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ABSTRACT OF THE DISSERTATION

Duplications and Genome Rearrangements

by

Max Alekseyev

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Pavel Pevzner, Chair

Most genome rearrangements (e.g., reversals and translocations) can be rep-

resented as 2-breaks that break a genome at 2 points and glue the resulting fragments

in a new order. Multi-break rearrangements break a genome into multiple fragments

and further glue them together in a new order. While multi-break rearrangements

were studied in depth for k = 2 breaks, the k-break distance problem for arbitrary k

remains unsolved. In the first part of this dissertation we address several open issues

and problems related to the multi-break rearrangements:

1. We prove a duality theorem for the multi-break distance problem between cir-

cular genomes and give a polynomial algorithm for computing this distance.

2. In 2003 Pevzner and Tesler [56] refuted the Random Breakage Model (RBM),

that had been a de-facto theory of molecular evolution for more than three

decades, and introduced a new Fragile Breakage Model (FBM). However, the

rebuttal of RBM caused a controversy and led to a split among researchers

studying genome evolution. In particular, since the mathematical theory used

to refute RBM does not cover more complex rearrangement operations (like

transpositions), the Pevzner–Tesler arguments do not apply for the case when

transpositions are frequent. We contribute to the ongoing debates on “RBM vs.

FBM” controversy by analyzing multi-break rearrangements and demonstrating

xii



that even if transpositions were a dominant force in mammalian evolution, the

arguments in favor of FBM still stand.

3. We extend the above results to the more difficult case of linear genomes. In

particular, we give lower bounds for the rearrangement distance between linear

genomes and use these results to analyze comparative genomic architecture of

mammalian genomes.

In the second part of this dissertation we study rearrangements in genomes

with duplicated genes. In particular, we focus on the Genome Halving Problem moti-

vated by the whole genome duplication events in molecular evolution, first formulated

and solved by Nadia El-Mabrouk and David Sankoff. We propose a new approach to

analysis of rearrangements in genomes with duplicated genes, based on a generaliza-

tion of conventional breakpoint graph, that let us to obtain the following results:

1. We reformulate the problem of computing the rearrangement distance between

genomes with duplicated genes as two graph-theoretical problems and demon-

strate how to solve their particular variants appearing in the course of solving

the Genome Halving Problem. For the Genome Halving Problem with 2-breaks

(i.e., standard rearrangements) this leads to an alternative short solution.

2. We further study the Genome Halving Problem with 3-breaks that add trans-

positions to the set of standard rearrangement operations considered by El-

Mabrouk and Sankoff [24]. The El-Mabrouk–Sankoff analysis of the 2-Break

Genome Halving Problem is already rather complex making it appears unlikely

that there exists a similar result for the 3-Break Genome Halving. We prove the

contrary by giving a polynomial algorithm and duality theorem for the 3-Break

Genome Halving Problem.

3. We reveal that while the El-Mabrouk–Sankoff analysis of the Genome Halving

Problem is correct in most cases, it does not hold in the case of unichromosomal

circular genomes. This raises a problem of correcting the El-Mabrouk–Sankoff

xiii



analysis and devising an algorithm that deals adequately with all genomes. We

efficiently classify all genomes into two classes and show that while the El-

Mabrouk–Sankoff theorem holds for the first class, it is incorrect for the second

class. The crux of our analysis is a new combinatorial invariant defined on

duplicated permutations. Using this invariant we were able to come up with a

full proof of the Genome Halving theorem and a polynomial algorithm for the

Genome Halving Problem (for unichromosomal circular genomes).

xiv



1 Introduction

In 1970 Susumu Ohno came up with two fundamental theories of chromo-

some evolution that were subjects to many controversies in the last 35 years [49].

One of them, Whole Genome Duplication Model, was first met with scepticism and

only recently was proven to be correct [37, 19]. The other, Random Breakage Model,

had a very different fate. It was embraced by biologists from the very beginning and

only recently was refuted by Pevzner and Tesler, 2003 [56]. In this dissetation we

study computational problems related to the Whole Genome Duplication Model and

the Random Breakage Model in presence of complex rearrangements (e.g., transposi-

tion), and develop a general technique for analyzing such rearrangements.

1.1 Random Breakage Model vs. Fragile Breakage Model of

Chromosomal Evolution

Rearrangements are genomic “earthquakes” that change the chromosomal

architectures. The fundamental question in molecular evolution is whether there exist

“chromosomal faults” where rearrangements are happening over and over again, re-

sulting in high breakpoint reuse rate. The Random Breakage Model (RBM), proposed

by Ohno [49] and formalized by Nadeau and Taylor [48], postulates that rearrange-

ments happen at “random” genomic positions, thus implying low breakpoint reuse

rate across mammalian genomes. Because of its prophetic prediction power, RBM

became the de facto theory of chromosomal evolution. Only recently Pevzner and

Tesler, 2003 [56] refuted RBM and suggested an alternative Fragile Breakage Model

1



2

(FBM) of chromosomal evolution. The FBM postulates existence of fragile genomic

regions that are more likely to be broken by rearrangements than the rest of the

genome, implying (in contrast to the RBM) high breakpoint re-use rate. A vari-

ety of further studies argued for existence of fragile regions in mammalian genomes

[47, 70, 4, 78, 74, 33, 58, 77, 44, 38]. For example, Kikuta et al, 2007 [38] analyzed

the links between genome fragility and the need to keep genome intact by regulatory

elements and came to the conclusion that “the Nadeau and Taylor hypothesis is not

possible for the explanation of synteny in general.”

At the same time the rebuttal of RBM caused a controversy and was followed

by extensive debates [63, 64, 52, 62] on the validity of Pevzner–Tesler’s arguments.

In particular, Sankoff, 2006 [62] questioned the assumption adopted by Pevzner and

Tesler [56] that chromosomal architectures mainly evolve by the “standard” rear-

rangement operations (i.e., reversals, translocations, fissions, and fusions). Indeed,

since the mathematical theory used to refute RBM does not cover more complex re-

arrangement operations (like transpositions), the arguments in [56] do not apply for

the case when transpositions are frequent.

In this dissertation we develop a theory for analyzing complex rearrange-

ments (including transpositions) and demonstrate that even if such rearrangements

were a dominant evolutionary force, there are still rearrangement hotspots in mam-

malian evolution.

1.2 Whole Genome Duplications

The Whole Genome Duplication Model postulates a new type of evolution-

ary events that duplicate each chromosome of a genome. It had been a subject to

controversy for the first 35 years [49, 75, 65, 9, 40, 39] and only recently was proven to

be correct [37, 19]. Kellis et al., 2004 [37] sequenced yeast K. waltii genome, compared

it with yeast S. cerevisiae genome, and demonstrated that nearly every region in K.

waltii corresponds to two regions in S. cerevisiae thus proving that there was a whole

genome duplication event in the course of yeast evolution. This discovery quickly
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followed by the discovery of the whole genome duplications in vertebrates [34, 16]

and plants [28]. Recently Dehal and Boore [18] found an evidence of two rounds

of whole genome duplications on the evolutionary path from early vertebrates to

human. Shortly afterwards, Meyer and Van de Peer [45] found an evidence of yet

another (third) round of whole genome duplications in ray-finned fishes.

These recent studies provided an irrefutable evidence that the whole genome

duplications represent a new type of events that may explain phenomena that the clas-

sical evolutionary studies had difficulties explaining (e.g., emergence of new metabolic

pathways [37]). At the same time, they raised a problem of reconstructing the genomic

architecture of the ancestral pre-duplicated genomes, named the Genome Halving

Problem. The Genome Halving Problem was studied in a series of papers by El-

Mabrouk and Sankoff [22, 23, 21] culminating in a rather complex algorithm in [24].

The El-Mabrouk–Sankoff algorithm is one of the most technically challenging results

in computational biology and its proof spans over 30 pages in [24].

In this dissertation we describe an alternative approach to the Genome Halv-

ing Problem based on the notion of contracted breakpoint graph. In particular, we

identify a flaw in the El-Mabrouk–Sankoff analysis in the case of circular unichro-

mosomal genomes and give a full analysis of the Genome Halving Problem. We

remark that our approach is very different from [24] and we do not know whether the

technique in [24] can be adjusted to address the described complication.

We further analyze a generalization of Genome Halving Problem for a more

general set of rearrangement operations (including transpositions) and propose an

efficient algorithm for solving this problem.

1.3 Multi-Break Rearrangements

The “standard” rearrangement operations (i.e., reversals, translocations, fu-

sions, fissions) can be modelled by making 2 breaks in a genome and gluing the

resulting fragments in a new order. One can imagine a hypothetical k-break rear-

rangement operation that makes k breaks in a genome and further glues the resulting
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pieces in a new order. In particular, the human genome can be modelled as a mouse

genome broken into ≈ 280 pieces that are glued together in the “mouse” order.

Most biologists believe that k-break rearrangements are unlikely for k > 3

and relatively rare for k = 3 (at least in mammalian evolution). Indeed, biophys-

ical limitations and selective constraints are already severe for k = 2, let alone for

k > 2. However, 3-break rearrangements (e.g., transpositions) undoubtedly happen

in evolution, although it is still unclear how frequent they are in mammalian evolu-

tion. Therefore, it would be useful to generalize the Pevzner–Tesler arguments against

RBM as well as the Genome Halving Problem for the case of k-breaks (and 3-breaks in

particular). Also, in radiation biology, chromosome aberrations for k > 2 (indicative

of chromosome damage rather than evolutionary viable variations) may be more com-

mon, e.g., complex rearrangements in irradiated human lymphocytes [60, 41, 71, 59].

Thus, the “RBM vs. FBM” controversy, analysis of whole genome duplica-

tions, and radiation/cancer biology all call for studies of k-break rearrangements for

k > 2.

1.4 Dissertation Outline

In Chapter 2 we study multi-break rearrangements in depth. In particular, in

Sections 2.1 and 2.2 we show how to compute the k-break distance (i.e., the minimum

number of k-breaks required to transform one genome into the other) between circular

genomes, and in Section 2.3 we derive exact formulas for the k-break distance for small

k and give efficient algorithms for computing it in the case of general k. In Section 2.4

we use k-breaks to estimate the breakpoint reuse rate between the human and mouse

genomes to support the Pevner–Tesler arguments against the RBM in the presence of

complex rearrangements. Finally, in Section 2.5 we extent these results to the harder

case of linear genomes.

In Chapter 3 we study the Genome Halving Problem for different types of

genomes and rearrangement operations. We start with discussion of the problem of

computing the rearrangement distance between genomes with duplicated genes in
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Section 3.1. Then we introduce the notion of contracted breakpoint graph in Section

3.2 and show how to use it to solve the Genome Halving Problem in Section 3.3.

We solve the 2-Break Genome Halving Problem and the 3-Break Genome Halving

Problem for multichromosomal circular genomes in Section 3.4. In Section 3.5 we

study the Genome Halving Problem for unichromosomal circular genomes. In partic-

ular, we revisit the El-Mabrouk–Sankoff result for unichromosomal circular genomes

and describe a flaw in their analysis. We show that this flaw is a rule rather than a

pathological case: it affects a large family of duplicated genomes. We further proceed

to give a full analysis of the Genome Halving Problem that is based on introducing

an invariant that divides the set of all rearranged duplicated genomes into 2 classes.

We show that the El-Mabrouk–Sankoff formula is correct for the first class and is off

by 1 for the second class.

In Chapter 4 we conclude with a brief summary of contribution and discuss

possible directions for future work.



2 Genome Rearrangements

In this chapter we initiate studies of multi-break rearrangements. We prove

a duality theorem for the k-break distance between genomes with n genes that shows

how to compute it. In particular, we present a dynamic programming algorithm with

the running time O(n⌊k/2⌋−2) + O(n) that is practical for small values of k. We also

show how one can compute the k-break distance in linear time in n for an arbitrary

k that requires preliminary computations that are exponential in k but independent

of n. In Section 2.4 we apply these results to the analysis of rearrangements and the

“FBM vs. RBM” controversy.

Unless stated otherwise, we deal with circular genomes that consist of one

or more circular chromosomes. Extension to the harder case of linear genomes is

described in Section 2.5.

2.1 Genome Rearrangements and Breakpoint Graphs

From an algorithmic perspective, the genome is a collection of chromosomes,

and each chromosome is a sequence of genes. DNA has two strands and genes on a

chromosome have directionality that reflects the strand of the genes. We represent

the order and directions of the genes on each chromosome as a circular sequence

of signed elements (i.e., elements with signs “+” and “-”). We distinguish between

unichromosomal genomes consisting of just a single chromosome and multichromoso-

mal genomes consisting of one or more chromosomes.

6



7

2.1.1 Unichromosomal Genomes

For unichromosomal genomes, the rearrangements are limited to reversals

that “flip” genes xi . . . xj in a genome x1x2 . . . xn as follows:

x1 . . . xi−1 xi xi+1 . . . xj
−−−−−−−−−−−−→

xj+1 . . . xn

↓

x1 . . . xi−1−xj − xj−1 · · · − xi
←−−−−−−−−−−−−−

xj+1 . . . xn

The reversal distance d(P,Q) between genomes P and Q is defined as the minimal

number of reversals required to transform one genome into the other (see Chapter 10

of [55] for a review of genome rearrangement algorithms).

A duality theorem and a polynomial algorithm for computing reversal dis-

tance between two signed permutations was proposed by Hannenhalli and Pevzner [30]

and later was generalized for multichromosomal genomes [29]. The algorithm was fur-

ther simplified and improved in a series of papers [6, 35, 1, 7, 68, 36] and applied in

a variety of biological studies [46, 12, 10, 54, 5].

We will find it convenient to represent a circular chromosome with genes

x1, . . . xn as a cycle (Fig. 2.1) composed of n directed labelled edges (corresponding to

genes) and n undirected unlabeled edges (connecting adjacent genes). The directions

of the edges correspond to signs (strand) of the genes. We label the tail and head of

a directed edge xi as xt
i and xh

i respectively. Vertex xt
i is called the obverse of vertex

xh
i , and vice versa. Vertices in a chromosome connected by an undirected edge are

called adjacent.

Let P and Q be circular signed permutations (unichromosomal genomes) on

the same set of elements (genes) G. The breakpoint graph G(P,Q) is defined on the

set of vertices V = {xt, xh | x ∈ G} with edges of three colors1: “obverse”, black, and

gray (Fig. 2.1). Edges of each color form a matching on V :

• pairs of obverse elements form an obverse matching ;

1We have chosen rather unusual names for the “colors” (obverse, black, and gray) to be consistent with
previous papers on genome rearrangements.



8

ch

ct

ah

at

bh

bt

ch

ct

ah

at

bh

bt

P
ah

at

bh

bt

ch

ct

QG(P,Q)P

a

b

c

Q

a

b

c

Figure 2.1 The breakpoint graph G(P,Q) of unichromosomal genomes P = +a+b−c
and Q = +a + b + c represented as a black-obverse cycle and a gray-obverse cycle
correspondingly.

• adjacent elements in P , other than obverses, form a black matching ;

• adjacent elements in Q, other than obverses, form a gray matching.

Every pair of matchings forms a collection of alternating cycles in G, called

black-gray, black-obverse, and gray-obverse cycles respectively (a cycle is alternating

if colors of its edges alternate). The genome P can be read along a single black-

obverse cycle while the genome Q can be read along a single gray-obverse cycle in G.

The black-gray cycles in the breakpoint graph play an important role in computing

the reversal distance. According to the Hannenhalli–Pevzner theorem, the reversal

distance between permutations P and Q is given by the formula:

d(P,Q) = |P | − c(P,Q) + h(P,Q) (2.1)

where |P | = |Q| is the size of P and Q, c(P,Q) = c(G(P,Q)) is the number of

black-gray cycles in the breakpoint graph G(P,Q), and h(P,Q) is an easily com-

putable combinatorial parameter (see Chapter 10 of [55] for background information

on genome rearrangements).

2.1.2 Multichromosomal genomes

Similarly to unichromosomal genomes, we represent a multichromosomal

genome as a collection of disjoint cycles (chromosomes) with edges of two alternating

colors: one color (black) reserved for undirected edges and the other (obverse) color

reserved for directed edges. We do not explicitly show the directions of edges since

they are defined by superscripts “t” and “h” (Fig. 2.1).
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Figure 2.2 2-Breaks on edges (u, v) and (x, y) corresponding to a) Reversal: the
edges belong to the same black-obverse cycle that is rearranged after the 2-break; b)
Fission: the edges belong to the same black-obverse cycle that is split by the 2-break;
c) Translocation/fusion: the edges belong to different black-obverse cycles that are
joined by the 2-break.

Let P be a genome represented as a collection of alternating black-obverse

cycles (a cycle is alternating if colors of its edges alternate). For any two black

edges (u, v) and (x, y) in the genome (graph) P we define a 2-break rearrangement as

replacement of these edges with either a pair of edges (u, x), (v, y), or a pair of edges

(u, y), (v, x) (Fig. 2.2). 2-breaks correspond to standard rearrangement operations

of reversals (Fig. 2.2a), fissions (Fig. 2.2b), or fusions/translocations2 (Fig. 2.2c). 2-

break rearrangements can be generalized as follows. Given k black edges forming a

matching on 2k vertices, define a k-break as replacement of these edges with a set of

k black edges forming another matching in on the same set of 2k vertices. Note that

a 2-break is a particular case of a 3-break (as well as of a k-break for k > 3), in which

case only two edges are replaced and the third one remains the same.

While 2-breaks correspond to standard rearrangements, 3-breaks add

transposition-like operations (transpositions and inverted transpositions) as well as

3-way fissions to the set of rearrangements (Fig. 2.3). A transposition cuts off a contin-

uous segment of one chromosome and inserts it into the same or another chromosome.

A transposition of a segment πiπi+1 . . . πj of a chromosome

π1π2 . . . πiπi+1 . . . πj . . . πkπk+1 . . . πm

2This definition of elementary rearrangement operations follows the standard definitions of reversals,
translocations, fissions, and fusions for the case of circular chromosomes. For circular chromosomes fusions
and translocations are not distinguishable.
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Figure 2.3 A 3-break on edges (u, v), (x, y) and (z, t) corresponding to a transposition
of a segment y . . . t from one chromosome to another.

into a position k of the same chromosome results a chromosome

π1π2 . . . πi−1πj+1 . . . πkπiπi+1 . . . πjπk+1 . . . πm.

For chromosomes π = π1π2 . . . πiπi+1 . . . πj . . . πm and σ = σ1σ2 . . . σn a transposition

of a segment πiπi+1 . . . πj of chromosome π into a position k in the chromosome σ

results in chromosomes

π1π2 . . . πi−1πj+1πj+2 . . . πm and σ1σ2 . . . σk−1πiπi+1 . . . πjσk . . . σn.

Let P and Q be two multichromosomal genomes on the same set of genes

G. Similarly to the unichromosomal case, the breakpoint graph G(P,Q) is defined on

the set of vertices V = {xt, xh | x ∈ G} with edges of three colors: “obverse”, black,

and gray. Edges of each color form a matching on V : obverse matching (pairs of ob-

verse vertices), black matching (adjacent vertices in P ), and gray matching (adjacent

vertices in Q). Every pair of matchings forms a collection of alternating cycles in G,

called black-gray, black-obverse, and gray-obverse cycles respectively. The chromo-

somes of genome P (resp. Q) represent black-obverse (resp. gray-obverse) cycles in

G(P,Q).

2.2 Multi-Break Distance Problem

Every k-break in the genome P corresponds to a transformation of the break-

point graph G(P,Q). Since the breakpoint graph of two identical genomes is a col-

lection of trivial black-gray cycles of length 2 (the identity breakpoint graph), the

problem of transforming the genome P into the genome Q by k-breaks can be formu-
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lated as the problem of transforming the breakpoint graph G(P,Q) into the identity

breakpoint graph. This is equivalent to the following problem:

k-Break Distance Problem. Given two perfect matchings (black and gray) in a

graph, find a shortest series of k-breaks that transforms one matching into the other.

In difference from the Genomic Distance Problem [29, 69, 50] (for linear

multichromosomal genomes), the 2-Break Distance Problem for circular multichro-

mosomal genomes is trivial (compare to [76]):

Theorem 2.2.1. The 2-break distance between a black matching P and a gray match-

ing Q is |P | − c(P,Q) where c(P,Q) is the number of black-gray cycles in G(P,Q).

Proof. It is easy to see that every non-trivial black-gray cycle can be split into two

by a 2-break. Since no 2-break can increase the number of black-gray cycles by more

than 1, the 2-break distance between P and Q is |P | − c(P,Q).

In difference from standard rearrangements (modelled as 2-breaks), transpo-

sitions introduce 3 breaks in the genome, making them notoriously difficult to analyze.

Computing the minimum number of transpositions transforming one genome into an-

other is called sorting by transpositions. After Bafna and Pevzner, 1995 [3] gave a

first 1.5-approximation algorithm for sorting by transpositions, a number of faster

algorithms with the same approximation ratio were proposed [15, 73, 31] culminating

in a recent 1.375-approximation algorithm by Elias and Hartman [25]. A number of

researchers considered transpositions in conjunction with other rearrangement oper-

ations [2, 27, 32, 42, 43, 57, 72]. The complexity of sorting by transpositions remains

unknown.

Let codd(P,Q) be the number of black-gray cycles in the breakpoint graph

G(P,Q) with an odd number of black edges (odd cycles). The 3-break distance

theorem has a simple proof that is very similar to the arguments in [3]:

Theorem 2.2.2. The 3-break distance between a black matching P and a gray match-

ing Q is |P |−codd(P,Q)
2

.



12

Proof. A trivial black-gray cycle is a cycle with a single black edge. If Q = P , the

breakpoint graph G(P,Q) is a set of |P | trivial cycles that are odd cycles (each with

a single black edge). It is easy to see that as soon as there is a non-trivial black-gray

odd cycle, it can be split into 3 odd cycles by a 3-break, thus increasing the number

of odd cycles by 2. On the other hand, if there exists a black-gray even cycle, it can

be split into two odd cycles, thus again increasing the number of odd cycles by 2.

Since no 3-break can increase the number of black-gray cycles by more than 2, the

3-break distance is |P |−codd(P,Q)
2

.

In Section 3.4.2 we further illustrate the theoretical advantages of consid-

ering the 3-break distance (as compared to the transposition distance) by showing

that some very difficult problems can be solved if one moves from transpositions to

3-breaks.

Below we prove the duality theorem for the k-break distance for an arbitrary

k. A black-gray cycle is called an ik-cycle if it has i modulo k − 1 black edges.

A subset of cycles in a breakpoint graph G(P,Q) is called breakable if the total

number of black edges in these cycles equals 1 modulo k − 1. Let sk(P,Q) be the

maximum number of disjoint breakable subsets in G(P,Q). For example, for k = 3,

every odd cycle forms a breakable subset and s3(P,Q) = codd(P,Q). Let ci
k(P,Q)

be the number of black-gray ik-cycles in G(P,Q). For k = 4, every 14-cycle forms

a breakable subset and every pair of 24-cycles forms a breakable subset, implying

that s4(P,Q) = c1
4(P,Q) + ⌊c2

4(P,Q)/2⌋. Below we prove that the k-break distance is

dk(P,Q) =
⌈

|P |−sk(P,Q)
k−1

⌉

.

We introduce a few definitions. A k-break β and a cycle c are called compat-

ible if β either does not use edges of c or uses all its black edges. Otherwise β and c

are called incompatible. Given a k-break β, we define def(β) as the number of cycles

in G(P,Q) that are incompatible with β. Obviously, a k-break β may increase the

number of trivial cycles by at most k − def(β). A k-break β is called optimal if it is

compatible with all cycles in G(P,Q) and if it increases the number of trivial cycles

by k. A k-break β with def(β) = 1 is called semi-optimal if it increases the number
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of trivial cycles by k − 1.

Lemma 2.2.3. A set S of non-trivial black-gray cycles with m black edges can be

transformed into m trivial cycles with m−1
k−1

k-breaks if S is breakable and with
⌈

m
k−1

⌉

k-breaks otherwise.

Proof. We first prove that any set S of non-trivial black-gray cycles with m black

edges can be transformed into m trivial cycles with a series of
⌈

m
k−1

⌉

k-breaks. It is

easy to see that if m > k then either an optimal or a semi-optimal k-break exists.

Indeed, let c1, . . . , ct be a set of non-trivial cycles in S containing at least k black

edges while c1, . . . , ct−1 contains less than k black edges. If c1, . . . , ct contain exactly

k black edges then there exists an optimal k-break using all black edges of these

cycles. If c1, . . . , ct contain more than k black edges then there exists a semi-optimal

k-break using all black edges of c1, . . . , ct−1 and some black edges of ct. In either case,

the number of trivial cycles is increasing by at least k − 1 with every k-break. To

complete the proof (for non-breakable sets) it is sufficient to notice that every set of

cycles with k or less black edges can be transformed into trivial cycles by a single

k-break.

We showed above how to transform a set S into m trivial cycles with a series

of optimal and semi-optimal k-breaks (with a possible exception of the last k-break).

If one of these k-breaks is optimal, the bound
⌈

m
k−1

⌉

turns into
⌈

m−1
k−1

⌉

(since each

optimal k-break creates k trivial cycles as compared to k − 1 trivial cycles for semi-

optimal k-breaks). It is easy to see that for a breakable set S there exists at least one

optimal k-break in the series.

Theorem 2.2.4. The k-break distance between a black matching P and a gray match-

ing Q is
⌈

|P |−sk(P,Q)
k−1

⌉

.

Proof. We first prove that there exists a series of
⌈

|P |−sk(P,Q)
k−1

⌉

k-breaks transforming

G(P,Q) into a set of trivial cycles. Let S be a collection of sk(P,Q) disjoint breakable

subsets of black-gray cycles in G(P,Q) and M be the total number of black edges in S.

Lemma 2.2.3 implies that every breakable set with m black edges can be decomposed
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into trivial cycles with m−1
k−1

k-breaks. Therefore, all sk(P,Q) breakable sets from S

can be decomposed into M trivial cycles with M−sk(P,Q)
k−1

k-breaks. Lemma 2.2.3 also

implies that all remaining cycles (i.e., cycles that do not belong to elements of S) with

|P | − M black edges in total can be broken into trivial cycles by
⌈

|P |−M
k−1

⌉

k-breaks.

Therefore, all cycles can be transformed into trivial cycles by M−sk(P,Q)
k−1

+
⌈

|P |−M
k−1

⌉

=
⌈

|P |−sk(P,Q)
k−1

⌉

k-breaks.

We now prove that a k-break on G(P,Q) can reduce the value of
⌈

|P |−sk(P,Q)
k−1

⌉

by at most 1, or equivalently, that every k-break can increase sk(P,Q) by at most

k − 1. Every k-break can create at most k “new” cycles, implying that sk(P,Q) can

increase by at most k. Assume that a k-break β increases sk(P,Q) by k. Let S be a

maximum set of disjoint breakable subsets of black-gray cycles after performing the

k-break β (i.e., |S| = sk(P,Q) + k). The k-break β may be viewed as a replacement

of some “old” cycles c′1, . . . , c
′
t in G(P,Q) with k “new” cycles c1, . . . , ck. Therefore,

the total number of black edges in these cycles is the same:
∑k

i=1 b(ci) =
∑t

i=1 b(c′i)

where b(·) denotes the total number of black edges in a subgraph g.

Note that if for each “new” cycle ci (i = 1, . . . , k) we remove from S a

breakable subset contains ci, then the remaining breakable subsets will contain only

cycles from G(P,Q), implying that the number of remaining subsets cannot exceed

sk(P,Q). Therefore, each “new” cycle ci (i = 1, . . . , k) must belong to a distinct

breakable subset Bi ∈ S with ei + b(ci) black edges in total, where ei = b(Bi \ {ci}).

Since ei + b(ci) equals 1 modulo k− 1,
∑k

i=1 ei +
∑t

i=1 b(c′i) =
∑k

i=1 ei + b(ci) equals 1

modulo k−1 as well. Therefore, the cycles c′1, . . . , c
′
t together with the cycles from all

Bi \{ci} form a breakable subset B′. Then the set (S \{B1, . . . ,Bk})∪{B′} consists of

sk(P,Q)+1 disjoint breakable subsets of black-gray cycles in G(P,Q), a contradiction

to the definition of sk(P,Q). It proves that every k-break can increase sk(P,Q) by at

most k − 1.

Theorem 2.2.4 and the formula for s4(P,Q) imply a formula for the 4-break

distance.

Corollary 2.2.5. The 4-break distance between a black matching P and a gray match-
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ing Q is

d4(P,Q) =

⌈

|P | − c1
4(P,Q) − ⌊c2

4(P,Q)/2⌋

3

⌉

.

Similarly, one can derive a formula for the 5-break distance, which we state

below without a proof.

Corollary 2.2.6. The 5-break distance between a black matching P and a gray match-

ing Q is

d5(P,Q) =

⌈

|P | − c1

5
(P,Q) − min{c2

5
(P,Q), c3

5
(P,Q)} −

⌊

max{0, c3

5
(P,Q) − c2

5
(P,Q)}/3

⌋

4

⌉

.

For k > 5, a formula for the k-break distance becomes more complicated,

e.g., d6(P,Q) =
⌈

|P |−s6(P,Q)
5

⌉

where

s6(P,Q) = c1
6(P,Q) +

⌊

c3
6
(P,Q)

2

⌋

+ min{c2
6(P,Q), c4

6(P,Q)}

+
⌊

max{0,c2
6
(P,Q)−c4

6
(P,Q)}

3

⌋

+
⌊

max{0,c4
6
(P,Q)−c2

6
(P,Q)}

4

⌋

+ δ

and δ is either 0 or 1, and δ = 1 iff (i) c3
6(P,Q) is odd, (ii) c4

6(P,Q) > c2
6(P,Q), and

(iii) c4
6(P,Q) − c2

6(P,Q) equals 2 or 3 modulo 4.

From the algorithmic perspective, while the k-break distance between

genomes with n genes can be computed in O(n) time for small k (e.g., for k ≤ 10),

it is unclear whether one can compute dk(P,Q) in linear time for arbitrary k. In the

next Section we address this problem by establishing the relationship between the

k-break distance and the Gröbner basis of an appropriately constructed polynomial

ideal.

2.3 Algorithms for computing multi-break distance

In this section we present two approaches to computing the k-break distance

between genomes with n genes. We start with a dynamic programming algorithm with

the running time O(n⌊k/2⌋−2)+O(n) that is practical for small values of k. We further

show how one can derive closed-form formulas for the k-break distance via computing

the set of so-called extremal breakable vectors. While these formulas lead to linear-

time algorithms for a wider range of k, it is not clear how to generalize this approach
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for an arbitrary k. Finally, we show how to compute the k-break distance in linear

time in n for an arbitrary k (with preliminary computations that are exponential in

k but independent of n). While the latter algorithm is linear in theory, the high cost

of the preliminary computations makes it less practical than the former algorithms.

2.3.1 Dynamic programming algorithms

First we reformulate the k-break distance as a multi-dimensional packing

problem. Since a breakable subset remains breakable after removing all 0k-cycles,

without loss of generality we assume that breakable subsets do not contain 0k-cycles.

Then every breakable subset B is characterized by a breakable vector v = (v1, . . . , vk−2)

where vi is the number of ik-cycles in B .

For genomes P and Q, let c = (c1, . . . , ck−2) where ci = ci
k(P,Q). Finding

sk(P,Q) amounts to finding the maximum number of breakable vectors v1, . . . , vt such

that v1 + · · · + vt ≤ c (component-wise). Note that we can limit our search only to

the set V of all proper breakable vectors v with vj < k − 1 for all j = 1, . . . , k − 2.

Since the first coordinate of a proper breakable vector v = (v1, . . . , vk−2) is uniquely

defined by the others as v1 = 1 − 2 · v2 − · · · − (k − 2) · vk−2 mod (k − 1), the total

number of proper breakable vectors is |V | = (k − 1)k−3.

For a vector u with k − 2 components, define s(u) as the maximum number

of elements of V (each element may appear several times) with the sum not exceeding

u. Then sk(P,Q) = s(c). We will use this formula and Theorem 2.2.4 to come up

with an algorithm for computing the k-break distance for an arbitrary k.

Theorem 2.3.1. For genomes P and Q with n genes, dk(P,Q) can be computed in

O(nk−2) + O(n) time.

Proof. It is easy to see that s(u) = max
v∈V,v≤u

s(u − v) + 1. This formula leads to a

dynamic programming algorithm for computing sk(P,Q) = s(c) via computing s(u)

for all u ≤ c. We need to fill up a dynamic programming table of size (c1 + 1) ×

· · · × (ck−2 + 1) = O((n/k)k−2). Note that the time-complexity of computing each

s(u) depends on k but not on n. Therefore, the total time to compute sk(P,Q)



17

(and dk(P,Q)) is O(nk−2) + O(n), where the term O(n) accounts for time needed to

construct the breakpoint graph G(P,Q) and to compute the vector c.

The following theorem describes a faster version of the dynamic program-

ming approach.

Theorem 2.3.2. For genomes P and Q with n genes, dk(P,Q) can be computed in

O(n⌊k/2⌋−2) + O(n) time.

Proof. Let S be a maximum set of disjoint breakable subsets of black-gray cycles in

G(P,Q). An ik-cycle and a (k − i)k-cycle (i = 2, . . . , k − 2) are called paired in S if

they form an element of S. We will show how to transform the set S into a maximum

set S ′ of disjoint breakable subsets of black-gray cycles in G(P,Q) such that for every

i = 2, . . . , k − 2, either all ik-cycles are paired or all (k − i)k-cycles are paired in S ′.

Suppose that for some i there is a non-paired ik-cycle p (belonging to a

breakable subset B1) and a non-paired (k − i)k-cycle q (belonging to a breakable

subset B2) in S. If B1 = B2 then we replace this subset in S with a breakable subset

{p, q}. If B1 6= B2 then we replace B1 and B2 in S with breakable subsets {p, q}

and (B1 ∪ B2) \ {p, q}. Note that this operation transforms S into a maximum set of

disjoint breakable subsets and increases the number of paired cycles. Therefore, after

a number of steps we will arrive at a maximum set S ′ of disjoint breakable subsets

with the required property.

It is easy to see that the number of breakable subsets in S ′ formed by an ik-

cycle and a (k− i)k-cycle equals pi = min{ci
k(P,Q), ck−i

k (P,Q)} for i 6= k/2 and (for k

even) pk/2 =
⌊

c
k/2
k (P,Q)/2

⌋

. Let c′ = (0, c2
k(P,Q)− p2, . . . , c

k−2
k (P,Q)− pk−2), except

that for even k, the k/2-th component c′k/2 = c
k/2
k (P,Q) − 2pk/2 = c

k/2
k (P,Q) mod 2.

Then

sk(P,Q) = |S ′| = s(c′) + c1
k(P,Q) +

⌊k/2⌋
∑

i=2

pi.

Note that at least ⌊(k − 3)/2⌋ coordinates of the vector c′ are zero while the k/2-th

coordinate (for even k) is at most 1. Therefore, the dynamic programming table for
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computing s(c′) in Theorem 2.3.1 is of size O(n⌊k/2⌋−2), reducing the overall complex-

ity of the algorithm to O(n⌊k/2⌋−2) + O(n).

The big-O notation in both dynamic programming algorithms hides a large

constant (directly related to the size of the set V ) that is exponential in k. Below we

describe how one can significantly reduce this constant.

A vector v dominates a vector u if u ≤ v. The vectors that dominate other

vectors can be safely removed from the set V to compute the k-break distance more

efficiently. This results in a set of extremal breakable vectors V ′. In the next section

we show how the set of extremal breakable vectors can be efficiently computed using

Hilbert bases, and explore their relation to an explicit formula for sk(P,Q). While we

are unaware of any theoretical bounds on the number of extremal breakable vectors

|V ′|, the numerical results suggest that it is small as compared to the number of

proper breakable vectors |V |. Replacing the set of proper breakable vectors V with

the set of extremal breakable vectors V ′ in the dynamic programming algorithms

reduces the time-complexity in roughly |V |/|V ′| times.

Below we show how to compute the set of extremal breakable vectors via

computing a certain Hilbert basis. We further use the set of extremal breakable vec-

tors to interpret the problem of computing the k-break distance in terms of algebraic

varieties. Then we employ Gröbner bases to come up with an algorithm for comput-

ing the k-break distance (for a fixed k) between two genomes with n genes in O(n)

time.

2.3.2 Extremal breakable vectors and closed-form formulas for multi-

break distance

Consider an embedding f : V −→ C of the set V of all proper breakable

vectors into a cone:

C = {x ∈ Z
k
+ | a · x = 0}, a = (−1, 1, 2, . . . , k − 3, k − 2,−(k − 1))
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such that

V ∋ (v1, . . . , vk−2)
f

7−→ (1, v1, . . . , vk−2,

∑k−2
i=1 ivi − 1

k − 1
) ∈ C.

Let H be a Hilbert basis of the cone C, i.e., the minimal set of vectors such that any

point in C can be expressed as an integral non-negative linear combination of vectors

in H.

Theorem 2.3.3. The set of extremal breakable vectors is f−1(f(V ) ∩ H).

Proof. Let H ′ = f(V )∩H and V ′ = f−1(H ′). It can be easily verified that H ′ consists

of all vectors in H with the first coordinate equal to 1.

Let v ∈ V and S be a set of elements of the Hilbert basis H that appear in

the expansion of f(v) with positive coefficients. Since the first coordinate of f(v) is 1,

S contains exactly one element h from H ′, and thus f−1(h) ≤ v. If v is an extremal

vector then f−1(h) = v, implying that f−1(H ′) contains all extremal vectors of V .

On the other hand, if v is not extremal then f(v) 6= h, implying that the set of all

extremal breakable vectors is f−1(H ′).

We have computed the Hilbert basis H of the cone C (for k ≤ 20) using the

algorithm from [51], and applied Theorem 2.3.3 to obtain a set of extremal breakable

vectors V ′. The size of H and V ′ is listed in Table 2.1.

For small k, the terms in the formula for sk(P,Q) can be mapped to the

set of extremal breakable vectors V ′. For example, for k = 6, the set of extremal

breakable vectors is

V ′ = {(1, 0, 0, 0), (0, 0, 2, 0), (0, 1, 0, 1), (0, 0, 1, 2), (0, 3, 0, 0), (0, 0, 0, 4)}
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Table 2.1 The size of the set V of all proper breakable vectors, of the Hilbert basis
H of the cone C, of the set V ′ of extremal vectors, and of the reduced Gröbner basis
GB.

k |V | = (k − 1)k−3 |H| |V ′| |GB|
3 1 3 1 1
4 3 7 2 3
5 16 13 3 9
6 125 27 6 43
7 1296 39 8 125
8 16807 83 16 1117
9 262144 117 22 8227

10 4782969 205 37
11 100000000 291 53
12 2357947691 555 92
13 61917364224 634 110
14 1792160394037 1277 201
15 56693912375296 1567 260
16 1946195068359375 2368 376
17 72057594037927936 3315 519
18 2862423051509815793 5740 831
19 121439531096594251776 6228 963
20 5480386857784802185939 11404 1592

and it is mapped to the terms of the formula for s6(P,Q) as follows3

(1, 0, 0, 0) (0, 0, 2, 0) (0, 1, 0, 1)

↓ ↓ ↓

c1
6(P,Q)

⌊

c3
6
(P,Q)

2

⌋

min{c2
6(P,Q), c4

6(P,Q)}

(0, 0, 1, 2) (0, 3, 0, 0) (0, 0, 0, 4)

↓ ↓ ↓

δ
⌊

max{0,c2
6
(P,Q)−c4

6
(P,Q)}

3

⌋ ⌊

max{0,c4
6
(P,Q)−c2

6
(P,Q)}

4

⌋

This may give a hope for a “simple” formula for sk(P,Q) that would allow

one to compute dk(P,Q) efficiently. While we indeed were able to achieve it for k < 10

(via the Hilbert basis approach), the complexity of such formulas grows very fast with

3While knowing V ′ provides an intuition and facilitates the proof of the formulas for k-break distance,
we are not aware of an algorithm to automatically translate V ′ into a formula for k-break distance.
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k (e.g., see how the term “δ” in the formula for s6(P,Q) is defined).

2.3.3 Computing multi-break distance in linear time

For a field K, consider a polynomial ring P = K[x, y1, . . . , yk−2, z1, . . . , zm]

where m = |V ′| is the number of extremal breakable vectors4. Let I be an ideal

of P generated by binomials xy
vi
1

1 . . . y
vi

k−2

k−2 − zi, i = 1, . . . ,m where v1, . . . , vm are

the elements of V ′. Let GB be a reduced Gröbner basis of the ideal I w.r.t.

the degree of x and the graded reverse lexicographical ordering of the variables

y1, . . . , yk−2, z1, . . . , zm. The following theorem shows how to compute s(c) in con-

stant time using the Gröbner basis GB.

Theorem 2.3.4. Let N be an integer such that s(c) ≤ N (e.g., N =
∑k−2

i=1 ci),

f = xNyc1
1 . . . y

ck−2

k−2 be a polynomial in P, and f ′ be a normal form of f with respect

to the Gröbner basis GB. Then f ′ = xN−s(c)yd1

1 . . . y
dk−2

k−2 ze1

1 . . . zem
m where d1, . . . , dk−2,

e1, . . . , em are some non-negative integers. Moreover, e1 + · · · + em = s(c) and the

multiset of vectors {(v1)e1 , . . . , (vm)em} from V ′ is of the maximum cardinality with

the sum of elements not exceeding c.

Proof. It follows from the Buchberger algorithm (see [17] for background information

on Gröbner bases) that the reduced Gröbner basis of an ideal generated by binomials

consists of binomials. Hence, the normal form of the monomial f is a monomial. Sup-

pose that f ′ = xN ′

yd1

1 . . . y
dk−2

k−2 ze1

1 . . . zem
m where N ′, d1, . . . , dk−2, e1, . . . , em are some

non-negative integers.

The definition of the function s(·) implies that there exist non-negative in-

tegers t1, . . . , tm such such that t1 · v1 + · · · + tm · vm ≤ c and t1 + · · · + tm =

s(c). Then the polynomial xN−s(c)yu1

1 . . . y
uk−2

k−2 zt1
1 . . . ztm

m belongs to f + I where

u = c − t1 · v
1 − · · · − tm · vm.

Since GB is a Gröbner basis of the ideal I, the polynomial f ′ is minimal in

f + I. Hence, N ′ ≤ N − s(c). On the other hand, it is easy to see that e1 · v1 +

4We note that the running time of computing a Gröbner basis is highly sensitive to the number of
variables. Hence, using the set of extremal breakable vectors V ′ instead of the set of proper breakable
vectors V dramatically reduces the complexity of the Gröbner basis computing.
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· · · + em · vm ≤ c and, thus N − N ′ = e1 + · · · + em ≤ s(c) by the definition of s(·).

Therefore, s(c) = N − N ′.

For a given k, computing the reduced Gröbner basis GB may take time

exponential in k. But as soon as GB is found, computing the k-break distance

between genomes P and Q with n genes takes time linear in n. In particular, it takes

linear time in n to construct the breakpoint graph G(P,Q) and the vector c to obtain

the polynomial f . Then it takes constant time (depending on k) w.r.t. n to compute

a normal form of f w.r.t. GB and to obtain the distance between P and Q. For k

up to 9, we have computed the reduced Gröbner basis GB using computer algebra

system Singular version 3.0.2 [26] (see Table 2.1).

2.4 Computing the Breakpoint Reuse Rate

One of the arguments against the Pevzner–Tesler rebuttal of RBM [56] was

recently raised by Sankoff, 2006 [62]:

. . . we cannot infer whether mutually randomized synteny block orderings
derived from two divergent genomes were created . . . through processes
other than reversals and translocations.

We consider this argument for the human genome H and the mouse genome M based

on the 281 synteny blocks from [54], assuming that all chromosomes are circular.

While analyzing linear chromosomes would be more adequate than analyzing their

circularized versions, it poses additional algorithmic challenges that will be addressed

in Section 2.5. We will show that that switching to circular chromosomes does not

lead to significant changes as compared to linear chromosomes.

The breakpoint graph G(H,M) contains 35 black-gray cycles including 3 odd

black-gray cycles, implying that d2(H,M) = 281 − 35 = 246 (Theorem 2.2.1) and

d3(H,M) = 139 (Theorem 2.2.2). If each of 139 3-breaks on a shortest evolutionary

path from H to M made 3 breaks, it would imply that there were 139 · 3− 281 = 136

breakpoint re-uses (for this particular evolutionary path), resulting in the breakpoint
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re-use rate 1.48 (see Peng et al., 2006 [52]). While this is a high breakpoint re-

use rate (inconsistent with RBM and the scan statistics), this estimate relies on the

assumption that each 3-break on the evolutionary path from H to M makes 3 breaks

(complete 3-breaks). In reality, some 3-breaks can make 2 breaks (incomplete 3-

breaks) as 2-breaks are particular cases of 3-breaks, reducing the estimate for the

number of breakpoint re-uses. Moreover, the minimum number of breakpoint re-uses

may be achieved on a suboptimal evolutionary path from H to M .

The rebuttal of RBM raises a question about finding a transformation of

H into M by 3-breaks that makes the minimal number of individual breaks. The

following theorem shows that there exists a series of d3(P,Q) 3-breaks that makes the

minimum number of breaks while transforming P into Q:

Theorem 2.4.1. Any series of m k-breaks transforming a circular genome P into a

circular genome Q makes at least m+d2(P,Q) breaks. Moreover, there exists a series

of d3(P,Q) 3-breaks transforming P into Q that makes d3(P,Q) + d2(P,Q) breaks.

Proof. For each k-break operation, let ∆(cycles) be the increase in the number of

cycles and ∆(breaks) be the increase in the number of breaks. It is easy to see that

∆(cycles) ≤ ∆(breaks)− 1. Summing up over a series of m k-breaks transforming P

into Q, we have |P | − c(P,Q) ≤ b − m, where b is the total number of breaks made

in the series. Therefore, b ≥ |P | − c(P,Q) + m = d2(P,Q) + m.

Consider a shortest series of complete 3-breaks transforming every odd black-

gray cycles into trivial cycles and every even black-gray cycle into trivial cycles and a

single cycle with two black edges. This series consists of d3(P,Q)−ceven(P,Q) 3-breaks

and results in ceven(P,Q) cycles with two black edges that can be transformed into

trivial cycles with a series of ceven(P,Q) incomplete 3-breaks (i.e., 2-breaks). The total

number of 3-breaks in this transformation is d3(P,Q) and they make 3(d3(P,Q) −

ceven(P,Q)) + 2ceven(P,Q) = 3d3(P,Q) − ceven(P,Q) = d3(P,Q) + d2(P,Q) breaks

overall.

Corollary 2.4.2. Every transformation between the circularized human genome H
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and mouse genome M by 3-breaks requires at least 104 breakpoint re-uses (implying

that there exist rearrangement hotspots in the human genome).

Proof. Any transformation of H into M requires at least d3(H,M) + d2(H,M) =

139 + 246 = 385 breaks. Since there are 281 breakpoints between the human and

mouse genomes, it implies that there were at least 385 − 281 = 104 breakpoint re-

uses on the evolutionary path from human to mouse, resulting in breakpoint re-use

rate 1.37. This is still higher that the expected breakpoint re-use rate of RBM as

computed by scan statistics [56]. It provides an argument against RBM not only for

k = 2 but for k = 3 as well and invalidates arguments from [62] in the case k = 3 (see

also [Ale07]). Since k-breaks for k > 3 were never reported in previous evolutionary

studies, it is unlikely that they significantly affect our conclusions.

Theorem 2.4.1 implies that any transformation of the human genome H

into the mouse genome M with 2-breaks makes at least d2(H,M) + d2(H,M) =

246 + 246 = 492 breaks, while any transformation of H into M with 3-breaks makes

at least d3(H,M) + d2(H,M) = 139 + 246 = 385 breaks. Below we show how the

lower bound on the number of breaks made in a series of 3-breaks depends on the

number of complete 3-breaks in this series.

Theorem 2.4.3. For any series of m 3-breaks with t complete 3-breaks, transforming

a genome P into a genome Q,

m ≥ max{d2(P,Q) − t, d3(P,Q)}.

Moreover, there exists a series of max{d2(P,Q) − t, d3(P,Q)} 3-breaks with at most

t complete 3-breaks, transforming P into Q.

Proof. Since k-break can increase the number of cycles in the breakpoint graph by

at most k − 1, a series with t complete 3-breaks and m − t incomplete 3-breaks (i.e.,

2-breaks) can increase the number of cycles by at most 2t + (m − t) = m + t. If it

transforms the genome P into the genome Q then m + t ≥ |P | − c(P,Q) = d2(P,Q).

Therefore, m ≥ d2(P,Q) − t.



25

Consider a series of complete 3-breaks, transforming every black-gray cycle

with q ≥ 3 black edges into two trivial cycles and a cycle with q − 2 black edges.

Note that such a series may have at most d3(P,Q)− ceven(P,Q) (the longest possible

series results in ceven(P,Q) cycles with 2 black edges and |P | − ceven(P,Q) trivial

cycles). Since every such 3-break increases the number of cycles by 2, a series of q =

min{t, d3(P,Q)−ceven(P,Q)} such 3-breaks result in c(P,Q)+2q cycles. These cycles

can be transformed into trivial cycles with a series of |P |−(c(P,Q)+2q) = d2(P,Q)−

2q 2-breaks. The total number of 3-breaks and 2-breaks in this transformation is

q + d2(P,Q) − 2q = d2(P,Q) − min{t, d3(P,Q) − ceven(P,Q)} = max{d2(P,Q) − t, d3(P,Q)}.

Theorems 2.4.1 and 2.4.3 imply:

Corollary 2.4.4. Any series of 3-breaks with t complete 3-breaks, transforming a

genome P into a genome Q, makes at least d2(P,Q) + max{d2(P,Q) − t, d3(P,Q)}

breaks. In particular, any such series of 3-breaks with t ≤ d2(P,Q)−d3(P,Q) complete

3-breaks makes at least 2d2(P,Q) − t breaks.

Corollary 2.4.4 gives the lower bound for the breakpoint re-use rate as

a function of the number of complete 3-breaks (i.e., transpositions and 3-way fu-

sions/fissions) in a series of 3-breaks transforming one genome into the other. For the

human genome H and mouse genome M , this lower bound is shown in Fig. 2.4a.

Corollaries 2.4.2 and 2.4.4 address only the case of circularized chromosomes

and further analysis is needed to extend it to the case of linear chromosomes (see Sec-

tion 2.5). Recently, Bergeron et al., 2006 [8] described another promising approach

to analyzing both circular and linear chromosomes (using DCJ operations proposed

in [76]) that also opens a possibility to obtain the breakpoint re-use estimates for

linear genomes. However, the above estimate is based on the extreme assumption

that certain 3-breaks (transpositions and 3-way fissions) represent the dominant re-

arrangements while reversals and translocations are extremely rare (contrary to the

existing view). We emphasize that we do not share the point of view that genomes
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Figure 2.4 The lower bound on the breakpoint re-use rate between the human and
mouse genomes based on 281 synteny blocks from [54]. The lower bound is represented
as a function of a) the number of complete 3-breaks in a series of 3-breaks between
the circularized human and mouse genomes. b) the number of transpositions in a
series of rearrangements between the linear human and mouse genomes.

mainly evolve by transpositions and 3-way fissions, and that we analyzed this assump-

tion only to refute the arguments against FBM. A more realistic analysis of 3-breaks

leads to a much higher estimate of the breakpoint re-use (see Fig. 2.4).

2.5 Multi-Break Rearrangements and Linear Genomes

While multi-breaks in linear genomes can be defined similarly to circular

genomes, the linear case is harder to analyze. In contrast to circular genomes, not

every multi-break can be performed over a linear genome: multi-breaks that create

circular chromosomes are not allowed. In this section we extend the results from

Sections 2.2 and 2.4 to the case of linear genomes.

A linear genome is a collection of linear chromosomes represented as se-

quences of signed elements (genes). Similarly to circular genomes, we represent each

linear chromosome on n genes as a sequence of n directed obverse edges (encoding

genes and their direction) and n − 1 undirected black edges (connecting adjacent

genes). So, each linear chromosome is an alternating path of obverse and black edges

(starting and ending with obverse edges), and a linear genome is a collection of such

paths.
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Every linear genome P with m chromosomes has 2m vertices representing

endpoints of the chromosomes. If we introduce an arbitrary perfect matching on

these 2m vertices, consisting of black closing edges, the resulting graph will represent

some circular genome that contains P as a subgraph. We call the resulting genome

a closure of P and note that in general it is not uniquely defined. Black edges that

belong to P are called non-closing.

Throughout this section we assume that P and Q are linear genomes on the

same set of genes.

2.5.1 Rearrangement distance between linear genomes

Let dl
2(P,Q) be the genomic distance between the genomes P and Q, i.e.,

the minimum number of reversals, translocations, fissions, and fusions required to

transform P into Q. Also, let dl
3(P,Q) be the minimum number of reversals, translo-

cations, fissions, and fusions as well as transpositions5 required to transform P into

Q.

Theorem 2.5.1. For any closure P ′ of a genome P , there exists a closure Q′ of a

genome Q such that dl
2(P,Q) ≥ d2(P

′, Q′). Similarly, for any closure P ′ of a genome

P , there exists a closure Q′ of a genome Q such that dl
3(P,Q) ≥ d3(P

′, Q′).

Proof. Let S ′ be a closure of a linear genome S. We note that any reversal, translo-

cation, fission, or fusions transforming the genome S into a linear genome T corre-

sponds to a 2-break transforming the closure S ′ into some closure T ′ of the genome T

(Fig. 2.5a,b,c,d). Similarly, any transposition transforming the genome S into a linear

genome T corresponds to a 3-break transforming the closure S ′ into some closure T ′

of the genome T (Fig. 2.5e).

For the genomes P and Q, consider a series of dl
k(P,Q) (k = 2 or k = 3)

rearrangements transforming P into Q. This series corresponds to a series of k-breaks

transforming P ′ into some circular genome Q′ that is a closure of the genome Q. To

5We do not consider 3-way fusions and 3-way fissions since such operations were never reported in
biological literature.
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Figure 2.5 Rearrangements of linear genomes correspond to k-breaks over closures:
a) Reversal of the region (u, v) is a 2-break over non-closing black edges; b) Fission
at the black edge (u, v) is the identity multi-break over the edge (u, v), re-claiming
this edge as closing; c) Fusion of the chromosomes endpoints y and z is a 2-break
replacing closing edges (y, u) and (z, v) with a non-closing edge (y, z) and a closing
edge (u, v); d) Translocation exchanging chromosomes parts (u, y) and (v, t) is a 2-
break operating over non-closing edges; e) Transposition is a 3-break operating over
non-closing edges.

complete the proof it is sufficient to notice that the distance dk(P
′, Q′) between the

genomes P ′ and Q′ does not exceed dl
k(P,Q), i.e., dk(P

′, Q′) ≤ dl
k(P,Q).

Theorem 2.5.1 immediately implies:

Corollary 2.5.2. For any linear genomes P and Q, k = 2 or k = 3,

dl
k(P,Q) ≥ maxP ′ minQ′ dk(P

′, Q′)

dl
k(P,Q) = dl

k(Q,P ) ≥ maxQ′ minP ′ dk(P
′, Q′).

where P ′ and Q′ vary over all possible closures of the genomes P and Q respectively.

Since the k-break distance dk(P
′, Q′) (k = 2 or k = 3) gives a lower bound

for the linear distance dl
k(P,Q), our goal is to make this bound as tight as possible

by choosing appropriate closures P ′ and Q′. We start with defining the breakpoint

graph of linear genomes and a number of its characteristics that we will find useful.

Let P ′ and Q′ be closures of linear genomes P and Q. The breakpoint graph

G(P,Q) is defined as a result of removal of all closing edges from the breakpoint

graph G(P ′, Q′) (of circular genomes P ′ and Q′). It is easy to see that G(P,Q) is

well-defined by the genomes P and Q and does not depend on a particular choice of
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closures P ′ and Q′. Every cycle in G(P ′, Q′) with m closing edges will be split into

m paths in G(P,Q). Therefore, the black-gray connected components of G(P,Q) are

formed by c(P,Q) black-gray cycles and a number of black-gray paths. We distinguish

between black-gray paths with both terminal edges of black color (bb-paths), with both

terminal edges of gray color (gg-paths), and with terminal edges of different colors

(bg-paths), including isolated vertices viewed as bg-paths with zero black and zero

gray edges. We denote the number of such paths by lbb(P,Q), lgg(P,Q), and lbg(P,Q)

respectively (note that the number lbg(P,Q) is always even). The total number of

black-gray connected components in G(P,Q) is

cc(P,Q) = c(P,Q) + lbb(P,Q) + lgg(P,Q) + lbg(P,Q).

We also distinguish between black-gray connected components with odd/even number

of black/gray edges and call them b-odd, b-even, g-odd, g-even respectively. To refer

to the number of such components we will use these aliases as superscripts. Similarly

to cycles, bg-paths have the same number of black and gray edges, so we call bg-paths

simply odd and even, depending on the oddness of the number of black edges. We

denote the number of such bg-paths by lodd
bg (P,Q) and leven

bg (P,Q) respectively. We

rely on the following identities:

∀j ∈ {bb, bg, gg},

lj(P,Q) = lb−odd
j (P,Q) + lb−even

j (P,Q), lj(P,Q) = lg−odd
j (P,Q) + lg−even

j (P,Q);

∀j ∈ {bb, gg},

lb−odd
j (P,Q) = lg−even

j (P,Q), lb−even
j (P,Q) = lg−odd

j (P,Q).

These identities allow to compute all the parameters as soon as c(P,Q), codd(P,Q),

lbb(P,Q), lb−odd
bb (P,Q), lgg(P,Q), lb−odd

gg (P,Q), lbg(P,Q), lodd
bg (P,Q) are given.

Similarly to the breakpoints graphs for circular and linear genomes, we can

define breakpoint graphs and associated characteristics in the case when one genome

is circular while the other is linear (in such a graph all paths are either bb-paths or

gg-paths).
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Lemma 2.5.3. For a circular genome P ′ and a linear genome Q,

min
Q′

d2(P
′, Q′) = |P ′| − cc(P ′, Q) and min

Q′

d3(P
′, Q′) =

|P ′| − ccb−odd(P ′, Q)

2

where Q′ varies over all possible closures of the genome Q.

Proof. Theorem 2.2.1 implies that minQ′ d2(P
′, Q′) = |P ′| −maxQ′ c(P ′, Q′). To max-

imize c(P ′, Q′), the closure Q′ needs to be chosen in such a way that it closes each

path in the breakpoint graph G(P ′, Q) into a separate black-gray cycle. Therefore,

maxQ′ c(P ′, Q′) = cc(P ′, Q).

Similarly, Theorem 2.2.2 implies that

min
Q′

d3(P
′, Q′) =

|P ′| − maxQ′ codd(P ′, Q′)

2
.

To maximize codd(P ′, Q′), the closure Q′ needs to be chosen in such a way that it

closes each b-odd path in the breakpoint graph G(P ′, Q) into a separate black-gray

cycle. Therefore, maxQ′ c(P ′, Q′) = ccb−odd(P ′, Q).

Theorem 2.5.4. For linear genomes P and Q, maxP ′ minQ′ d2(P
′, Q′) = B2(P,Q)

where

B2(P,Q) = |P | − c(P,Q) − max{1,
lbg(P,Q)

2
} − lbb(P,Q),

implying that dl
2(P,Q) ≥ max{B2(P,Q), B2(Q,P )}.

Proof. By Lemma 2.5.3 we have maxP ′ minQ′ d2(P
′, Q′) = |P | − minP ′ cc(P ′, Q). In

order to minimize cc(P ′, Q), the closure P ′ needs to be chosen in such a way that it

minimizes the number of black-gray connected components in G(P,Q). This can be

done as follows. If lbg(P,Q) = 0, then we will connect (using closing black edges) all

the gg-paths into a single cycle. If lbg(P,Q) > 0, we will first connect a pair of bg-paths

and all the gg-paths into a single bb-path, and then form pairs of the remaining bg-

paths and connect bg-paths in each pair into a bb-path. As a result, minP ′ cc(P ′, Q) =

c(P,Q) + max{1,
lbg(P,Q)

2
} + lbb(P,Q). Therefore, maxP ′ minQ′ d2(P

′, Q′) = B2(P,Q)

and by Corollary 2.5.2, dl
2(P,Q) ≥ B2(P,Q). Moreover, since dl

2(P,Q) = dl
2(Q,P ) ≥

B2(Q,P ), we have dl
2(P,Q) ≥ max{B2(P,Q), B2(Q,P )}.
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Lemma 2.5.5. For linear genomes P and Q, minP ′ ccb−odd(P ′, Q) = L3(P,Q) where

L3(P,Q) = codd(P,Q) + lb−odd
bb (P,Q) + δ(P,Q)

+ max
{

0,
|lodd

bg
(P,Q)−leven

bg
(P,Q)|

2
− lb−even

gg (P,Q)
}

and δ(P,Q) = max
{

0, lb−even
gg (P,Q) −

|lodd
bg

(P,Q)−leven
bg

(P,Q)|

2

}

mod 2.

Proof. Note that in any closure of P , the closing (black) edges connect gg-paths and

bg-paths from G(P,Q) into m1 =
lbg(P,Q)

2
bb-paths and a number of cycles. Note that

if lbg(P,Q) = 0 then connecting all gg-paths into a single cycle (which will be odd iff

lb−even
gg (P,Q) is odd) gives an optimal closure P ′′ (i.e., for which minP ′ ccb−odd(P ′, Q) =

ccb−odd(P ′′, Q)). It is easy to check that in this case ccb−odd(P ′′, Q) = L3(P,Q). For

the rest of the proof we assume that lbg(P,Q) > 0.

We will show that there exists an optimal closure where the closing edges

do not connect any gg-paths into a cycle. Such an optimal closure can be obtained

from an arbitrary optimal closure P ′′ as explained below. Since lbg(P,Q) > 0, the

closing edges in G(P ′′, Q) create at least one bb-path formed by two bg-paths at

the ends and possibly gg-paths in the middle. Let us re-connect (modifying the set

of closing edges) all the gg-paths from G(P,Q), that are connected into cycles in

G(P ′′, Q), in the middle of this bb-path. Note that such modification of the closure

may change the b-oddness of the affected bb-path but only if at least one of the

destroyed cycles was odd. In any case the number of b-odd connected components

is not increased. Therefore, the modified closure is optimal and satisfies the required

property by construction. Without loss of generality we will assume that the closing

edges create no cycles.

Bringing black closing edges into G(P,Q) can be viewed as a two-step pro-

cess: first, connecting gg-paths into longer gg-paths; and second, connecting pairs of

bg-paths and maybe single gg-paths into bb-paths. Our goal is to minimize the num-

ber of b-odd bb-paths or, equivalently, to maximize the number of b-even bb-paths.

Consider an outcome of the first step. It is clear that connection of two

b-odd gg-paths or two b-even gg-paths results in a b-odd gg-path, while connection
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of b-odd and b-even gg-paths results in b-even gg-path. As we will see b-even gg-

paths are more preferable than b-odd gg-paths. After the first step we can have up

to m2 = lb−even
gg (P,Q) b-even gg-paths.

Now, consider the second step. Connection of an odd bg-path and an even

bg-path with an optional b-odd gg-path in between create a b-even bb-path. At the

same time connection of a pair of odd bg-paths or a pair of even bg-paths requires a b-

even gg-path in between in order to produce a b-even bb-path. All other combinations

of bg-paths and gg-paths result in b-odd bb-paths.

We can create m3 = min{lodd
bg (P,Q), leven

bg (P,Q)} b-even bb-paths without

any use of gg-paths, and up to m4 =
|lodd

bg
(P,Q)−leven

bg
(P,Q)|

2
b-even bb-paths (note that

m3 + m4 = m1), each of which requires a b-even gg-path in the middle. Hence, we

can create m5 = m3 +min{m4,m2} = min{m1,m2 +m3} b-even bb-paths. The other

m6 = m1 − m5 = max{0,m4 − m2} bb-paths (formed by pairs of bg-paths of the

same oddness) will be b-odd. So far we have used min{m4,m2} b-even gg-paths. The

other gg-paths (if any) can be connected (at the first step) into a single gg-path that is

b-odd iff m2−min{m4,m2} = max{m2−m4, 0} is odd (i.e., δ(P,Q) = 1). The b-odd

gg-path can be easily incorporated into any of created bb-paths without changing its

b-oddness. The b-even gg-path we have to incorporate into some of created b-even

bb-paths and turn it into a b-odd bb-path. Hence, for an optimal closure P ′, there

are lb−odd
bb (P,Q)+m6 + δ(P,Q) b-odd bb-paths and codd(P,Q) odd cycles in G(P ′, Q),

implying that ccb−odd(P ′, Q) = codd(P,Q) + lb−odd
bb (P,Q) + m6 + δ(P,Q).

Theorem 2.5.6. For linear genomes P and Q, dl
3(P,Q) ≥ max{B3(P,Q), B3(Q,P )}

where B3(P,Q) = |P |−L3(P,Q)
2

.

Proof. Since dl
3(P,Q) = dl

3(Q,P ) it is sufficient to show that dl
3(P,Q) ≥ B3(P,Q).

Corollary 2.5.2 and Lemma 2.5.3 imply

dl
3(P,Q) ≥ max

P ′

min
Q′

d3(P
′, Q′) =

|P | − minP ′ ccb−odd(P ′, Q)

2
.

Now, applying Lemma 2.5.5 completes the proof.



33

2.5.2 Breakpoint re-use in linear genomes

Similarly to the case of circular genomes, we are interested in estimating the

total number breaks required to transform a linear genome P into a linear genome

Q with reversals, fusions, fissions, translocations, and transpositions. According to

Theorem 2.5.1, any series of such rearrangements corresponds to a series of 3-breaks

transforming some closure P ′ of the genome P into some closure Q′ of the genome

Q. Let bc(P,Q) be the minimum number of breaks made in such a series of 3-breaks

(over all possible closures P ′ and Q′). Theorems 2.5.1 and 2.4.1 imply:

Corollary 2.5.7. For linear genomes P and Q,

bc(P,Q) ≥ maxP ′ minQ′ d3(P
′, Q′) + d2(P

′, Q′)

bc(P,Q) = bc(Q,P ) ≥ maxQ′ minP ′ d3(P
′, Q′) + d2(P

′, Q′)

where P ′ and Q′ vary over all possible closures of the genomes P and Q respectively.

To find out the exact value of maxP ′ minQ′ d3(P
′, Q′) + d2(P

′, Q′) we need

the following lemma:

Lemma 2.5.8. For a circular genome P ′ and a linear genome Q,

min
Q′

d2(P
′, Q′) + d3(P

′, Q′) =
3

2
|P ′| −

3ccb−odd(P ′, Q) + 2ccb−even(P ′, Q)

2
.

Proof. Theorems 2.2.1 and 2.2.2 imply that

min
Q′

d3(P
′, Q′) + d2(P

′, Q′) =
3

2
|P ′| −

maxQ′ 3codd(P ′, Q′) + 2ceven(P ′, Q′)

2
.

To maximize 3codd(P ′, Q′)+2ceven(P ′, Q′), a closure Q′ has to be chosen in such a way

that it closes each path in the breakpoint graph G(P ′, Q), into a separate black-gray

cycle. Indeed, having m > 1 paths connected into a single cycle is always worse

than connecting each of these paths into a separate cycle as 3 < 2m. Therefore,

for an optimal closure Q′, we have codd(P ′, Q′) = ccb−odd(P ′, Q) and ceven(P ′, Q′) =

ccb−even(P ′, Q).



34

Theorem 2.5.9. For linear genomes P and Q, maxP ′ minQ′ d3(P
′, Q′)+d2(P

′, Q′) =

B23(P,Q) where

B23(P,Q) =
3

2
|P | − c(P,Q) − lbb(P,Q) −

lbg(P,Q) + L3(P,Q)

2
,

implying that bc(P,Q) ≥ max{B23(P,Q), B23(Q,P )}.

Proof. By Lemma 2.5.8 we have

max
P ′

min
Q′

d3(P
′, Q′) + d2(P

′, Q′) =
3

2
|P | −

minP ′ 3ccb−odd(P ′, Q) + 2ccb−even(P ′, Q)

2
.

Note that if lbg(P,Q) = 0 then connecting all gg-paths into a single cycle (which will

be odd iff lb−even
gg (P,Q) is odd) gives an optimal closure P ′. It is easy to check that

in this case maxP ′ minQ′ d3(P
′, Q′)+ d2(P

′, Q′) = B23(P,Q). For the rest of the proof

we assume that lbg(P,Q) > 0.

Note that in any closure of P , the closing (black) edges connect gg-paths

and bg-paths from G(P,Q) into bb-paths and cycles. We will show that in an op-

timal closure the closing edges do not connect any gg-paths into a cycle. Indeed,

since lbg(P,Q) > 0, the closing edges create at least one bb-path formed by two

bg-paths at the ends and possibly gg-paths in the middle. It is easy to see that

it is always better to include more gg-paths in the middle of this bb-path (maybe

letting the objective function increase by one) rather than to create a separate cy-

cle out of these gg-paths (in which case the objective function would increase by

at least 2). Therefore, closing edges in an optimal closure P ′ connect gg-paths and

bg-paths from G(P,Q) into
lbg(P,Q)

2
bb-paths in G(P ′, Q). As the total number of

new bb-paths is fixed, the problem of minimizing 3ccb−odd(P ′, Q) + 2ccb−even(P ′, Q)

is equivalent to minimizing ccb−odd(P ′, Q). For an optimal closure P ′, Lemma 2.5.5

gives ccb−odd(P ′, Q) = L3(P,Q), implying that

3ccb−odd(P ′, Q) + 2ccb−even(P ′, Q) = 2cc(P ′, Q) + ccb−odd(P ′, Q)

= 2(c(P,Q) + lbb(P,Q) +
lbg(P,Q)

2
) + L3(P,Q)

and thus maxP ′ minQ′ d3(P
′, Q′) + d2(P

′, Q′) = B23(P,Q).

By Corollary 2.5.7 we have bc(P,Q) ≥ B23(P,Q) and bc(P,Q) ≥ B23(Q,P ),

implying that bc(P,Q) ≥ max{B23(P,Q), B23(Q,P )}.
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We will now prove the following analog of Corollary 2.4.4:

Theorem 2.5.10. Any series of rearrangements with t transpositions, transform-

ing a linear genome P into a linear genome Q, makes at least max{2B2(P,Q) −

t, B23(P,Q)} − chr(P ) + chr(Q) breaks, where chr(·) denotes the number of chro-

mosomes. In particular, any such series of rearrangements with t ≤ 2B2(P,Q) −

B23(P,Q) transpositions makes at least 2B2(P,Q) − chr(P ) + chr(Q) − t breaks.

Proof. Any series of rearrangements transforming the genome P into the genome Q

corresponds to series of 3-breaks transforming any particular closure P ′ into a closure

Q′ (depending on P ′). We note that every rearrangement makes the same number

of breaks as the corresponding 3-break in the closures;6 except for fusions that make

smaller number of breaks than the corresponding 2-breaks in the closure (Fig. 2.5b),

and for fissions that make breaks in linear genomes but correspond to identity multi-

breaks (making no breaks) over the closures (Fig. 2.5c).

Let u, v, t be respectively the number of fusions, fissions, and transpositions

in a series of m rearrangements transforming the genome P into the genome Q and

making b breaks in total. Then there is a series of 3-breaks, transforming a closure

P ′ into a closure Q′, that makes b + u − v breaks in total. Since every fusion de-

creases the number of chromosomes by one, while every fission increases the number

of chromosomes by one, u − v = chr(P ) − chr(Q). By Theorem 2.4.3,

b + u − v = b + chr(P ) − chr(Q) ≥ d2(P
′, Q′) + max{d2(P

′, Q′) − t, d3(P
′, Q′)},

implying that b ≥ max{2d2(P
′, Q′)−t, d2(P

′, Q′)+d3(P
′, Q′)}+chr(Q)−chr(P ). Tak-

ing maxP ′ minQ′ of the right hand side of this inequality, we have b ≥ max{2B2(P,Q)−

t, B23(P,Q)} + chr(Q) − chr(P ).

Using 281 synteny blocks between the linear human genome H and mouse

6We assume that a transposition always makes 3 breaks even if it transposes a part of chromosome
starting with one of its ends, a translocation always makes 2 breaks even if it exchanges an entire chromosome
with a part of another chromosome, and a reversal always makes 2 breaks even if it involves an end of a
chromosome. The biological rationale for this assumption is that chromosomes are flanked by telomeres that
while remaining “invisible” in genomic sequences, can account for breakpoint re-use in the same way as any
other genomic position.
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genome M from [54], we estimate the breakpoint re-use rate across these (lin-

ear) genomes. The breakpoint graph G(H,M) have the following parameters:

(c, lbb, lgg, lbg) = (28, 12, 15, 16), (codd, lb−odd
bb , lb−odd

gg , lodd
bg ) = (2, 5, 4, 3), chr(H) = 23,

chr(M) = 20, B2(H,M) = 233, B2(M,H) = 230, B3(H,M) = 137, B3(M,H) = 134,

B23(H,M) = 370, and B23(M,H) = 364. Theorems 2.5.4 and 2.5.6 imply that

dl
2(H,M) ≥ max{B2(H,M), B2(M,H)} = 233,

dl
3(H,M) ≥ max{B3(H,M), B3(M,H)} = 137.

Theorem 2.5.10 gives the lower bound for the breakpoint re-use rate be-

tween the genomes H and M , shown in Fig. 2.4b (as the function of the number

of transpositions). This illustrates that very large number of transpositions would

be necessary to bring the breakpoint re-use rate below 1.25 rate expected for RBM

(see [56]). Therefore, Sankoff’s argument that high breakpoint re-use rate reported

for human-mouse genomic architectures is an artifact caused by not accounting for

complex rearrangements [62] may only hold if one assumes that transpositions are

dominant rearrangement operations that are more frequent than reversals, transloca-

tions, fissions, and fusions. While detailed analysis of such an extreme rearrangement

scenario remains beyond the scope of our analysis we remark that currently there is

no biological evidence to support this scenario.
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3 Whole Genome Duplications and

Genome Halving Problem

The whole genome duplication doubles the gene content of a genome R and

results in a perfect duplicated genome Q that contains two copies of each chromosome

of R. The genome then becomes subject to rearrangements that shuffle the genes

in Q resulting in some duplicated genome P . The Genome Halving Problem is to

reconstruct the ancestral perfect duplicated genome Q from the given duplicated

genome P (Fig. 3.1a).

We represent a circular chromosome R as a cycle formed by directed edges

encoding the genes and their direction (Fig. 3.1b, center). There are two natural ways

to represent duplication of the chromosome R resulting in a single chromosome R⊕R

(Fig. 3.1b, left) or in two chromosomes 2R (Fig. 3.1b, right) but only the former one

is applicable to unichromosomal genomes. A unichromosomal duplicated genome is a

result of a series of reversals applied to the unichromosomal perfect duplicated genome

R ⊕ R. The Genome Halving Problems for unichromosomal genomes is formulated

as follows:

Genome Halving Problem (unichromosomal genomes). Given a unichromo-

somal duplicated genome P , find a perfect unichromosomal duplicated genome R⊕R

minimizing the reversal distance d(P,R ⊕ R).

A whole genome duplication of a multichromosomal genome consisting of

chromosomes R1, . . . , Rk results in a multichromosomal perfect duplicated genome1

1Note that in difference from the unichromosomal genomes, the whole genome duplication of a multi-

38
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Figure 3.1 a) Whole genome duplication of a genome R = +a + b − c into a perfect
duplicated genome R ⊕ R = +a + b − c + a + b − c followed by three reversals. b)
Whole genome duplication of a circular chromosome R (center) resulting in R ⊕ R
(left) or 2R (right).

where every chromosome Ri is duplicated either into Ri ⊕Ri or into 2Ri (Fig. 3.1b).

A multichromosomal duplicated genome is a result of a series of 2-breaks applied to

a perfect duplicated genome. The Genome Halving Problem for multichromosomal

genomes (2-Break Genome Halving Problem) is formulated as follows.

Genome Halving Problem (multichromosomal genomes). Given a duplicated

genome P , find a perfect duplicated genome Q minimizing the genomic distance

d2(P,Q).

The Genome Halving Problem was studied in a series of papers by El-

Mabrouk and Sankoff [22, 23, 21] culminating in a rather complex algorithm in [24].

The El-Mabrouk–Sankoff algorithm is one of the most technically challenging results

in computational biology and its proof spans over 30 pages in [24]. In this chapter we

revisit the El-Mabrouk–Sankoff work and present an alternative approach for the case

of unichromosomal genomes. The crux of our approach is a new construction that

generalizes the notion of breakpoint graph for any set of genomes with duplicated

genes (any gene may be present in an arbitrary number of copies). This construction

is related to well-known de Bruijn graphs and proved to be useful in studies of the

Genome Halving Problem.

Our studies of the contracted breakpoint graph led us to realize that El-

chromosomal genome is not uniquely defined.
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Mabrouk–Sankoff analysis has a flaw and the problem of finding minR d(P,R ⊕ R)

remains unsolved for unichromosomal genomes. Below we show that this flaw is a

rule rather than a pathological case: it affects a large family of duplicated genomes.

We further proceed to give a full analysis of the Genome Halving Problem that is

based on introducing an invariant that divides the set of all rearranged duplicated

genomes into 2 classes. We show that the El-Mabrouk–Sankoff formula is correct for

the first class and is off by 1 for the second class. We remark that our approach is

very different from [24] and we do not know whether the technique in [24] can be

adjusted to address the described complication.

We also solve a novel 3-Break Genome Halving Problem for multichromo-

somal genomes (which includes transpositions into the set of rearrangements opera-

tions):

3-Break Genome Halving Problem. Given a duplicated genome P , find a perfect

duplicated genome Q minimizing the 3-break distance d3(P,Q).

This chapter is organized as follows. Section 3.1 discusses the problem of

computing rearrangement distance between duplicated genomes and formulates the

Weak Genome Halving Problem (for unichromosomal genomes). Section 3.2 presents

the concept of contracted breakpoint graph for the case of multichromosomal genomes.

We solve the Genome Halving Problem for multichromosomal genomes and the 3-

Break Genome Halving Problem in Sections 3.4.1 and 3.4.2 respectively. Section 3.5.1

describes a flaw in El-Mabrouk-Sankoff analysis. Section 3.5.2 classifies the genomes

for which the original El-Mabrouk–Sankoff theorem is incorrect. Finally, Section 3.5.3

presents our Genome Halving Algorithm for unichromosomal genomes.

3.1 Rearrangement Distance Between Duplicated Genomes

While the Hannenhalli–Pevzner theory leads to a fast algorithm for com-

puting reversal distance between two signed permutations, the problem of computing

reversal distance between two genomes with duplicated genes remains unsolved.
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Figure 3.2 Breakpoint graphs corresponding to four different labellings of genomes
P = +a − a − b + b and Q = +a − b + a + b (without loss of generality we assume
that labelling of P = +a1 − a2 − b1 + b2 is fixed). Two out of four breakpoint graphs
have c(G) = 1, while two others have c(G) = 2.

Let P and Q be duplicated genomes on the same set of genes G (i.e., each

gene appears in two copies). If one labels copies of each gene x as x1 and x2 then

genomes P and Q become signed permutations and the Hannenhalli–Pevzner theory

applies. As before we turn the labelled genomes P and Q into unsigned permutations

π(P ) and π(Q) by replacing each element xi with a pair of obverses xt
ix

h
i in the order

defined by the sign of xi. Breakpoint graph G(P,Q) of the labelled genomes P and

Q has a vertex set V = {xt
1, x

h
1 , x

t
2, x

h
2 | x ∈ G} and uniquely defines permutations

π(P ) and π(Q) (and, thus, the original genomes P and Q) as well as an inter-genome

correspondence between gene copies.

We remark that different labellings may lead to different breakpoint graphs

for the same genomes P and Q (Fig. 3.2) and it is not clear how to choose a labelling

that results in the minimum reversal distance between the labelled copies of P and

Q.

Recently there were many attempts to generalize the Hannenhalli-Pevzner

theory for genomes with duplicated and deleted genes [11, 14, 20, 61, 66, 67]. How-

ever, the only known option for solving the reversal distance problem for duplicated

genomes exactly is to consider all possible labellings, to compute the reversal dis-

tance problem for each labelling, and to choose the labelling with the minimal re-

versal distance. For duplicated genomes with n genes this leads to 2n invocations of

the Hannenhalli–Pevzner algorithm rendering this approach impractical. Moreover,
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the problem remains open if one of the genomes is perfectly duplicated (i.e., com-

puting the reversal distance d(P,R ⊕ R)). Surprisingly, the problem of computing

min
R

d(P,R ⊕ R) that we address in this paper is solvable in polynomial time.

Using the concept of the breakpoint graph and formula (2.1), the Genome

Halving Problem can be posed as follows. For a given duplicated genome P , find

a perfect duplicated genome R ⊕ R and a labelling of gene copies such that the

breakpoint graph G(P,R ⊕ R) of the labelled genomes P and R ⊕ R attains the

minimum value of |P | − c(G) + h(G). Since |P | is constant and the existing results

[13] suggests that h(G) is typically small, the value of d(P,Q) depends mostly on

c(G). El-Mabrouk and Sankoff [24] established that the problems of maximizing

c(G) and minimizing h(G) can be solved separately in a consecutive manner. In this

dissertation we focus on the former and harder problem:

Weak Genome Halving Problem. For a given duplicated genome P , find a perfect

duplicated genome R⊕R and a labelling of gene copies that maximizes the number of

black-gray cycles c(G) in the breakpoint graph G(P,R⊕R) of the labelled genomes P

and R ⊕ R.

For multichromosomal genomes, while Theorem 2.2.1 leads to a polynomial

algorithm for computing the 2-break distance between genomes with non-duplicated

genes, it is unclear how one can compute this distance between duplicated genomes

without going over all possible labellings of the genomes. In the next section we

describe the contracted breakpoint graphs that address this complication.

3.2 Contracted Breakpoint Graphs and Labelling Problem

To introduce breakpoint graphs of genomes with duplicated genes we first

revisit the notion of breakpoint graph and discuss the relationships between break-

point graphs and de Bruijn graphs. We find it convenient to represent a circular

signed permutation as an alternating cycle formed by edges of two colors with one

color reserved for directed obverse edges. For example, Fig. 3.3a,b shows a black-
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Figure 3.3 a) Genome P = +a−a−b+b as a black-obverse cycle and its transformation
into P̂ by gluing identically labelled edges; b) Genome Q = +a− b + a + b as a gray-
obverse cycle and its transformation into Q̂ by gluing identically labelled edges; c)
Two-chromosomal genome Q′ = (+a− b)(+a + b) that is equivalent to the genome Q
(Q̂′ = Q̂); d) de Bruijn graph for P and Q; e) Contracted breakpoint graph G′(P,Q).

obverse cycle representation of permutation P = +a − a − b + b and a gray-obverse

cycle representation of permutation Q = +a − b + a + b (the obverse edges in these

cycles are labelled). Given a set of edge-labelled graphs, the de Bruijn graph of this

set is defined as the result of “gluing”2 edges with the same label in all graphs in the

set (compare with Pevzner et al. 2004 [53]). The de Bruijn graph for two cycles in

Fig. 3.3a,b is shown in Fig. 3.3d.

For any genome P (represented as a cycle) we define P̂ as the graph obtained

from P by gluing identically labelled edges. Obviously, the de Bruijn graph of P and

Q coincides with the de Bruijn graph of P̂ and Q̂ (Fig. 3.3).

While our definition of the de Bruijn graphs is somewhat different from the

usual definition, one can see that it produces the same graphs. For example, the

classical de Bruijn graph Gl(x1 . . . xn) of a circular sequence x1 . . . xn parameterized

with an integer l ≥ 2 is defined as a graph with vertices corresponding to all (l − 1)-

tuples and edges corresponding to all l-tuples that occur in x1 . . . xn (edge xi . . . xi+l−1

connects vertices xi . . . xi+l−2 and xi+1 . . . xi+l−1). One can see that Gl(x1 . . . xn) is

2Gluing takes into the directions of edges, i.e., tails (or heads) of all edges with a given label are glued
into a single vertex.
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Figure 3.4 The de Bruijn graph G2(01101) of the circular sequence 01101.

identical to our construction if the circular sequence x1 . . . xn is first represented as

a cycle passing through all l-tuples in the sequence with further gluing of identically

labelled edges of this cycle (Fig. 3.4).

While our de Bruijn graph construction is merely an equivalent definition

of the breakpoint graph it provides an important new insight. While it was not clear

how to generalize the classical notion of breakpoint graph for genomes with duplicated

genes, the de Bruijn graphs automatically provide such a generalization. In fact, the

de Bruijn graphs are defined as a gluing operation on an arbitrary set of graphs and

therefore are applicable to any set of genomes including multichromosomal ones (each

genome is represented as a set of cycles). The contracted breakpoint graph defined

below is simply the de Bruijn graph of duplicated genomes.

The conventional breakpoint graph (see Section 2.1.1) of signed permuta-

tions P and Q on n elements can be defined as the gluing of n pairs of obverse

edges in the corresponding permutations π(P ) and π(Q) represented as black-obverse

and gray-obverse alternating cycles. The contracted breakpoint graph of duplicated

genomes P and Q on n elements is simply the gluing of n quartets of obverse edges.

Below we give an equivalent and a somewhat more formal definition of the contracted

breakpoint graph.

Let P and Q be duplicated genomes on the same set of genes G and G be

a breakpoint graph defined by some labelling of P and Q. The contracted breakpoint

graph G′(P,Q) is the result of contracting every pair of vertices xj
1, x

j
2 (where x ∈

G, j ∈ {t, h}) in the breakpoint graph G into a single vertex xj. So the contracted

breakpoint graph G′ = G′(P,Q) is a graph on the set of vertices V ′ = {xt, xh | x ∈ G}
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with each vertex incident to two black, two gray, and a pair of parallel obverse edges

(Fig. 3.3e). The contracted breakpoint graph G′(P,Q) is uniquely defined by P and

Q and does not depend on a particular labelling. The following theorem gives a

characterization of the contracted breakpoint graphs for multichromosomal genomes.

Theorem 3.2.1. A graph H with black, gray, and obverse edges is a contracted

breakpoint graph for some duplicated genomes iff each vertex in H is incident to two

black edges, two gray edges, and two parallel obverse edges.

Proof. If H is a contracted breakpoint graph of some duplicated genomes then the

theorem follows from the definition of contracted breakpoint graph.

Let H be a graph with each vertex incident to two black edges, two gray

edges, and a pair of parallel obverse edges. Label endpoints of each obverse edge x in

H by xt and xh. Since the black degree of each vertex of H is even and so is obverse

degree, there exist alternating black-obverse cycles traversing all black and obverse

edges in this graph. These cycles define some duplicated genome P . Similarly, since

the gray degree of each vertex of H is even, there exist alternating gray-obverse cycles

traversing all gray and obverse edges. These cycles define some duplicated genome Q.

Then the graph H is a contracted breakpoint graph for the genomes P and Q.

In the case when Q is a perfect duplicated genome, the gray edges in the

contracted breakpoint graph G′(P,Q) form pairs of parallel gray edges that we refer

to as double gray edges. Similar to the double obverse edges, the double gray edges

form a matching in G′ (Fig. 3.6a).

Let G(P,Q) be a breakpoint graph for some labelling of P and Q. A set

of black-gray cycles in G(P,Q) is contracted into a set of black-gray cycles in the

contracted breakpoint graph G′(P,Q), thus forming a black-gray cycle decomposi-

tion of G′(P,Q). Therefore, each labelling of P and Q induces a black-gray cycle

decomposition of G′(P,Q). We are interested in the following problem:

Labelling Problem. Given a black-gray cycle decomposition of the contracted break-

point graph G′(P,Q) of duplicated genomes P and Q, find a labelling of P and Q that
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Figure 3.5 a) Contracted breakpoint graph G′(P,R ⊕R) for P = +a + b− a− b and
R = +a + b; b) Black-gray cycle decomposition C of G′ which is not induced by any
labelling of P and R ⊕ R; c) Breakpoint graph G(P, 2R) inducing C; d) Breakpoint
graph G(P,R ⊕ R) (unique up to re-labelling of vertices) with c(G) = 2 < |C|.

induces this cycle decomposition.

This problem may not always have a solution for unichromosomal genomes

(Fig. 3.5) and this is exactly the factor that leads to a counterexample to the El-

Mabrouk–Sankoff theorem in Section 3.5.1. For multichromosomal genomes, the La-

belling Problem can be addressed by considering equivalent genomes.

We call genomes Q and Q′ equivalent if their de Bruijn graphs are equal, i.e.,

Q̂ = Q̂′. If Q and Q′ are equivalent then the contracted breakpoint graphs G′(P,Q)

and G′(P,Q′) are the same for any genome P (Fig. 3.3d).

Lemma 3.2.2. If Q is a perfect duplicated genome and a genome Q′ is equivalent to

Q then Q′ is perfect duplicated as well.

Proof. Consider gray and obverse matchings in the de Bruijn graph Q̂ = Q̂′ formed

by pairs of double gray and double obverse edges. These matchings form a set of gray-

obverse cycles (consisting of double edges). Every such cycle c is the result of gluing

some gray-obverse cycles c1, c2, . . . , ck in Q′ such that |c1| + |c2| + . . . + |ck| = 2 · |c|.

Neither of these cycles can be shorter than c since such a short cycle would remain

short after gluing. This implies that k = 1 or k = 2, i.e., the genome Q′ has either a

single cycle (a chromosome R ⊕ R) traversing the cycle c two times or two cycles (a

pair of chromosomes 2R) each traversing c once. Therefore, the genome Q′ represents

a set of sub-genomes of the form R⊕R or 2R implying that Q′ is a perfect duplicated

genome.
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Figure 3.6 For genomes P = (−a− b + g + d + f + g + e)(−a + c− f − c− b− d− e)
and R = −a − b − d − g + f − c − e, a) contracted breakpoint graph G′(P,R ⊕ R);
b) BG-graph corresponding to G′; c) maximal black-gray cycle decomposition (split
decomposition) C of G′ forming graph H; d) genome P as black-obverse cycles; e)
breakpoint graph G(P,Q′) inducing the cycle decomposition C.

Theorem 3.2.1 and Lemma 3.2.2 imply

Theorem 3.2.3. A graph H with black, gray, and obverse edges is a contracted break-

point graph G′(P,Q) for some duplicated genome P and perfect duplicated genome Q

iff each vertex in H is incident to two black edges, a double gray edge, and a double

obverse edge.

While the Labelling Problem may not have a solution, the following theorem

provides a “compromise” substitute for its solution.

Theorem 3.2.4. Let P and Q be multichromosomal duplicated genomes and C be

a black-gray cycle decomposition of the contracted breakpoint graph G′(P,Q). Then

there exists a genome Q′ equivalent to Q and a labelling of P and Q′ such that the

breakpoint graph G(P,Q′) induces the cycle decomposition C.

Proof. Consider a contracted breakpoint graph G′ = G′(P,Q) of the genomes P

and Q and its black-gray cycle decomposition C (Fig. 3.6a gives an example of a

contracted breakpoint graph while Fig. 3.6c gives an example of its black-gray cycle
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decomposition). Without loss of generality we can assume that the labelling of P is

fixed. In order to prove the theorem we need to find a breakpoint graph G(P,Q′)

of the labelled genomes P and Q′ (Q′ is equivalent to Q) whose black-gray cycle

decomposition is contracted into C.

We will find it convenient to represent the cycle decomposition of G′ as a

graph H (Fig. 3.6c) where every cycle in C forms its own connected component and

will assume that every vertex of the graph G′ has two copies in H with identical labels

(i.e., graph H has twice the number of vertices as compared to G′). We will show

how to transform H into a breakpoint graph G(P,Q′) of the labelled genomes P and

Q′. To achieve this goal we need to re-label the identically labelled vertices x and x

in H into x1 and x2, and satisfy the condition that H is a breakpoint graph G(P,Q′)

for the labelled genomes P and Q′ with Q̂′ = Q̂.

The genome P defines a collection of black-obverse cycles (Fig. 3.6d).

Traversing black edges in graph H in the order given by these cycles defines a set

of obverse edges in H (Fig. 3.6e) and a labelling of vertices in H as imposed by the

fixed labelling of P . The set of these obverse edges forms matching in H and defines

a gray-obverse cycle decomposition. This gray-obverse cycle decomposition defines a

labelled multichromosomal genome Q′ that is equivalent to Q. By the construction,

the graph H with the set of obverse edges represents a breakpoint graph G(P,Q′)

that induces the cycle decomposition C.

3.3 Maximum Cycle Decomposition and BG-Graphs

Let cmax(G
′) be the number of cycles in a maximum black-gray cycle decom-

positions of the contracted breakpoint graph G′ = G′(P,Q). Theorem 3.2.4 motivates

the following reformulation of the Weak Genome Halving Problem.

Cycle Decomposition Problem. For a given duplicated genome P , find a perfect

duplicated genome Q maximizing cmax(G
′(P,Q)).

Black and gray edges of the contracted breakpoint graph G′(P,Q) form a



49

bicolored graph that we study below.

A BG-graph G is a graph with black and gray edges such that the black

edges form black cycles and the gray edges form gray matching in G (Fig. 3.6b). We

refer to gray edges in G as double gray edges and assume that every double gray edge

is a pair of parallel gray edges. This assumption implies that every BG-graph can be

decomposed into edge-disjoint black-gray alternating cycles.

Below we prove an upper bound on the maximal number of black-gray cycles

cmax(G) in a cycle decomposition of the BG-graph G, and formulate necessary and

sufficient conditions for achieving this bound.

A BG-graph is connected if it is connected with respect to the union of black

and gray edges. A double gray edge in the BG-graph connecting vertices of distinct

black cycles is called interedge. A double gray edge connecting vertices of the same

black cycle is called intra-edge. Note that a connected BG-graph with m black cycles

has at least m − 1 interedges.

Let G be a BG-graph on 2n vertices with m > 1 black cycles, C be a

black-gray cycle decomposition of G, and e = (x, y) be an interedge in G. We

define an e-transformation (G,C)
e
→ (Ge, Ce) of the graph G and its black-gray cycle

decomposition C into a new BG-graph Ge on 2(n−1) vertices with m−1 black cycles

and a black-gray cycle decomposition Ce of Ge of the same size as C (Fig. 3.7). In

the cycle decomposition C there are two black-gray cycles c1 and c2 passing through

edge e (it may happen that c1 = c2 when the same cycle passes through e two

times). Suppose that c1 traverses edges (u, x), (x, y), (y, v) while c2 traverses edges

(z, x), (x, y), (y, t). To obtain graph Ge from G we replace these triples of edges with

single black edges (u, v) and (z, t) respectively and delete vertices x and y. This

operation transforms the cycles c1 and c2 in G into into cycles ce
1 and ce

2 in Ge. We

define the black-gray cycle decomposition Ce as C with the cycles c1 and c2 replaced

with ce
1 and ce

2.

Lemma 3.3.1. Let C be a maximal black-gray cycle decomposition of a BG-graph G

and (G,C)
e
→ (Ge, Ce) be the e-transformation for some interedge e = (x, y) in G.
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Figure 3.7 e-transformation of a graph G into a graph Ge. Black-gray cycles c1, c2 in
G passing through interedge e = (x, y) are transformed into black-gray cycles ce

1, c
e
2

in Ge. The black-gray cycle c1 traverses edges (u, x), (x, y), (y, v) that are replaced by
a single edge (u, v), while black-gray cycle c2 traverses edges (z, x), (x, y), (y, t) that
are replaced by a single edge (z, t). As a result, the black cycles connected by e in G
are merged into a single black cycle in Ge.

Then cmax(G) = cmax(G
e).

Proof. It follows from the definition of e-transformation that cmax(G) = |C| = |Ce| ≤

cmax(G
e). On the other hand, every black-gray cycle decomposition De of the graph

Ge can be transformed into a black-gray cycle decomposition D of G of the same size

(by simply substituting the black edges (u, v) and (z, t) in some black-gray cycles in

De by black-gray-black triples (u, x), (x, y), (y, v) and (z, x), (x, y), (y, t)). Therefore,

cmax(G
e) ≤ cmax(G).

Theorem 3.3.2. If G is a connected BG-graph with 2n vertices and m black cycles,

then

cmax(G) ≤ n + 2 − m = |P |/2 + 2 − m.

Proof. Suppose that cmax(G) = k, i.e., a maximal cycle decomposition of G contains

k black-gray cycles. We find convenient to view these cycles as k disconnected cycles

(i.e., every cycle forms its own connected component) that are later contracted in the

BG-graph G by a series of n gluings of pairs of gray edges into double gray edges.

Since one needs at least k − 1 such gluings to contract k disconnected black-gray

cycles into a connected BG-graph, n ≥ k − 1. It implies the theorem for m = 1.

Assume m > 1. Since the BG-graph G is connected and contains m black

cycles, there exists an interedge e in G. For a maximal cycle decomposition C of the

BG-graph G, consider an e-transformation (G,C)
e
→ (Ge, Ce). Lemma 3.3.1 implies
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cmax(G) = cmax(G
e). Note that Ge is a connected BG-graph on 2(n−1) vertices with

m−1 black cycles. Iteratively applying similar e-transformations m−1 times we will

end up with a BG-graph G+ of size 2(n− (m− 1)) that contains a single black cycle.

Hence, cmax(G) = cmax(G
+) ≤ n + 2 − m.

Note that for a BG-graph G, cmax(G) equals the sum of cmax(H) over all

connected components H of G. Since the total size of all connected components

equals |P |, Theorem 3.3.2 implies

cmax(G) =
∑

H cmax(H) ≤
∑

H |H|/2 + 2 − mH =

|P |/2 +
∑∞

m=1(2 − m) · sm ≤ |P |/2 + s1,

where sm is the number of connected components with m black cycles. Let be(G) be

the number of even black cycles (i.e., black cycles of even size) in G. Note that since

gray edges form a matching in BG-graph, a single odd cycle cannot form a connected

component. Therefore, s1 does not exceed be(G),

cmax(G) ≤ |P |/2 + be(G). (3.1)

To achieve the upper bound (3.1), each connected component of G must

contain either a single even black cycle (a simple BG-graph) or a pair of odd black

cycles (a paired BG-graph). Fig. 3.6b shows a BG-graph containing an even black

cycle forming a simple BG-graph, and a pair of odd black cycles forming a paired

BG-graph.

We represent each black cycle of a BG-graph as points on a circle such that

the arcs between adjacent points represent the black edges, and intra-edges are drawn

as straight chords within these circles. A BG-graph is non-crossing if its intra-edges

(as chords within each black circle) do not cross (Fig. 3.6b).

Theorem 3.3.3. For a simple BG-graph G on 2n vertices, cmax(G) = n + 1 if and

only if G is non-crossing.

Proof. We prove the theorem in both directions by induction on n. The statement is

trivial for n = 1. Assume that the statement is true for any simple BG-graph of size

2(n − 1) and prove it for a simple BG-graph G of size 2n.
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Figure 3.8 Transformation of a BG-graph G into a BG-graph G′ by splitting a black-
gray cycle consisting of parallel black and gray edges.

We first prove (the reasoning depends on the proof direction) that there

exists a double gray edge e in G parallel to a black edge (i.e., connecting two adjacent

points on a black circle) forming a black-gray cycle c0 of length 2.

If cmax(G) = n+1, then a maximal cycle decomposition of the BG-graph G

consists of n + 1 black-gray cycles. Since these cycles contain 2n gray edges in total,

the pigeonhole principle implies that there exists a cycle c0 with a single gray edge e.

If the BG-graph G is non-crossing, consider a double gray edge e spanning

(as a chord) the minimum number of black edges. If e spanned more than one black

edge then there would exist a double gray edge with endpoints within the span of e,

i.e., an edge with an even smaller span, a contradiction.

For the found edge e = (x, y), let u and v be vertices adjacent to x and y

on the black cycle. Transform G into a simple BG-graph G′ on 2(n − 1) vertices by

removing the vertices x and y and all the incident edges, and by adding the black

edge (u, v) (Fig. 3.8). Note that cmax(G
′) = cmax(G)−1 and G′ is non-crossing if and

only if G is non-crossing.

By induction the graph G′ is non-crossing if and only if cmax(G
′) = n.

Therefore, G is non-crossing if and only if cmax(G
′) = n + 1.

Let G be a paired BG-graph G of size 2n (consisting of two odd black

cycles) and e be an interedge in G. For a maximal black-gray cycle decomposition

C of G, let (G,C)
e
→ (Ge, Ce) be an e-transformation of G. Note that the graph Ge

is a simple BG-graph on 2(n − 1) vertices. Lemma 3.3.1 and Theorem 3.3.2 imply

cmax(G) = cmax(G
e) ≤ n. Therefore, according to Theorem 3.3.3, cmax(G) = n if and

only if the BG-graph Ge is non-crossing. We are interested in a particular case of this
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statement.

Theorem 3.3.4. For a paired BG-graph G of size 2n with a single interedge,

cmax(G) = n if and only if G is non-crossing.

Proof. It is easy to see that for a single interedge e in a paired BG-graph G, the e-

transformation turns G into a non-crossing BG-graph if and only if G is non-crossing.

We call a non-crossing BG-graph primitive if its connected components are

either simple BG-graphs or paired BG-graphs with single interedges. Consequently,

the contracted breakpoint graph G′(P,Q) of a duplicated genome P and a perfect

duplicated genome Q is called primitive if its black-gray subgraph is a primitive BG-

graph. Theorems 3.3.3 and 3.3.4 imply

Theorem 3.3.5. For a primitive BG-graph G, cmax(G) = |P |/2 + be(G).

A primitive BG-graph and its maximal cycle decomposition are shown at

Fig. 3.6b,c.

3.4 Genome Halving Problem for Multichromosomal

Genomes

3.4.1 2-Break Genome Halving Problem

In this section we solve the 2-Break Genome Halving Problem for a dupli-

cated genome P by minimizing the 2-break distance d2(P,Q) over all perfect dupli-

cated genomes Q. Theorems 2.2.1 and 3.2.4 motivate the following reformulation of

the 2-Break Genome Halving Problem:

Cycle Decomposition Problem. For a given duplicated (unichromosomal or mul-

tichromosomal) genome P , find a perfect duplicated (resp. unichromosomal or multi-

chromosomal) genome Q maximizing cmax(P,Q).
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The following theorem provides a solution to the Cycle Decomposition Prob-

lem for multichromosomal genomes:

Theorem 3.4.1. For any duplicated genome P , there exists a perfect duplicated

genome Q with cmax(P,Q) = |P |/2 + be(P ).

Proof. If P̂ contains some odd black cycles then we group them into pairs (formed

arbitrarily), and introduce an arbitrary interedge connecting the cycles in each pair.

We complete each black cycle with an arbitrary non-crossing gray matching. The

resulting graph is a contracted breakpoint graph G′(P,Q) of P and some perfect

duplicated genome Q defined (not uniquely) by the double gray-obverse cycles. Since

G′(P,Q) is primitive, Theorem 3.3.5 implies that cmax(P,Q) = |P |/2 + be(P ).

To solve the 2-Break Genome Halving Problem for a multichromosomal

genome P we first find a perfect duplicated genome Q satisfying Theorem 3.4.1. Then

applying Theorem 3.2.4 to a maximum black-gray cycle decomposition of G′(P,Q)

we get a labelling of P and some genome Q′ (Q′ is equivalent to Q) for which

c(P,Q′) = cmax(P,Q′) = |P |/2+ be(P ). It follows from Lemma 3.2.2 that the genome

Q′ is a perfect duplicated genome. Theorem 3.3.5 guarantees that the decomposition

of G(P,Q′) into |P |/2 + be(P ) black-gray cycles represents a maximal cycle decom-

position, while Theorem 2.2.1 implies that it corresponds to the minimum 2-break

distance between P and Q′. Therefore, the perfect duplicated genome Q′ is a solution

of the 2-Break Genome Halving Problem for the genome P .

3.4.2 3-Break Genome Halving Problem

In this section we solve the 3-Break Genome Halving Problem for a dupli-

cated genome P by minimizing the 3-break distance d3(P,Q) over all perfect dupli-

cated genomes Q. Let codd
max(B) be the maximum number of odd black-gray cycles

in a cycle decomposition among all cycle decompositions of a BG-graph B. The-

orems 2.2.2 and 3.2.4 suggest the following reformulation of the 3-Break Genome

Halving Problem.
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Odd Cycle Decomposition Problem. Given a duplicated genome P , find a perfect

duplicated genome Q maximizing codd
max(G

′(P,Q)).

Below we use codd
max(P,Q) as a shortcut for codd

max(G
′(P,Q)). For a BG-graph

B, we define U(B) as

U(B) =
|B|

2
+ b2(B) −

|b1(B) − b3(B)|

2

where |B| is the number of black edges in B and bi(B) is the number of black cycles

of length i modulo 4 in B. Later in this section (Theorem 3.4.3) we will show that

for any BG-graph B, codd
max(B) ≤ U(B). Since U(B) depends only on black edges in

B (i.e., only on the genome P if B = G′(P,Q)), this inequality implies that for any

perfect duplicated genome Q, codd
max(P,Q) ≤ |P̂ |

2
+ b2(P̂ ) − |b1(P̂ )−b3(P̂ )|

2
. The following

theorem shows how to achieve this upper bound.

Theorem 3.4.2. Given a duplicated genome P , there exists a perfect duplicated

genome Q with

codd
max(P,Q) =

|P̂ |

2
+ b2(P̂ ) −

|b1(P̂ ) − b3(P̂ )|

2
.

Proof. Genome P defines the set of black cycles in the de Bruijn graph P̂ . We will

complete P̂ with a gray matching to obtain the BG-graph G′(P,Q).

First we pair every black cycle of length 1 modulo 4 with a cycle of length

3 modulo 4 (if possible) resulting in min{b1(P̂ ), b3(P̂ )} such pairs. The remaining

|b1(P̂ ) − b3(P̂ )| odd black cycles form |b1(P̂ )−b3(P̂ )|
2

pairs arbitrarily. For each pair of

odd black cycles, we introduce an arbitrary gray interedge connecting them.

For each even black cycle (v1, v2, . . . , v2n), we add n gray edges (v1, v2),

(v3, v4), . . ., (v2n−1, v2n) as shown in Fig. 3.9a. For each odd black cycle

(v1, v2, . . . , v2n, v2n+1) (where v2n+1 is incident to an interedge), we add n gray edges

(v1, v2), (v3, v4), . . ., (v2n−1, v2n) as shown in Fig. 3.9b. We remark that n gray edges

(v1, v2), (v3, v4), . . ., (v2n−1, v2n) form n trivial cycles with black edges of the cycle.

By Theorem 3.2.3 the resulting graph is a contracted breakpoint graph G′(P,Q) for

some perfect duplicated genome Q. Below we show that there exists a black-gray
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b)a)

Figure 3.9 a) Cycle decomposition of a simple BG-graph on 2m vertices into m cycles
of length 2 and one cycle of length 2m; b) Cycle decomposition of a paired BG-graph
on 2m vertices into m − 1 cycles of length 2 and one cycle of length 2(m + 1).

cycle decomposition C of the graph G′(P,Q) with codd(C) = |P̂ |
2

+ b2(P̂ )− |b1(P̂ )−b3(P̂ )|
2

cycles.

We construct the black-gray cycle decomposition of the resulting BG-graph

as follows. We decompose every even black cycle c on vertices (v1, v2, . . . , v2n) into n

trivial black-gray cycles (with edges (v1, v2), (v3, v4), . . ., (v2n−1, v2n)) and one more

cycle on the remaining n black edges (Fig. 3.9a). This cycle is odd iff n = |c|/2 is

odd. Therefore, every even cycle c corresponds either to |c|/2 odd cycles (if |c| = 0

modulo 4) or to |c|/2 + 1 odd cycles (if |c| = 2 modulo 4).

Similarly, each paired component p formed by odd cycles (v1, v2, . . . , v2n+1)

and (w1, w2, . . . , w2m+1) can be decomposed into n + m trivial black-gray cycles

(formed by edges (v1, v2), (v3, v4), . . . , (v2n−1, v2n) and (w1, w2), (w3, w4), . . . ,

(w2m−1, w2m)) and one more “large” cycle on the remaining n + m + 2 black edges

of the component (Fig. 3.9b). This “large” cycle is odd iff n + m + 2 = |p|/2 + 1 is

odd. Therefore, every paired component p corresponds either to |p|/2 odd cycles (if

|p| = 0 modulo 4) or to |p|/2 − 1 odd cycles (if |p| = 2 modulo 4).

Therefore, each component with n black edges is decomposed into n/2 odd

cycles unless it is an even cycle of length 2 modulo 4 (in this case it is one odd cycle

more) or a paired component of size 2 modulo 4 (in this case it is one odd cycle less).

Summing over all connected components we get
ˆ|P |
2

+ b2(P̂ ) − |b1(P̂ )−b3(P̂ )|
2

cycles.

The rest of this section is devoted to the proof of the following theorem and

the outline of the 3-Break Halving Algorithm.
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Theorem 3.4.3. For any BG-graph B, codd
max(B) ≤ U(B).

Proof. We first give a sketch of the proof to provide an intuition for the follow up

Lemmas 3.4.4-3.4.8.

We prove Theorem 3.4.3 by induction on the number of interedges ι(B) in

B. Lemma 3.4.4 proves the base case of ι(B) = 0. For any BG-graph B with ι(B) > 0

and its black-gray cycle decomposition C with the maximum number of odd black-

gray cycles (i.e., codd(C) = codd
max(B)) we show how to transform it into a BG-graph

B′ with a black-gray cycle decomposition C ′ such that ι(B′) < ι(B), U(B′) ≤ U(B),

and codd(C ′) ≥ codd(C). Then by induction

codd
max(B) = codd(C) ≤ codd(C ′) ≤ U(B′) ≤ U(B).

The construction of such a pair (B′, C ′) breaks into two cases depending on whether

every interedge in B is shared by two distinct odd cycles from C or not. The latter

case is addressed by Lemmas 3.4.5 and 3.4.6, while the former case is addressed by

Lemmas 3.4.7 and 3.4.8.

Lemma 3.4.4. For a simple BG-graph B, codd
max(B) ≤ U(B).

Proof. For a simple BG-graph B, b1(B) = b3(B) = 0 and U(B) = |B|
2

+ b2(B). The

inequality (3.1) implies codd
max(B) ≤ cmax(B) ≤ |B|/2 + be(B) = |B|/2 + 1. If |B| = 2

modulo 4 then U(B) = |B|/2 + 1 and codd
max(B) ≤ U(B). If |B| = 0 modulo 4 then

U(B) = |B|/2 while codd
max(B) ≤ |B|/2 + 1. However, in this case the inequality

codd
max(B) ≤ |B|/2 + 1 is not tight since the overall number of odd cycles in every

cycle decomposition of a simple BG-graph is even while |B|/2 + 1 is odd. Therefore,

codd
max(B) ≤ |B|/2 = U(B).

Our proof of Theorem 3.4.3 is based on the notion of e-transformations

introduced in Section 3.3. For a double gray edge e = (x, y) in B, e-transformation

transforms the BG-graph B and its black-gray cycle decomposition C into a new BG-

graph Be with a black-gray cycle decomposition Ce as follows. Let c1 and c2 be two

cycles (that may coincide) from C sharing the double gray edge e = (x, y) and suppose
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that the cycle c1 (resp. c2) passes through the vertices u, x, y, v (resp. z, x, y, t) in a

row. Recall that the BG-graph Be is defined as the BG-graph B with the vertices

x, y and all the incident edges replaced with two new black edges (u, v) and (z, t)

(Fig. 3.7). A black-gray cycle decomposition Ce of the graph Be is obtained from

C by replacing u, x, y, v in the cycle c1 with a single black edge (u, v) and replacing

z, x, y, t in the cycle c2 with a single black edge (z, t).

Note that if e is an interedge then e-transformation eliminates the interedge

e and “merges” two black cycles in B into a single cycle in Be (Fig. 3.7). Since such

merging cannot create new interedges, we have ι(Be) ≤ ι(B)−1. In the following two

Lemmas we study how e-transformations affect the parameters U(B) and codd(C).

Lemma 3.4.5. If e is an interedge in B then e-transformation does not increase

U(B), i.e, U(Be) ≤ U(B).

Proof. Every e-transformation reduces |B| by two and may change each of the ex-

pressions b2(B) and |b1(B)−b3(B)|
2

by at most 1. However, if e-transformation in-

creases b2(B) by 1 then it cannot change |b1(B)−b3(B)|
2

thus implying that U(Be) =

|Be|
2

+ b2(B
e) − |b1(Be)−b3(Be)|

2
≤ |B|−2

2
+ (b2(B) + 1) − |b1(B)−b3(B)|

2
= U(B). Indeed, if

b2(B) increases (i.e., b2(B
e) = b2(B)+1) then e-transformation creates a new cycle of

length 2 modulo 4 implying that the interedge e connects black cycles whose lengths

sum up to 0 modulo 4. If their lengths are 1 and 3 modulo 4 then |b1(B)−b3(B)|
2

does

not change, and if they both are of even length then |b1(B)−b3(B)|
2

does not change

either.

Lemma 3.4.6. Let C be a cycle decomposition of a BG-graph B and e be an interedge

shared by cycles c1 and c2 from C. Then e-transformation does not reduce codd(C)

(i.e., codd(Ce) ≥ codd(C)) unless c1 and c2 are two distinct odd cycles (in this case

codd(Ce) = codd(C) − 2).

Proof. If c1 = c2 (i.e., cycles c1 and c2 are the same) then e-transformation simply

reduces the number of black edges in this cycle by 2, i.e., codd(Ce) = codd(C). If c1

and c2 are distinct cycles then e-transformation reduces the number of black edges
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Figure 3.10 Types of (e, g)-transformations operating on double gray edges e = (x, t)
and g = (z, t) of cycle c: a) cycles ce and cg are different; b) cycle ce = cg traverses
vertices x, y, z, t as (. . . , x, y, . . . , z, t); c) cycle ce = cg traverses vertices x, y, z, t as
(. . . , x, y, . . . , t, z).

in each of these cycles by 1. Therefore, codd(C) may reduce by 2, increase by 2 or

remain the same. The reduction happens only if both c1 and c2 are odd cycles.

As soon as there is an interedge e in a BG-graph B that does not belong

to two distinct odd cycles in a black-gray cycle decomposition C, Lemmas 3.4.5 and

3.4.6 allow one to perform the induction step in the proof of Theorem 3.4.3. To

analyze cycle decompositions with every interedge shared by two distinct odd cycles,

we introduce (e, g)-transformations of BG-graphs that replace a pair of gray edges

e = (x, y) and g = (z, t) belonging to the same cycle c from C with a pair of gray edges

(y, z) and (x, t). There may be up to two more cycles in C containing the gray edges

e and g: ce (cycle containing e) and cg (cycle containing g). The (e, g)-transformation

splits cycle c and transforms cycles ce and cg as follows.

If ce 6= cg, cycles ce and cg are merged into a single cycle (Fig. 3.10a). If

ce = cg then there are two possibilities (Fig. 3.10b,c) depending on how ce traverses

edges e and g: either as (. . . , x, y, . . . , z, t) or as (. . . , x, y, . . . , t, z). In the former

case ce is split into two cycles (Fig. 3.10b) while in the latter case it is rearranged

(Fig. 3.10c).

In summary, (e, g)-transformation (B,C) → (B(e,g), C(e,g)), may either

merge cycles ce and cg (if ce 6= cg), or rearrange/split them (if ce = cg). Note that

since B and B(e,g) have the same black subgraph, U(B(e,g)) = U(B).
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Lemma 3.4.7. Let C be a black-gray cycle decomposition of a BG-graph B where

a double gray edge e is shared by two distinct even black-gray cycles. Then there

exists an (e, g)-transformation with U(B(e,g)) = U(B), codd(C(e,g)) ≥ codd(C) + 2, and

ι(B(e,g)) ≤ ι(B).

Proof. Let c and ce be two even black-gray cycles in C containing double gray edge

e = (x, y). Let g = (z, t) be the “next” double gray edge in c after e (i.e., (y, z) form

a black edge in B) and cg be a cycle in C sharing the edge g with c. Consider an

(e, g)-transformation (B,C) −→ (B(e,g), C(e,g)).

Note that among two new double gray edges (x, t) and (y, z) only the double

gray edge (x, t) may be an interedge in B(e,g). Moreover, (x, t) is an interedge in B(e,g)

iff either (x, y) or (z, t) is an interedge in B. Therefore, ι(B(e,g)) ≤ ι(B).

Note that (e, g)-transformation splits c into two odd cycles increasing the

number of odd cycles by 2. Note also that (e, g)-transformation either merges ce and

cg into a cycle ce + cg (in case ce 6= cg) or splits/rearranges ce (in case ce = cg). Since

ce is even then in the former case ce + cg is odd iff cg is odd while in the latter case

the number of odd cycle can only increase. Therefore, codd(C(e,g)) ≥ codd(C) + 2.

Lemma 3.4.8. Let B be a BG-graph with ι(B) > 0 and C be its black-gray cycle

decomposition such that every interedge is shared by two distinct odd cycles from C.

Then there exist a BG-graph B′ with black-gray cycle decomposition C ′ such that

U(B′) ≤ U(B), codd(C ′) ≥ codd(C), and ι(B′) < ι(B).

Proof. Let e = (x, y) be an interedge in B and c be an odd black-gray cycles from C

passing through e. Cycle c has at least two interedges and let g = (z, t) be the “next”

interedge in cycle c after e (i.e., there is no other interedges between y and z while

travelling along c, implying that y and z belong to the same black cycle in B). Note

that since e is shared by two distinct odd cycles, g 6= e.

Consider an (e, g)-transformation (B,C) −→ (B(e,g), C(e,g)) that replaces

(x, y) and (z, t) with (y, z) and (x, t). This transformation removes two interedges

from B and introduce at most one interedge (since (y, z) is not an interedge in B(e,g)),
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implying ι(B(e,g)) < ι(B).

The (e, g)-transformation splits the odd cycle c into an even cycle (which

we denote c′) and an odd cycle. Hence, such splitting does not affect the number of

odd cycles. We now analyze how the (e, g)-transformation affects odd cycles ce and

cg (that are different from c) passing through edges e and g, correspondingly.

If ce = cg then the (e, g)-transformation either rearranges this odd cycle

(preserving the length) or splits it into two. In either case, that does not affect the

number of odd cycles, i.e., codd(C(e,g)) = codd(C). Therefore, letting B′ = B(e,g) and

C ′ = C(e,g) proves the theorem.

If ce 6= cg then these odd cycles are merged into an even cycle c′′ in C(e,g)

implying that codd(C(e,g)) = codd(C)−2. But in this case the even cycles c′ and c′′ share

a double gray edge (i.e., either (x, t) or (y, z)). By Lemma 3.4.7 there exist a BG-graph

B′ and its black-gray cycle decomposition C ′ such that codd(C ′) ≥ codd(C(e,g)) + 2 =

codd(C), U(B′) = U(B), and ι(B′) < ι(B).

This completes the proof of Theorem 3.4.3. We now outline the linear-time

3-Break Genome Halving Algorithm:

1. For a given duplicated genome P , find a perfect duplicated genome Q such

that codd
max(P,Q) = |P |/2 + b2(P̂ )− |b1(P̂ )−b3(P̂ )|

2
and a maximum black-gray cycle

decomposition C of the graph G′(P,Q) (Theorem 3.4.2).

2. Find a labelling of the genomes P and Q′ (Q′ is equivalent to Q) and a break-

point graph G(P,Q′) inducing C (Theorem 3.2.4). Output Q′ as a solution of

the 3-Break Genome Halving Problem.

3.5 Genome Halving Problem for Unichromosomal Genomes

We first outline the differences between the Genome Halving Problems for

unichromosomal and multichromosomal genomes. The following theorem gives a

characterization of the contracted breakpoint graphs for unichromosomal genomes

(compare to Theorem 3.2.1).
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Theorem 3.5.1. A graph H with black, gray, and obverse edges is a contracted

breakpoint graph for some duplicated genomes if and only if

• each vertex in H is incident to two black edges, two gray edges, and a pair of

parallel obverse edges;

• H is connected with respect to the union of black and obverse edges (black-

obverse connected);

• H is connected with respect to the union of gray and obverse edges ( gray-obverse

connected).

Proof. Suppose that graph H is a contracted breakpoint graph of the genomes P and

Q (represented as black-obverse P -cycle and gray-obverse Q-cycle). The graph H

is simply the result of gluing these P -cycle and Q-cycle. Since gluing cycles cannot

disconnect them, the graph H is both black-obverse and gray-obverse connected.

Consider a black-obverse and gray-obverse connected graph H where each

vertex is incident to two black edges, two gray edges, and a pair of parallel obverse

edges. Label endpoints of each obverse edge x in H by xt and xh. Since the graph H

is black-obverse connected, there exists an alternating Eulerian black-obverse cycle

traversing all black and obverse edges in this graph. The order of vertices in this

cycle defines some duplicated genome P . Similarly, since the graph H is gray-obverse

connected, there exists an alternating Eulerian gray-obverse cycle traversing all gray

and obverse edges that defines some duplicated genome Q. Then the graph H is a

contracted breakpoint graph for the genomes P and Q.

Labelling Problem

Lemma 3.5.2. The perfect duplicated (unichromosomal) genome R⊕R is equivalent

to the two-chromosomal genome 2R. Moreover, 2R is the only genome equivalent to

R ⊕ R.

Proof. It is easy to see that the gluing of both R ⊕ R and 2R represented as gray-

obverse cycles results in a single gray-obverse cycle c that traverses R in order (every
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edge in this cycle has multiplicity 2) (Fig. 3.3b,c). Any other genome that is glued

into c cannot have a cycle shorter than c since such a short cycle would remain short

after gluing. This implies that every genome that is glued into c either traverses c

twice (R ⊕ R) or is formed by two cycles each of which traverses c once (2R).

Theorem 3.2.4 and Lemma 3.5.2 imply the following theorem (compare to

Theorem 3.2.4):

Theorem 3.5.3. Let P and R⊕R be unichromosomal duplicated genomes and C be a

black-gray cycle decomposition of the contracted breakpoint graph G′(P,R⊕R). Then

there exists some labelling of either R⊕R or 2R that induces the cycle decomposition

C.

Theorem 3.5.3 reveals the connection between the Weak Genome Halving

Problem and maximal cycle decomposition and breaks the analysis of the Weak

Genome Halving Problem into two cases depending on whether the maximal cycle

decomposition is induced by R ⊕ R or 2R.

Cycle Decomposition Problem

In order to solve the Cycle Decomposition Problem for a given genome P , we

will construct a contracted breakpoint graph G′(P,R ⊕ R) which achieves the upper

bound (3.1). The de Bruijn graph P̂ , being a subgraph of G′(P,R ⊕ R) (for any

pre-duplicated genome R), completely defines a vertex set, an obverse matching, and

a set of black cycles in G′ (Fig. 3.3a,d,e). We will show how to complete the graph P̂

with a set of double gray edges to obtain a contracted breakpoint G′(P,R ⊕R) with

the maximum value of cmax(G
′).

A BO-graph is a connected graph with black and obverse edges such that

the black edges form black cycles and the obverse edges form an obverse matching

(every duplicated genome P corresponds to a BO-graph P̂ ). A BOG-graph is a

graph with black, obverse, and gray edges where black and obverse edges form a

BO-graph (a BO-subgraph), and black and gray edges form a primitive BG-graph
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(a BG-subgraph). Note that each black-gray connected component of a BOG-graph

is a simple non-crossing BG-graph or a paired non-crossing BG-graph with a single

interedge.

The arguments above suggest that the Cycle Decomposition Problem for a

genome P can be reformulated as follows. For a given BO-graph G (defined as G = P̂ ),

find a gray-obverse connected BOG-graph G′ having G as a BO-subgraph. Theorems

3.5.1 and 3.3.5 imply that such a BOG-graph graph is a contracted breakpoint graph

G′(P,R⊕R) for some genome R for which cmax(G
′) achieves the upper bound (3.1).

We remark that gray-obverse connected components of a BOG-graph form

gray-obverse cycles (alternating double gray and obverse edges). Hence, a BOG-graph

is gray-obverse connected if and only if it has a single gray-obverse cycle.

Lemma 3.5.4. For a BOG-graph with more than one gray-obverse cycle, there exists

a black edge connecting two different gray-obverse cycles.

Proof. Let H be a BOG-graph with two or more gray-obverse cycles. Since H is black-

obverse connected there exists a black-obverse cycle in H traversing all obverse edges

of H. Therefore, there exists a black edge connecting obverse edges from different

gray-obverse cycles in H.

Theorem 3.5.5. For a given BO-graph G, there exists a BOG-graph G′ with a single

gray-obverse cycle having G as a BO-subgraph.

Proof. First we group odd black cycles in G into pairs (formed arbitrarily), and

introduce an arbitrary interedge connecting cycles in each pair. Then we complete

each black cycle with an arbitrary non-crossing gray matching so that each vertex of

G becomes incident to exactly one double gray edge. Denote the resulting graph by

H. Note that H is a BOG-graph having G as a BO-subgraph.

If H has a single gray-obverse cycle, then the theorem holds for G′ = H.

Otherwise, we show how to modify the set of double gray edges in H to reduce the

number of gray-obverse cycles.
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Figure 3.11 Merging gray-obverse cycles c1, c2 connected by a black edge (x, y) passing
through a) intra-edges (x, u) and (y, v); b) an intra-edge (x, u) and an interedge (y, v).

Assume that there is more than one gray-obverse cycle in H. By Lemma

3.5.4 there is a black edge (x, y) connecting distinct gray-obverse cycles c1 and c2. Let

(x, u) and (y, v) be double gray edges incident to the vertices x and y respectively.

We replace the edges (x, u) and (y, v) in H with double gray edges (x, y) and (u, v)

resulting in a graph H ′. Fig. 3.11 illustrates two cases depending on whether the edge

(y, v) is an interedge (since (x, u) and (y, v) belong to the same black-gray connected

component, at most one of them can be an interedge).

We will show that the BG-subgraph of H ′ is primitive. There are two new

double gray edges in the BG-subgraph of H ′ compared to H. Since the introduced

double gray edge (x, y) is parallel to a black edge, it does not cross any other intra-

edge (as chords). The introduced double gray edge (u, v) is either an intra-edge or

an interedge. In the former case any intra-edge crossing the intra-edge (u, v) would

necessary cross (x, u) or (y, v) (as chords), a contradiction to the fact that H has

a non-crossing BG-subgraph. Hence, the BG-subgraph of H ′ is non-crossing. On

the other hand, it is easy to see that the transformation H → H ′ turns a simple

black-gray connected component of the graph H into a simple black-gray connected

component of H ′ (Fig. 3.11a), and a paired black-gray connected component with a

single interedge into a paired black-gray connected component with a single interedge

(Fig. 3.11b). Hence, the BG-subgraph of H ′ is primitive and H ′ is a BOG-graph.

Note that the BOG-graph H ′ has G as a BO-subgraph (since black and
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obverse edges were not affected by the transformation). The graph H ′ has the same

gray-obverse cycles as H, except for the gray-obverse cycles c1 and c2 which are joined

into a single cycle in H ′. Hence, the number of gray-obverse cycles in H ′ is reduced

as compared to H.

Iteratively reducing the number of gray-obverse cycles we will eventually

come up with a BOG-graph G′ having G as a BO-subgraph with a single gray-obverse

cycle.

Theorems 3.3.5 and 3.5.5 imply the following theorem (compare to Theorem

3.4.1):

Theorem 3.5.6. For any duplicated genome P , there exists a perfect duplicated

genome R⊕R such that cmax(P,R⊕R) = |P |/2 + be(P ), and each paired component

of G′(P,R ⊕ R) contains a single interedge.

Although the maximal black-gray cycle decomposition of G′(P,R⊕R) may

correspond to a breakpoint graph G(P, 2R) (Fig. 3.5), we will prove below that there

exists a breakpoint graph G(P,R ⊕ R) having “almost” the same number of black-

gray cycle as G(P, 2R) (Fig. 3.5d). In Section 3.5.2 we will classify all the cases where

there exists a labelled genome R′ ⊕ R′ such that c(P,R′ ⊕ R′) = c(P, 2R).

Graphs G′(P,R ⊕ R) and G′(P, 2R)

Lemma 3.5.2 implies that G′(P,R ⊕ R) = G′(P, 2R) for any duplicated

genome P . But in difference from the breakpoint graph G(P,R ⊕ R) (for any la-

belling of P and R ⊕ R) that contains a single gray-obverse cycle, the breakpoint

graph G(P, 2R) contains two gray-obverse cycles. The following theorem reveals the

relationship between G(P,R ⊕ R) and G(P, 2R).

Theorem 3.5.7. For any labellings of the genomes P and 2R, there exists a labelling

of the genome R ⊕ R such that |c(P,R ⊕ R) − c(P, 2R)| ≤ 1. Moreover, if there are

two gray edges (x, y) and (x̄, ȳ) belonging to the same black-gray cycle in G(P, 2R)

then there exists a labelling of R ⊕ R with c(P,R ⊕ R) ≥ c(P, 2R).
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Proof. Let (x, y) be a gray edge in the breakpoint graph G(P, 2R). Since the genome

2R is perfect duplicated there exists a gray edge (x̄, ȳ) connecting counterparts of x

and y. Define a graph H having the same vertices and edges as G(P, 2R) except the

gray edges (x, y) and (x̄, ȳ) that are replaced with the gray edges (x, ȳ) and (x̄, y).

Since the graph G(P, 2R) consists of two gray-obverse cycles, the gray edges (x, y) and

(x̄, ȳ) belong to different gray-obverse cycles. Therefore, the graph H contains a single

gray-obverse cycle (as well as a single black-obverse cycle inherited from G(P, 2R)).

This implies that H is a breakpoint of the labelled genomes P and R⊕R (where the

labelling of P is the same as in G(P, 2R)).

If the gray edges (x, y) and (x̄, ȳ) belong to the same black-gray cycle in

G(P, 2R) then this cycle may be split into two in H while the other black-gray cycles

are not affected. Conversely, if the gray edges (x, y) and (x̄, ȳ) belong to different

black-gray cycles in G(P, 2R) then these cycles may be joined into a single cycle in

H. In either case the difference |c(P,R ⊕ R) − c(P, 2R)| does not exceed 1.

3.5.1 A Flaw in El-Mabrouk–Sankoff Analysis

El-Mabrouk and Sankoff came up with a theorem describing the minimum

distance from the given rearranged duplicated genome to a perfect duplicated genome.

Given a rearranged duplicated genome P , the crux of their approach is an algorithm

for computing c(G) – the number of cycles of so-called maximal completed graph,

i.e., a breakpoint graph3 with the maximum number of black-gray cycles. In [24]

they demonstrate that c(G) equals the number of genes plus γ(G) where γ(G) is

the parameter defined below. We illustrate the concepts from [24] using the genome

P = +a+ b− c+ b− d− e+ a+ c− d− e on the set of genes B = {a, b, c, d, e} (p. 757

in [24]). El-Mabrouk and Sankoff first arbitrarily label two copies of each gene x as

x1 and x2 for each x ∈ B and further transform the signed permutation G into an

unsigned permutation at
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P has the edge set A of black edges linking adjacent term (other than obverses xt
i

and xh
i ) in the corresponding unsigned permutation (Fig. 3.12a).
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Figure 3.12 a) A set of black edges forming the partial graph G(V, A) corresponding
to the genome P = +a + b − c + b − d − e + a + c − d − e; b) Natural graphs as
connected components in the partial graph with counterpart edges; c) A completed
graph G(V, A, Γ) with maximum number of cycles c(G) = 8. G(V, A, Γ) is a break-
point graph of the circular genome P = +a1 + b1 − c1 + b2 − d1 − e1 +a2 + c2 − d2 − e2

and a perfect duplicated genome (−a1 + e2 + d2 − c2 + b1)(−b2 + c1 − d1 − e1 + a2) (of
the form R ⊖ R).

Black edges together with counterpart edges (i.e., edges between xt
1 and xt

2

or between xh
1 and xh

2) form a graph shown in Fig. 3.12b. The connected components

of this graph are called natural graphs in [24]. There are four connected components

(natural graphs) in the graph in Fig. 3.12b, two of them have 3 black edges (odd

natural graphs) and two of them have 2 black edges (even natural graphs). Let NE

be the number of even natural graphs (NE = 2 in Fig. 3.12b).

El-Mabrouk and Sankoff define the parameter

γ(G) =







NE, if all natural graphs are even

NE + 1, otherwise

A graph G(V, A, Γ) obtained from the partial graph G(V, A) by introducing a set

of gray edges Γ is called a completed graph if G(V, A, Γ) is a breakpoint graph for

some genomes on the set of genes {x1, x2 | x ∈ B}. The following theorem (Theo-

rem 7.7 in [24]) characterizes the maximum number of cycles in the completed graph

G(V, A, Γ).

Theorem. The maximal number of cycles in a completed graph of G(V, A) is c(G) =
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|A|
2

+ γ(G).

For the genome in Fig. 3.12 we have γ(G) = NE + 1 = 3 and c(G) =

|A|
2

+ γ(G) = 10
2

+ 3 = 8. A completed graph G(V, A, Γ) with 8 cycles is shown at

Fig. 3.12c.4 Below we provide a counterexample to Theorem 7.7 from [24].

Consider a circular genome P = +a+ b−a− b labelled as +a1 + b1−a2− b2.

The genome P defines a partial graph G(V, A) with a single natural graph of even

size, implying γ(G) = 1. It follows from Theorem 7.7 in [24] that there exists a

perfect duplicated genome Q such that the breakpoint graph G = G(P,Q) consists

of |A|
2

+ γ(G) = 3 cycles. However, the direct enumeration of all possible perfect

duplicated genomes Q shows that there is no breakpoint graph G(P,Q) with 3 cycles.

There exist eight distinct labelled perfect duplicated genomes Q giving rise to eight

breakpoint graphs G(P,Q) shown in Fig. 3.13. All of them have less than 3 cycles.

In the next section we explain what particular property of the genome +a + b− a− b

was not addressed properly in the El-Mabrouk–Sankoff analysis.

3.5.2 Classification Of Unichromosomal Duplicated Genomes

To introduce a new combinatorial invariant of duplicated genomes, consider

labellings of vertices in the cycle defined by the duplicated rearranged genome P with

numbers 0 and 1 (Fig. 3.14b). Every such labelling induces a two-digit labelling of

the genes (edges): a label of each gene is formed by the labels of the incident vertices

(Fig. 3.14c). A 01-labelling of the vertices is called consistent if for every pair of

identical genes in P the label of one copy is inversion of the other. If there exist

consistent labellings of genome P , we define the parity index of P as the number of

genes labelled “01” modulo 2. Below we prove that the parity index is well-defined,

i.e., the parity index is the same for all consistent labellings of a genome. It turns

out that the El-Mabrouk–Sankoff theorem fails on genomes with the parity index 0.

We re-define the notion of parity of a genome P in terms of the de Bruijn

graph P̂ . A genome P is called singular if all black cycles in P̂ are even. For
4While we do not explicitly consider R ⊖ R duplications shown in this Figure (see [24] for details), our

counterexample works for both R ⊕ R and R ⊖ R duplications.
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Figure 3.13 Breakpoint graphs of the circular genome P = +a+b−a−b and all possible
labellings of all possible perfect duplicated genomes Q (without loss of generality we
assume that the labelling of P as +a1 + b1 −a2 − b2 is fixed). In terms of [24], the top
four graphs correspond to R ⊕ R duplication pattern while the bottom four graphs
correspond to to R ⊖ R duplication pattern.

a non-singular genome P , define parity(P ) = ∞. For a singular genome P , we

clockwise label edges of each black cycle in P̂ with alternating numbers {0, 1} so

that every two adjacent edges are labelled differently (Fig. 3.15a). Labels of black

edges in cycle P classify obverse edges in P into two classes: even if its flanking

black edges have the same labels, and odd if its flanking black edges have different

labels (Fig. 3.15b). Let meven and modd be the number of even/odd obverse edges

in P correspondingly. Obviously, both meven and modd are even numbers. We define

parity(P ) = modd/2 mod 2.

This definition of the parity index coincides with the one given in the begin-

ning of this section. To establish a correspondence between them one can consider a

genome P as a black-obverse cycle and contract each black edge into a single vertex

that inherits the label from the black edge. Since every pair of adjacent black edges

of P̂ is labelled differently, every pair of counterpart vertices is labelled differently as

well. This implies that two-digit labels of every pair of obverse edges are inversions
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Figure 3.14 a) Circular genome P = +a−b+a+b represented as a cycle with directed
edges; b) 01-labelling of the vertices of the cycle defined by P ; c) Induced labelling
of the genes of P that is consistent; d) For some genomes consistent labellings do not
exist: for genome Q = +a + b − b − a the labels of both copies of gene a start with
the same digit (“star”) so they cannot be inversion of each other.

of each other.

Theorem 3.5.8. The parity index of a singular genome is well defined.

Proof. Let P be a singular genome. If P̂ has k black cycles then there are 2k different

01-labellings of its black edges (two possible labellings per cycle). Therefore, it is

sufficient to show that a change of 01-labelling of a particular black cycle c does not

affect parity(P ).

Let mc
even and mc

odd be the number of even/odd obverse edges in cycle P

connecting black edges of c with black edges outside c. Since double obverse edges

form matching in the de Bruijn graph P̂ , the total number of double obverse edges

connecting c with other black cycles is even and, thus, mc
even + mc

odd is a multiple of

4.

Change of 01-labelling of the black cycle c reverses the labels 0 ↔ 1 in c.

Reversed labelling of c does not change parity of obverse edges connecting two black

edges in c (since both endpoint labels change) or two black edges outside of c (since

neither of endpoint labels change). At the same time, each of mc
even + mc

odd obverse

edges connecting black edges in c with black edges outside c changes its parity (i.e.,

even edges become odd and vice versa). Then modd changes into m′
odd equal to:

modd − mc
odd + mc

even = modd − (mc
odd + mc

even) + 2mc
even

Since both mc
odd + mc

even and 2mc
even are multiples of 4, the parity of m′

odd/2 and

modd/2 is the same implying that parity(P ) is well defined.
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Our goal is to prove the following theorem:

Theorem 3.5.9. For a duplicated genome P ,

max
R

c(P,R ⊕ R) =







|P |/2 + be(P ), if parity(P ) 6= 0

|P |/2 + be(P ) − 1, otherwise

The proof of Theorem 3.5.9 is split into two cases depending on whether P

is singular or non-singular.

Theorem 3.5.10. For a non-singular genome P , max
R

c(P,R ⊕ R) = |P |/2 + be(P ).

Proof. If P is a non-singular genome then P̂ has an odd black cycle. According to

Theorem 3.5.6 there exists a perfect duplicated genome R⊕R such that G′(P,R⊕R)

is primitive and cmax(P,R ⊕ R) = |P |/2 + be(P ). Theorem 3.5.3 ensures that the

maximum cycle decomposition of the contracted breakpoint graph G′(P,R ⊕ R) is

induced by a labelling of either R ⊕ R or 2R. If it is R ⊕ R then the theorem holds.

Otherwise, consider a paired component in G′(P,R ⊕ R) (which exists since P̂ has

an odd black cycle) and an interedge e in it. Let (x, y) and (x̄, ȳ) be gray edges

in G(P, 2R) corresponding to the interedge e in G′(P, 2R) = G′(P,R ⊕ R). Since

G′(P,R ⊕ R) is primitive and e is the only bridge between two different black cycles

in G′(P,R ⊕ R), the gray edges (x, y) and (x̄, ȳ) must belong to the same black-gray

cycle in G(P, 2R). Applying Theorem 3.5.7 to these gray edges we obtain a labelled

genome R ⊕ R with c(P,R ⊕ R) = c(P, 2R) = |P |/2 + be(P ).

For a singular genome P , we first fix some alternating 01-labelling of black

edges in every black cycle of P̂ . The labelling of edges imposes a labelling of vertices

of any breakpoint graph G(P,Q) (for any genome Q) so that each vertex inherits a

label from an incident black edge. Note that every pair of counterpart vertices get

different labels as their incident black edges are adjacent in P̂ . A labelling of vertices

of G(P,Q) is called uniform if endpoints of every gray edge have identical labels (i.e,

every gray edge is even). We will need the following theorem:
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Figure 3.15 For the genome P = +a−b−b−d+c−a−d+c, a) 01-labelling of the de
Bruijn graph P̂ ; b) induced labelling of the black-obverse cycle P with modd = 4 and
meven = 4; c) transformation of the graph H into H ′ by removing vertices x, y, z, t
and incident edges and adding a black edge (u, v) labeled the same as (u, x) and (v, t).

Theorem 3.5.11. Let P be a singular genome and Q be a perfect duplicated genome

with c(P,Q) = |P |/2 + be(P ). Then every alternating 01-labelling of P̂ imposes a

uniform labelling on vertices of G(P,Q).

While the definition of the breakpoint graph does not explicitly specify the

counterpart edges, one can derive them for G(P,Q) in Theorem 3.5.11 from the vertex

labels. Also, it is easy to see that gray and counterpart edges in G(P,Q) form cycles

of length 4 as soon as Q is a perfect duplicated genome. We take a liberty to restate

the condition c(P,Q) = |P |/2 + be(P ) as cbg(G) = n + cbc(G), where cbg(G) is the

number of black-gray edges in G, n is the number of unique genes in P and cbc(G)

is the number of black-counterpart cycles in G. Also, every alternating 01-labelling

of P̂ corresponds to an alternating labelling of black edges within black-counterpart

cycles. This leads to the following reformulation of Theorem 3.5.11:

Theorem 3.5.12. Let H be a graph on 4n vertices consisting of three perfect match-

ings: black, gray, and counterpart such that (i) gray and counterpart matchings form

cycles of length 4 and (ii) cbg(H) = n + cbc(H). Then every alternating 01-labelling

of black edges within black-counterpart cycles imposes a uniform labelling on vertices

of H.

Proof. The proof is done by induction on n. If n = 1 then the graph H consists

of a gray-counterpart cycle with two black edges parallel to the gray edges, and the

theorem holds. Assume that the theorem holds for graphs with less than 4n vertices.
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Since H has 2n black edges and cbg(H) = n + cbc(H) > n, the pigeonhole

principle implies that there exists a trivial black-gray cycle c1 in H. Let e1 = (x, y)

be a gray edge in the cycle c1 (thus, e1 is even) and let (x, z) and (y, t) be adjacent

counterpart edges. Then there is a gray edge e2 = (z, t) belonging to the same gray-

counterpart cycle as e1. Let c2 be a black-gray cycle c2 containing the gray edge

e2.

If the cycle c2 is trivial, then the endpoints of e2 have identical labels. In

this case we define a new graph H ′ as the graph H without vertices x, y, z, t and all

incident edges. It is easy to see that H ′ is a graph on 4(n− 1) vertices satisfying the

conditions of the theorem. Indeed, the number of black-gray cycles in H ′ is reduced by

2 and the number of black-counterpart cycles is reduced by 1 (as compared to H), i.e.,

cbg(H
′) = cbg(H)−2 and cbc(H

′) = cbc(H)−1. Therefore, cbg(H
′) = (n−1)+ cbc(H

′).

By the induction assumption, every alternating 01-labelling of H ′ imposes a uniform

labelling on vertices of H ′. It implies that every alternating 01-labelling of H imposes

a uniform labelling on vertices of H.

If the cycle c2 is not trivial, let (u, z) and (t, v) be black edges adjacent to

e2. These black edges are neighbors of the black edge (x, y) on a black-counterpart

cycle (passing through the vertices u, z, x, y, t, v), so they have the same label l which

different from the label of (x, y). Therefore, the endpoints of the gray edge e2 have

identical labels. We define a new graph H ′ as the graph H with vertices x, y, z, t

and all incident edges removed but with a single black edge (u, v) labelled l added

(Fig. 3.15c). The graph H ′ has 4(n − 1) vertices, cbc(H
′) = cbc(H) black-counterpart

cycles, and cbg(H
′) = cbg(H) − 1 black-gray cycles, thus, cbg(H

′) = n − 1 + cbc(H
′)

and the induction applies.

To complete the proof of Theorem 3.5.9 we need one more theorem:

Theorem 3.5.13. For a singular genome P and a perfect duplicated genome Q with

c(P,Q) = |P |/2 + be(P ),

• Q = R ⊕ R iff parity(P ) = 1;
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• Q = 2R iff parity(P ) = 0.

Proof. According to Theorem 3.5.3, the graph G(P,Q) has either a single gray-obverse

cycle (case Q = R ⊕ R) or two symmetric gray-obverse cycles (case Q = 2R). The-

orem 3.5.11 implies that all gray edges in G(P,Q) are even (i.e., have identically

labelled endpoints) for every alternating 01-labelling of black edges of P .

Case 1: Graph G(P,Q) has a single gray-obverse cycle c. Consider an

arbitrary vertex v in G(P,Q) and its counterpart v. Vertices v and v break c into

two paths: c′ (from v to v) and c′′ (from v to v). For every path (cycle) c denote codd

as the number of odd obverse edges in c. Note that obverse edges are evenly divided

between c′ and c′′, i.e., for every pair of obverse edges connecting counterpart vertices,

one edge belongs to c′ and the other edge belongs to c′′. Therefore, c′odd = c′′odd. Note

that start (vertex v) and end (vertex v) vertices of path c′ are labelled differently.

Since the total number of odd edges is odd for every path with differently labelled

ends and since all gray edges are even (Theorem 3.5.11), the total number of odd

obverse edges in the path c′ is odd. Therefore, codd/2 = c′odd is odd implying that

parity(P ) = 1.

Case 2: Graph G(P,Q) has two gray-obverse cycles c′ and c′′. Note that

obverse edges are evenly divided between c′ and c′′, i.e., for every pair of obverse edges

connecting counterpart vertices, one edge belongs to c′ and the other edge belongs to

c′′. Therefore, c′odd = c′′odd. Since the total number of odd edges in every cycle is even

and since all gray edges are even (Theorem 3.5.11), the total number of odd obverse

edges in every cycle is even. Since c′odd is even, the overall number of odd obverse

edges is a multiple of 4 implying that parity(P ) = 0.

For a singular genome P with parity(P ) = 1 Theorem 3.5.13 implies Theo-

rem 3.5.9 while for a singular genome P with parity(P ) = 0 it implies that there is

no genome R for which c(P,R ⊕ R) = |P |/2 + be(P ). In the latter case, there exists

a genome R and a labelling of P and 2R for which c(P, 2R) = |P |/2 + be(P ) (The-

orems 3.5.6 and 3.5.3). The genome 2R can be transformed into a labelled genome

R ⊕ R with c(P,R ⊕ R) = c(P, 2R) − 1 = |P |/2 + be(P ) − 1 (Theorem 3.5.7). This
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completes the proof of Theorem 3.5.9.

3.5.3 Genome Halving Algorithm

The results of previous sections lead to the following algorithm for Genome

Halving Problem5:

1. For a given duplicated genome P , find a perfect duplicated genome R⊕R such

that G′(P,R⊕R) is primitive and decompose G′(P,R⊕R) into cmax(P,R⊕R) =

|P |/2 + be(P ) black-gray cycles (Theorem 3.5.6).

2. Find a labelling of the genomes P and Q (Q = R⊕R or Q = 2R) and a break-

point graph G(P,Q) inducing the maximum black-gray cycle decomposition of

G′(P,R ⊕ R) (Theorem 3.5.3).

3. If Q = R ⊕ R then output the breakpoint graph G(P,R ⊕ R).

4. If Q = 2R and P is non-singular then there is a paired component in G′(P,R⊕R)

with a single interedge (since G′(P,R ⊕ R) is primitive) that corresponds to

two gray edges (x, y) and (x̄, ȳ) in G(P, 2R). Find a labelling of the genome

R⊕R for which c(P,R⊕R) = c(P, 2R) (Theorems 3.5.7 and 3.5.10) and output

G(P,R ⊕ R).

5. If Q = 2R and P is singular then parity(P ) = 0 (Theorem 3.5.13). Find a la-

belling of the genome R⊕R for which c(P,R⊕R) = c(P, 2R)−1 (Theorem 3.5.7)

and output G(P,R ⊕ R).

To estimate the complexity of the Genome Halving Algorithm we assume

that every graph is implemented as a collection of sets: a set of vertices, sets of edges

of each color, and an array of sets of incident edges indexed by vertices and colors.

Note that for a given genome P with n genes, all graphs appearing in the algorithm

have vertex and edge sets of order O(n) while every set of incident edges contains

5The algorithm below outputs the breakpoint graph G(P, R ⊕ R) (in addition to the pre-duplicated
genome R). This allows one to reconstruct a sequence of reversals transforming R ⊕ R into P with the
reversal distance algorithm.
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at most 2 elements. Therefore, even with a straightforward data structure each set

operation (such as an insertion/deletion of an element or a membership query) takes

O(n) time.

One can demonstrate that every step of the Genome Halving Algorithm can

be done in O(n) set operations. Therefore, the overall time complexity of the Genome

Halving Algorithm can be estimated as O(n2). In practice, our implementation of the

Genome Halving Algorithm takes less than a second to halve a “random” duplicated

genome with 1000 unique genes with a standard Intel PIII-900MHz CPU.
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4 Conclusions

4.1 Summary of Contributions

Multi-Break Rearrangements

Multi-break rearrangements represent a generalization of the standard re-

arrangement operations (i.e., reversals, translocations, fusions, fissions) as well as

transpositions. We demonstrated that the multi-breaks are easier to analyze than the

standard rearrangement operations, came up with an explicit formula for computing

the multi-break distance between two circular genomes, and proposed a linear-time al-

gorithm (that requires generation of certain Hilbert and Gröbner bases) for computing

this distance. We contributed to the ongoing debates on “RBM vs. FBM” controversy

by analyzing multi-break rearrangements in mammalian evolution and demonstrat-

ing that even if complex rearrangements like transpositions were a dominant force,

the Pevzner–Tesler arguments against RBM still stand. We also demonstrated the

theoretical advantages of multi-break rearrangements (as compared to the standard

rearrangements and transpositions) in solving problems that may be intractable oth-

erwise (e.g., the 3-Break Genome Halving Problem). We further extended some of

these results from the case of circular genomes to the much harder case of linear

genomes.

Duplicated Genomes and the Genome Halving Problem

We proposed an alternative approach to the Genome Halving Problem based

on the new notion of the contracted breakpoint graph which is a generalization of the

78
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conventional breakpoint graph to the case of duplicated genomes. As the breakpoint

graph plays an important role in computing the rearrangement distance between

non-duplicated genomes (the Hannenhalli–Pevzner theory), the contracted break-

point graph provides important insights into computing the rearrangement distance

between duplicated genomes. Using the contracted breakpoint graph, we made a

number of contributions to the Genome Halving Problem. In particular, we gave a

new proof of the original El-Mabrouk–Sankoff Genome Halving theorem for multi-

chromosomal circular genomes. We also identified a flaw in the original El-Mabrouk–

Sankoff Genome Halving theorem for unichromosomal circular genomes and fixed

this flaw by introducing a new combinatorial invariant defined on duplicated circu-

lar permutations. This led to an effective classification of all genomes for which the

El-Mabrouk–Sankoff theorem does not hold and to the new Genome Halving the-

orem that adequately deals with all genomes. We further proceeded to solving a

novel 3-Break Genome Halving Problem for rearrangements involving more complex

transposition-like operations.

4.2 Future Research

A number of interesting questions are left open for future research.

Halving of yeast genomes

While it is easy to solve the Genome Halving Problem for any given du-

plicated genome, it is not clear which of many possible solutions is biologically ade-

quate. Currently we are exploring an approach that attempts to “guide” the process

of genome halving (Guided Genome Halving Problem), using certain auxiliary infor-

mation in order to restrict the number of possible solutions and to relate them more

closely to the specifics of particular genomes. In guided halving of the S. cerevisiae

genome (represented as a mosaic of blocks from the K. waltii genome with each block

appearing two times [37]) the auxiliary information comes from yet another yeast

genome A. gossypii with an 1-to-2 mapping into S. cerevisiae [19].
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Searching for still unknown duplication events

The original approach to proving that one genome is a duplicated version

of another genome (by establishing a 1-to-2 correspondence as in [37]) inspired a

quest for similar arguments for other (pairs of) genomes. Even when applied to

relatively distant genomes, it may reveal interesting and unexplored connections.

Using similar tiling of the genomes we plan to come up with an universal measure

of duplicativity (duplicativity index ) and to develop a tool for computing it. For

genomes with high duplicativity index (similarly to the S. cerevisiae yeast genome),

we plan to investigate whether they undergone the whole genome duplication or not.

It would be also challenging to determine and to analyze duplicated regions across

multiple genomes, and to see whether there are duplication hotspots (i.e., genes that

are more likely being duplicated than the others).

Rearrangement distance between duplicated genomes

There is a number of open problems related to computing the rearrangement

distance between duplicated genomes. One of them is a long standing problem of

computing the rearrangement distance between genomes with each gene appearing in

exactly two copies. We believe that the contracted breakpoint graph is a powerful tool

for the rearrangement analysis of duplicated genomes, that has a potential to address

this problem. Using the contracted breakpoint graph, computing the rearrangement

distance between duplicated genomes can be posed as a graph-theoretic problem.

This reduction may help to resolve the complexity status of this problem as well as

to come up with a good approximation algorithm.
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