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Abstract
Commonvariants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associatedwith the risk of Type II diabetes and
multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene
expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial
cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and
imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of
association for SNP rs11263763 (P = 8.4 × 10−14, odds ratio = 0.86, 95% confidence interval = 0.82–0.89), located within HNF1B intron
1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at
this locus. SNP rs11263763genotypewasassociatedwithHNF1BmRNAexpressionbutnotwithHNF1Bmethylation inendometrial
tumor samples fromThe Cancer GenomeAtlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate
linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on
chromatinmarks extending from theminimal promoter region. Reporter assays demonstrated that this extended region reduces
activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated
with decreasedHNF1B promoter activity. Our findings provide evidence for a single signal associatedwith endometrial cancer risk
at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.

Introduction
Endometrial cancer is the most common type of uterine cancer,
and the fourth most diagnosed cancer in European and North
American women (http://globocan.iarc.fr/). Traditionally, this

cancer is divided into two etiological types (1): hormonally
driven Type 1, endometrioid histology subtypewith ‘good’ prog-
nosis (∼80% of cases), and Type 2, non-endometrioid largely
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serous or clear cell subtypes with poor prognosis. Recently, in-
depth studies by The Cancer Genome Atlas (TCGA) have identi-
fied four distinct tumor categories with different prognostic
characteristics, namely ‘copy number high’, ‘copy number
low’, ‘POLEultramutated’ and ‘microsatellite instability hyper-
mutated’ (2). We have previously identified single-nucleotide
polymorphisms (SNPs) associated with endometrial cancer
risk at the hepatocyte nuclear factor 1 homeobox B (HNF1B)
locus using a genome-wide association study (GWAS) approach
(3). Themost significantly associated SNPwas rs4430796 located
in HNF1B intron 2, with the minor ‘G’ allele protective for endo-
metrial cancer (3).

HNF1B is a member of the homeodomain-containing super-
family of transcription factors (TFs), and SNPs at this locus are al-
ready known to be associated with risk of Type II diabetes (4),
prostate cancer (4–9) and two different ovarian cancer subtypes
(10,11). However, fine-mapping studies have revealed a complex
genetic architecture at the HNF1B locus, demonstrated by lead
SNPs and the direction of genetic effects being inconsistent be-
tween cancer types (Table 1). For example, in prostate cancer
the signal is explained by a five-SNP haplotype that includes
SNPs from two peaks of association (5) in HNF1B intron 2 (lead
SNP rs4430796) and intron 4 (lead SNP rs4794758) (12). For ovarian
cancer subtypes, SNP rs757210, in high linkage disequilibrium
(LD) with rs4430796, was shown to be associated with decreased
risk of clear cell ovarian cancer but increased risk of serous
ovarian cancer (10,11). Signals were subsequently refined to
rs11651755 in intron 1 for the clear cell ovarian cancer subtype,
and rs7405776 in intron 3 for the serous subtype (11).

Various analyses have been undertaken to assess the relation-
ship betweenHNF1B locus cancer risk SNPs and altered regulation
of HNF1B mRNA expression. Expression quantitative trait loci
(eQTL) analysis indicates that rs4430796 is associated with altered
HNF1B mRNA expression in lymphoblastoid cell lines generated
from cord blood or circulating lymphocytes (3), and also in benign
prostate tissue (13). However, SNP rs757210 in high LD with
rs4430796 was not associated with HNF1B expression in normal
ovarian tissue (10). Instead, this SNP was determined to be a
methylation eQTL (mQTL), associated with HNF1B promoter
methylation in serous ovarian tumors (10,11). In contrast, no
such association is indicated for clear cell ovarian tumors, which
mostly present with a CpG island methylator phenotype (CIMP)
but are nevertheless unmethylated at the HNF1B promoter (11).

Here, we report the fine-scale mapping of the HNF1B locus in-
corporating data for 1184 genotyped and imputed SNPs in 6608
endometrial cancer cases and 37 925 controls of European ances-
try, and analyses aimed at exploring the function of the most
likely causal variants. Our results provide evidence for a single
signal associated with endometrial cancer risk at the HNF1B

locus, and that risk is likely mediated via altered HNF1B gene
expression.

Results
Fine-mapping and association analysis reveals one
independent signal for endometrial cancer

Meta-analysis of the 1184 HNF1B region SNPs genotyped or
imputed in the four Caucasian datasets [iCOGS fine-mapping,
Australian National Endometrial Cancer Study (ANECS), Studies
of Epidemiology and Risk factors in Cancer Heredity (SEARCH)
and National Study of the Genetics of Endometrial Cancer
(NSECG GWASs)] and passing our quality control measures iden-
tified 18 SNPs that reached genome-wide significance (P < 5.0 ×
10−8) (Table 2; results for individual sample sets provided in
Supplementary Material, Table S2). The best overall signal was
observed for imputed SNP rs11263763 [P = 8.4 × 10−14, odds ratio
(OR) = 0.86], located in HNF1B intron 1 (Fig. 1A; Supplementary
Material, Table S3). All 17 additional SNPs reaching genome-
wide significance were moderately to highly correlated (r2 =
0.57–0.95) with rs11263763, including the original endometrial
cancer GWAS SNP rs4430796 (r2 to rs11263763 = 0.95, P = 9.7 ×
10−12, OR = 0.87), and the best SNP genotyped in all four datasets
rs7501939 (r2 to rs11263763 = 0.67, P = 3.7 × 10−9, OR = 0.88; Supple-
mentaryMaterial, Fig. S1). No SNP remained significant at P < 10−4

after analyses conditioning on rs11263763, indicating that there
are no additional independent SNPs associatedwith endometrial
cancer risk at this locus. Haplotype analysis in the iCOGS fine-
mapping dataset (Table 3) confirmed that there was a single
association signal arising from the set of SNPs in strong LD
with genotyped SNPs rs11651755, rs8064454 and rs11651052;
the three haplotypes containing the minor alleles of these SNPs
were all similarly associated with endometrial cancer risk (P for
the best haplotype = 8.1 × 10−6, OR = 0.88).

There was no significant heterogeneity in risk between stud-
ies for the best genotyped or imputed SNPs (Table 4; Fig. 1B). The
OR for rs11263763 in theAsian SECGSdatasetwasnon-significant
(P = 5.7 × 10−1, OR = 0.96), although the power was low to detect an
effect equivalent to that seen for the Caucasian datasets given
the sample size (834 cases and 1936 controls) and lowerminor al-
lele frequency (MAF) (0.267) (seeMaterials andMethods). For both
the Caucasian and Asian datasets high LD extends centromeric
from rs11263763 to encompass part of intron 2,with a slightly lar-
ger LD block in the Asian dataset (7 versus 5 kb; Supplementary
Material, Fig. S2): assuming the risk SNPs are the same in both po-
pulations, this indicates that the search for candidate causal
SNPs should focus on the 5 kb region identified from analyses
of Caucasian datasets. Meta-analysis of the five datasets (iCOGS

Table 1. Existing evidence for HNF1B association, expression and methylation in prostate and ovarian cancers

Disease GWAS SNP Location Minor allele
effect

Lead fine-
mapping SNPs

r2 to
rs4430796*

eQTL in normal/at risk
tissue

mQTL in tumor tissue

Prostate
cancer

rs4430796 (4) Intron 2 G ↓ rs7405696** (12) 0.71 ↓ mRNA expression(13) No information
rs11649743 (5) Intron 4 A ↓ rs4794758** (12) 0.01 No information No information

Ovarian cancer
Serous rs757210 (10) Intron 2 A ↑ rs7405776 (11) 0.47 No change (10) ↑ methylation (11)
Clear
cell

rs757210 (10) Intron 2 A ↓ rs11651755 (11) 0.97 No change (10) Tumor unmethylated—no
reported association (11)

*r2 to rs4430796 in the 1000 Genomes Pilot data; ** rs7405696 explains part of the risk at theHNF1B prostate cancer risk region 1, and rs4794758 explains all of the risk at risk

region 2. Note that conditional analyses suggest a 5-SNP haplotype best captures the variation across this region, although not all of the prostate risk at the HNF1B locus

is explained by this haplotype (12).
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Table 2. Genome-wide significant signal for all-histology endometrial cancer following fine-mapping meta-analysis of the HNF1B locus in four
Caucasian and one Asian datasets

SNP ID Positiona Allelesb iCOGS iCOGS Caucasian only meta-analysis Caucasian/Asian meta-analysis
MAFc Informationd OR (95% CIs)e P-valuef OR (95% CIs)e P-valuef

rs11263763 36 103 565 A/G 0.47 0.96 0.86 (0.82, 0.89) 8.4 × 10−14 0.86 (0.83, 0.90) 2.7 × 10−13

rs11651052 36 102 381 G/A 0.47 1.00 0.86 (0.82, 0.89) 1.3 × 10−13 0.87 (0.84, 0.91) 3.7 × 10−12

rs8064454 36 101 586 C/A 0.47 1.00 0.86 (0.82, 0.89) 2.4 × 10−13 0.87 (0.84, 0.91) 6.3 × 10−12

rs10908278 36 099 952 A/T 0.47 0.96 0.86 (0.83, 0.90) 8.6 × 10−13 0.87 (0.84, 0.91) 6.3 × 10−12

rs11651755 36 099 840 T/C 0.48 1.00 0.86 (0.83, 0.90) 2.3 × 10−12 0.87 (0.84, 0.91) 5.2 × 10−12

rs4430796 36 098 040 A/G 0.48 0.95 0.87 (0.83, 0.90) 9.7 × 10−12 0.88 (0.85, 0.92) 2.0 × 10−10

rs11263761 36 097 775 A/G 0.49 0.93 0.86 (0.83, 0.90) 5.5 × 10−12 0.88 (0.84, 0.91) 8.5 × 10−11

rs7405696 36 102 035 C/G 0.43 1.00 0.87 (0.84, 0.91) 1.1 × 10−10 0.88 (0.85, 0.92) 4.0 × 10−10

rs12453443 36 104 121 G/C 0.43 0.96 0.87 (0.84, 0.91) 1.9 × 10−10 0.88 (0.85, 0.92) 6.8 × 10−10

rs757209 36 102 833 A/G 0.42 0.96 0.87 (0.84, 0.91) 1.9 × 10−10 0.88 (0.85, 0.92) 9.0 × 10−10

rs11263762 36 101 926 A/G 0.43 1.00 0.88 (0.84, 0.91) 1.9 × 10−10 0.88 (0.85, 0.92) 6.1 × 10−10

rs2005705 36 096 300 G/A 0.45 1.00 0.88 (0.84, 0.91) 4.1 × 10−10 0.89 (0.85, 0.92) 3.0 × 10−9

rs12601991 36 101 633 T/G 0.42 1.00 0.88 (0.84, 0.91) 4.2 × 10−10 0.88 (0.85, 0.92) 1.5 × 10−9

rs9901746 36 103 149 A/G 0.43 0.96 0.88 (0.84, 0.91) 6.6 × 10−10 0.89 (0.85, 0.92) 2.8 × 10−9

rs11658063 36 103 872 G/C 0.39 0.96 0.88 (0.84, 0.92) 1.4 × 10−9 0.89 (0.85, 0.92) 7.4 × 10−9

rs11657964 36 100 767 G/A 0.40 1.00 0.88 (0.85, 0.92) 3.4 × 10−9 0.89 (0.86, 0.93) 3.6 × 10−8

rs7501939 36 101 156 C/T 0.40 1.00 0.88 (0.85, 0.92) 3.7 × 10−9 0.89 (0.86, 0.93) 3.8 × 10−8

rs4239217 36 098 987 A/G 0.40 1.00 0.88 (0.85, 0.92) 5.9 × 10−9 0.89 (0.86, 0.93) 5.0 × 10−8

aBuild 37 position.
bMajor/minor alleles based on forward strand and MAF in Europeans.
cMAF of iCOGS controls.
dAverage imputation information score for the fine-mapping iCOGS dataset, where SNPs with a score of ‘1’ are genotyped SNPs.
eCaucasian-only case n = 6608, control n = 37 925: Caucasian/Asian dataset case N = 7442, control n = 39 861: Per allele OR for the minor allele relative to the major allele.
fOne-degree-of-freedom Ptrend. The best imputed and best genotyped SNPs are noted in bold.

Figure 1. Regional association and forest plots for the HNF1B locus associated with endometrial cancer: (A) Locuszoom (14) plot of the log10 P-values for association

between each SNP and endometrial cancer for the meta-analysis of the iCOGS fine-mapping dataset, and ANECS, SEARCH and NSECG GWAS datasets. The color of

each point indicates the extent of LD with the top SNP rs11263763 (purple). Gene positions are given under the graph, and estimated recombination rates in cM/Mb

are indicated by the blue line (right-hand scale). Genotyped SNPs are plotted as circles, and imputed SNPs as squares (info score≥ 0.7 for all plotted SNPs). The small

peak of signal ∼13 kb to the right of rs11263763 does not survive conditional analysis. (B) Forest plot of ORs for the GWAS and iCOGS fine-mapping datasets stratified

by study and country for top SNP rs11263763 (study acronyms detailed in Supplementary Material, Table S1).
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fine-mapping and ANECS, SEARCH, NSECG and SECGS GWASs)
revealed an overall OR of 0.86 (P = 2.7 × 10−13).

The association was similar for endometrioid-subtype cases
only, with rs11263763 retaining the strongest association signal
in the meta-analysis of the four Caucasian datasets (P = 4.1 ×
10−12, OR = 0.86), and a genome-wide significant signal seen for
the same 18 SNPs as above (Table 5; Supplementary Material,
Table S2). Despite a reduction in power to detect an association
in non-endometrioid cases due to the smaller case sample size
(see Materials and Methods), these 18 SNPs also retained the
best association signal for non-endometrioid cases (iCOGS
fine-mapping and NSECG GWAS datasets). The top SNP in this
analysis was rs10908278 (r2 to rs11263763 = 0.84; P = 1.3 × 10−3,
OR = 0.85: signal for rs11263763 P = 2.4 × 10−3, OR = 0.85) (Supple-
mentary Material, Table S3).

Analyses were also performed adjusting for body mass index
(BMI), a major epidemiological risk factor for endometrial cancer,
in the subset of iCOGS cases (N = 2858) and controls (N = 14 098)
for whomBMI datawas available. Therewas no attenuation in ef-
fect for our top SNPs [e.g. rs11263763_unadjusted P = 4.5 × 10−4,
OR = 0.89, 95% confidence intervals (CIs) 0.83–0.95; rs11263763_
adjusted P = 7.9 × 10−4, OR = 0.89, 95% CIs 0.83–0.95] (Supplemen-
tary Material, Table S4).

Log-likelihood tests based on the Caucasian datasets, com-
paring the all-histologies P-values of all tested SNPs against
that of the top SNP rs11263763, prioritized five SNPs in HNF1B
intron 1 for follow-up as potentially causal variants based
on log-likelihood ratios < 1 : 100: rs11263763, rs11651052 (r2 to
rs11263763 = 0.87), rs8064454 (r2 = 0.87), rs10908278 (r2 = 0.83)
and rs11651755 (r2 = 0.87).

The minor alleles of risk-associated SNPs are associated
with reduced HNF1B expression

Of the five prioritized SNPs, the top SNP rs11263763 and rs11
651755 (r2 = 0.91 to rs11263763 in TCGA dataset) were included
in theAffymetrix 6.0 array used byTCGA to type their tumor sam-
ples. The remaining prioritized SNPS were well captured by
rs11651755 (r2 = 1.00 for rs11651052, rs8064464; r2 = 0.96 for
rs10908278). One additional SNP reaching genome-wide signifi-
cance for association with endometrial cancer risk (Table 2)
was directly genotyped in the TCGA dataset (rs11658063, r2 = 0.71
to rs11263763). Therewas evidence for association between geno-
type and HNF1B expression levels in endometrioid tumors for
rs11263763 (P = 1.3 × 10−2), rs11658063 (P = 5.0 × 10−3) and margin-
ally so for rs11651755 (P = 8.3 × 10−2). We also tested the allelic
effect of rs11263763 and rs11658063 on HNF1B expression in
non-endometrioid tumors (total N = 52), and similarly identified
eQTLs for both rs11263763 (P = 3.0 × 10−2) and rs1165806 (P = 4.8 ×
10−2). However, these associations would not be considered stat-
istically significant after conservatively correcting for the total
number of genes analyzed across the region, where P for
significance = 5.0 × 10−3 (0.05/10). In all instances, theminor allele
was associated with decreased levels of HNF1B mRNA (rs11263
763 Fig. 2A, rs11658063 Fig. 2B). SNP rs11658063 waswell imputed
in the Caucasian datasets (information score >0.94), but statistic-
ally is not a likely candidate causal SNP, with a likelihood over
13 000 times smaller than that of rs11263763 in the Caucasian
meta-analysis (P = 1.41 × 10−9). There was no evidence for associ-
ation between genotypes of any of these three SNPs and expres-
sion of any of the other nine genes located within 1 Mb of HNF1B
(data not shown).

Differential HNF1B isoform usage has been suggested to
occur between benign and tumor prostate tissue (15). We alsoT
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investigated the association between rs11263763 genotype
and HNF1B isoform expression and usage in the TCGA endomet-
rial tumor sample. Three HNF1B isoforms were measured by
TCGA, the presence of which was confirmed by our own mRNA
analysis of endometrial cancer cell lines (Supplementary Mater-
ial, Fig. S3): isoform A (uc010wdi.1), isoform B (uc002hok.3)
and isoform C (uc010cve.1). Overall, there was no evidence for

differential isoform usage by genotype (P = 0.45). The relation-
ship between rs11263763 genotype and HNF1B expression level
(decreased expression in ‘G’ allele carriers) was consistent
across isoform A (P = 2.2 × 10−2) and isoform B (P = 2.1 × 10−2),
but not with isoform C (P = 5.8 × 10−1), although this isoform
was expressed at very low levels or absent in those samples
assessed.

Table 4. Best genotypeda and imputed HNF1B SNPs associated with risk of endometrial cancer in four Caucasian and one Asian datasets

Positionb Allelesc MAF Cases MAF Controls OR (95% CIs)d P-valuee Pheterogeneity

Genotyped SNP: rs7501939 36101156 G/A
iCOGs 0.37 0.40 0.90 (0.86–0.95) 5.4 × 10−5

ANECS GWAS 0.35 0.39 0.83 (0.73–0.94) 3.3 × 10−3

SEARCH GWAS 0.36 0.40 0.84 (0.75–0.95) 4.2 × 10−3

NSECG GWAS 0.35 0.39 0.87 (0.76–0.99) 3.7 × 10−2

SECGS GWAS 1.04 (0.90–1.20) 6.2 × 10−1

Combined—Caucasian only 0.88 (0.85–0.92) 3.7 × 10−9 5.0 × 10−1

Combined—all 5 datasets 0.89 (0.86–0.93) 3.7 × 10−8 5.0 × 10−1

Imputed SNP: rs11263763 36103565 A/G
iCOGs 0.43 0.47 0.87 (0.83–0.92) 6.8 × 10−8

ANECS GWAS 0.42 0.47 0.81 (0.71–0.92) 9.3 × 10−4

SEARCH GWAS 0.44 0.48 0.83 (0.74–0.93) 2.0 × 10−3

NSECG GWAS 0.42 0.47 0.82 (0.71–0.94) 3.9 × 10−3

SECGS GWAS 0.96 (0.84–1.10) 5.7 × 10−1

Combined—Caucasian only 0.86 (0.82–0.89) 8.4 × 10−14 5.7 × 10−1

Combined—all 5 datasets 0.86 (0.83–0.90) 2.7 × 10−13 5.7 × 10−1

aBest SNP genotyped in all four datasets.
bBuild 37 position.
cMajor/minor alleles based on forward strand and MAF in Europeans.
dPer allele OR for the minor allele relative to the major allele.
eOne-degree-of-freedom Ptrend.

Table 5. Association signal for cases with endometrioid histology and non-endometrioid histology in the four Caucasian datasets

SNP ID Positiona Allelesb iCOGS iCOGS Endometrioid histology Non-endometrioid histology
MAFc Informationd OR (95% CIs)d P-valuee OR (95% CIs)d P-valuee

rs11263763 36 103 565 A/G 0.47 0.96 0.86 (0.82, 0.89) 4.1 × 10−12 0.85 (0.77, 0.95) 2.4 × 10−3

rs11651052 36 102 381 G/A 0.47 1.00 0.86 (0.82, 0.90) 8.6 × 10−12 0.85 (0.77, 0.94) 1.7 × 10−3

rs8064454 36 101 586 C/A 0.47 1.00 0.86 (0.82, 0.90) 1.4 × 10−11 0.85 (0.77, 0.94) 1.7 × 10−3

rs10908278 36 099 952 A/T 0.47 0.96 0.86 (0.83, 0.90) 6.4 × 10−11 0.85 (0.77, 0.94) 1.3 × 10−3

rs11651755 36 099 840 T/C 0.48 1.00 0.87 (0.83, 0.91) 1.3 × 10−10 0.85 (0.77, 0.94) 2.1 × 10−3

rs11263761 36 097 775 A/G 0.49 0.93 0.87 (0.83, 0.91) 2.1 × 10−10 0.86 (0.78, 0.95) 3.9 × 10−3

rs4430796 36 098 040 A/G 0.48 0.95 0.87 (0.83, 0.91) 2.7 × 10−10 0.86 (0.78, 0.96) 5.0 × 10−3

rs7405696 36 102 035 C/G 0.43 1.00 0.87 (0.84, 0.91) 1.1 × 10−9 0.87 (0.79, 0.96) 5.6 × 10−3

rs12453443 36 104 121 G/C 0.43 0.96 0.87 (0.83, 0.91) 1.4 × 10−9 0.88 (0.79, 0.97) 9.5 × 10−3

rs757209 36 102 833 A/G 0.42 0.96 0.87 (0.83, 0.91) 1.8 × 10−9 0.87 (0.79, 0.96) 7.4 × 10−3

rs11263762 36 101 926 A/G 0.43 1.00 0.88 (0.84, 0.91) 2.2 × 10−9 0.87 (0.79, 0.96) 5.5 × 10−3

rs12601991 36 101 633 T/G 0.42 1.00 0.88 (0.84, 0.92) 4.8 × 10−9 0.87 (0.79, 0.96) 7.0 × 10−3

rs11658063 36 103 872 G/C 0.39 0.96 0.87 (0.84, 0.91) 5.3 × 10−9 0.89 (0.80, 0.99) 2.7 × 10−2

rs9901746 36 103 149 A/G 0.43 0.96 0.88 (0.84, 0.92) 5.5 × 10−9 0.88 (0.79, 0.97) 9.5 × 10−3

rs2005705 36 096 300 G/A 0.45 1.00 0.88 (0.84, 0.92) 8.3 × 10−9 0.88 (0.79, 0.97) 1.2 × 10−2

rs4239217 36 098 987 A/G 0.40 1.00 0.88 (0.84, 0.92) 1.0 × 10−8 0.90 (0.81, 1.00) 5.2 × 10−2

rs11657964 36 100 767 G/A 0.40 1.00 0.88 (0.84, 0.92) 1.2 × 10−8 0.89 (0.80, 0.99) 2.6 × 10−2

rs7501939 36 101 156 C/T 0.40 1.00 0.88 (0.84, 0.92) 1.4 × 10−8 0.89 (0.80, 0.99) 2.7 × 10−2

aBuild 37 position.
bMajor/minor alleles based on forward strand and MAF in Europeans.
cMAF of iCOGS controls.
dAverage imputation information score for the fine-mapping iCOGS dataset, where SNPs with a score of ‘1’ are genotyped SNPs.
eEndometrioid histology caseN = 5611, Non-endometrioid histology caseN = 887, controlN = 37 925 for both analyses: Per allele OR for theminor allele relative to themajor

allele.
fOne-degree-of-freedom Ptrend. The top SNPs for each analysis are noted in bold.
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No association between SNP rs11263763 and HNF1B
methylation

There was no association between genotype and HNF1B CpG
island methylation for rs11263763 (P = 0.42, Fig. 2C), or for
rs11658063 (P = 0.42, Fig. 2D). Most of the TCGA samples (94%)
were unmethylated (beta values < 0.2) at the 18 probes located
within the HNF1B CpG region. We also assessed methylation of
the mutL homolog 1 (MLH1) gene in tumor samples, as this is a
marker of the CIMP-like phenotype in numerous cancers, includ-
ing endometrial, colorectal and ovarian cancers (2,16). In the
TCGA dataset of 196 tumors, there was no association between
HNF1B expression andMLH1methylation (P = 0.93) and no associ-
ation between HNF1B genotype and MLH1 methylation (P = 0.58
for rs11263763, P = 0.22 for rs11658063). There was also no associ-
ation between HNF1B genotype and MLH1 methylation in the in-
dependent sample of 182 ANECS endometrial cancer tumors
(P = 0.91; assessed for rs4430796, r2 = 0.95 to rs11263763). That is,
endometrial tumors presentwith unmethylatedHNF1Bpromoter
status irrespective of CIMP phenotype, resembling the presenta-
tion observed for the clear cell ovarian cancer subtype (11).

The strongest candidate causal SNPsmap to the extended
HNF1B promoter region

The five SNPs most strongly associated with endometrial cancer
cluster within a 5.5 kb region in HNF1B intron 1 (Fig. 3). Using
Encyclopedia of DNA Elements (ENCODE) data, we show that
three of these SNPs (rs11263763, rs11651052 and rs8064454) fall
within the extendedHNF1B promoter that ismarked by H3K4Me3
and H3K4Me1, indicative of regulatory activity associated with
promoters. This region also contains DNaseI hypersensitivity
sites indicating open chromatin in multiple cell lines, including
the endometrial cancer cell lines ECC1 and Ishikawa (Fig. 3). Fur-
thermore, this region also covers a strong CpG island, and has a
chromatin state in numerous ENCODE cell lines indicative of en-
hancer and promoter elements. While none of the 21 TFs tested
to date in the ECC1 cell line bind in this region, several additional
TFs do bind in other cancer andnormal cell lines. Allfive SNPs are
predicted to affect the ability of several TFs to bind DNA (Sup-
plementary Material, Table S5). Notably, several of these TFs
are implicated in endometrial cancer. This includes rs11263763
and rs11651755, both identified to be associated with HNF1B

Figure 2.Association of genotypeswithHNF1B expression asmeasured by RNA_Seq for rs11263763 (A) and rs11658063 (B), andwith averageHNF1BCpG islandmethylation

for rs11263763 (C) and rs11658063 (D).
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expression in tumors, see above. Both SNPs are predicted to alter
binding of p53, a prominent TF that plays a key role in response to
DNA damage and other stress signals, and may have prognostic
value in endometrial cancer (17). In addition, rs8064454 is pre-
dicted to create a binding site for zinc finger E-box-binding pro-
tein (ZEB) 1, a well-characterized transcriptional repressor (18)
that has previously reported to be aberrantly expressed in aggres-
sive endometrial cancers (19,20).

Two of the candidate causal SNPs reduce the extended
HNF1B promoter activity

Weused luciferase reporter assays to examine activity associated
with the wild-type promoter region, and whether the risk-
associated SNPs in the extended promoter region were asso-
ciated with altered HNF1B promoter activity. Transfection of
Ishikawa and EN-1078D cell lines showed that the minimal
HNF1B promoter construct produced a significant increase in re-
porter gene activity above the empty pGL3 vector control (Fig. 4).
However, the extended HNF1B promoter construct significantly

reduced this basal promoter activity by 40–50%, suggesting the
presence of a silencer element in the extended region. Notably,
inclusion of the minor alleles of rs11263763 or rs8064454 in the
extended promoter constructs decreased relative wild-type
HNF1B promoter activity by a further ∼25% compared with the
construct containing the major alleles (Fig. 4).

Discussion
Fine-mapping of the multi-cancer HNF1B locus on chromosome
17q12 has revealed the presence of one multivariant haplotype
associated with the risk of endometrial cancer. The most signifi-
cantly associated SNP rs11263763 is highly correlated with the
original endometrial cancer hit at this locus, rs4430796 (3), an
SNP also associated with the risk of prostate cancer and in
high-to-moderate LD with risk SNPs for serous and clear cell
ovarian cancers. Multiple independent HNF1B associations have
nowbeen reported for the lead SNPs in prostate cancer (in introns
1 and 4) (12), while associations are limited to a single peak in in-
tron 3 for the serous ovarian cancer subtype, and a single peak in

Figure 3.Genetic associations and epigenetic landscape at theHNF1B locus. (A) Enlarged image of theHNF1B intron 1 region, showing the epigenetic landscape in ENCODE

cell lines. The top five likely causal SNPs are indicated in relation to marks of regulatory potential; (B) Histones H3K4Me1 (indicative of regulatory regions) and H3K4Me3

(indicative of promoters); (C) DNaseI hypersensitivity (DHS: indicative of open chromatin, with darker shading indicating stronger experimental signal) in 125 (layered)

ENCODE cell lines and endometrial cancer ECC1 (DMSO and estradiol 10 m) and Ishikawa (4-OHTAM and estradiol 10 m) cell lines; (D) Transcription factor (TF) binding in

72 ENCODE cell lines; (E) Chromatin state in nine ENCODE cell lines, with the following color coding: bright red-active promoter; light red-weak promoter; purple-inactive/

poised promoter; orange-strong enhancer; yellow-weak enhancer; blue-insulator; dark green-transcriptional transition; light green-weak transcribed; dark gray-

repressed/heterochromatin; (F) HNF1B CpG island. The solid red box represents the extended promoter region, and the hatched box the minimal promoter region.

Figure 4. Luciferase reporter assays in endometrial cell lines demonstrate that SNPs rs11263763 and rs8064454 reduce the extendedHNF1B promoter activity. Theminimal

HNF1B (Min prom) or extended HNF1B (Ext prom) promoters were cloned upstream of a luciferase reporter. An Ext prom construct containing either the wild-type

haplotype or minor alleles of rs11263763, rs11651052 or rs8064454 were also generated. Cells were transiently transfected with each of these constructs and assayed

for luciferase activity after 48 h. Error bars denote standard error of the mean (SEM) from three independent experiments. P-values were determined with a two-tailed

t test (*P < 0.05, **P < 0.01, ***P < 0.001).
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intron 1 for the clear cell ovarian cancer subtype (11). Our
analyses refines the endometrial cancer association signal to a
distinct peak in intron 1, and show that our top SNPs are asso-
ciated with HNF1B expression in endometrial tumors, and are
located within the extended HNF1B promoter that contains a
negative regulatory element that inhibits gene expression

HNF1B expression is altered in numerous cancers, with
evidence to support a role as a tumor suppressor or oncogene
depending on the tissue context. Down-regulation of HNF1B is
associated with progression of hepatocellular carcinomas (21),
and indicates poor prognosis of renal (22) and prostate (23) car-
cinomas. HNF1B expression has also been reported to be lower
in primary serous ovarian tumors than in normal ovarian tissue
(24). Epigenetic inactivation of HNF1B is seen in serous ovarian
tumors, and has been detected in ovarian, colorectal, gastric
and pancreatic cancer cell lines, suggesting that HNF1B promoter
hypermethylation can be a feature of tumorigenesis (25).

Conversely, the HNF1B promoter is typically unmethylated
and gene expression increased in clear cell ovarian tumors and
cell lines compared with other ovarian cancer subtypes (11,26).
HNF1B hypomethylation has recently been detected in additional
clear cell histologies, including endometrial, cervical and renal
clear cell cancers, suggestingHNF1B expression andpromoter hy-
pomethylation to be a general biomarker of cytoplasmic clearing
(27). HNF1B over-expression in immortalized endometriosis epi-
thelial cells (hypothesized cell of origin for clear cell ovarian can-
cer) led to altered morphology and multinucleation of cells (11),
while siRNA knock-down of HNF1B led to the induction of apop-
tosis in clear cell ovarian cancer cells lines (26) and significantly
inhibited the proliferation and anchorage-dependent colony for-
mation in the prostate cancer cell lines LNCaP and RWPE1 (13).
Additionally, a genome-wide screen of RNAi data generated for
∼100 cell lines identified HNF1B as a major oncogene required
for cancer cell survival (28).

Analyses by us and others indicate that HNF1B is the target
gene for genetic risk associations with cancer in this region
(3,10,11,13), although the mechanism of regulation mediated by
risk SNPs is not necessarily the same between cancer subtypes.
SNP rs4403796 is an eQTL (expression quantitative trail locus)
associated with decreased HNF1B mRNA expression in benign
prostate tissue (the at-risk tissue for prostate cancer) (3), while
the serous ovarian cancer subtype lead risk SNP rs7405776 is an
methylation quantitative trait locus (mQTL) associated with
decreased expression in serous ovarian tumor tissue. At this
point in time, neither eQTLs nor mQTLs have been reported for
clear cell ovarian tumor tissue. TCGA datasets show the HNF1B
promoter is unmethylated in both endometrioid endometrial
and prostate tumors. For prostate cancer, no significant difference
inHNF1BmRNA expression levels has been reported betweenma-
lignant prostate tissue andbetween benign tissue (15), or observed
from our analysis of tumor and normal prostate tissue from TCGA
(data not shown). Further, although a shift in isoform usage was
reported between benign tissue [predominantly isoform C, a tran-
scriptional repressor (29)] and malignant tissue [predominantly
isoformB, a transcriptional activator (29)] (15), thiswasnot evident
from our analysis of the larger prostate dataset from TCGA.

Our analyses of the TCGA and other data indicate that the
effects of causal SNPs on endometrial cancer risk at this locus
are more similar to those of prostate rather than ovarian cancer
subtypes. There was no association between risk genotype and
HNF1B promoter methylation as implicated for the serous cancer
clear cell subtype. SNP rs11263763 is indicated as an eQTL in
endometrial tumor tissue, with the minor (protective) allele as-
sociated with decreased HNF1B expression, although this SNP

appears to have no effect on isoformusage as previously reported
for prostate cancer. Importantly, our functional analysis showed
that two of the three candidate causal SNPs located in the
extended HNF1B promoter are associated with reduced promoter
activity in vitro, suggesting that these SNPs are likely to be asso-
ciated with reduced HNF1B expression in vivo. Further functional
follow-up experiments focusing on the region encompassing this
association peak, including additional SNPs belonging to our risk
haplotype, will be required to confirm if any of the other priori-
tized likely causal SNP(s) exert additional effects on expression
via alternative mechanisms (30). Such findings, once linked to
genetic and regulatory data from multiple cancers, will provide
a greater understanding of the mechanism by which the HNF1B
genomic locus and the HNF1B protein mediate risks particularly
of endometrial cancer, but also of different cancer subtypes. We
also note the incomplete overlap between prioritized candidate
causal SNPs identified as eQTLs in the TCGA dataset, and those
shown to demonstrate altered function in vitro fromour function-
al studies to date. It is likely that future eQTL fine-mapping stud-
ies that encompass direct genotyping of likely causal SNPs of
interest in larger datasets of tumor and normal tissuewill inform
the role of eQTL data in the design of time-consuming functional
analysis studies of candidate causal SNPs.

Building on recent findings reporting multiple shared cancer
susceptibility loci (10,31–35), the knowledge that endometrial in
addition to prostate, serous ovarian and clear cell ovarian cancer
are associated with SNPs that influence HNF1B activity gives add-
itional support for the conceptof regulatory regionsharboringmul-
tiple cancer risk SNPs that act in a tissue-specificmanner. Further,
these findings provide rationale for expansivemulti-cancer studies
of novel loci identified for any single cancer, including bioinforma-
tically directed investigation of novel loci discovered for endomet-
rial cancer in multiple other cancers. It will be relevant for such
future genetic epidemiological studies to considermolecular strati-
fication of all tumor types, since analyses documenting the gen-
omic characteristics of endometrial and other solid tumors have
shown that distinct molecular subgroups within endometrial can-
cer histological subtypes share genomic features with different
subtypes of other hormonally related tumors (2). Together, such
expansive cross-cancer studies may further our understanding of
the different biological pathways that lead to cancer.

Materials and Methods
Fine-mapping dataset

The fine-mapping case dataset comprised 4402 women of Euro-
pean ancestry with a confirmed diagnosis of endometrial cancer
(3535 with confirmed endometrioid histology), recruited via 11
separate studies in seven countries collectively called the Endo-
metrial Cancer Association Consortium. The control dataset
comprised 28 758 healthy female controls from the same coun-
tries, all participating in the Breast Cancer Association Consor-
tium (BCAC) (31) or Ovarian Cancer Association Consortium
(OCAC) (10) (see Supplementary Material, Information and
Table S1). All cases and controls were genotyped at 211 155
SNPs using a custom Illumina Infinium iSelect array [‘iCOGS’;
arrays and control genotyping methods are summarized in
(10,31–34)], designed by the Collaborative Oncological Gene-
environment Study (‘COGS’). The iCOGS array includes 286
SNPs located 1 Mb upstream and downstream of the HNF1B
(RefSeq NM_000458.2) gene, selected with the intention to carry
out fine-mapping studies of this locus (34). See section entitled
‘HNF1B fine-mapping SNPs’ below for further information.
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Caucasian GWAS datasets

ANECS and SEARCH
The results presented here are based on a re-analysis of our ori-
ginal GWAS dataset, including additional samples, all called
using the Illuminus program (36). Cases comprised 1287 endome-
trioid subtype endometrial cancer cases from the ANECS (n = 606)
and the UK SEARCH (n = 681) genotyped using Illumina 610K
arrays (3). ANECS cases were compared with 3083 Australian
controls recruited as part of the Brisbane Adolescent Twin
Study (37,38) (n = 1846) and the Hunter Community Study (39)
(n = 1237), also genotyped using Illumina Infinium 610k arrays.
SEARCH cases were compared with 5190 individuals genotyped
using Illumina Infinium 1.2M arrays as part of the Wellcome
Trust Case Control Consortium (40).

National Study of Endometrial Cancer Genetics Group
In addition to the above sampleswe obtained genotype data from
919 endometrial cancer cases (795 with confirmed endometrioid
histology) collected by the UK NSECG) and genotyped using Illu-
mina 660K arrays. These cases were compared with data gener-
ated for 895 controls drawn from the UK1/CORGI colorectal
cancer sample set (41) previously genotyped using Illumina
Hap550 arrays (Supplementary Material, Information).

Asian GWAS dataset

Shanghai Endometrial Cancer Genetic Study
To assess LD structure of HNF1B SNPs in other populations, we
analyzed data previously generated for a GWAS including 834
Asian endometrial cancer cases recruited to the Shanghai Endo-
metrial Cancer Study (SECS) and 1936 controls who were re-
cruited to the Shanghai Breast Cancer Study (SBCS; collectively
termed SECGS here), genotyped using Affymetrix 6.0 arrays (42).

HNF1B fine-mapping SNPs
The SNPs included on the iCOGs chip for the fine-mapping of
HNF1B were chosen by the Prostate Cancer Association Group to
Investigate Cancer Associated Alterations in the Genome (PRAC-
TICAL) consortium, to produce a set of 405 SNPs including: all
known SNPs with MAF > 0.02 in Europeans (n = 255), SNPs with
r2 > 0.1 to two prostate cancer associated SNPs [rs11649743 and
rs4430796 (also associated with endometrial cancer): n = 45], and
a set of tagging SNPs for the LD blocks present across 150 kb of
the HNF1B region (Build 37, 36025887–36175887: n = 105). Addition-
al SNPswithin1 MbofHNF1B, utilized forassociationanalyses and
genotype imputation (see below), were chosen by the various
COGS participants [PRACTICAL, OCAC, BCAC and The Consortium
of Investigators of Modifiers of BRCA1/2 (CIMBA)].

Data quality control

Genotypes for the ANECS and SEARCHGWAS samples (cases and
controls) were subjected to quality control as described previous-
ly (3). Genotypes for the iCOGS fine-mapping and NSECG GWAS
samples were called using Illumina’s proprietary GenCall algo-
rithm (31), and subjected to quality control as follows. SNPs
were excluded for call rate <95% (<99% for MAF <5%), MAF
<0.1% or deviations from Hardy–Weinberg equilibrium signifi-
cant at 10−7. Samples were excluded for low overall call rate
(<95%), heterozygosity >5 standard deviations from the mean,
non-female genotype (XO, XY or XXY) or <85% estimated Euro-
pean ancestry based on identity by state (IBS) scores between
study individuals and individuals in HapMap (http://hapmap.
ncbi.nlm.nih.gov/) and multidimensional scaling. For cases, any

96-well plate containing ≥5 excluded samples was entirely ex-
cluded. For duplicate samples or those identified as close rela-
tives by IBS probabilities >0.85, the sample with the lower call
rate was excluded, except for case–control relative pairs for
which the case was retained. Following quality control, the
iCOGs sample retained data for 197 627 SNPs, and the NSECG
GWAS sample 504 515 SNPs.

Regional imputation

As the aim of this study was to investigate the association signal
around the HNF1B locus, we restricted our analyses to SNPs
located within an ∼1 Mb region surrounding HNF1B (Build37,
chr17:35599377–36602919). To increase the number of SNPs in
the analysis and provide identical coverage across the four Cau-
casian and one Asian datasets, we imputed genotypes for SNPs
present in the 1000 Genomes dataset v3 (April 2012 release)
which had not been genotyped in our studies using IMPUTE v2
(43) software. We allowed the IMPUTE software to select the
most appropriate haplotypes from among the complete set of
1000 Genomes haplotypes (44). Imputation was conducted on
inference panels based on the SNPs typed for each dataset (e.g.
SNPs included on the iCOGS array, various Illumina arrays for
the ANECS, SEARCH and NSECG GWASs and the Affymetrix 6.0
array for the SECGS GWAS). Imputation was conducted separate-
ly for the five datasets, and SNPs with imputation information
score <0.7 and/or MAF <0.01 excluded prior to analysis. Following
quality control 1184 genotyped and imputed SNPs were retained
in all four Caucasian datasets. Themost significant imputed SNP
was individually genotyped in a subset of cases using standard
protocols for the Fluidigm BioMark™ HD System (Fluidigm,
South San Francisco, CA, USA) (Supplementary Material, Infor-
mation) to confirm imputation accuracy, resulting in 99% con-
cordance between the genotyped and imputed genotypes.

Association analysis

The four imputed datasets were analyzed separately using
unconditional logistic regression with a per-allele (1 degree of
freedom) model using SNPTEST v2 (45). For the iCOGS dataset,
analyses were performed adjusting for strata (six of the eight
stratawere defined by country, while the large UK dataset was di-
vided into ‘SEARCH’ and ‘NSECG’) and for the first 10 principal
components of the genomic kinship matrix, based on 37 000 un-
correlated iCOGs SNPs (r2 < 0.1), including ∼1000 selected as an-
cestry informative markers, using an in-house C++ program
incorporating the Intel MKL libraries for eigenvectors (http://
ccge.medschl.cam.ac.uk/software/). One principal component
was derived specifically for the Leuven (LES/LMBC) studies, for
which there was substantial inflation not accounted for by the
other principal components. The Caucasian GWAS datasets were
analyzed as single stratum, with adjustment for the first two
(ANECS and NSECG) and three (SEARCH) principal components.

Results (ORs) of the four studies were combined using stand-
ard fixed-effects meta-analyses. The I2 statistic (46) was used to
estimate the proportion of the variance due to between-study
heterogeneity and the Q statistic to test for such heterogeneity.
Analyses for all SNPs were repeated adjusting for the most sig-
nificant SNP to assess whether multiple independent causal
variants were present (i.e. a forward stepwise regression ap-
proach). The analyses were also repeated restricting the iCOGS
and NSECG studies to those cases with endometrioid or non-
endometrioid histology (the ANECS and SEARCH GWAS sample
sets contained only endometrioid histology cases), and to iCOGS
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cases and controls for whom BMI data were available. All statis-
tical analyses used R software unless otherwise stated, and all
statistical tests were two-sided. The association plot was pro-
duced using LocusZoom (14). LD between SNPs is reported as
calculated for the HapMap3 (release 2) population (http://www.
broadinstitute.org/mpg/snap/ldsearchpw.php). Haplotype ana-
lyses including the top genotyped SNPs in the iCOGS fine-
mapping dataset were performed in Haplostats (http://www.
mayo.edu/research/labs/statistical-genetics-genetic-epidemiology/
software).

The power to detect an effect in the smaller Caucasian non-
endometrioid tumor and Asian SECGS datasets, equivalent to
that seen for the best SNP (rs11263763) in the main analysis in-
cluding the four Caucasian datasets for all histologies, was calcu-
lated using QUANTO 1.1 (47). For the non-endometrioid dataset
with anMAF of 0.47 in 887 cases and 37 925 controls, power to de-
tect an equivalent effect was 87% at the 5% significance thresh-
old, and 22% at 10−4. For the SECGS dataset with an MAF of 0.27
in 834 cases and 1936 controls, power was 61% at the 5% signifi-
cance threshold and 5% at 10−4.

Likelihood tests to select the most likely causal SNPs
affecting endometrial cancer risk

To determine themost likely causative SNPs from among the top
associated SNPs, the log-likelihoods of all tested SNPs were com-
pared with that of the top SNP (rs11263763), using P-values from
the overall (all-histologies) analysis in Caucasians. SNPswith log-
likelihood ratios of <1 : 100 of being the top SNP were prioritized
as potentially causal variants for follow-up in the bioinformatic
and functional analyses (10,30,48).

Expression and methylation by genotype in endometrial
tumors

To investigate in endometrial tumors the SNP effects previously
demonstrated in benign prostate tissue (eQTL) and serous ovar-
ian tumors (mQTL), we analyzed data from two different sources.

TCGA: preprocessed SNP (Affymetrix 6.0 arrays), gene expres-
sion (RNA-Seq data generated using Illumina GAIIx and Illumina
HiSeq platforms) and DNA methylation (Illumina Infinium
HumanMethylation 450 Beadchips) data generated by TCGA for
endometrial cancer tumor samples (2) were obtained through
TCGA and the cBioPortal for Cancer Genomics (49,50) (Supple-
mentary Material, Information). Analyses were restricted to
samples of Caucasian ancestrywith endometrioid subtype endo-
metrial cancer, adjusting for copy number at the HNF1B locus.
Associations between genotype and tumor HNF1B expression,
HNF1B promoter methylation and tumor TCGA type were as-
sessed by Kruskal–Wallis and Pearson correlation tests, with
two-sided P-values <0.05 indicating a significant association.

ANECS: association between genotype at HNF1B SNP rs4430
796 [generated through the original GWAS (3)] and tumor methy-
lation at the MLH1 gene (a marker of the CIMP-like phenotype in
endometrial cancer) (51) was assessed for 182 ANECS endomet-
rial cancer cases for whom both data types were available.

Bioinformatic analysis to assess SNP functionality

Bioinformatic analyses to determine the most likely location and
identity of putative causal SNPs thatmay influence the expression
of HNF1B were conducted using a number of databases. Data
produced by the ENCODE (52) project, indicating the location of
open chromatin, DNA methylation, histone modification and TF

binding in numerous cell lines including the endometrial cancer
lines ECC1 and Ishikawa, were accessed through the UCSC Gen-
ome Browser (http://genome.ucsc.edu/ENCODE/). Multiple cell
lines in addition to the endometrial cancer cell lineswere included
in the analysis to allow investigation of the range of possible po-
tential regulatory mechanisms present across the HNF1B region.
The is-rSNP software was used to predict which SNPs altered the
ability of a TF to bind DNA (53). The is-rSNP program uses JASPAR
and TRANSFAC databases to first determine if the two SNP alleles
are predicted to localize in a potential TF binding site, based on
binding scores computed using Position Weighted Matrices
(PWM). For each potential TF, is-rSNP then calculates whether
any of the two SNP alleles significantly alters the binding score.

Cell lines, plasmid construction and luciferase assays

Endometrial cancer cell lines Ishikawa and EN-1078D (kindly pro-
vided by Pamela Pollock, QUT, Brisbane) were grown in DMEM or
DMEM:F12 medium, respectively, with 10% fetal calf serum and
antibiotics. Cell lines were maintained under standard condi-
tions routinely tested for Mycoplasma and short tandem repeat
profiled. The HNF1B promoter-driven luciferase reporter con-
structs were generated by inserting a 908 bp (minimumpromoter
(Min prom), hg19; chr17:36104874–36105781) or 4651 bp fragment
[extended promoter (Ext prom), hg19; chr17:36101131–36105781]
with or without the minor alleles of rs11263763, rs11651052 or
rs8064454 into the KpnI and HindIII sites of pGL3-basic. All
HNF1B promoter sequences were commercially synthesized
using GenScript (Life Research, Australia). Ishikawa and EN-
1078D cells were transfected with equimolar amounts of lucifer-
ase reporter plasmids and 50 ng of pRLTK using Lipofectamine
2000. The total amount of transfected DNA was kept constant
per experiment by adding carrier plasmid (pUC19). Luciferase ac-
tivity was measured 48 h post-transfection using the Dual-Glo
Luciferase Assay System on a Beckman-Coulter DTX-880 plate
reader. To correct for any differences in transfection efficiency
or cell lysate preparation, Firefly luciferase activity was normal-
ized to Renilla luciferase. The activity of each test construct was
calculated relative to an empty pGL3-basic construct, the activity
of which was arbitrarily defined as 1.

Supplementary Material
Supplementary Material is available at HMG online.
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