi surface reconstruction, visible in quantum oscillations. The
first transition is from a fully symmetric phasewith fourfold-degenerate
annular Fermi surfaces (corresponding to the four isospin degrees of
freedom), to a symmetry-broken metallic phase (the PIP phase) with
two large and two small Fermi surfaces. The critical density is dis-
placementfield (e.g.,u) dependent, andwithinourmodel atu = 30meV,
it occurs in the general vicinity of ne∼ − 1.4 × 1012 cm−2. The boundary
between the two phases is insensitive to an in-plane magnetic field,
indicating that the PIP phase is not spin-polarized (this is in contrast to
other regions of parameter space, where such dependence is clearly
visible). Furthermore, the PIP phase does not have an observable
anomalous Hall effect (Andrea F. Young, private communication),
which suggests it is time-reversal symmetric. In other regions of the
phase diagram, the system is valley-polarized, which produces an
experimentally observed anomalous Hall effect due to the valleys’
opposing Berry curvature16, (See Supplementary Material).

The absence of spin and valley polarization suggests that the PIP
phase instead has broken U(1)v symmetry, i.e., it is inter-valley coher-
ent. An alternate possibility would be a spin-valley locked state (SVL)
with spins polarized in each valley, but oppositely aligned between the
valleys. While such a state is compatible with experiment, we note that
it would be disfavored by a ferromagnetic Hund’s coupling. As

mentioned above, the presence of nearby spin-polarized, valley-
unpolarized phases suggests that the Hund’s coupling is ferromag-
netic. We shall assume that this is the case, and will not discuss the
possibility of a SVL phase further.

In the absence of symmetry breaking, the band dispersion of the
two valleys ε±(k) cross at certain high symmetry points related by C3

and Mx. The IVC order hybridizes the valleys, gapping out the band
crossings and deforming the T -related annular Fermi surfaces of the
two valleys into a small and large annulus, see Fig. 1a, d.We identify this
as the "PIP” phase in which quantum oscillations give evidence for a
spin-unpolarized state featuringmultiple Fermi surfaces with different
areas; SC1 lies adjacent to this phase.

To verify that an IVC metal can be energetically favorable, we
conduct self-consistent Hartree–Fock (HF) calculations within the six-
band model11. In these calculations we phenomenologically account
for screening from the itinerant electrons by modifying VC within the
Thomas–Fermi approximation, with screening wavevector qTF based
on the non-interacting density of states (for details, refer to Supple-
mentary Material). The resulting phase diagram as a function of hole-
doping anddisplacement field is presented in Fig. 2b, and a line cut at a
fixed displacement field is shown in Fig. 2a. Over significant regions of
hole-doping anddisplacementfields of 20–40meV, a spin-unpolarized
IVCmetal is energetically competitive with the isospin polarized phase
(without a Hund’s coupling JH, different patterns of isospin polariza-
tion, e.g., full spin vs full valley polarization, are degenerate within HF).
The precise energetic ordering of the phases depends on details such
as u andqTF. Nevertheless,wenote that thebroad features of our phase
diagram (Fig. 2b), such as interaction-induced symmetry breaking at
large displacement fields, and the phase boundary between the spin-
unpolarized IVC metal and the fully symmetric metal, are consistent
with experiments.

Physical description of IVC states. In the absence of JH the set of IVC
ground states form a degenerate U(2)manifold related by the action of
SU(2)+ × SU(2)− spin-rotations14,15. Out of this manifold, inter-valley
Hund’s coupling, as we will elaborate on later, selects either a spin-
singlet or triplet IVC. These states have simple real-space structures, as
shown in Fig. 1b. The spin-singlet IVC is a T -symmetric CDW at
momentumK� K0, tripling the unit cell. Unlike monolayer and bilayer
graphene, where the active sublattices form a honeycomb lattice, in
RTG the active sublattices A1/B3 are stacked vertically, forming a single
triangular lattice (see Fig. 1a inset). We define the A1/B3-projected
density operator about K� K0 momentum transfer

nIV
S ðqÞ=

X
R

e�iðK0�K+qÞ�R ρðRÞ, ð3Þ

where R is the two-dimensional position vector for A1/B3 sublattices,
and ρðRÞ=Pσ =A1=B3

ρσðRÞ is the total electron density summed over
the two sublattices at position R. Thus, we conclude that nIV

S ðq=0Þ
serves as a complex order parameter for the singlet/CDW IVC. In fact,
HF calculations show that the valley off-diagonal part of the self-
consistent HF Hamiltonian HHF is very well-approximated by the
operator ΔIVC n

IV
S ð0Þ+h:c:, whereΔIVC is the amplitude of the IVC order

parameter (see SM (See Supplementary Material), Fig. 3 for a
quantitative comparison). Under C3 about an A1/B3 site,
nIV
S ðqÞ ! nIV

S ðC3qÞ. Therefore, the IVC order preserves A1/B3-site
centered C3. While a unit-cell tripling would generically be described
by a Z3 order parameter, corresponding to pinning of the U(1)v phase
of the IVC order parameter to one of three distinct values, quartic
interactions do not allow for Umklapp terms that break U(1)v ! Z3,
such terms appear only at the sextic level15.

The spin-triplet IVCcanbeobtained from the singlet oneusing the
SU(2)+ × SU(2)− symmetry, by applying a spin rotation of π on one
valley relative to the other around an arbitrary axis. The triplet IVC is a
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collinear SDW at momenta K� K0. In analogy with the singlet IVC, we
define the A1/B3 projected spin-density operator sðRÞ=Pσ =A1=B3

sσðRÞ
about K� K0 momentum transfer:

nIV
T ðqÞ=

X
R

e�iðK0�K+qÞ�R sðRÞ ð4Þ

The spin-triplet IVC parameter is nIV
T ðq =0Þ. Thus, the SDW IVC breaks

both valley U(1)v and global SO(3)s spin-rotation symmetry. Note that a
change of the order parameter phase by U(1)v rotations can be offset
by a global spin-rotation about n̂, leading to an order parameter
manifold of U(1)v × SO(3)/U(1)v+s≅ SO(3)20–22. Thus, such a state
formally has no long-range or algebraic order at finite temperature23,24,
although it may appear to order at low-enough temperature in finite
size systems due to an exponentially diverging correlation length. We
also note that within Landau theory, symmetry-allowed couplings
between a SDW with momenta Q and a CDW with momenta 2Q can
nucleate such a CDW in presence of long-range SDWorder25. Thus, the
triplet IVC can induce a CDW at K� K0, which is precisely the singlet
IVC order parameter. As such, the strict symmetry distinction between
the triplet and singlet IVC is the lack of magnetic order for singlet.

An alternative characterization of the IVC order parameters,
useful for studying IVC energetics as well as superconductivity
mediated by IVC fluctuations, may be obtained inmomentum space.
To do so, we use the band-basis, defined via cyτ,s,k,σ =

P
nu

*
n,τ,s,k

ðσÞψy
n,τ,s,k, where u*

n,τ,s,kðσÞ are the Bloch wave-functions and n labels
the band index. We define a valence-band projected operator
nIV
ss0 ðqÞ=

P
kλ

+�
q ðkÞψy

+ ,s,kψ�,s0 ,k+q, where λ +�
q ðkÞ= hu+ ,s,k∣u�,s,k +qi is

the inter-valley form factor that captures overlap of wavefunctions
from opposite valleys in the valence band, and Uss0 is any unitary
matrix in spin-space. In this formulation, it is evident that IVC order
parameter nIV

ss0 ðq=0Þ lies in the U(2) manifold. This degeneracy is
broken by the inter-valley Hund’s coupling, which either picks the

spin-singlet CDW with nIV
ss0 / δss0 or the spin-triplet SDW with nIV

ss0 /
ðn̂ � sÞss0 with an arbitrary unit-vector n̂.

Energetics of IVC.Wenowturn to the energetics of the IVCphase. The
IVC order parameter necessarily involves overlap of Bloch states from
opposite valleys, and therefore has non-trivial winding originating
fromopposite chirality of threefoldDirac cones aroundK andK 0 points
at u = 0. The winding of the IVC order parameter in momentum space
contributes an additional energy cost relative to an isospin polarized
phase (See Supplementary Material). This additional energy cost is
responsible for stabilizing an isospin polarized state relative to an IVC
state in certain insulatorswith non-trivial band topology, such asmagic
angle graphene at certain odd integer filling of flat bands26–30. This
raises an important question: why, then, is the IVC state energetically
favored over a valley-polarized state?

This puzzle can be resolved by noting that an IVC metal can
reduce its kinetic energy cost by local valley-polarization31,32. To
visualize this, it is convenient to think of the IVC order at each k point
as a vector in the x-y plane on the Bloch sphere corresponding to the
valley isospin. The trigonal-warping induced kinetic energy mismatch
between the valence bands in the K=K 0 valleys, given by ε+(k) −
ε−(k) = ε+(k) − ε+(−k), results in a local valley-Zeeman field BVZ(k). The
IVC state can thus benefit energetically by canting the valley isospin
vector towards BVZ(k) (much like an antiferromagnet gains energy by
canting towards an applied magnetic field), without carrying any net
valley-polarization as BVZ(k) averages to zero. We explicitly illustrate
this energy gain in the supplement (See Supplementary Material),
under the approximations of weak IVC order and linearized dispersion
close to the Fermi surface. Consistent with this intuition, the self-
consistent IVC order parameter obtained from HF also shows local
valley-polarization in the vicinity of the Fermi-surface (see Fig. 2c). On
the other hand, a valley-polarized phase (corresponding to a vector
polarized along ẑ on the Bloch sphere) cannot benefit from this local

Fig. 2 | Phase diagram and the IVC order parameter. a Self-consistent Hartree-
Fock energetics of isospin symmetry-broken states for u = 30meV, including (i)
spin or valley polarized (SP/VP), (ii) IVC, (iii) partially spin-polarized IVC (IVC-s), and
(iv) partially spin and valley-polarized (SP-v) states. (See Supplementary Material
for further details of SP-v and IVC-s).All energies are shown inmeVperhole, relative
to the fully symmetric metal. b Hartree-Fock phase diagram as a function of hole-
doping ne and displacement field u. Only the fully symmetricmetal (Symm) and the

spin-unpolarized IVC metal phases have been considered for clarity. c Magnitude
and d phase of the self-consistent HF IVC order Q⊥(k) =Qx(k) + iQy(k) deep in the
IVC phase where only the lower IVC band is filled (ne = − 1.05 × 1012 cm−2). We have
definedQμðkÞ= hψy

τ,s,kτ
μ
ττ0ψτ0 ,s,ki, normalized to unit magnitude. The phase ofQ⊥(k)

winds by 12π around the outer Fermi surface. The region outside the Fermi surface
is filled with black for clarity. f The valley polarization Qz(k) in the self-consistent
IVC solution follows (e) the local valley-Zeeman field BVZ(k).
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valley-Zeeman field without losing significant interaction energy. This
is again in accordance with our HF results, where the valley-polarized
phase shows no local canting in the parameter regime where it is
energetically favorable.

Experimentally, as the hole-density is further reduced towards
neutrality there is another sequence of transitions, first to a spin-
polarized and valley-unpolarized ‘half-metal’ (with zero spontaneous
Hall resistance,Rxy=0), subsequently to a secondPIPphase, andfinally
to a spin and valley polarized ‘quarter metal’ (where Rxy ≠0)16. While
the Hall response of the intervening PIP phase is unknown, a reason-
able candidate for this phase, which borders SC2, is a spin-polarized
IVC metal, which HF calculations also show is competitive in this
density region (see Supplementary Fig. 2). Starting with spin-polarized
Fermi surfaces, the same interplay of kinetic energy benefit and
interaction energy penalty can favor IVC over a valley-polarized state.
Further reductionofhole-doping can suppress this kinetic energy gain,
and tilt the energetic balance towards the observed spin-valley polar-
ized ‘quarter metal’.

Hund’s coupling
As alluded to previously, the inter-valley Hund’s coupling plays a cru-
cial role in determining the nature of iso-spin symmetry breaking. We

derive this term for an arbitrary translationally invariant interaction
potential matrix Uσσ0 ðqÞ in the SM (See Supplementary Material),
where σ, σ0 refer to A1/B3 sublattice indices within each unit cell.
However, to illustrate the physical effect, we focus on a simple limit
Uσσ 0 ðqÞ=U, i.e., a local interaction U that acts only within the unit cell
and is independent of the sublattice index. In this limit, the Hund’s
coupling takes the form:

HHund0s = � JH
A

X
q

s+�ðqÞ � sy+�ðqÞ ð5Þ

where s+�ðqÞ=
P

kλ
+�
q ðkÞψy

+ ,s,ksss0ψ�,s0 ,k+q is the inter-valley spin-
density projected to the valence bands, and JH =U. The Hund’s
coupling breaks the SU(2)+ × SU(2)− symmetry down to the physical
spin SU(2)s symmetry. While the short-range component of the
Coulomb interaction is thus expected to give JH >0, other lattice-
scale effects, such interactions between electrons and optical
phonons, may also contribute: so we treat JH as a phenomenological
parameter to be constrained by experiments.

For JH >0, the Hund’s coupling term favors a triplet IVC, as s+− is
nothing but the triplet IVCorder parameternT. This can be understood
by noting that a local repulsive interaction would disfavor excess

Fig. 3 | Unconventional superconductivity from IVC fluctuations. a Complex
pair wave-function of the gapped chiral superconductor showing magnitude
(intensity) and phase (hue). Coulomb repulsion favors a sign change between the
interior and exterior Fermi surfaces (dotted white lines). b Real pair wave-function
of nodal non-chiral superconductor with 6-fold oscillations around the annular
Fermi surfaces. c, d Schematic depiction of the favored superconducting pairings
extended from momenta patches around K=K 0 points (white boxes) to the
entire hexagonal BZ (dotted white lines), for spin-singlets (left) and triplets
(right). e Tc of the gapped chiral superconductor (e.g., d + id spin-singlet) within

the self-consistent BCS calculations as a function of ξIVC. Calculations at density
ne = −1.7 × 1012 cm−2, u = 30meV, including the effect of Coulomb repulsion with
screening qTF =

e2
ϵ χ0 and IVC fluctuations (Eq. (10)) of strength g =ne/χ0 ≈ 6meV,

where χ0 is the DOS at the Fermi energy. f Electron-scattering between valleys by
IVC fluctuations (indicated by blue arrows), showing how an attractive interaction
in the IVC channel is converted to a repulsive interaction between inter-valley
Cooperpairs. OnlyoneFermi surface in each valley is shown.The Fermi surfaces are
enlarged relative to the BZ for clarity.
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accumulation of charge that characterizes a CDW such as the singlet
IVC. On the other hand, an attractive U <0 favors the singlet IVC.

We note that HHund0s differs from another symmetry-allowed
Hund’s term ~HHund0s = � ~JH

A

P
qs+ ðqÞ � s�ð�qÞ, where sτ is the spin-

density in valley τ. While HHund0s and ~HHund0s are related by a Fierz
transformation at the lattice scale, after projection into the valence
band they are not, giving rise to different physical effects. While a fer-
romagnetic HHund0s favors a triplet IVC state at the Hartree level as
discussed above, ~HHund0s prefers either a spin-polarized or spin-valley
locked state for ~JH > 0 or ~JH < 0 respectively. The difference between
these two distinct Hund’s terms is rooted in the opposite Berry curva-
ture of the twovalleys. Specifically, ~HHund0s contains only valley-diagonal
form-factors λτ,τq ðkÞ, while the HHund0s derived microscopically from
short-range U has only valley-off-diagonal ones λτ,�τ

q ðkÞ. This is distinct
from the SU(4) quantumHall physics inmonolayer graphene,where the
Landau level wave-functions in both valleys have identical Berry cur-
vature, in which case the two kinds of Hund’s terms are related by Fierz
identities33. However, for small momenta k, the wavefunctions are
nearly sublattice polarized, in which case the Berry curvature vanishes
and the form factors become trivial, λτ,−τ, λτ,τ ≈ 1. In this part of theBZ, the
two types of Hund’s terms are related by exchange symmetry. There-
fore, at lower hole-doping, onemight expect a lack of competition from
kinetic energy and a small ferromagnetic HHund0s will tilt the balance in
favor of spin-polarization. Indeed, a spin-polarized, valley-unpolarized
‘half metal’ phase is observed at hole dopings slightly lower than the
spin-unpolarized PIP phase.

IVC fluctuation-mediated superconductivity
Superconducting instabilities. Motivated by the likely presence of
IVC order in the vicinity of superconductivity, we study super-
conducting instabilities mediated by near-critical fluctuations of the
IVCorder parameter.While the transition to the IVC state appears to be
first order in the HF phase diagram of Fig. 2a, we find that the precise
nature of this transition depends on details such as screening by the
itinerant electrons; for example, small adjustments to qTF can render it
continuous. Experimentally, there is no evidence of a first order phase
transition (such as a negative compressibility spike) between the
symmetric metal and the IVC metal, indicating that this transition is
second order or weakly first order. To microscopically justify that IVC
fluctuations are nearly gapless close to the transition, we compute the
IVC correlation length ξIVC within Hartree–Fock (see SM (See Supple-
mentary Material) for details), and find that ξIVC/a ≈ 102, i.e., ξIVC
becomes much larger than the microscopic lattice spacing a near the
transition. Therefore, we start in the symmetric metallic state with no
long range IVC order, but with IVC correlations peaked at q = 0. We
assume that fluctuations of the IVC are described by phenomen-
ological propagator of the form gq = g=ðq2 + ξ�2

IVCÞ at ω = 0 (we provide
an estimate of g in the SM (See Supplementary Material)). In the spirit
of spin-fermion models34–36, we then integrate out the fluctuating IVC
fields to obtain an effective inter-electron interaction.We first focus on
the SU(2)+ × SU(2)− symmetric case, where the effective interaction
takes the form (Tr stands for tracing spin-indices):

Heff
IVC = � 1

A

X
q

gq Tr nIVðqÞ½nIVðqÞ�y
h i

ð6Þ

We use the above effective Hamiltonian as the pairing-interaction, in
conjunction with the single-particle band structure projected to the
valence band, to numerically solve a linearized BCS gap equation (See
Supplementary Material for justification of projection, and further
numerical details). We restrict attention to inter-valley pairing of the
general form

Fss0 ðkÞ � hψ�,s,�kψ+ ,s0 ,ki: ð7Þ

Intra-valley pairing occurs at finite center of mass momentum,
and is expected to be energetically unfavorable.

Our numerical results are shown in Fig. 3. Remarkably, the leading
superconducting instability is always towards a superconductor in
which Fss0 ðkÞ ≈� Fss0 ð�kÞ. It is tempting to call this ‘odd-parity’, but
due to the valley degree of freedom the parity depends onwhether the
spin structure is singlet vs. triplet (recall that k is measured relative to
the K or K 0 point). The precise pairing channel is sensitive to the cor-
relation length ξIVC. For large ξIVC, pairing occurs first in the chiral
kx ± iky channels, leading to a fully gapped superconductor (at the
mean-field level) with orbital angular momentum Lz = ±1 about the
K , K 0 points (Fig. 3a). The simplest extension of such an order para-
meter to the entire Brillouin Zone (BZ), consistent with fermionic
anticommutation, is d + id for spin-singlet, and p + ip for spin-triplet
(Fig. 3c)37–41. In contrast, a smaller ξIVC leads to a non-chiral nodal
superconductor with a gap-function ~ kyð3k2

x � k2
yÞ= Im½ðkx + ikyÞ3�

about the K ,K 0 points (Fig. 3b). We note that C3 symmetry about the K
point does not distinguish this nodal state from a trivial s-wave state
(Lz = 0). Rather, such a gap function is odd under the combination of
mirror Mx and spinless time-reversal ~T , leading to nodes at ky =0 and
all C3 related points: while an s-wave state is even underMx

~T and non-
nodal. The simplest extension of the nodal pairing function to the
entire BZ involve a twelve-fold oscillation about the Γpoint (i-wave) for
the spin-singlet, and a six-fold oscillation (f-wave) for the spin-
triplet (Fig. 3d).

These results can be understood by analyzing the IVC fluctuation-
mediated interaction in Eq. (6). Decoupling Heff

IVC in the Cooper chan-
nel,

hHeff
IVCi=

1
A

X
k,k0

Vkk0Tr½FyðkÞFðk0Þ� ð8Þ

where the effective interaction potential is Vkk0 = gq=�k�k0

∣λ+�
q =�k�k0 ðkÞ∣2. When ξIVC becomes large, Vkk0 is peaked at q =0. Thus,

in contrast to the Coulomb interaction, IVC-induced scattering is
strongest between Cooper pairs with opposite momenta k= � k0. An
intuition for the resulting pairing channel is then gleaned from the
q = 0 limit of Eq. (8). Due to the SU(2)+ × SU(2)− symmetry, spin-singlet
superconductivity with F(k) = isyfk and unitary spin-triplet super-
conductivity with FðkÞ= ðisyÞðd̂ � sÞf k are degenerate. Inserting these
ansatz into the q→0 limit,

hHeff
IVCi≈

2
A

X
k

g0∣λ
+�
q=0ðkÞ∣2f *k f �k ð9Þ

Evidently, hHeff
IV Ci is minimized when f *k = � f �k, corresponding to

unconventional pairing, as found in our numerical calculations. This
result is reminiscent of Cooper-pairing due to spin fluctuations in C4

symmetric systems, such as high-Tc cuprates, where a repulsive
interaction leads to sign-change of the pairing order parameter
between points on the Fermi surface connected by the wavevector
where the spin flutuations are strongest, resulting in a d-wave
superconductivity42. In C3 symmetric RTG, inter-valley scattering by
IVC fluctuations mediates an analogous repulsive interaction between
inter-valley Cooper pairs43, and leads to sign-change in fk across the
Fermi surface within each valley (see Fig. 3f for a schematic depiction).

Next,we turn to the ξIVC-induced transitionbetween chiral gapped
and non-chiral nodal superconductivity. When ξIVC is large, the effec-
tive interaction strength gq becomes increasingly singular at small ∣q∣.
In this regime, the fully gapped fk∼ kx ± iky is most energetically
favorable, since it has a uniform magnitude of the gap on the Fermi
surface, and gains the most from the singular part of the interaction.
Further, the pairing amplitude is typically stronger on the inner Fermi
surface (see Fig. 3a), which hosts a larger density of states. In contrast,
when ξIVC is small, gq=0 ≈ g ξ2IVC and Vkk0 is determined by the inter-
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valley form factor ∣λ+�
q =0ðkÞ∣2. The form-factor has a six-fold oscillating

structure across the Fermi surface, which induces an corresponding
oscillating structure in fk, leading to the nodal superconductor
observed numerically. In this case, pairing is much stronger on the
outer Fermi surface which is at larger momenta, as opposed to the
inner Fermi surface where the layer polarization term dominates and
∣λ+�

q =0ðkÞ∣2 is approximately constant (see Fig. 3b). These considera-
tions explain the ξIVC-induced transition between preferred super-
conducting channels.

Figure 3e shows the mean-field Tc as a function of the correlation
length ξIVC for the chiral superconducting state, including the effect of
long-range Coulomb repulsion (See Supplementary Material for fur-
ther details of this calculation). We find that Tc is a strongly increasing
function of ξIVC, and as a result Tc is appreciable only in the regime
where the fully-gapped chiral state dominates. We therefore expect
that this state,which isd + id (p + ip) for spin-singlet (spin-triplet), is the
one realized in the experiments. We note that in this calculation, we
have ignored the frequency dependence of the interaction, and the
damping of the electrons by bosonic IVC fluctuations. Both effects are
known to become important close to the critical point, and we defer a
detailed study of these effects to future work44.

Effect of Hund’s coupling. The inter-valley Hund’s coupling splits the
degeneracy between spin-singlet and spin-triplet superconductors, by
amplifying SDW IVC fluctuations over CDW IVC fluctuations or vice
versa, depending on the sign of JH. To see this, we use the Fierz identity
2δανδβμ = sαβ ⋅ sμν + δαβδμν to decompose the effective Hamiltonian for
IVC fluctuations into of spin-singlet and spin-triplet IVC channels:

Heff
IVC = � 1

2A

X
q

gT
q n

IV
T ðqÞ � ½nIV

T ðqÞ�
y�

+ gS
q n

IV
S ðqÞ½nIV

S ðqÞ�
y� ð10Þ

In the SU(2)+ × SU(2)− symmetric limit, the susceptibilities
gS
q = g

T
qð= gqÞ for the singlet and triplet IVC states are identical. How-

ever, including Hund’s coupling breaks this symmetry and amplifies
one susceptibility at the expense of the other, so more generally
gS
q ≠ gT

q, and we have:

hHeff
IVCi≈

1
A

P
k
ð3gT

0 � gS
0Þ∣λ +�

q =0ðkÞ∣2f *kf �k,singlet SC

1
A

P
k
ðgT

0 + g
S
0Þ∣λ +�

q =0ðkÞ∣2f *kf �k,triplet SC

8><
>:

ð11Þ

From Eq. (11), we see that when triplet-IVC fluctuations are stronger,
i.e., gT

q > gS
q, a spin-singlet superconductor becomes energetically

favorable. Since a triplet IVC state is preferred by ferromagnetic
Hund’s coupling arising from short-range repulsive interactions
(JH >0), this leads to the surprising conclusion that such a Hund’s
coupling also prefers a spin-singlet superconductor.

Intuitively, this happens because ferromagnetic Hund’s coupling
promotes antiferromagnetic fluctuations that couple antipodal points
on the Fermi surface, promoting singlet superconductivity with an
order parameter that changes its phase between these points, in ana-
logy to the cuprates42 and magic angle twisted bilayer graphene43,45. In
contrast, an antiferromagnetic Hund’s term amplifies singlet-IVC fluc-
tuations with gS

q > gT
q, and therefore leads to a spin-triplet p/f wave

perturbatively away from the fully symmetric point. When it sig-
nificantly enhances singlet-IVC fluctuations, the effective interaction
Vk,k0 turns attractive and a spin-singlet fully-gapped s-wave super-
conductor becomes the most favored pairing channel.

If we assume that the sign of the Hund’s term does not change
across the doping range studied in the experiment, we expect it to be
ferromagnetic since it prefers spin-polarization at low doping. This

leads to the interesting prediction that SC1 is a spin-singlet chiral d + id
superconductor. This conclusion is consistent with fact that SC1 obeys
the Pauli limit9. Of course, as discussed previously, such a ferromag-
netic Hund’s term may also drive a transition to a spin-polarized IVC
state, as possibly happens at lower doping. In this case, IVC fluctua-
tions favor a spin-polarized (triplet) state, which we consider a candi-
date for SC2.

Effect of Coulomb repulsion. Finally, we comment on the effect of
Coulomb interactions in our numerical solutions of the BCS gap
equation. Some intuition canbe gained by analyzingHC at amean-field
level, by decoupling the Coulomb interaction in the Cooper channel:

hHCi=
1
A

X
k,k0

Vc
k,k0Tr½FyðkÞFðk0Þ� ð12Þ

where Vc
k,k0 = ∣λ + +

q=k0�kðkÞ∣2VCðq=k0 � kÞ is the effective repulsive
potential. The repulsion from Eq. (12) with static RPA screening was
included in the BCS calculations for Tc shown in Fig. 3(c).

Noting that VC(q) and ∣λ+ +
q ðkÞ∣2 are positive and peaked at q =0,

the k ! k0 limit gives a large contribution to Eq. (12). Since
Tr½FyðkÞFðkÞ� is always positive semi-definite, this leads to the expected
conclusion that a repulsive Coulomb interaction disfavors super-
conductivity in all channels. However, for annular Fermi-surfaces, the
superconductor can reduce the Coulomb penalty by flipping the sign
of the pairing between the outer and inner Fermi surfaces, while
leaving the pairing symmetry unchanged. This leads to an attractive
contribution to Eq. (12) for wavevectors qwhich connect the inner and
outer Fermi surfaces. This sign change is indeed found in the solution
to the linearized BCS equations shown in Fig. 3a. Furthermore, we find
that the gapped chiral superconductor is quite robust to Coulomb
interactions, indicating that strong near-critical IVC fluctations can
overcome repulsion between electrons and lead to Cooper-pairing. In
contrast, the Coulomb interaction destabilizes the weaker pairing in
the nodal superconductor in favor of a metallic phase.

Discussion
In this paper, we showed that IVCmetallic phases,with andwithout net
spin-polarization, are promising candidates for the symmetry broken
phases adjacent to the SC2 and SC1 superconductors respectively.
Fluctuations in the IVC order parameter can provide the pairing glue
for superconductivity in RTG, with Tc comparable to experiments. IVC
fluctuations naturally favor gapped chiral superconductivity or non-
chiral nodal superconductivity, depending on the correlation length
ξIVC. In the SU(2)+ × SU(2)−-symmetric model, the spin-singlet and tri-
plet channels are degenerate. The short-range Hund’s coupling which
breaks this symmetry then favors either (1) an IVC corresponding to a
spin-singlet CDW, and triplet superconductivity or (2) an IVC corre-
sponding to a spin-triplet SDW, and singlet superconductivity. The
latter superconductor breaks only U(1)c, and has a finite temperature
BKT transition, and is Pauli limited, consistent the experimental
observations for SC1.

On the other hand, fully spin-polarized IVC fluctuations at lower
hole-densities can lead to a spin-polarized chiral or nodal super-
conductor, consistent with the Pauli limit violation observed for SC2.
We note that such a superconductor has an order parameter manifold
of SO(3)20–22, whichwould not have a finite temperature BKT transition
in absence of a Zeeman field. However, if the magnetic correlation
length is large enough, we expect apparent superconducting behavior
for low enough temperatures and finite-size systems.

Experimental probes
To experimentally verify the IVCmetal in RTG, we note that it is either a
CDW, or a SDW with a small CDW component. Thus spin-polarized
scanning tunneling microscopy (STM)46,47 is the probe of choice, as it
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candirectly access the spin and charge density distribution at the lattice
scale. However, since symmetry considerations do imply that the SDW
will induce a weak CDW, a good first step is spin-unpolarized STM,
where a tripled unit cell should be observable in the site-resolved LDOS.

Our theory predicts that the superconducting phases are uncon-
ventional in nature, in the sense that the average of the order parameter
over the Fermi surface vanished. Such an order parameter is expected
to be sensitive to small amounts of non-magnetic disorder48,49. The
chiral phase should produce spontaneous edge currents50, observable
in scanning nano-SQUID experiments. However, we carefully note that a
chiral superconductor obtained from a parent metal with an annular
Fermi surface is topologically trivial. To see this, we consider the BdG
mean-field spectrum of the superconductor, where we first tune the
chemical potential to empty all the bands, and subsequently tune the
superconducting gap to zero. The chiral orderparameter is gapless only
at K=K 0 points, which never touch the annular Fermi surface as μ is
tuned. Thus, the bulk BdG gap never closes during this process,
implying that the chiral superconductor is smoothly connected to the
topologically trivial vacuum. Hence, we do not expect quantized edge
modes, though the T -breaking may still manifest in a bulk magnetiza-
tion observable as edge currents. Finally, current-noise spectroscopy
using quantum impurity defects51 can efficiently distinguish between
nodal and fully gapped chiral superconductors52,53.

Alternative routes to superconductivity
Alternative mechanisms of superconductivity are possible, and deserve
further investigation. Ref. 54 studies inter-electron attraction mediated
by acoustic phonons as a possible pairing mechanism, and finds s-wave
spin singlet/f-wave spin triplet superconductors to be favored. However,
acoustic phonons do not choose between a singlet and a triplet super-
conductor, as the phonon-mediated interactions are fully SU(2)+ ×
SU(2)− symmetric (optical phonons do not preserve this symmetry, but
coupling of low-energy electrons to optical phonons is veryweak in RTG
under strong displacement fields55). Suppose we could characterize the
phase diagram by a single Hund’s coupling JH. Then, the presence of
spin-polarized, valley-unpolarized phases in the phase diagram indicates
that JH is ferromagnetic. In such a scenario, a pairing mechanism based
solely on acoustic phononswould predict a spin-triplet superconductor,
in contradiction with the experimental observation for SC1. Our pro-
posed scenario can explain both the presence of spin-polarized phases
and spin-singlet superconductivity within a single, consistent picture.
Further, we note that the same acoustic phonons would act as an
external bath for electrons, and lead to a strong linear in T resistivity in
the metallic state above the Bloch-Grüneisen temperature, which has
not been observed in RTG9. While isospin fluctuations can also poten-
tially increase the resistance aboveTc, thesefluctuationsmicroscopically
originate from the collective behavior of the electrons themselves.
Therefore, these result in electron-electron scattering that strongly
affects single-particle lifetimes, but does not degrade the net momen-
tum (in absence of umklapp scattering56). Thus, collective isospin fluc-
tuations can only contribute to d.c. transport in the presence of
disorder. We leave this interesting problem to future work.

On a different note, a two-dimensional annular Fermi surface
allows for a Kohn–Luttingermechanism for pairing57–61. Similarly to the
mechanism explored in this work, in the Kohn–Luttinger mechanism
the pairing is driven by electronic fluctuations. However, no particular
soft collective mode is assumed (i.e., the system is not assumed to be
close to a continuous transition). Instead, all the particle-hole fluc-
tuation channels contribute on the same footing. For RTG, this
mechanism was recently found to lead to a chiral state62, similar to the
state predicted in this work in the vicinity of the critical point.

Outlook
Our study provides a starting point for further theoretical and experi-
mental investigation of correlation effects and superconductivity in

RTG in particular, and in non-moiré few-layered graphene more gen-
erally. It also shows that, somewhat contrary to usual belief, spin-singlet
superconductors can be favored by ferromagnetic Hund’s coupling
when additional (valley) degrees of freedom are relevant. While our
phenomenological treatment of coupling between electrons and soft-
modes only allows us obtain an estimate of the superconducting critical
temperature, our work motivates numerical explorations to determine
Tc accurately as a function of carrier density and electric field in RTG.
Understanding the relevance of RTG physics to moiré graphene plat-
forms, which also feature strong iso-spin fluctuations in topological flat
bands30,63–65, or to surface superconductivity in rhombohedral
graphite66,67 is left for future work.

Note added
Recently, we became aware of another study of isospin fluctuation-
mediated superconductivity in RTG68. Since this paper was submitted,
severalmore studies of unconventional superconductivity in RTGhave
appeared69–71.

Data availability
All data generated or analyzed during this study are included in this
published article (and its Supplementary Information files).

Code availability
The codes used to generate the plots are available from the corre-
sponding author on reasonable request.
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