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Theory of the momentum flux probability distribution function
for drift wave turbulence

Eun-jin Kima) and P. H. Diamond
Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

!Received 9 July 2001; accepted 4 October 2001"

An analytical theory of the tails of the probability distribution function !PDF" for the local Reynolds
stress (R) is given for forced Hasegawa–Mima turbulence. The PDF tail is treated as a transition
amplitude from an initial state, with no fluid motion, to final states with different values of R due
to nonlinear coherent structures in the long time limit. With the modeling assumption that the
nonlinear structure is a modon !an exact solution of a nonlinear Hasegawa–Mima equation" in
space, this transition amplitude is determined by an instanton. An instanton is localized in time and
can be associated with bursty and intermittent events which are thought to be responsible for PDF
tails. The instanton is found via a saddle-point method applied to the PDF, represented by a path
integral. It implies the PDF tail for R with the specific form exp#!cR3/2$ , which is a stretched,
non-Gaussian exponential. © 2002 American Institute of Physics. #DOI: 10.1063/1.1421616$

I. INTRODUCTION

For the last 40 years, much of the effort in magnetic
fusion theory has been devoted to calculating turbulent heat
and particle diffusivities for turbulence arising from various
microinstabilities. A conventional approach to this problem
is so-called mean field theory, which attempts to describe the
transport by a single, average coefficient. It is, however, be-
coming increasingly clear that transport often involves
events of many different amplitudes or scales, some of which
are intermittent and bursty in time. In particular, recent nu-
merical simulation1 has indicated the existence of avalanche-
like events of large amplitude, associated with coherent
structures such as streamers or blobs, which can be major
players in the transport dynamics. On the theory front, the
notion of a scale invariant spectrum of transport events was
proposed in self-organized criticality theory.2 In short, it is
evident that rather than a transport coefficient, the flux prob-
ability distribution function (PDF) is required in order to
substantively characterize the transport process.

It is often found that PDF is Gaussian near its center but
reveals a significant deviation from Gaussianity at the tails.3
The latter is a manifestation of intermittency due to rare
events of substantial amplitude, which are frequently associ-
ated with bursts and coherent structures. That is, the events
contributing to the tails are intrinsically strongly nonlinear.
Thus, unlike near the center of PDF, where a perturbative
approach may be useful, a nonperturbative approach is re-
quired for the description of PDF tails. Unfortunately, little
in the way of intuition concerning PDF structure is available.
Moreover, since numerical calculation of PDFs !via repeated
simulations" is slow and costly, a !nonperturbative" analytical
theory is especially useful.

In this paper, we take a novel statistical approach and
provide an analytical theory for the prediction of the tails of
local Reynolds stress !vorticity flux" PDF in drift wave tur-

bulence. We consider forced Hasegawa–Mima turbulence4
as the simplest description of drift wave turbulence and study
momentum transport by computing the PDF for local Rey-
nolds stress !i.e., momentum flux". Note that the issue of
particle or heat transport, which is of our ultimate interest,
cannot be addressed in the Hasegawa–Mima model and re-
quires consideration of a more complicated model such as
Hasegawa–Wakatani,5 ion temperature gradient turbulence6
!ITG", or dissipative trapped ion convective cell !DTICC"7
models.

As noted previously, PDF tails are likely to arise from
events with coherent spatial structure. One of the coherent
structures manifested in a particular system is obviously an
exact solution of the governing nonlinear equation. In the
case of the Hasegawa–Mima equation, one exact solution is
known as a modon.8 This is a bipolar vortex soliton, which is
localized in space and travels in the direction perpendicular
to both the !strong" magnetic field and the background den-
sity gradient. Being a solitary solution in the absence of dis-
sipation and an external forcing, a modon can be excited/
generated in finite time by the proper forcing. Here, what we
meant by ‘‘proper’’ is that a forcing should be somewhat
fine-tuned to excite modons as a result of resonant interac-
tion !see Sec. III". The key idea is then to envision the tails
of the local Reynolds stress PDF as the transition amplitude
from an initial state, with no fluid motion, to final states with
different values of local Reynolds stresses owing to the pres-
ence of a modon in the long time limit.

As shall be shown in Sec. II, a PDF can, in general, be
expressed in terms of a path integral, by exploiting the un-
certainty arising due to an external, stochastic forcing.9,10
The path integral can then be performed nonperturbatively
by computing the saddle-point solution for the effective ac-
tion. The saddle-point solution for a dynamical variable
u(x,t) of the form u(x,t)"F(t)u0(x) is called an instanton
if F(t)"0 at the initial time and F(t)%0 in the long time
limit.11–13 Here, u0(x) represents a spatial pattern of a coher-
ent structure. Among all possible paths contributing to aa"Electronic mail: ejk@physics.ucsd.edu
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PDF, an instanton corresponds to a particular path which
determines the PDF tail in such a way as to give the transi-
tion amplitude mentioned previously. As the name indicates,
an instanton is localized in time with a kink-like structure
#see Fig. 2!b" below$ and exists during the time interval
while a modon is formed by forcing. Thus, its finite lifetime
can be related to the burstiness of the event associated with
the creation of a modon.

In principle, the computation of the true PDF tail !thus,
intermittency" requires a weighted sum over various coherent
structures. Note that the notion of a weighted sum over dif-
ferent coherent structures in real space !rather than conven-
tional Fourier expansion" is employed here. In the present
paper, however, we shall assume that underlying coherent
structure is a modon as it is the only nonlinear solution that
is known to us. The generalization to the case with many
different coherent structures is expected to be straightfor-
ward, even if technically complicated. Note that the incorpo-
ration of other coherent structures may alter the scaling of
the PDF tails.

Before closing the introductory remarks, some historical
background on instantons would be helpful in understanding
their physical meaning. Instantons originated in quantum
mechanics as a nonperturbative way of computing the tran-
sition amplitude from one ground state to another.14 The ba-
sic idea there is that the uncertainty relation between position
and momentum allows one to formulate the transition ampli-
tude from the initial position xi to final position x f by a path
integral as follows !see Fig. 1":

&x f !eiHT/'!xi("N"
x"xi

x"x f
Dx! t "eiS/',

where S") dt#mv2/2!U(x)$ is action, and H"mv2/2
#U(x) is Hamiltonian with a potential U . We can expand
the left-hand side of the previous equation in terms of a
complete set of energy eigenstates to obtain

&x f !eiHT/'!xi("*
n
&x f !En(&En!xi(eiEnT/'.

The previous equation then implies that the transition ampli-
tude from one ground state to another can be isolated by
taking time to be imaginary. Expressed in terms of imaginary

time, action becomes ‘‘Euclidean’’ action, SE") dt#mv2/2
#U$ . An instanton is a saddle-point solution of Euclidean
action and corresponds to one particular path which leads to
the transition amplitude between ground states. For instance,
in the case of double-well potential, an instanton is a tunnel-
ing solution from the bottom of one potential well to another
#see Fig. 2!a"$. If a solution going from one ground state to
the other is called instanton, a solution traveling in the op-
posite direction is called anti-instanton. As noted previously,
a distinguishing characteristic of such solutions is temporal
localization #see Fig. 2!b"$. The instanton method was used
in gauge field theory for the computation of the transition
amplitude from one vacuum to another vacuum.15 About 20
years later, this method was adapted to a classical fluid prob-
lem by several authors.11–13,16

In fluid turbulence, unpredictability can arise either from
the chaos intrinsic to the system or from an external random
forcing. Between the two, clearly, it is much easier to formu-
late a PDF in the case of an external forcing, to which the
following discussion will be limited. In fact, it is well known
that a similar path integral can be formulated for stochastic
equations with a random external forcing.9,10 For instance,
the effective action for classical forced systems was formu-
lated by Martin, Sigga, and Rose in 1973.17 However, the
nonperturbative evaluation of a path integral had to wait until
when the !nonperturbative" saddle-point !instanton" method
was adopted in the computation of the tail of the PDF.12,11
Let us discuss briefly how this was done in Burgers turbu-
lence.

Burgers turbulence is bifractal, i.e., there are two differ-
ent coherent structures, namely shocks and ramps. While
shocks !with negative slope", leading to the negative velocity
difference, contribute to the left tails of PDF, ramps !with
positive slope" determine the right tails of PDF. Since
negative/positive slopes amplify/flatten due to the nonlinear

FIG. 1. Trajectories of a particle between initial position xi at time t"0 and
final position x f at t"T .

FIG. 2. !a" The double-well potential with a particle sitting at the bottom of
potential well. A particle going from x"!a to a is called an instanton while
the one going from x"a to !a is an anti-instanton. !b" The position of a
particle as a function of time, which travels between x"!a and a . The
positive !negative" slope corresponds to instanton !anti-instanton".
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advection, PDF for the velocity difference exhibits the asym-
metry between left and right tails. By making an ansatz that
an instanton is a temporally localized ramp, i.e., u int
"F(t)x , Gurarie and Migdal11 computed the right tail of
PDF for the case of a simple Gaussian forcing, which is delta
correlated in time with a smooth variation in space. The in-
stanton !saddle-point" solution they found yields the right tail
of PDF for velocity difference +u of the form
exp ,!-+u3., which is a non-Gaussian exponential. Here, -
is a constant. It turns out that the prediction of the left tail of
the PDF is much more difficult because of the small scale
structure of shocks, where the viscosity plays a major role.

The difficulty of computing the PDF tail arising from a
small-scale coherent structure, such as shocks, is one of the
major shortcomings of an instanton method, at least at the
present time. The other limitation of this method is that to
leading order, it is likely to lead to exponential PDF tails. It
is because, to leading order, the PDF tails are determined by
the evaluation of saddle-point action. Thus, this method may
not be utilized for power-law PDF tails. Nevertheless, it is a
powerful nonperturbative method for calculations of PDF
tails, and shall be employed here to gain some understanding
of PDF tails for local Reynolds stress in drift wave turbu-
lence.

The rest of the paper is organized as follows. In Sec. II,
we provide a path integral formulation for local Reynolds
stress PDF in Hasegawa–Mima turbulence. The PDF tail is
computed via an instanton solution in Sec. III. Our discus-
sion and conclusions are found in Sec. IV. Section V is de-
voted to comments on the instanton method.

II. PDF FOR LOCAL REYNOLDS STRESS IN FORCED
HASEGAWA–MIMA TURBULENCE

As a simple model for drift wave turbulence, we adopt
the forced Hasegawa–Mima equation,4 by assuming cold
ions and adiabatic electrons in a slab geometry:

!1!/2"0 t1#v*0y1!v"“/21" f . !1"

Here x and y denote local radial and poloidal direction, re-
spectively, and /2"0x

2#0y
2 ; v*"2s

23 i /Ln is the drift ve-
locity due to radial density gradient; Ln"!(0xn0 /n0)!1 is
the !background" density length scale; 2s

2"Te /(mi3
2)

where Te , mi , and 3 i are electron temperature, ion mass,
and ion gyrofrequency; 1 , v"!“Ã1 ẑ , and f are the elec-
tric potential, EÃB advection velocity, and external forcing.

Note that Eq. !1" is non-dimensionalized by measuring the
length, velocity, and 1 in units of 2s , cs , and Te /e where cs
is sound speed.

A. Gaussian statistics of forcing

For simplicity, we shall take the statistics of the forcing
to be Gaussian with delta correlation in time as follows:
& f !x,t " f !x!,t!"("4! t!t!"5!x!x!", !2"

and & f ("0. Here, the temporal delta correlation was as-
sumed for the simplicity of the analysis. In the case of a
forcing with a finite correlation time, one would need to
solve nonlocal integral equations in time. For Gaussian sta-
tistics with vanishing first moment, the prescription of the
second moment given by Eq. !2" is sufficient. It is simply
because all odd moments vanish while even moments can be
expressed as a product of second moments. Note that even if
the forcing is Gaussian, statistics of 1 can be non-Gaussian
because of the nonlinearity of the dynamical equation. An
equivalent way of prescribing the second moment !2" for the
Gaussian forcing is to introduce the probability density func-
tion for f as follows:10

d#2! f "$"Df exp# !
1
2 " dx dx! dt

$ f !x,t "5!1!x,x!" f !x!,t "$ . !3"

This is a generalization of Gaussian distribution to a continu-
ous variable f (x,t). The average value of a quantity Q is
then computed as

&Q("" d#2! f "$Q .

For instance, by taking Q" f (x,t) f (x!,t!), one can easily
reproduce Eq. !2".

When the average value of a functional of 1 !i.e.,
&Q#1$(" is required, the constraint should be imposed that f
and 1 satisfy the original equation !1". This can be done by
inserting an identity with a delta function, which enforces
Eq. !1", as

N"" D14#!1!/2"0 t1#v*0y1!v"“/21! f $ , !4"

where N is a number arising from the Jacobian due to the
change of integral variables.10,11 Let us show in detail how
this is done. Starting from the definition,

&Q#1$("" DfQ#1$ exp# !
1
2 " dx dx! dt f !x,t "5!1!x,x!" f !x!,t "$

%" DfD1Q#1$4#!1!/2"0 t1!v*0y1#v"“/21! f $ exp# !
1
2 " dx dx! dt f !x,t "5!1!x,x!" f !x!,t "$

%" DfD1D1̄Q#1$ exp# i " dx dt 1̄#!1!/2"0 t1#v*0y1!v"“/21! f $$
$ exp# !

1
2 " dx dx! dt f !x,t "5!1!x,x!" f !x!,t "$

"" D1D1̄Q#1$e!S, !5"
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where

S"!i" d2x dt 1̄#!1!/2"0 t1#v*0y1!v"“/21$

#
1
2 " d2x d2x! dt1̄!x,t "5!x!x!"1̄!x!,t ". !6"

Here N is dropped,10,11 and the functional Gaussian integral
over f was performed to obtain the last line of Eq. !5". Note
that 1̄ is a conjugate variable, which acts as a mediator be-
tween the forcing 5 and dynamical variable 1.

B. PDF for local Reynolds stress

We now construct PDF for local Reynolds stress
&vxvy(x0)("&!0x10y1(x0)( in terms of a path integral, by
utilizing the probability density function for the Gaussian
forcing equation !3" and Eqs. !5" and !6". Here, the angular
brackets denote the average over the statistics of the forcing.
By definition, the probability distribution function for local
Reynolds stress at point x0 to take a value R is

P!R;x0""&4!vxvy!x0!R "(

"" d6ei6R&e!i6(vxvy)(x"x0)(

"" d6ei6RI6 , !7"

where

I6"&e!i6(vxvy)(x"x0)(.

By taking Q#1$"exp#!i6vxvy(x0)$ in Eq. !5", I6 can be
rewritten in terms of a path integral as

I6"" D1D1̄ e!S6. !8"

Here S6 is the effective action given by

S6"!i" d2x dt 1̄#!1!/2"0 t1#v*0y1!v"“/21$

#
1
2 " d2x d2x! dt 1̄!x"5!x!x!"1̄!x!"

#i6" d2x dt!!0x10y1"4! t "4!x!x0". !9"

Equation !8" is the path integral representation of the PDF
that we have been seeking.

III. INSTANTON „SADDLE-POINT… SOLUTION
AND PDF TAILS

So far, we have just shifted the problem of computing
the PDF in Eq. !7" to the computation of a path integral in
Eq. !8". Although this path integral cannot be calculated ex-
actly in general, it can be evaluated approximately in the
limit of 6→7 by a saddle-point method. That is, in the limit
of 6→7 , the leading order contribution to the integral of
exp#!S6$ comes from a particular path which satisfies
saddle-point equations

4S6
41

"0,
4S6

41̄
"0. !10"

What then is the meaning of the parameter 6 and when can it
be taken to be large? In order to answer these questions, we
first notice that the evaluation of PDF in Eq. !7" requires the
integral over 6 once I6 is computed by the saddle-point
method. As we are interested in the large R limit for PDF
tails, we can compute the 6 integral in Eq. !7" by applying
the saddle-point method once more. For example, let us as-
sume that I68 exp#!S6(0)$ with S6(0)"i-6n, where S6(0)
is the saddle-point action due to an instanton solution, and -
and n are constants. Then, the saddle point for the integrand
of Eq. !7" satisfies 06(6R!-6n)"0, i.e., 69R1/(n!1). This
is the very relation between the parameter 6 and physical
quantity R and indicates that the limit of R→7 ensures the
6→7 limit when n%1. Thus, 6 can be taken to be large if
n%1. In the following, we shall assume 6 to be a large
parameter to begin with and then check the validity of this
assumption after computing I6 in Eq. !8".

It, however, turns out that the direct application of the
saddle-point method results in very complicated partial dif-
ferential equations for 1 and 1̄ . For this reason, we opt to
substitute the ansatz that the saddle-point solution !instanton"
is a temporally localized modon, i.e.,

1!x,t "":!x,t "F! t ", !11"

in S6 before minimizing it. Here :(x,t)":(x ,y!Ut) is a
modon solution given by

:!x ,y!Ut ""#c1J1!kr "#!;!k2U "r/k2$cos < ,

for r&a , !12"

:!x ,y!Ut ""c2K1!pr " cos < , for r%a ,

where r"!x2#y!2, tan <"y!/x, y!"y!Ut , ;"v*!U ,
p2"!;/U , c1"!;a/k2J1(ka), c2"!Ua/K1(pa), and
J1!(ka)/J1(ka)"(1#k2/p2)/ka!kK1!(pa)/pK1(pa); U is
the velocity of a modon; a is the size of the core region; J1
and K1 are the first Bessel and the second modified Bessel
functions.

A modon is an exact solution of the Hasegawa–Mima
equation in the absence of dissipation and an external forc-
ing. It is a bipolar vortex soliton, which is spatially localized
in the frame moving with a velocity Uŷ , and has no net
angular momentum. In physical terms, we are expecting the
coherent structure contributing to PDF tails to be modons
which are created by the external forcing, thereby acquiring
the time dependence F(t) in Eq. !11". As noted in Sec. I,
PDF tails are then interpreted as the transition amplitude
going from the state with no fluid motion to final states with
different values of local Reynolds stresses due to different
amplitude of modons. The time variation of 1, i.e., F(t), can
be associated with the degree of burstiness of an event.

Once the ansatz for the instanton !11" is substituted in
Eq. !9", the spatial integral in S6 can be performed formally
as follows. First, we prescribe the spatial form of correlation
function to be approximately parabolic for !x!x!!&L and to
vanish for !x!x!!%L . That is,

74 Phys. Plasmas, Vol. 9, No. 1, January 2002 E.-j. Kim and P. H. Diamond



5!x!x!""50J0!k f !x!x!!" for !x!x!!&L , !13"

where L'-01 /k f with -01 being the first zero of J0 . Note
that J0 is chosen to simplify the following analysis. Second,
owing to the completeness of Bessel and Fourier series, the
conjugate variable can be expanded in the following form:

1̄!r&a ,< ,t ""*
m ,n

Jm& -mna r '
$#amn! t "sinm<#bmn! t "cosm<$ ,

!14"
1̄!r%a ,< ,t ""*

m ,n
Km!qmnr "

$# āmn! t "sinm<# b̄mn! t "cosm<$ ,

where amn(t), bmn(t), āmn(t), and b̄mn(t) are unknown
functions of time, which are to be determined by saddle-
point equations.

The substitution of Eqs. !11"–!14" in !9" now reduces S6
to an integral with respect to time only with the form

S6"!i" dt*
n
# Ḟ! Ānb̄1n#Anb1n"#F!F!1 "Bna2n$

#50" dt*
m ,n

[!Dnb1n#D̄nb̄1n"!Dmb1m#D̄mb̄1m"

#EmEna2ma2n]#i6" dt F2=04! t ". !15"

Here

=0"!0x:0y:!x"x0",

An"
1
2 c1!1#k2""

0

a
dr rJ1!kr "J1!-1nr/a "

#
-

2k2 "0
a
dr r2J1!-1nr/a " ,

Bn"!
k-
4 "

0

a
dr rJ2!kr "J2!-2nr/a ",

Dn"
1
2 "0

a
dr rJ1!k fr "J1!-1nr/a ",

En"
1
2 "0

a
dr rJ2!k fr "J2!-2nr/a ",

Ān"
1
2 c2!1!p2""

a

L
dr rK1!q1nr "K1!pr ",

D̄n"
1
2 "a

L
dr rK1!q1nr "J1!k fr ",

where -";!k2U; - in is nth zero of Ji #i.e., Ji(- in)"0$;
q1n is a constant. In obtaining Eq. !15", we used the expan-
sion of J0 for a small argument as

J0!k f !x!x!!"8J0!k fr "J0!k fr!"

#2J1!k fr "J1!k fr!"cos!<!<!"

#2J2!k fr "J2!k fr!"cos2!<!<!"#¯ .

We note that coefficients An , Ān , and Bn involve the pro-
jection of the conjugate variable onto the modon, while Dn ,
D̄n , and En contain the projection of the forcing onto con-
jugate variable. As shall become clear in Sec. III A, nonvan-
ishing value for both sets of coefficients, accordingly nonva-
nishing projection of the forcing onto modon itself, is
necessary for the existence of a nontrivial solution for F .
This projection is likely to be maximized by choosing the
characteristic scale of the forcing to be comparable to that of
a modon, i.e., when k f8k . Furthermore, note that An , Dn ,
Ān , and D̄n originate from the terms involving cos < while
Bn and En from those with sin 2<. That is, the !spatial"
‘‘overlap’’ between the forcing and modon is critical for the
generation of the modon. This is what we meant by fine-
tuning of a forcing or ‘‘resonant’’ generation of a modon by
a forcing in Sec. I. In more general terms, which coherent
structure is likely to be generated is determined by a forcing,
with different forcings giving rise to different intermittency.

Since F(t), amn(t), bmn(t), āmn(t), and b̄mn(t) are in-
dependent variables, S6 should be minimized with respect to
these variables to obtain saddle-point equations. This mini-
mization will lead to coupled equations among F(t), amn(t),
bmn(t), āmn(t), and b̄mn(t), which are ordinary differential
equations !ODEs" for time t , rather than partial differential
equations. Thus, the advantage of using ansatz !11" as well
as Eqs. !13" and !14" was to put saddle-point equations in the
form of ODEs, which are much easier to solve. In Secs. III A
and III B, solutions for these saddle-point equations !i.e., in-
stantons" will be provided, together with the corresponding
saddle-point action and PDF tail.

A. Instanton solutions

The saddle-point equations for instantons are obtained
by minimizing the effective action S6 with respect to inde-
pendent variables F(t), amn(t), bmn(t), āmn(t), and b̄mn(t).
Most of these equations turn out to be trivial, simply giving
vanishing values for many of variables. The nontrivial
saddle-point equations are for a2n , b1n , b̄1n , and F , which
take the following forms:

!iAn0 tF#250*
m
!Dmb1m#D̄mb̄1m"Dn"0, !16"

!iBnF!F!1 "#250*
m

EnEma2m"0, !17"

!iĀn0 tF#250*
m
!Dmb1m#D̄mb̄1m"D̄n"0, !18"

*
n
#An0 tb1n#Ān0 tb̄1n!Bn!2F!1 "a2n$

"!26F! t "4! t "=0 . !19"
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Equation !19" indicates that there is a singularity at time t
"0. To give a proper meaning to this singularity, it is impor-
tant to realize that physical quantity F(t) should be a
smoothly varying function of time. The inspection of Eqs.
!16"–!19" then tells us that the singularity should come from
0 tb1n and 0 tb̄1n . That is, b1n and b̄1n have discontinuity at
t"0. Furthermore, we note that the incorporation of a small
viscosity will lead to saddle-point equations for the conju-
gate variables which have a negative viscosity !see Ref. 11".
In other words, conjugate variables propagate backward in
time. Thus, b1n"0, b̄1n"0, and a2n"0 for t>0. In view of
the role of conjugate variables mediating between forcing
and F , conjugate variables vanishing at t>0 can be inter-
preted as a ‘‘causality’’ condition, requiring the forcing to
precede the correlation function !PDF" that we are interested
in. With the help of these observations, we now integrate Eq.
!19" for a small time interval t!#!? ,0$ (?(1) to obtain the
relation, at t"!? ,

*
n
#Anb1n#Ānb̄1n$"26F0=0 , !20"

where F0"F(t"0).
For t&0, the coupled equations !16"–!19" can be com-

bined to give an equation for F as

0 ttF!@!F2!F "!2F!1 ""0, !21"

where

@"
B2/E2

Q
, Q"

A2

D2 "
Ā2

D̄2
,

with B2"*mBmBm , A2"*mAmAm , D2"*mDmDm , and
D̄2"*mD̄mD̄m . Equation !21" is to be solved by using that
F(t)"F0 at t"0 and F(t)"0 as t→!7 . The latter is im-
posed because the instanton is expected to capture the for-
mation process of a modon. Here, the value of F0 can be
found by plugging Eqs. !16" and !18" in !20". A solution
satisfying these conditions is

F! t ""
1

1!
F0!1
F0

exp,!!@t.
, !22"

where

F0"1#
i4506
!@Q

=0 .

The instanton solution !22" is localized within a time interval
proportional to 1/!@ . Note that 6 appearing in F0 is a pa-
rameter that is assumed to be large. It will be related to a
physical quantity R in Sec. III B.

B. PDF tails

Having found the saddle-point solution, it is straightfor-
ward to calculate the value of S6 at saddle point !i.e., saddle-
point action" by using Eqs. !16"–!18" and !22" in !15". To
leading order in 6, it can easily be shown that

S6%!
i
3 h6

3, !23"

where

h"=0
3q2, q"( 450!@Q( .

PDF tails for local Reynolds stress R can now be computed
by doing 6 integral in Eq. !7" by the saddle-point method. In
the case where R/=0%0, the saddle point satisfies 6=0q
"i(R/=0)1/2, leading to the following PDF tail:

P!R;x0"8 exp# !
2
3q & R=0'

3/2$ . !24"

Note that the saddle-point solution justifies our assumption
that 6→7 corresponds to R→7 . Equation !24" provides the
probability of finding a local Reynolds stress R , normalized
by =0 , at x"x0 . Recall that =0"!0x:0y:(x0) is local Rey-
nolds stress associated with the modon solution, given by Eq.
!12", and is therefore fixed for given parameters. Since we
assumed that F(t)"0 as t→!7 , we can interpret Eq. !24"
as a transition amplitude from an initial state, with no fluid
motion, to final states with different values of R/=0 for a
given =0 . Interestingly, this PDF tail exhibits non-Gaussian
behavior with a stretched exponential, which is enhanced
over Gaussian. Thus, our simple calculation does reveal in-
termittency manifested in the PDF tail. Note that in the ab-
sence of forcing !i.e., 50→0", P→0. This is simply because
the instanton cannot form without the forcing. Note also that
Eqs. !22" and !24" imply that the more the instanton is local-
ized in time !i.e., as @→7", the more rapidly the PDF decays
for large R .

Now, upon using the relation 6=0q"i(R/=0)1/2 satisfied
for the saddle point, F0 reduces to the following form:

F0"1!& R=0'
1/2

. !25"

That is, F0 is real, ensuring F to be a physical !observable"
quantity. On the other hand, in the case R/=0&0, the saddle-
point solution does not lead to a physical solution. In other
words, it is unlikely to have an instanton which has an op-
posite sign of Reynolds stress to the modon.

IV. DISCUSSION AND CONCLUSIONS

We have presented first results for the calculation of the
tail of local Reynolds stress !vorticity flux" PDF in forced
Hasegawa–Mima turbulence. Based on the observation that
the PDF tail is governed by the bursty events associated with
the appearance of coherent structures, the key idea was !1" to
relate the bursty events as the creation of a coherent struc-
ture, say, a modon in the present paper and then !2" to envi-
sion the PDF tails as the transition amplitude from an initial
state, with no fluid motion, to final states governed by the
modon with different amplitudes in the long time limit.

The PDF was first formally expressed in terms of a path
integral, by exploiting the Gaussian statistics of an external
forcing. According to our expectation that the tail of PDF is
related to the creation of a modon, an optimum path !among
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all the paths" capturing this process was then found by a
saddle-point method, with the ansatz that the saddle-point
solution !instanton" is a temporally localized modon with a
given radius. From this instanton solution, we found that the
tail of the Reynolds stress (R) PDF deviates from Gaussian
with the specific form exp#!cR3/2$ , where c is a constant.
Therefore, our simple model calculation reveals the intermit-
tency of the PDF tails. While the non-Gaussian behavior may
be generic for PDF tail, its precise scaling !i.e., exponent of
R" may depend on temporal correlation of the forcing, which
was chosen to be delta correlated in time, as well as possibly
on the form of spatial correlation. Furthermore, the presence
of other coherent structures may also lead to a different scal-
ing of the tail of the PDF !thus, different intermittency".

In view of the simplicity of our model, a few remarks on
the possible extension and improvement seem to be in order.
First, in the present work, the global momentum flux !Rey-
nolds stress" vanishes identically due to the spatial symmetry
of a modon. This is why the PDF for the local Reynolds
stress was considered in the present paper. A simple way of
extending this model to study a global momentum flux PDF
would be to introduce asymmetry in a system by assuming a
large-scale shear or profile structure. The presence of shear
flows !such as zonal flows" may, however, lead to the
break-up of a dipole into monopole vortex.18 Second, while
an instanton here refers to the creation of a modon, the op-
posite process for the decay of modon can also be at work,
which we called an anti-instanton. Then, multi-instantons,
for instance, the time sequence-like instanton, anti-instanton,
and instanton, may be present in a system, and their contri-
bution to PDF tails can be calculated through a similar analy-
sis. Third, if analytic form of other coherent structures !e.g.,
monopole and other multipole" is available, one could incor-
porate them in the computation of PDF tails as well. Fourth,
it will be interesting to look at the PDF of the distribution of
modon size itself, rather than taking the modon size as given.
Finally, to address the particle or thermal flux PDF, the
present model needs be extended to a more complicated one,
such as the Hasegawa–Wakatani,5 ITG model,6 or dissipa-
tive trapped ion convective cell !DTICC" model.7 These is-
sues will be studied in future papers. Among these, the first
three are expected to be rather straightforward while the last
one would require a substantial work.

V. COMMENTS ON CALCULATIONS USING THE
INSTANTON METHOD

In this work, like in Burgers turbulence,11 an exact solu-
tion of a nonlinear equation had to be known in order to
make progress. In other words, some information on the spa-
tial form of coherent structures, by analytical calculation,

numerical simulation, or intuition, should be available in or-
der for the instanton method to be fruitful. That is, it seems
almost impossible, if not very difficult, to use this method in
the case where there is little information about nonlinear so-
lution. Also, in realistic cases, a variety of structures and
structure scales are likely to participate in the turbulence in-
termittency. Furthermore, even if a coherent structure solu-
tion is known, this method may not still work. As an ex-
ample, in Burgers turbulence, the left tail of the PDF for the
velocity difference is well understood to be due to shocks.
Yet, the left tail of the PDF does not seem to be amenable to
the instanton method. One of the mathematical routes lead-
ing to its failure is the inapplicability of a saddle-point
method for the computation of a path integral, in which case
the latter may not analytically be performed. For instance, in
the present model, this may happen if the limit of large 6
does not coincide with a large R limit. Finally, we recall that
this method is likely to lead to the exponential dependence of
PDF tails. Thus, it is not clear whether the issue of finite size
scaling,19 which requires a power-law PDF, can be addressed
in this framework.
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