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ABSTRACT OF THE DISSERTATION

Development of “first principles” methods for modeling vibrational spectra in
condensed phases

by

Gregory R. Medders

Doctor of Philosophy in Chemistry

University of California, San Diego, 2015

Professor Francesco Paesani, Chair

Due to the sensitivity of molecular vibrational frequencies and intensities on

the surrounding environment, vibrational spectroscopies in principle enable the study

of solvation structure and dynamics. Connecting the observed spectral features to a

molecular-level picture is, however, often non-trivial. While computer simulations of

molecular dynamics represent a potentially powerful tool for developing this molecular-

level understanding, the accurate simulation of vibrational spectroscopies in condensed

phases poses significant challenges due to the sensitivity of the spectra on both the under-

lying molecular interactions and the difficulty of obtaining a (statistically meaningful)

xii



treatment of the quantum dynamics.

In this work, we begin by assessing the ability of different molecular models to

reproduce thousands of reference two- and three-body interaction energies calculated at

the current “gold standard” level of electronic structure theory, CCSD(T). As described

in Chapter 2, these results led us to develop a potential energy surface, named MB-pol,

that was fitted exclusively to large datasets of CCSD(T) many-body interaction energies.

Crucially, MB-pol was designed to be computationally tractable for condensed phase

simulations without sacrificing accuracy. MB-pol reproduces experimental measurements

of small cluster properties, as well as thermodynamic and dynamical properties of bulk

water at ambient conditions, without containing any empirically derived parameters

(Chapter 3).

However, unlike the electronic structure calculations to which it is fitted, the MB-

pol PES contains no explicit knowledge of the electron distribution, which is required for

the calculation of vibrational spectra. To this end, in Chapter 4 we demonstrate that the

many-body expansions of the dipole and polarizability also converge for water. Based on

this finding, in Chapter 5 we introduce many-body models for the dipole moment and

polarizability of water, allowing us to rigorously model IR and Raman spectra from “first

principles,” through the respective (approximate) quantum time correlation functions. In

Chapter 6, we disentangle the contributions of the potential energy and dipole moment

surfaces to the IR activity of liquid water. Finally, we conclude in Chapter 7 by reflecting

on possible future applications, including the application of the MB-MD approach to the

calculation of nonlinear vibrational spectra.
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Chapter 1

Introduction

1.1 Connecting theory and experiment through vibra-

tional spectroscopy

From biological function to the Earth’s climate, water is a key mediator of many

natural phenomena.1 To a large extent, this is related to the ability of the water molecules

to form flexible and dynamic networks of hydrogen bonds. For example, hydration

processes facilitated by the rearrangement of the water hydrogen-bonding network play

a central role in the organization of ions at environmentally-relevant interfaces,2, 3 in

monolayer assembly,4, 5 in biological processes,6–9 and in the stability and viability of

novel materials for energy applications.10, 11

Since the vibrational frequencies of a water molecule are particularly sensitive to

the surrounding environment, vibrational spectroscopy has become a powerful tool for

characterizing both molecular structure and dynamics of aqueous systems from the gas

to the condensed phases.5, 11–18 However, a unique assignment of the spectra measured

for water under different conditions and in different environments is nontrivial due to

the fluctuating behavior of the underlying hydrogen-bonding network which gives rise

1
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to several (homogeneously and/or inhomogeneously broadened) features that are often

difficult to interpret. This has led to numerous controversies, including those about

the nature of association bands,19–21 the role of Fermi resonances, and the relationship

between structural order and spectroscopic features at the air/water interface.17, 22–26 The

theoretical interpretation of the water vibrational spectra has, in part, been complicated by

the existence of numerous molecular models, which can provide conflicting explanations

for the same spectroscopic features. In an attempt to overcome current theoretical limita-

tions, we present here a unified many-body molecular dynamics (MB-MD) simulation

approach developed exclusively from “first principles” to calculate vibrational spectra of

water at a quantum-mechanical level.

To introduce the MB-MD framework, it is first useful to briefly describe how

vibrational spectra can be obtained from molecular simulations. For a vibration to be

“infrared active”, i.e., for it to adsorb infrared radiation, the charge distribution must

change during the vibration.27, 28 Within the dipole approximation, this leads to the

familiar selection rule for the fundamental infrared adsorption intensities,

IIR(ω)∼ |〈1|µµµ|0〉|2 (1.1)

where µµµ is the dipole moment and the angular brackets represent integrals over the 0 and

1 vibrational eigenstates. While the dipole moment provides a measure of the anisotropy

of a charge distribution, a molecule’s polarizability indicates the ability of the molecule

to deform its charge distribution in the presence of external electric fields. The geometry

dependence of the polarizability is probed in Raman scattering experiments, where the

selection rule within the dipole approximation is given by

IRaman(ω)∼ |〈1|ααα|0〉|2 (1.2)
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and ααα is the rank two polarizability tensor. Specifically, in the previous equation, αab is

the “dipole-dipole” polarizability, whose components indicate that an applied external

dipole field in direction a generates an induced dipole moment in the b direction. From

this point forward, ααα will be referred to as simply the polarizability.

For condensed phase systems, where it is difficult to define the vibrational eigen-

states, infrared and Raman spectra can be obtained within linear response theory through

a more convenient time-dependent representation involving Fourier transforms of the

corresponding quantum time-correlation functions:

IIR(ω)∼
∫

∞

−∞

dte−iωt〈µµµ(0)µµµ(t)〉 (1.3)

and

IRaman(ω)∼
∫

∞

−∞

dte−iωt〈ααα(0)ααα(t)〉, (1.4)

where the angular brackets imply an ensemble average. Through the time-dependent

formulation presented in Eqs. 1.3 and 1.4, it is thus possible to identify three different

elements that are necessary for a rigorous calculation of vibrational spectra: 1) an accurate

representation of the underlying (Born-Oppenheimer) potential energy surface entering

the Hamiltonian that governs the dynamics of the system, 2) accurate representations

of the multidimensional dipole moment and polarizability surfaces as a function of the

system’s degrees of freedom, and 3) a simulation approach capable of correctly describing

the quantum dynamics of the system of interest.

In this dissertation, the MB-MD approach for generating accurate, “first prin-

ciples” representations of the full-dimensional potential energy, dipole moment, and

polarizability surface of water is presented. Because these models rely on the Born-

Oppenheimer separation of the nuclear and electronic quantum mechanical degrees of

freedom (i.e., treating the electronic degrees of freedom as a function of the nuclear
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coordinates) and due to the small mass of the hydrogen atoms, inclusion of nuclear

quantum effects is critical to accurately describing both thermodynamic and dynamical

properties of liquid water. Collectively, and without any empirically derived parameters,

these models have so-far accurately predicted (experimentally measured) properties of

water ranging from the isomeric equilibria of small clusters to bulk thermodynamic (e.g.,

the structure and density of water at ambient pressure and temperature) and dynamical

properties (e.g., hydrogen bond lifetime, diffusion constants, and infrared and Raman

vibrational spectra) at ambient conditions. Furthermore, while this methodology has

been developed and applied to water, the techniques described here are expected to be

applicable to the wide range of molecular systems.

1.2 The many-body expansion of interaction energies

Connecting small clusters of water and the condensed phases of water through

a single molecular model has been a long sought-after goal. The challenges involved

in the pursuit of this goal are numerous. For example, at the cluster level, the Born-

Oppenheimer energies of topologically distinct isomers of the water hexamer differ by less

than 1 kcal/mol,29–31 indicating that highly-correlated electronic structure calculations

are required to quantitatively determine the relative energetic stability of these isomers.

In this regard, a faithful description of molecular flexibility appears to be particularly

important.31, 32 Furthermore, it has also been shown that nuclear quantum-mechanical

effects can impact the structural, thermodynamic, and dynamical properties of both

clusters and bulk phases of water.32–36 The explicit inclusion of nuclear quantum effects

in simulations exacerbates the computational expense of a model, providing additional

strain on the ability to obtain statistically meaningful results.

Rather than explicitly considering electronic structure of a full N-molecule system,
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the total binding energy of the system can be decomposed through an expansion in terms

of interacting subunits. In the case of water, the simplest subunit is the water molecule.

The binding energy of N interacting molecules is given as EN−mer.37

EN−mer(1, . . . ,N) =
N

∑
i

V 1B(i)+
N

∑
i< j

V 2B(i, j)

+
N

∑
i< j<k

V 3B(i, j,k)+ · · ·+V NB(1, . . . ,N) (1.5)

Within the above expansion, the total energy of the N-molecule system is represented

in terms of its many-body contributions, where, V 1B(i) = Emon(i) is the one-body (1B)

potential, which describes the energy required to deform individual molecules from their

equilibrium geometry. This 1B term depends on the 3M coordinates of molecule, where

M is the number of atoms in the molecule, and the molecular coordinates are referred

to by a single index, i. In common force-fields of small molecules, the 1B interactions

include all bonded terms (i.e., stretches, bends, and torsions). For systems that are easily

reduced to distinct molecules, such as water, a 1B configuration is typically referred to as

a “monomer”, and groups of 2, 3, ... , N interacting monomers are then termed “dimers”,

“trimers”, ..., “N-mers”. From this point forward the monomer, dimer, and trimer notation

will be dropped and the size of a cluster will be specified by the number of indices.

In Eq. 1.5, higher-order interactions are defined recursively through the lower-

order terms. For instance, the two-body (2B) interaction is expressed as

V 2B(1,2) = E(1,2)−
2

∑
i=1

V 1B(i) = E(1,2)−
2

∑
i=1

E(i) (1.6)
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where E(1,2) is the dimer energy. Similarly, the three-body (3B) interaction is

V 3B(1,2,3) = E(1,2,3)−
3

∑
i< j

V 2B(i, j)−
3

∑
i=1

V 1B(i) (1.7)

= E(1,2,3)−
3

∑
i< j

E(i, j)+
3

∑
i=1

E(i)

with E(1,2,3) being the trimer energy. The vast majority of force fields are pairwise

additive, meaning that three-body and higher interactions are neglected.

However, provided that it converges quickly, the many-body expansion represents

a powerful approach to studying condensed phases, as it allows for the energy of an N-

molecule system to be expressed as a sum of lower-order interactions that can, in principle,

be calculated with high accuracy. Recently, a detailed study of the convergence of the

many-body expansion for water based on the analysis of small clusters was performed

using coupled cluster theory with single, double, and perturbative triple excitations

[CCSD(T)] and large basis-sets.31 Consistent with previous calculations,38–45 it was

found that, although two-body interactions dominate the expansion, the three-body term

can contribute up to 30% of the total energy of the water hexamer. An estimate of the

relative magnitudes of the many-body terms in liquid was obtained through an RI-MP2

analysis of the 21-mer, for which two-body interactions were found to contribute 75-80%

of the total interaction energy and three-body interactions comprised 15-20%.45 For both

the water hexamer and the 21-mer, higher-order terms contribute less than 5% of the

total interaction energy. It should be noted that, while quickly converging for water, the

many-body expansion has been shown to converge slowly and with marked oscillatory

behavior for other systems.46
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1.3 Analysis of two- and three-body water interactions

As perhaps the most studied molecular system, numerous strategies have been

proposed and applied (with varying success) to the modeling of water interactions and

properties. Here, these modeling strategies are reviewed and assessed for their ability to

reproduce benchmark calculations of the many-body interactions of water.

1.3.1 Approaches to modeling water interactions

The many-body expansion provides the underlying framework for common clas-

sical force fields. In most cases, including the widely-used TIP4P and SPC families,47, 48

pairwise additivity is assumed, with three- and higher-body interactions being “encoded”

into the effective two-body contributions. In addition, the majority of these models treat

the water molecules as rigid monomers (i.e., the 1B interactions are set to zero), with

only few quantum water models, notably as q-TIP4P/f and qSPC/Fw,49, 50 allowing for

molecular flexibility. Nevertheless, pairwise force fields have been surprisingly suc-

cessful at reproducing, at least qualitatively, the properties of water in homogeneous

environments.51 However, such force fields are expected to be inherently limited in their

ability to model the microscopic behavior of aqueous interfaces, water confined at the

nanoscale, and clusters, whose properties are sensitive to the detailed interplay of 1B, 2B,

3B, and higher-body interactions.38–45

Recent work has focused on improving empirical models through inclusion of

three-body interactions, leading to the development of the E3B model.52, 53 Although

the inclusion of explicit 3B interactions greatly improves the accuracy of the E3B

model relative to pairwise force fields, the use of rigid water monomers and empirical

parameterization necessarily misses some of the fundamental properties of the many-

body expansion. For example, recent E3B simulations of the isomeric equilibria of
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the water hexamer have led to predictions that are markedly different from ab initio

calculations. Specifically, the prism structure, which corresponds to the energetically

lowest-lying isomer at the MP2 and CCSD(T) levels of theory,30, 31 is unstable in the

E3B calculations.54

Since non-pairwise additive intermolecular interactions arise primarily from elec-

tronic polarization at long distances, several methods have been proposed to incorporate

this effect into the framework of classical force fields.55 One common approach is the

Applequist polarizable point dipole model,56 which was elaborated upon by Thole to

address the so-called polarization catastrophe.57 Thole-type polarizable force fields for

water include TTM3-F,58 TTM4-F,59 and AMOEBA60 models.

Among methods that attempt to solve directly the many-body problem from

“first principles”, semiempirical models represent an possible alternative due to their

computational efficiency. Semiempirical models such as PM361 and PM3-MAIS62 were

derived within the MNDO scheme and differ primarily in the form of the core-core

repulsion, as well as in the precise values of their adjustable parameters. These models

were parametrized either by fitting experimental data for a wide variety of systems

(PM3) or electronic structure reference data in the case of PM3-MAIS. Due to the use

of a minimal basis and the explicit neglect of correlation, semiempirical methods are

particularly limited in their ability to describe non-bonded interactions. This deficiency

has been addressed by the SCP-NDDO model, which augments traditional semiempirical

methods with classical polarization.63 SCP-NDDO has shown success in modeling water

clusters and has recently been extended to simulations of bulk properties.64

Different DFT methods have also been extensively applied to the study of con-

densed phases, primarily through the use of GGA functionals such as BLYP65, 66 and

PBE.67 However, common density functionals are, by construction, limited in their ability

to describe weakly interacting van der Waals complexes. One attempt to address this
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problem involves the addition of a dispersion correction to the energy through the C6
/

R6

term, where the C6 parameters are atom and basis-set specific.68, 69 These “DFT-D”

models have successfully described systems such as the solvation of iodide in water,70

but are limited by the need to develop parameters for each functional/basis-set.71 Fur-

thermore, because the correction is pairwise additive, it neglects higher-order dispersion

contributions. Recent work to address this limitation has been reported.72

A promising alternative to the pairwise DFT-D correction is represented by the

non-local van der Waals (nl-vdW) functionals.73–75 These nl-vdW functionals utilize the

electron density to define a non-local correlation contribution to the exchange-correlation

functional, leading to a consistent description of both short-range and long-range inter-

actions. Since no atomic or basis-set dependent parameters are required to describe the

dispersion interaction due to the explicit dependence of the non-local correlation on the

electron density, nl-vdW functionals, in principle, require minimal parameterization and

are system-independent. In practice, great care must be taken to avoid double counting of

correlation effects in the combination of semi-local and non-local terms. Van der Waals

density functionals have recently been applied to the study of liquid water76 and ice.77

One final class of models is represented by the “first principles”-based PESs.

These models are built upon a rigorous treatment of the many-body expansion of inter-

actions and are characterized by having a functional form that is sufficiently flexible

to accurately describe high-quality electronic structure reference data. Examples of

such models are DPP2,41 CC-pol,78, 79 and WHBB.80 DPP2 and CC-pol are restricted

to the rigid, vibrationally averaged monomer geometries, while WHBB uses permuta-

tionally invariant polynomials to represent the flexible monomer 2B and 3B PESs. Such

“first principles”-based PESs are often quite computationally demanding and are most

commonly used in calculations for gas phase systems,35 although bulk properties have

been obtained from classical simulations with CC-pol78, 81 and DPP2.41 Recently, a
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flexible version of 1B and 2B terms in CC-pol has been developed, CC-pol-8sf, and

the effects of flexibility on the dimer vibrational-rotation-tunneling (VRT) spectra have

been characterized.82 It was found that both CC-pol-8sf and HBB2 (the 2B potential of

WHBB) reproduce the experimental VRT spectra “about equally well”.82

1.3.2 Comparison to the CCSD(T) “Gold Standard”

Here, we assess the ability of the models presented in the previous section

to describe the 2B and 3B water interactions of water. In this study, roughly 1400

2B interactions and 500 3B interactions were evaluated at the CCSD(T)/aug-cc-pVTZ

level83, 84 and corrected for the basis-set superposition error (BSSE) using the cluster

counterpoise method of Eq. A.9. These (flexible) molecular configurations were extracted

from 1) classical molecular dynamics (MD) simulations of hexamers at T ≤ 30 K using

the WHBB potential, 2) classical MD simulations of ice Ih carried out with TTM3-F

at 50 K, and 3) classical MD simulations of bulk water at 298 K and experimental

density using TTM3-F. Hereafter, these configurations are referred to as “low-energy”

configurations. For the analysis of E3B, the CCSD(T) reference interaction energies were

recomputed for “rigidified” molecules corresponding to the flexible configurations that

were used in the comparison of the other models. All DFT energies were computed using

the aug-def2-TZVPP basis84, 85 with the exception of BLYP-D, for which the TZV2P

basis was used for consistency with the original parametrization of the model.68, 69, 86

MP2 energies were computed with the aug-cc-pVTZ basis, and both DFT and MP2

interactions were corrected for BSSE. With the exception of the semi-empirical methods,

all ab initio calculations were performed using the freely-available ab initio package

ORCA.87 PM3 and PM3-MAIS energies were calculated using the AMBER/SQM semi-

empirical package,88 while the SCP-NDDO energies were obtained using CP2K.64, 89 A

linear regression analysis for the data presented in Figs. 1.1 and 1.2, as well as root mean
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square error with respect to CCSD(T) data, are presented in the supporting material.

Figs. 1.1 and 1.2 show correlation plots for the 2B and 3B interactions calculated

for all models described in Section 1.3.1 relative to the CCSD(T)/aug-cc-pVTZ energies.

While most empirical pairwise force fields implicitly include nuclear quantum effects,

models such as q-TIP4P/f and q-SPC/Fw were specifically parameterized for quantum

simulations and, therefore, presumably provide an approximation to the actual Born-

Oppenheimer PES.49, 50 As can be seen from Fig. 1.1, q-TIP4P/f deviates substantially

from the true 2B potential energy surface to compensate for the neglect of higher-order

interactions (Fig. 1.2). Force fields that account for higher-order terms generally provide

a more accurate description of the 2B interactions than effective pairwise models. In

this context, while E3B and TTM3-F/TTM4-F/AMOEBA treat higher-order interactions

using different schemes, all four models give 2B interactions that are in closer agreement

with the CCSD(T) results than the effective pairwise models. It is interesting to note that

E3B, which does not not explicitly include induction and was not parameterized using ab

initio data, describes the 3B contributions energies reasonably well.

The three polarizable models considered in this study (TTM3-F, TTM4-F, and

AMOEBA) differ in the way they describe the variation of the molecular charge dis-

tribution. As an isolated monomer deforms, the molecular dipole moment varies in a

“nonlinear” fashion with respect to the intramolecular coordinates, resulting in a “nonlin-

ear dipole moment surface” (DMS).90 In TTM4-F, the first-order changes of the DMS

are fit to electric multipoles and polarizabilities calculated at the MP2 level. The in-

tramolecular dependence of the atomic charges in TTM3-F was instead motivated by the

observation that, while the gas phase monomer charges decrease during the homolytic

dissociation, a water molecule in the condensed phase dissociates into charged ions. This

argument was used to justify an empirical correction to ab initio-derived values, giving

rise to effective charges that increase as the monomer geometry departs from equilibrium.
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By contrast, although AMOEBA takes into account intramolecular flexibility in the

PES, the monomer charges are geometry independent.60 It is also important to mention

that, unlike in TTM3-F, the molecular polarizability of both AMOEBA and TTM4-F is

anisotropic. It is unclear whether the inaccuracy observed in the TTM3-F 3B energies

arises from its use of effective charges, isotropic molecular polarizability or both.

Among the semiempirical methods, PM3 was fitted to a wide range of experimen-

tal and ab initio data, while PM3-MAIS and SCP-NDDO were both fitted to ab initio

reference data of water clusters. It is therefore not surprising that the 2B interactions of

PM3-MAIS and SCP-NDDO are in better agreement with the CCSD(T) data than PM3.

It is interesting, however, that SCP-NDDO shows much tighter correlation to the ab

initio data than PM3-MAIS, even though the latter uses almost twice as many adjustable

parameters as SCP-NDDO. While the two MNDO-type semiempirical methods display

significant deficiencies in describing the 3B interactions, SCP-NDDO reproduces the

CCSD(T) data quite accurately. These results suggest that the addition of classical polar-

ization, as implemented in SCP-NDDO, can allow semiempirical methods to accurately

describe intermolecular interactions without requiring extensive reparametrizations of

the core-core terms.

At the 2B level, the GGA density functionals differ appreciably from the CCSD(T)

results (see Supporting Information of Ref. 91 for PBE and PBE0 results), with BLYP

systematically underestimating the interaction strength. The inclusion of the dispersion

correction in BLYP-D improves the agreement with the CCSD(T) values for the 2B

interactions; however, although DFT is less sensitive to basis-set incompleteness than

wavefunction methods, the absence of diffuse functions in the BLYP-D basis (TZV2P)

results in a large BSSE correction. This is seen in Fig. 1.1, where blue circles indicate the

BSSE-corrected interactions and gray circles the BSSE-uncorrected interactions. Indeed,

BSSE is so small for BLYP, B3LYP, RPW86PBE, and VV10 (using the aug-def2-TZVPP
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basis) that it is barely visible in Figs. 1.1 and 1.2. While BLYP-D may be able to

accurately describe the 2B interactions when a sufficiently large basis-set is used or when

the energy values are corrected for BSSE, how to balance these factors in condensed

phase simulations is not straightforward and is the subject of ongoing research.71, 92

While the use of hybrid functionals, such as B3LYP,93, 94 results in a much tighter

correlation to the CCSD(T) data than GGA functionals, B3LYP nonetheless inherently

suffers from inadequate treatment of dispersion interactions, which leads to an incorrect

long-range behavior.95 Among recent nl-vdW functionals, VV10 appears to over-correct

its parent functional, RPW86PBE, leading to over bound 2B interactions. All DFT

methods perform reasonably well for the 3B interactions. It is important to note that,

because the dispersion correction is pair additive, BLYP and BLYP-D provide identical 3B

interactions. By contrast, nl-vdW functionals include a three-body dispersion correction,

although this is almost negligible for VV10 (see Supporting Information of Ref. 91).

MP2 agrees well with CCSD(T), with an RMS of 0.03 and 0.02 kcal/mol for the 2B and

3B interactions, respectively. Consistent with previous observations, the magnitude of

BSSE is much smaller for 3B than 2B interactions.96

With the exception of MP2, WHBB provides the lowest RMS for the 2B interac-

tions. WHBB employs a permutationally invariant polynomial with 5227 coefficients that

were fit to reproduce ∼30000 CCSD(T)/aug-cc-pVTZ 2B interactions. To account for

basis-set truncation, the reference 2B interactions were chosen as weighted averages of

BSSE-corrected and BSSE-uncorrected CCSD(T) interactions.97 Since both WHBB and

CC-pol reproduce the VRT spectrum of the water dimer with comparable accuracy,82 a

similar agreement with the CCSD(T) data at the 2B level is also expected for CC-pol. The

agreement of WHBB with the CCSD(T) values for the 3B interactions is less satisfactory,

with WHBB increasingly underestimating the energies of the lowest-lying trimers.
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1.4 Short-range many-body interactions address system-

atic flaws in polarizable models

Due to its rapid convergence for water, the many-body expansion of interaction

energies provides a viable way to “scale up” the CCSD(T) level of accuracy to a large

number of molecules. Furthermore, by accurately fitting the 1B, 2B, and 3B interactions

into a relatively inexpensive function, simulations of condensed phases at an effective

CCSD(T) level of accuracy become feasible. For flexible monomers, the most sophisti-

cated effort along these lines, WHBB,80 has indisputably proven this concept. However,

WHBB is not directly applicable to bulk phase simulations due to its prohibitively expen-

sive 3B term. Motivated by this observation, we introduced an exploratory model, termed

HBB2-pol,91, 98 which sought to maintain the accuracy of WHBB while simultaneously

decreasing the computational expense of the model.

As was mentioned in the previous section, WHBB obtains excellent accuracy with

respect to correlated electronic structure calculations through the use of permutationally

invariant polynomials.99, 100 These polynomials provide a flexible basis whose (linear)

coefficients can be fitted to large datasets of electronic structure reference data. However,

to capture the complexity of the many-body interactions, high degree polynomials are

typically required. In the case of WHBB, the fifth degree polynomials (containing 1380

terms) entering into the 3B PES are the computational bottleneck of the model. In

WHBB, the 3B interaction has the form

V 3B
WHBB = sV Poly +(1− s)V Ind

TTM3-F, (1.8)

where V Poly is the 3B permutationally invariant polynomial and V Ind
TTM3-F is the induced

3B interaction energy of the TTM3-F polarizable model. The contributions to the 3B
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energy are range separated; when the three molecules are close together, the interaction

is given by V Poly. At longer ranges where at least one molecule is far from the other

two, the interaction is described through the TTM3-F induced energy. The range of the

interactions is controlled by the switching parameter, s, which smoothly transitions from

1 to 0 as the molecules are pulled apart from one another.

Our development builds upon this range separation by exploiting the fact that

the 3B interaction in water arises primarily from induction, with all other contributions

vanishing quickly as the intermolecular separation increases.96, 101 This naturally leads

to the following ansatz,

V 3B
HBB2-pol = s3V Poly +V Ind

TTM4-F, (1.9)

which, while very similar in form to Eq. 1.8, contains a few key differences. First,

rather than the TTM3-F model, the significantly more accurate TTM4-F model is used

to describe the induced interactions (see Fig. 1.2). More importantly, the TTM4-F

induction is employed at all ranges of the 3B interaction. The permutationally invariant

polynomial V Poly thus represents a short-range “correction” to the underlying induction

energy. The physical origins of this short-ranged “correction” lie in both the breakdown

of assumptions made in the derivation of the Thole-type induction term as well as the

quantum-mechanical contributions of 3B exchange-repulsion and charge transfer (see

Fig. 1.3).96, 101, 102

Because the ability of the polynomial to accurately fit reference data depends

largely on its degree (and, therefore, its computational cost), the different representation

of the 3B interactions in the HBB2-pol model along with the improved description of

the induction energies in HBB2-pol allows for an accurate fit of the CCSD(T) reference

data with a lower-degree polynomial. Specifically, in HBB2-pol the V Poly part is a sum
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of second and third degree symmetrized products of exponentials of the intermolecular

separations

ηi j = exp
(
− kri j

)
. (1.10)

where k is an adjustable parameter and ri j is the distance between atoms i and j. Neither

intramolecular distances nor the purely two-body terms – those which do not depend

on the positions of all three molecules simultaneously – were included into the V Poly in

HBB2-pol. This results in a polynomial with 131 terms, whose linear coefficients were

fit using the least squares to a dataset of 8019 trimer configurations for which the 3B

energies were computed at the CCSD(T)/aug-cc-pVTZ level and corrected for BSSE.103

As discussed above, while the three-body interactions primarily originate from

induction, for more strongly interacting clusters, effects including exchange-repulsion and

charge transfer can also make a significant contribution.96, 101 As a consequence, force

fields which treat only induction are inherently unable to fully describe 3B interactions.

By contrast, models that only treat short-range 3B interactions are unable to describe

the induction interactions that dominate at long range. This is illustrated in Fig. 1.3,

where HBB2-pol is compared with WHBB, TTM4-F 3B induction, and CCSD(T)/aug-

cc-pVTZ data along two representative cuts through the water trimer PES. Importantly,

the CCSD(T) reference data used for this comparison were not included in the training

set. This comparison clearly shows that the addition of the short-range “correction” to the

induction brings the 3B interactions of HBB2-pol into close agreement with the CCSD(T)

data.

1.5 Summary

In this study, the accuracy of several force fields, semiempirical methods, density

functionals, and “first principles”-based potential energy surfaces was assessed against
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BSSE-corrected CCSD(T)/aug-cc-pVTZ data. Our analysis of the many-body expansion

of the interaction energy indicates that defects inherent to polarizable models, which

are often non-negligible when molecules are close to one another, can be effectively

corrected through an explicit short-range term expressed in terms of permutationally

invariant polynomials. Based on these findings, we developed an exploratory model,

HBB2-pol, that was derived entirely from “first principles”. HBB2-pol achieves excellent

accuracy with respect to CCSD(T) data. Importantly, the inclusion of explicit polarization

in the three-body interaction term enables the use of relatively low-degree polynomials,

which, in turn, results in a significant decrease in the computational cost associated with

HBB2-pol relative to other ab initio-based models. This improved efficiency enabled us

to perform quantum simulations of bulk water under ambient conditions.98

The successful development of the HBB2-pol PES represented a crucial proof of

concept, where we demonstrated that a potential energy surface parametrized exclusively

to correlated electronic structure reference data was capable of accurately predicting ex-

perimentally determined properties of water from small clusters to the bulk liquid without

any parametrization to experiment.98 To the best of our knowledge, this was the first time

this had been done for flexible models of water; while the (flexible) WHBB many-body

PES had been shown to accurately describe cluster properties, its computational expense

prohibited the application of WHBB to simulations of the bulk liquid.

This dissertation focuses on the application of the many-body expansion of

interactions to the calculation of vibrational spectra of condensed phase systems from

“first principles.” In Chapter 2, a refined version of the HBB2-pol PES, titled “MB-pol”

will be presented in detail. In Chapter 3, MB-pol is combined with path integral-based

quantum simulation techniques to calculate thermodynamic and dynamical properties of

liquid water. A detailed analysis of the convergence of the many-body of expansion of

the dipole moment and polarizability is presented in Chapter 4. Building upon that work,
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a Many-Body Molecular Dynamics (MB-MD) framework for calculating vibrational

spectra of condensed phase systems is developed in Chapter 5; specifically many-body

models for the dipole moment and polarizability are introduced and used to calculate

the infrared and Raman vibrational spectra of liquid water. This MB-MD partitioning is

then used in Chapter 6 to investigate the physical origins of the IR spectrum of liquid

water. This dissertation is concluded in Chapter 7 by employing the MB-MD approach

to the calculation of the vibrational Sum Frequency Generation spectrum of the air/water

interface and reflecting on future directions for the application of many-body expansion

to the study of molecular systems.

Portions of this chapter appeared in our previously published papers, Medders,

G.R.; Babin, V.B.; Paesani, F. “A critical assessment of two-body and three-body inter-

actions in water”, J. Chem. Theory Comput. 2013 9, 1103–1114 and Medders, G.R.;

Paesani, F. “Infrared and Raman spectroscopy of liquid water through first principles

many-body molecular dynamics”, J. Chem. Theory Comput. 2015 11, 1145–1154. This

material was reproduced with permission from the publisher.



Chapter 2

The MB-pol Potential Energy Surface

2.1 Introduction

Despite recent progress in the development of electronic structure approaches

to modeling molecular interactions in increasingly larger systems, chemical accuracy

remains out of reach for most applications to condensed phase systems.63, 64, 104–111 In

principle, accurate multidimensional potential energy surfaces (PESs) can be obtained

at the coupled cluster level of theory including single, double, and perturbative triple

excitations, CCSD(T), which represents the current “gold standard” of chemical accuracy.

Unfortunately, the computational cost associated with CCSD(T) makes these calculations

prohibitively expensive even for small molecular clusters.31 To overcome this compu-

tational barrier while still providing an ab initio representation of the underlying PES,

different models based on density functional theory (DFT) have been developed. How-

ever, the choice of the most appropriate functional for studying (weak) intermolecular

interactions, and, particularly, hydrogen bonds in condensed phases remains the subject

of ongoing research.74, 110, 112, 113

As discussed in Section 1.2 the many-body expansion of interactions114 provides

22
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a convenient framework for the analysis and development of multidimensional PESs.

Due to its rapid convergence for water and because the low-order interaction terms can be

accurately calculated at the CCSD(T) level, the many-body expansion effectively enables

the development of water PESs with chemical accuracy.79, 80, 91, 98, 108

This chapter describes the development of the many-body MB-pol water potential

whose 2-body term was introduced in Ref. 115. The MB-pol potential, which represents

an iterative improvement over the HBB2-pol model described in Refs. 98 and 91, takes

advantage of a Thole-type model (TTM) for polarization57 along with a pair-additive

approximation of the dispersion energy to represent the intermolecular interactions in

regions where the overlap between the electron densities of the individual water molecules

is negligible. The complexity of the interactions at short range is additionally modeled

via permutationally invariant polynomials99, 100 in quickly decaying functions of the

interatomic distances. The coefficients of these polynomials are fitted to CCSD(T)

reference energies. The functional form of the MB-pol potential is thus given by the

following expression

EN(x1, . . . ,xN) = ∑
i

V 1B(i)+∑
i< j

V 2B
short(i, j)

+ ∑
i< j<k

V 3B
short(i, j,k)+VTTM +Vdisp. (2.1)

Here, V (1B) is the 1-body term associated with intramolecular distortion described by the

spectroscopically accurate monomer PES developed by Partridge and Schwenke,116 VTTM

represents the (classical) electrostatic contributions described in detail in Ref. 115, Vdisp

represents the dispersion energy, and V 2B
short and V 3B

short are the short-range two-body and

three-body terms. Both V 2B
short and Vdisp terms were developed and validated in Ref. 115.

During the development of the complete MB-pol potential, slight modifications of V 2B
short

and Vdisp were required to guarantee full integration with the three-body term, V 3B
short,
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which is the primary subject of this study. The article is organized as follows: Section 2.2

describes the CCSD(T) electronic structure calculations involved in the development of

a representative training set of water trimers. The functional form of the MB-pol V (3B)
short

term is then described in Section 2.3 along with details related to the fitting procedure.

The electronic structure reference energies are used in Section 2.4 to analyze the accuracy

of the three-body energies predicted by the iAMOEBA-rev5,117 WHBB,80 HBB2-pol,98

and, when possible, (rigid) CCpol81 potentials. The accuracy of MB-pol is then further

assessed through comparison of the calculated third virial coefficient and relative energies

of small water clusters with the corresponding (experimental and ab initio) data available

in the literature.

2.2 Training set and reference energies

The trimer reference energies were calculated at the CCSD(T)83 level using the

augmented correlation-consistent polarized-valence triple (aug-cc-pVTZ) basis set84, 118

supplemented by an additional set of (3s,3p,2d,1f) midbond functions119 with exponents

equal to (0.9, 0.3, 0.1) for s and p orbitals, (0.6, 0.2) for d, and 0.3 for f, placed at the

center of mass of each trimer configuration. The counterpoise method103 was applied to

remove the basis set superposition error (BSSE); specifically, the “site-site” variation of

the counterpoise method was used, with the energies of each trimer and its constituent

fragments (dimers and monomers) computed in the trimer basis.120 Since the calculated

three-body interaction energies were found to be very close to the complete basis set

(CBS) limit, no explicit extrapolation was performed. All CCSD(T) calculations were

carried out with Molpro121 without assuming any symmetry constraints on the trimer

structures.

The short-range three-body training set contains 12347 trimers extracted from: (a)
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the low-energy subset of the HBB2-pol training set described in Ref. 91; (b) path-integral

molecular dynamics (PIMD) simulations of liquid water carried out at ambient conditions

(T = 298.15 K and ρ = 0.997 g/cm3 with the HBB2-pol potential;98 (c) PIMD/HBB2-pol

simulations of small (H2O)N clusters with N ≤ 6 carried out in the temperature range

between 30 K and 100 K;32 and (d) constant pressure - constant temperature (NPT)

molecular dynamics simulations of liquid water carried out at ambient conditions with

intermediate versions of the present MB-pol potential. A large ensemble of configurations

from the (b) and (c) sources described above was first formed, containing approximately

an order of magnitude more trimers than were actually used in the final fitting process.

These initial configurations were then filtered to remove redundant configurations, and

only dissimilar geometries as determined from a root-mean squared deviation (RMSD)

criterion were kept in the final ensemble.

Ideally, the perfect training set should comprise trimer configurations whose

internal coordinates are defined on a multidimensional grid that uniformly covers all

relevant regions of the configurational space. Unfortunately, given the dimensionality of

the problem, this procedure cannot be performed for trimer configurations with flexible

monomers. However, we expect that the structures extracted from PIMD trajectories

and within neighborhoods of the stationary points of the trimer PES are sufficiently

representative of molecular configurations with energies in the range relevant to molecular

simulations of water under conditions of moderate temperature and pressure. In addition,

within the protocol described above, the geometric uniformity of the training set is

approximately achieved via the filtering step. The trimer geometries included in the final

training set are reported in the Supporting Information along with the corresponding

CCSD(T)/aug-cc-pVTZ reference energies.
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2.3 Description of the MB-pol potential

The rationale behind the MB-pol functional form has roots in the observation that,

due to the different physical character of the interactions between water molecules at

different separations, the intermolecular potential energy can be effectively split into short-

range and long-range contributions.114 The latter arise from electrostatic interactions

between permanent and induced moments of the molecular charge distributions as well as

from dispersion forces. The MB-pol representation of these (long-range) contributions to

the total interaction energy is described in Ref. 115. Within the many-body expansion of

the interaction energy, the short-range contributions can be introduced systematically at

the n-body levels (n≥ 2) to account for the complexity of the multidimensional potential

energy surface in regions where the monomer electron densities display significant

overlap. The specific functional form of the MB-pol potential at small intermolecular

separations is derived by noting that, for water systems, short-range corrections to the

induction energy beyond the three-body level are not necessary for achieving chemical

accuracy (see Section 2.4.3).

The two-body short-range term of the MB-pol potential is described in detail

in Ref. 115, with some minor modifications to further improve both accuracy and

performance of the full many-body MB-pol potential in applications to water systems

larger than the dimer. Specifically, three changes were adopted: (a) all 1/r8 terms have

been removed from the expression of the dispersion energy; (b) for consistency with the

three-body term, the switching function [eq (8) in Ref. 115] has been replaced by the

following expression

s2(x) =


1 if x < 0

cos2 π

2 x if 0≤ x < 1

0 if 1≤ x

; (2.2)
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Figure 2.1: Two-body energies of MB-pol. The differences between two-body interac-
tion energies calculated with the current and original115 MB-pol two-body terms are
plotted as a function of the dimer total energy. The RMSD over the lower 100 kcal/mol
is 0.017 kcal/mol.
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and (c) the corresponding cutoff distances have been reduced to Ri,o = 4.5/6.5 Å.

Both long- and short- range parameters have been determined as described in Ref. 115

using the same reference energies. The new short-range fit is marginally more accurate

than the original one despite the reduced cutoffs. The differences between the new and

old two-body interaction energies are shown in Fig. 2.1 as a function of the dimer total

energy for configurations taken from the short-range training set.

Similarly to HBB2-pol,91 the three-body short-range term of the MB-pol potential

is expressed as

V (3B)(xa,xb,xc) =V (3B)
short (xa,xb,xc)+V (3B)

TTM,ind(xa,xb,xc), (2.3)

where V (3B)
TTM,ind is the TTM 3-body induction energy, and V (3B)

short is given by

V (3B)
short (xa,xb,xc) =

[
s(tab)s(tac)+ s(tab)s(tbc)+ s(tac)s(tbc)

]
V (3B)

poly (xa,xb,xc), (2.4)

where the sum of the three terms in the square bracket represents a switching function

that smoothly goes to zero as one of the water molecules moves apart from the other two.

In Eq. 2.4,

s(t) =


1 if t < 0

cos2 π

2 t if 0≤ t < 1

0 if 1≤ t

, (2.5)

and

tmn =
Rmn

R(3B)
cut

, (2.6)

where Rmn is the distance between the oxygen atoms of water molecules m and n, and

R(3B)
cut = 4.5 Å is the three-body cutoff distance. This specific value for R(3B)

cut was found

to provide the optimal compromise between accuracy and computational cost.
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Table 2.1: Interatomic distances used in the MB-pol three-body polynomial. The first
letter of the site label denotes the atom name (O, H), the second letter distinguishes the
molecules (a, b or c), the trailing digit indexes equivalent atoms within the molecule.

d1 Ha1 Ha2
d2 Hb1 Hb2
d3 Hc1 Hc2
d4 Oa Ha1
d5 Oa Ha2
d6 Ob Hb1
d7 Ob Hb2
d8 Oc Hc1
d9 Oc Hc2

d10 Ha1 Hb1
d11 Ha1 Hb2
d12 Ha1 Hc1
d13 Ha1 Hc2
d14 Ha2 Hb1
d15 Ha2 Hb2
d16 Ha2 Hc1
d17 Ha2 Hc2
d18 Hb1 Hc1
d19 Hb1 Hc2
d20 Hb2 Hc1
d21 Hb2 Hc2
d22 Oa Hb1
d23 Oa Hb2
d24 Oa Hc1
d25 Oa Hc2
d26 Ob Ha1
d27 Ob Ha2
d28 Ob Hc1
d29 Ob Hc2
d30 Oc Ha1
d31 Oc Ha2
d32 Oc Hb1
d33 Oc Hb2
d34 Oa Ob
d35 Oa Oc
d36 Ob Oc
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The V (3B)
poly term in Eq. 2.4 is a permutationally invariant polynomial in exponen-

tials of the interatomic distances, dm=1−36, between all possible pairs of atoms as defined

in Table 2.1. From the definition of dm=1−36, the following variables are formed

ξ1 = e−kHH,intra(d1−d(0)
HH,intra),

· · ·

ξ9 = e−kOH,intra(d9−d(0)
OH,intra),

ξ10 = e−kHH(d10−d(0)
HH),

· · ·

ξ36 = e−kOO(d36−d(0)
OO).

V (3B)
poly is then constructed as a polynomial in ξi, imposing the permutational invariance

with respect to permutations of the water molecules as well as to permutations of the

hydrogen atoms within each molecule. V (3B)
poly contains the following symmetrized mono-

mials: (a) 13 second-degree monomials formed from all intermolecular (ξ10, . . . ,ξ36)

variables; (b) 202 third-degree symmetrized monomials with at most linear intramolecular

terms; and (c) 948 symmetrized fourth-degree monomials with at most linear dependence

on the intramolecular variables, as well as intermolecular variables involving oxygen-

oxygen and hydrogen-hydrogen distances. The complete list of all 1163 symmetrized

monomials is available in the Supporting Information of Ref. 122. The coefficients

(cl=1−1163) of these terms are linear fitting parameters. In addition, V (3B)
poly also con-

tains the following 10 nonlinear parameters: d(0)
HH,intra, d(0)

OH,intra, d(0)
HH, d(0)

OH, d(0)
OO, kHH,intra,

kOH,intra, kHH, kOH, and kOO.

Both linear and nonlinear parameters were obtained by minimizing the (regular-

ized) weighted sum of squared residuals calculated for the short-range training set S
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described above:

χ
2 = ∑

n∈S
wn

[
V (3B)

model(n)−V (3B)
ref (n)

]2
+Γ

2
1163

∑
l=1

c2
l . (2.7)

The weights, wn, were set to emphasize trimers with low binding energies

w(E) =
(

∆E
E−Emin +∆E

)2

. (2.8)

Here, Emin denotes the lowest energy in the training set (i.e., the trimer global minimum

energy) and ∆E defines the range of the favorably weighted energies. ∆E = 37.5 kcal/mol

was used in Eq. 2.8, which is consistent with the value used in the fit of the two-body

term (25 kcal/mol).115 The regularization parameter, Γ, was set to 1×10−4 in order to

reduce the variation of the linear fitting parameters (larger Γ values effectively suppress

any variation of the parameters) without spoiling the overall accuracy of the fit (favored

by smaller Γ values). The choice of the regularization weight was further constrained

by the requirement that the regularization term contributed to no more than 1 % to χ2.

The linear parameters (cl=1,...,1163) were obtained through singular value decomposition,

while the simplex algorithm was used to iteratively optimize the nonlinear parameters.

The optimization procedure results in a χ2 value of 7.83 (kcal/mol)2, corresponding to a

RMSD of 0.028 kcal/mol per trimer. The RMSD for trimers with total energy within 37.5

kcal/mol of the trimer minimum energy is 0.00068 kcal/mol per trimer and the largest

deviation for the same trimers is 0.16 kcal/mol. All optimized parameters are included

in the reference implementation of the MB-pol potential available in the Supporting

Information of Ref. 122.
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2.4 Assessment of the MB-pol potential

The CCSD(T) reference energies described in Section 2.2 are used in Fig. 2.2 to

investigate the accuracy of MB-pol three-body energies compared to the corresponding

results obtained with the iAMOEBA-rev5,117 WHBB,80 and HBB2-pol91, 98 potentials,

all of which have recently been shown to correctly reproduce some of the water properties

under different conditions. The CC-pol model is omitted from this comparison since a

flexible version of it has only been developed at the two-body level,82 which prevents a

direct comparison with the present CCSD(T) data calculated for flexible trimers. Simpler

water potentials, parameterized to experimental and/or to relatively small sets of ab initio

data (e.g., q-TIP4P/F,49 qSPC/Fw,50 TTM3-F,58 and E3B52), are also not considered

in the present study because it was previously shown that these models are unable to

correctly reproduce both two-body and three-body water energies.98

Among the four water potentials examined in Fig. 2.2, MB-pol provides the

closest agreement with the CCSD(T) reference data. Noticeable differences exist between

iAMOEBA-rev5 (RMSD = 0.313 kcal/mol) and ab initio results, especially for three-

body energies below -2 kcal mol−1. Although the HBB2-pol potential (RMSD = 0.158

kcal/mol) appears to perform slightly better than WHBB (RMSD = 0.104 kcal/mol)

for low-energy trimers, some important deficiencies are identified, which, based on a

preliminary analysis of the liquid properties, can be attributed to trimer geometries that

are associated with the low-density phase of water. For these configurations, which

correspond to the “tail” deviating from the diagonal in the upper-right corner of Fig. 2.2c,

HBB2-pol predicts considerably more repulsive three-body energies than CCSD(T). The

energetics of these structures is analyzed in more detail in Fig. 2.3.
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Figure 2.2: Accuracy of different models in describing the MB-pol training set. Plotted
on the x-axis are the BSSE-corrected CCSD/aug-cc-pVTZ+mb values while on the
y-axis are the corresponding values calculated with: a) iAMOEBA-rev5, b) WHBB5, c)
HBB2-pol, and d) MB-pol. See main text for details.
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Table 2.2: Binding energies of stationary points on the ab initio water PES. Specifically,
MB-pol binding energies (E), gradient norms (|∇E|2), and relative energies (∆E) were
calculated for the reference stationary points of the water trimer PES reported in Ref. 123.
Also listed are the corresponding ab initio relative energies (∆Ere f ).123 The RMSD of
the MB-pol ∆E values relative to ∆Ere f is 10.68 cm−1.

No. E |∇E|2 ∆E ∆Ere f
(cm−1) (cm−1/Å) (cm−1) (cm−1)

1 -5460.57 1.07e+03 0.00 0.00
2 -5210.91 1.12e+03 249.67 268.34
3 -5016.46 1.08e+03 444.12 436.36
4 -5378.82 1.05e+03 81.75 81.09
5 -5201.36 1.09e+03 259.22 274.19
6 -4701.06 1.10e+03 759.51 752.34

2.4.1 Stationary points

The binding energies and corresponding gradients calculated at the six stationary

points of the ab initio water trimer PES reported in Ref. 123 are listed in Table 2.2.

The same quantities for trimer geometries optimized on the MB-pol PES are given in

Table 2.3 along with the RMSD values calculated relative to the ab initio configurations

from Ref. 123. Both sets of results demonstrate the high accuracy of the MB-pol trimer

energies. Importantly, the MB-pol gradients associated with the reference geometries are

relatively small, providing further evidence for the closeness between the the MB-pol and

ab initio PESs. The remaining disagreement between the MB-pol and ab initio PESs can

be attributed, at least partially, to the differences in the corresponding one-body energies.

As described in Ref. 115, the monomer PES employed in MB-pol includes corrections

aimed at representing mass-polarization and relativistic effects,116 which are absent in

the CCSD(T) calculations reported in Ref. 123.

In an attempt to eliminate the “bias” associated with the the different treatment

of the one-body term, the comparison between MB-pol and CCSD(T) trimer interaction

energies is repeated including only two- and three-body contributions [E3(x1,x2,x3)−

E1(x1)−E1(x2)−E1(x3)]. For this purpose, the CCSD(T) reference values were obtained
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Table 2.3: Binding energies of stationary points on the MB-pol water PES. Specifically,
MB-pol binding energies (E), gradient norms (|∇E|2), RMSD with respect to the
reference ab initio geometries123 and relative energies (∆E) were calculated for the
stationary points of the MB-pol water trimer PES. Also listed are the reference ab initio
relative energies (∆Ere f ) for the reference stationary points of the water trimer PES
reported in Ref. 123. The RMSD of the MB-pol ∆E values relative to ∆Ere f is 9.35
cm−1.

No. E |∇E|2 RMSD ∆E ∆Ere f
(cm−1) (cm−1/Å) (Å) (cm−1) (cm−1)

1 -5488.26 4.67e-05 8.96e-03 0.00 0.00
2 -5239.88 5.16e-05 8.73e-03 248.39 268.34
3 -5040.52 9.14e-05 5.49e-03 447.75 436.36
4 -5405.15 9.75e-05 8.71e-03 83.11 81.09
5 -5228.84 5.01e-05 9.01e-03 259.43 274.19
6 -4729.79 8.29e-05 9.35e-03 758.47 752.34

in the complete basis set limit using a two-point extrapolation of the CCSD(T) energies

calculated with aug-cc-pVTZ and aug-cc-pVQZ basis sets supplemented by either one

midbond function placed at the center of mass of each trimer (Table 2.4) or four midbond

functions placed at the centers of mass of the trimer and all constituent dimers (Table 2.5).

After removal of the differences associated with the one-body term, the MB-pol energies

for the six reference trimers lie at most within 50 cm−1 of the corresponding CCSD(T)

energies. The agreement of MB-pol with the CCSD(T)/CBS energies is improved when

larger basis sets are used in the CBS extrapolation; the RMS of the MB-pol energies

with respect to the CCSD(T)/CBS energies for the trimer stationary points decreases

from 42.59 cm−1 to 21.92 cm−1 when midbond functions are added to the centers of

mass of both the trimer and its three constituent dimers. It is also interesting to note

that the CCSD(T)/aug-cc-pVQZ+mb energy computed for the optimized trimer structure

obtained on the MB-pol PES is lower than the energy associated with the optimized

structure of Ref. 123.

The accuracy of the potential is further illustrated in Fig. 2.4 showing the compari-

son between the MB-pol and ab initio three-body interaction energies for a representative
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scan through the water trimer PES. The scan shown in Fig. 2.3 was investigated because

it involves trimer configurations resembling those extracted from simulations of liquid

water, which were found to be critical for reproducing the temperature dependence of the

density at ambient pressure. Both coordinates and energies of the trimer configurations

used in the scan of Fig. 2.3 are available in the Supporting Information. In the scan

calculations of Fig. 2.3, all three water molecules were kept in the vibrationally-averaged

geometry (rOH = 1.836106337 Bohr and ϑHOH = 104.69◦ as defined in Ref. 79) so that

the CCpol81 potential could also be included in the comparison. Also shown in Fig. 2.3

is a modified version (TTM4x-F) of the original TTM4-F polarizable water model,59

which employs the same many-body polarization scheme as MB-pol.115 In all trimer

geometries used in the scan, the “central” molecule is placed on the XY plane with its

oxygen atom at the origin and the HOH bisector lie along the Y axis; the “left” and “right”

water molecules lie on the XZ plane with their oxygen atoms located on the Z axis at a

distance of 2.7 Å from the central water oxygen. Both “left” and “right” molecules have

one hydrogen atom on the Z axis so that the corresponding OH bond is oriented toward

the central oxygen atom. The potential energy scan was performed by rotating the “left”

and “right” molecules about the X axis by 180−ϑ/2 where ϑ is the angle between the

oxygen atoms of the “left”, “central”, and “right” water molecules. The results shown in

Fig. 2.4 indicate that both TTM4x-F and HBB2-pol predict more repulsive three-body

energies, while CC-pol underestimates the ab initio values, predicting significantly more

attractive three-body energies for wider O-O-O angles. Interestingly, iAMOEBA-rev5

correctly reproduces the angular dependence of the three-body energy along the entire

scan, although it underestimates the magnitude of this contribution. Good agreement

with the reference CCSD(T) data is provided by both WHBB and MB-pol, which is

effectively quantitative for MB-pol over the entire scan.
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2.4.2 Third virial coefficient

By accounting for deviations from ideal gas behavior, [124, Chapter 15] the third

virial coefficient provides an indirect measure of the three-body interactions. To assess

the overall accuracy of the MB-pol three-body term, the third virial coefficient was

calculated at the classical level with each water monomer held fixed at the ground-state

vibrationally averaged geometry (rOH = 1.836106337 Bohr and ϑHOH = 104.69◦).79

This classical approach is justified by the fact that the experimental data for the third

virial coefficient are only available at relatively high temperatures, where quantum effects

are less important. All calculations were carried out using the scheme summarized in

Ref. 91. The close agreement between the MB-pol results and the available experimental

data125 shown in Fig. 2.5 provides further support for the accuracy of the MB-pol

three-body term.
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2.4.3 Higher-order contributions to the interaction energy

It has been shown that n-body interactions with n ≥ 4 are relatively small for

water systems.31, 38, 39, 42, 44–46, 126 By construction, these non-pair-additive interactions

are described in the MB-pol potential through the VTTM,ind induction energy term in

Eq. 2.3. The analysis of the four-body interactions shown in Fig. 2.6 thus enables a

quantitative assessment of the accuracy of MB-pol in describing higher-order many-body

contributions. For this analysis, 2674 tetramer configurations were extracted from: 1)

PIMD simulations of both cage (881 tetramers) and prism (925 tetramers) isomers of the

water hexamer carried out with the HBB2-pol potential,32 and 2) from PIMD simulations

of liquid water (868 tetramers) carried out with the HBB2-pol potential.98 In both cases,

a significantly larger number of tetramer configurations was initially selected and only

geometries that were separated by a uniformly weighted RMSD ≥ 0.2 Å were included

in the final set. The four-body reference interaction energies were computed at the

MP2 level of theory using the aug-cc-pVTZ basis set84, 118 supplemented with midbond

functions119 placed at the center of mass of each tetramer. The interaction energies were

evaluated via the counterpoise method using the energies of the constituent fragments

computed in the full tetramer basis.103, 120 As shown in Fig. 2.6, the mean absolute value

of the four-body interaction is ∼0.06 kcal/mol. The RMSD associated with the MB-pol

four-body energies is 0.03 kcal/mol, with the largest deviation being 0.392 kcal/mol

(the mean total energy of these tetramer configurations relative to the tetramer global

minimum is ∼42.89 kcal/mol).

2.4.4 Energetics of small water clusters

The relative energies (with respect to the corresponding global minima) of small

water clusters with more than three molecules allows for a further assessment of the
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ability of MB-pol to correctly describe n-body interactions with n > 3. For this pur-

pose, the relative energies of the low-lying isomers of the water tetramer, pentamer,

and hexamer calculated with the iAMOEBA-rev5, WHBB, HBB2-pol, and MB-pol

potentials are compared in Fig. 2.7 with the corresponding ab initio values reported

in the literature.30, 127 Water clusters in this size range are among the largest ones for

which highly correlated electronic structure calculations are still feasible. All water

potentials reproduce the ab initio data semi-quantitatively, with iAMOEBA-rev5, which

was specifically parameterized to reproduce the relative energies of small water clusters,

providing the closest agreement. Except for the CA-B isomer of the water pentamer,

MB-pol reproduces (within chemical accuracy) the energy ordering of all cluster isomers

as predicted by the ab initio calculations. In this regard, it is important to note that all

ab initio data were calculated for geometries optimized at the MP2 level, which may

also be source of some discrepancies with predictions made by potentials that were

parameterized at the CCSD(T) level as WHBB, HBB2-pol, and MB-pol.

In summary, the “first principles”-based MB-pol PES has been introduced. As a

model with explicit 1B, 2B, and 3B short-range interactions fitted to large datasets of

highly correlated electronic structure calculations combined with a mean field description

of the induced > 3B interactions and asymptotically correct pairwise dispersion, MB-pol

was demonstrated to correctly describe the properties of small water clusters with respect

to both ab initio benchmark calculations and experiment. In the next chapter, the ability

of MB-pol to predict both thermodynamic and dynamical properties of liquid water will

be explored.

Portions of this chapter appeared in our previously published work, Babin, V.;

Medders, G.R.; Paesani, F. “Development of a first principles water potential with flexible

monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters”,

J. Chem. Theory Comput. 2014 10, 1599–1607. This material was reproduced with
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Chapter 3

Liquid phase properties of MB-pol

The accurate representation of intermolecular interactions combined with the

development and implementation of efficient theoretical/computational approaches for

simulations of large molecular systems still remain challenging problems in electronic

structure theory. In many respects, these two problems are incompatible with each

other because the accurate calculation of noncovalent interactions typically requires

the use of highly-correlated methods whose associated computational cost effectively

precludes their application to large systems. As a result, despite significant recent

progress, chemical accuracy remains out of reach for most simulations of condensed

phase systems.63, 64, 104–111, 128 This is well exemplified by the plethora of water potentials

that have been developed over the years (including both force fields with different degrees

of empiricism and ab initio models), none of which, however, is capable of correctly

describing the properties of water from isolated molecules and small clusters in the gas

phase to the bulk phases (e.g., see Refs. 32, 51, 112, 115, 122).

Recent studies have demonstrated that the many-body expansion of the interaction

energy129 converges rapidly for water,31, 38, 39, 42, 44–46, 126 providing a rigorous approach

for the development of accurate multidimensional potential energy surfaces (PESs) for

46
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water systems of arbitrary sizes. This rapid convergence of the many-body expansion

has previously been exploited by ab initio-based interaction potentials, which enable

a rigorous treatment of the many-body expansion of interactions through a functional

form that is sufficiently flexible to accurately capture the complexity of high-quality ab

initio reference data. Examples of such models are DPP2,41 CC-pol,81 WHBB,80 and

our previous water potential, HBB2-pol.91, 98 In the first two chapters of this work, we

have introduced the MB-pol potential that is built upon the many-body formalism and

our earlier HBB2-pol model. The accuracy of the MB-pol potential in reproducing the

properties of finite-size water systems was additionally assessed in Ref. 115 through

a detailed analysis of the dimer vibration-rotation tunneling spectrum, second virial

coefficients, and cluster structures and energies. In this chapter we report classical and

quantum dynamics simulations carried out with the MB-pol potential for liquid water

at ambient conditions. Direct comparison with the corresponding experimental data

demonstrates the ability (so far unique among the existing water models) of the MB-pol

potential of correctly predicting the water properties from the dimer to the liquid phase

entirely from “first principles”.

3.1 Simulation methods

Since the MB-pol potential provides an accurate representation of the multidi-

mensional Born-Oppenheimer PES for water,115, 122 it must be combined with simulation

approaches that explicitly take into account nuclear quantum effects for a truly “first

principles” description of bulk properties. In this study, path-integral molecular dynamics

(PIMD)130–133 and centroid molecular dynamics (CMD)134 are used to calculate struc-

tural, thermodynamic, and dynamical properties of liquid water at T = 298.15 K and P = 1

atm. Since both methods and recent applications to aqueous systems have been reviewed
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recently,34, 135 only a brief summary of the main concepts is given here. PIMD is based on

Feynman’s formulation of statistical mechanics in terms of path-integrals136 and exploits

the isomorphism between the quantum partition function of a system of N particles and

the classical partition function of a system consisting of N flexible ring polymers.130 By

construction, PIMD enables the calculation of numerically exact structural and thermody-

namic properties of quantum-mechanical systems.137 The CMD formalism draws upon

the prescription of distribution functions in which the exact quantum expressions are cast

into a convenient phase space representation of the system dynamics.138–144 The latter

is described by classical-like equations of motion applied to the centroid coordinates

corresponding to the centers of mass of the ring polymers that represent the quantum

particles within the path-integral formalism. The CMD time propagation thus enables the

calculation of quantum time correlation functions that can then be used to characterize

the properties of condensed-phase systems within linear response theory.145

All simulations discussed in the following were carried out for a system consisting

of 256 H2O molecules in a periodic cubic box. Each atom was represented by a ring

polymer with P = 32 beads. For comparison, simulations with a single bead (P =

1) were also performed to model the properties of water at the classical level. The

PIMD simulations were carried out using the normal mode representation of the ring

polymers,133 which enables an efficient sampling of the quantum partition function.146

All PIMD simulations were carried out in both constant temperature - constant volume

(NVT) and constant temperature - constant pressure (NPT) ensembles. The equations

of motion were propagated using the velocity-Verlet algorithm with a timestep ∆t = 0.2

fs. The temperature was controlled via Nosé-Hoover chains (NHC) of four thermostats

coupled to each degree of freedom.147 The NPT ensemble was generated according to

the algorithm described in Ref. 148.

In the CMD simulations, the centroid force was computed “on the fly” exploiting
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the time-scale separation between the dynamics of the centroid degrees of freedom and

the nonzero frequency normal modes.141 The propagation of the centroid variables was

carried out in the constant energy - constant volume (NVE) ensemble with NHC of four

thermostats attached to each nonzero frequency normal mode. An adiabaticity parameter

γ = 0.1 and a timestep ∆t = 0.025 fs ensured a sufficiently large separation in time between

the motion of the centroid and the nonzero frequency normal modes as well as a proper

integration of the latter. In both PIMD and CMD simulations, a radial atom-atom cutoff

distance of 9.0 Å was applied to the nonbonded interactions and the Ewald sum was used

to treat the long-range electrostatic interactions.149 The structural and thermodynamic

properties were obtained by averaging over a 1 ns long PIMD simulations in the NPT

ensemble and a 100 ps simulation in NVT. The dynamic properties were obtained by

averaging over 10 independent CMD trajectories of 10 ps each. For the classical NVE

simulations, two independent 200 ps simulations were performed due to the relatively

long lifetime of the orientational correlation function in the classical case.

3.2 Structure of liquid water

The thermodynamic properties of liquid water at ambient conditions as predicted

by the MB-pol potential are first analyzed. A comparison between the classical and

quantum results along with the corresponding experimental data for the liquid density

and enthalpy of vaporization is reported in Table 3.1. The density predicted by the

PIMD simulations is appreciably smaller than its classical counterpart and in closer

agreement with the experimental value. As discussed in previous studies (e.g., see

Ref. 150) the explicit quantization of the nuclear motion results in an increase of the

molecular dimensions due to zero-point energy effects and delocalization, which are

thus responsible for the relatively lower density of the liquid at the quantum-mechanical
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Table 3.1: Thermodynamic and dynamical properties of MB-pol water. The properties
at ambient conditions from both classical and quantum simulations. Both density (ρ)
and enthalpy of vaporization (Hvap) were calculated in the NPT ensemble, while the
orientational relaxation time (τ2) and diffusion constant (D) were calculated in the NVE
ensemble. Experimental data: (a) from Ref. 151, (b) from Ref. 152, (c) from Ref. 153,
and (d) from Ref. 154.

density Hvap τ2 D
(g cm−3) (kcal mol−1) (ps) (Å2 ps−1)

classical 1.004(1) 10.9(2) 5.3(2) 0.12(1)
quantum 1.001(2) 10.1(4) 2.3(3) 0.22(3)
experiment 0.997(a) 10.5176(b) 2.5(c) 0.23(d)

level. Both classical and quantum results for the enthalpy of vaporization are in similar

agreement with the corresponding experimental value.

The differential neutron scattering cross-sections per atom calculated from NPT

simulations carried out at both classical and quantum levels are shown in Fig. 3.1 along

with the available experimental data.33, 155 This comparison demonstrates that PIMD

simulations with the MB-pol potential accurately represent liquid water at ambient

conditions. The difference between classical and quantum results also indicate the

presence of non-negligible nuclear quantum effects on the liquid structure as already

discussed in the literature (e.g., see Ref. 34 for a recent review).

Classical and quantum oxygen-oxygen (O-O), oxygen-hydrogen (O-H), and

hydrogen-hydrogen (H-H) radial distribution functions (RDFs) calculated in the NPT

ensemble are compared in Fig. 3.2 with three recent sets of experimental data.33, 155, 156

As expected from the analysis of the differential neutron scattering cross-section, the

PIMD O-O RDF correctly reproduces the experimental results, predicting a relatively

lower first peak compared with estimates obtained from simulations with common force

fields and DFT models (see Fig. 3.3). As already observed for the HBB2-pol98 and

TTM3-F58 potentials, some differences between MB-pol and experimental results exist

for the second peak of the O-H RDF. In this regard, it is important to note that both
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Figure 3.1: Differential neutron scattering cross-section of MB-pol water. The cross-
section per atom was calculated from classical (MD, green) and quantum (PIMD, red)
simulations of liquid water at T = 298.15 K and P = 1 atm. The experimental data are
taken from Ref. 155 (gray) and from Ref. 33 (light blue).

position and shape of this peak, which describes the spatial correlation between O and H

atoms directly involved in hydrogen bonds, are difficult to determine experimentally as

demonstrated by the appreciable differences between the two sets of experimental data.

To test the ability of different water models (with flexible monomers) to reproduce

the experimentally derived O-O RDFs, both classical and quantum O-O RDFs of q-

TIP4P/f,49 TTM3-F,58 BLYP,157 BLYP-D372, 158 were compared against the most recent

experiments and MB-pol in Fig. 3.3. These three models, whose ability to describe the

many-body energies was assessed in Ref. 91, were chosen as representative of fixed-

charge, polarizable, and DFT potentials that are commonly used in quantum simulations

of liquid water. From the comparison shown in Fig. 3.3, q-TIP4P/f, TTM3-F, BLYP, and

BLYP-D3 predict an over-structured first solvation shell, which is particularly evident

in the case of BLYP. Among these four water models, BLYP-D3 is in relatively better

agreement with the experimental data, displaying a slightly lower first peak in the O-O
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Figure 3.2: RDFs of water from classical and quantum MB-pol simulations. O-O, O-H,
and H-H RDFs were calculated from both classical (MD, green) and quantum (PIMD,
red) NPT simulations with the MB-pol potential at T = 298.15 K and P = 1 atm and
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Figure 3.3: Predicted O-O RDFs of different water models. Comparison between
classical (panel a, MD) and quantum (panel b, PIMD) O-O RDFs obtained from NVT
simulations at the experimental density corresponding to ambiend conditions are shown
for the q-TIP4P/f (blue), TTM3-F (cyan), BLYP (green), BLYP-D3 (orange), and MB-
pol (red) potentials. The BLYP and BLYP-D3 results are taken from simulations carried
out at 300 K in Refs. 157 and 158, respectively. The experimental results (black) are
from Ref. 156.

RDF than q-TIP4P/f and TTM3-F. As mentioned above, similar deficiencies are common

to the majority of water models reported in the literature. A notable exception are the

results obtained with the CC-pol potential, which, however, neglects intramolecular

flexibility.81

3.3 Dynamical properties of liquid water

The diffusion coefficient (D) and orientational relaxation time (τ2) calculated at

both classical and quantum levels are listed in Table 3.1. The diffusion constant was

calculated from integration of the velocity autocorrelation function,149

D =
1
3

∫
∞

0
〈v(0) ·v(t)〉. (3.1)

The orientational relaxation time was obtained by fitting the long-time decay of the time

autocorrelation function of the second-order Legendre polynomial, C2(t) in Eq. 3.2, to a
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single exponential,

C2(t) = 〈P2[e(0) · e(t)]〉. (3.2)

In Eq. 3.2, e(t) is a unit vector along each OH bond in the body-fixed reference frame

of the corresponding water molecule. The quantum results were obtained by averaging

over 10 CMD trajectories of 10 ps each, while the classical results were calculated using

2 NVE trajectories of 200 ps. For both quantities, the CMD results are in quantitative

agreement with the corresponding experimental values, providing further evidence of

the accuracy of the MB-pol model. Interestingly, the differences between classical

and quantum results are significantly larger than estimates recently reported with the

q-TIP4P/f potential.49 This difference suggests that the effects of nuclear quantization

on the water properties are nontrivial even at ambient conditions and are particularly

sensitive to the accuracy of the underlying PES.

In summary, the full-dimensional MB-pol potential introduced in Refs. 115

and 122 has been employed in classical and quantum simulations of liquid water at ambi-

ent conditions. The agreement between the simulation predictions and the experimental

data indicates that MB-pol represents a major step toward the long-sought “universal

model” capable of describing the behavior of water under different conditions and in

different environments.12 In this context, the MB-pol potential appears to be well suited

for a fully “first principles” characterization of the pressure-temperature properties of

water, which may help resolve some of the current controversies regarding structural,

thermodynamic, and dynamical properties of bulk, interfacial, and supercooled water.

Portions of this chapter appeared in our previously published work, Medders,

G.R.; Babin, V.; Paesani, F. “Development of a first principles water potential with

flexible monomers. III: Liquid phase properties”, J. Chem. Theory Comput. 2014 10,

2906–2910. This material was reproduced with permission from the publisher.



Chapter 4

Many-body decomposition of

electrostatic properties of water

4.1 Introduction

In the last decade, linear and nonlinear vibrational spectroscopy has emerged

as a powerful technique that, by complementing the existing scattering methodologies,

can provide direct insights into the structure and dynamics of the water HB network

in different environments. As discussed in Section 1.1, within linear response theory,

vibrational spectra, including infrared (IR), Raman, sum-frequency generation (SFG), and

two-dimensional infrared (2D-IR) spectra, can be calculated from the Fourier transforms

of appropriate single- or multi-time correlation functions involving the system dipole

and/or polarizability.27 It thus follows that an accurate representation of both the dipole

and polarizability of water is necessary for the calculation of vibrational spectra that can

be directly compared with the corresponding experimental measurements. This, in turn,

is key to the molecular-level characterization of the structural and dynamical properties

of water in different environments and conditions.

55
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As discussed in Ref. 114, a systematic analysis of the electrostatic properties of

a molecular system begins by investigating the energy of a single molecule interacting

at long range with an external electric field Fα (α = x,y,z). Up to the second-order

perturbation in the electric field, the interaction is given by

E = E0−µαFα−
1
2

FαααβFβ, (4.1)

where terms involving derivatives of the electric field have been neglected and the

repeated greek indices imply sums over the corresponding cartesian coordinates. In

Eq. 4.1, µα is the static, field-independent molecular dipole and ααβ is the dipole-dipole

polarizability. ααβ is defined through the following sum over the system’s states,

ααβ =
∞

∑
n6=0

〈0|µ̂α|n〉〈n|µ̂β|0〉+ 〈0|µ̂β|n〉〈n|µ̂α|0〉
En−E0

. (4.2)

In some cases, higher-order static multipoles and polarizabilities can also play an impor-

tant role. For example, it has been suggested that specific features of the SFG spectra

of the benzene-air interface can be associated with both quadrupole moment and dipole-

quadrupole polarizabilities.159 However, this appears not to apply to water for which only

the dipole and dipole-dipole polarizabilities effectively contribute to Eq. 4.1. For this

reason, in the following the focus will be on the many-body convergence of µα and ααβ

of water, and, for the sake of simplicity, the dipole-dipole polarizability will be simply

referred to as the polarizability.

Any total property pT of an N-molecule system can be formally broken down

into a many-body expansion

pT
αβ...ω(1, . . . ,N) =

N

∑
i

p1B
αβ...ω(i)+

N

∑
i< j

p2B
αβ...ω(i, j)+ . . . , (4.3)
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where p1B, p2B, . . . , refer to the one-body, two-body, . . . , contributions, respectively. The

1B term is defined by the nuclear coordinates of a single monomer (which are collectively

defined here by a single index, e.g., “i”). The 2B contribution depends on the nuclear

coordinates of the dimer comprising monomers “i” and “j”, with the greek subscripts

αβ . . .ω representing the cartesian components. In the case of tensor properties, such

as µα and ααβ, any component of pT is obtained by summing over the corresponding

composite interactions.

In the following the 1B dipole and polarizability are defined as the corresponding

monomer quantities,

µ1B
α (i) = µα(i)

α
1B
αβ
(i) = ααβ(i).

All higher-order terms are defined recursively through Eq. 4.3. For example, the 2B

dipole term is obtained by subtracting the 1B contributions from the dimer dipole,

µ2B
α (1,2) = µα(1,2)−

2

∑
i

µ1B
α (i), (4.4)

and the 3B contribution is calculated by subtracting all 1B and 2B terms from the trimer

dipole,

µ3B
α (1,2,3) = µα(1,2,3)−

3

∑
i< j

µ2B
α (i, j)−

3

∑
i

µ1B
α (i) (4.5)

Provided it converges relatively quickly, Eq. 4.3 thus represents a convenient framework

for reconstructing the total dipole and polarizability of an N-molecule system from the

sum of lower-order contributions. The many-body expansion has been employed in

quantum mechanical models such as X-POL105, 160 and the effective fragment potential

method.106
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In this regard, it should be noted that a proper representation of polarizability

and non-additive effects may have important implications in the description of water

in heterogeneous environments, such as interfaces161 and confined environments.162

Furthermore, water is characterized by a relatively large molecular polarizability and

it has been demonstrated that non-additive contributions to the total energy are non-

negligible.31, 38, 39, 42–46, 126 Therefore, it is expected that 2B and higher-order contri-

butions can make a significant contribution to the total dipole moment of N-molecule

systems. Perhaps less understood is how the polarizability of a gas-phase water molecule

changes upon solvation. It has been suggested that promotion of electrons to some of

the more-diffuse excited states appearing in Eq. 4.2 may be forbidden in the condensed

phase because of the Pauli principle.163, 164 As a result, it is expected that only a subset

of excited states in Eq. 4.2 are effectively allowed in the condensed phase, leading to

a decrease of the molecular polarizability. In this context, it is interesting to consider

how this restricted sum is manifest in water within a many-body expansion framework.

If the polarizability is curtailed upon solvation, is it through the low-order (i.e., 2B

and 3B) terms or through global N-body contributions that depend on the molecular

configurations of the entire system?

While the total electrostatic properties of small clusters have been studied exten-

sively, the associated many-body convergence has been explicitly examined only for a few

systems. Early investigations focused on the 2B and 3B interaction-induced properties of

noble gas trimers,120, 165–167 with higher-order effects being examined only for helium

pentamers.166 More recently, the many-body properties of hydrogen-bonded systems

such as HF168–171 and formaldehyde171 chains have also been investigated. Though the

specific details vary depending on the particular hydrogen-bonded system analyzed, these

studies demonstrate that the higher-than-1B contributions to both dipole and polarizability

are effectively dominated by 2B effects. It is important to note, however, that the dipole
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hyperpolarizability appears to have a more substantial contribution from the beyond-2B

terms.169, 170

For water, ab initio studies of the many-body convergence of dipole and polariz-

ability are more scarce. Several studies have focused on the electrostatic properties of

the water dimer.172–174 The polarizability of larger water clusters has been examined,

where it was found that the average monomer polarizability saturates quickly with cluster

size.175–178 In Ref. 80 it was speculated that the total dipole could reasonably be approx-

imated by considering 1B and 2B contributions only. It was also shown that the total

dipole of the prism isomer of the water hexamer is effectively dominated by low-order

contributions.179 By contrast, the many-body convergence of the interaction energy for

water systems has been studied extensively.31, 38, 39, 42–46, 126 In the case of the hexamer, it

was found that 2B terms represent a large fraction of the total interaction energy, although

3B terms can contribute up to 30%. All higher-order interactions contribute less than

5%.31 Estimates of the many-body convergence in the condensed phase through the

decomposition of the 21-mer cluster into 1B-4B contributions were largely consistent

with the conclusions derived from the hexamer studies.45

In this study, a systematic analysis of the convergence of the many-body ex-

pansion of the water dipole and polarizability is reported. As mentioned above, this

is the first step toward the development of “first principles” theoretical approaches to

vibrational spectroscopy. In Section 4.2, the computational methods used to assess the

convergence are discussed. Since the calculation of the many-body decomposition of the

dipole and polarizability is computationally demanding, one of the goals of Section 4.2

is to determine the accuracy of the electrostatic properties calculated with different

electronic structure methods and basis sets. The many-body convergence is then studied

in Section 4.3 for small (H2O)N clusters with N=4-6 as well as for 14-mers extracted

from classical simulations of liquid water and ice Ih. A summary highlighting the main
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findings and discussing future directions is given in Section 4.4.

4.2 Methods

4.2.1 Calculation of Electrostatic Properties through Finite Differ-

ences or Analytical Methods

Beginning with the expression describing the interaction of a single molecule

with an electric field (Eq. 4.1), Kurtz et al.180 obtained the following equations, which

are used here for finite-field calculations of both µα and ααβ,

µα =− 1
12Fα

[
8
[
E(Fα)−E(−Fα)

]
(4.6)

−
[
E(2Fα)−E(−2Fα)

]]

ααα =
1

12F2
α

[
30E(0)−16

[
E(Fα)+E(−Fα)

]
(4.7)

+
[
E(2Fα)+E(−2Fα)

]]

ααβ =
1

48FαFβ

[
−16

[
E(Fα,Fβ)−E(Fα,−Fβ) (4.8)

−E(−Fα,Fβ)+E(−Fα,−Fβ)
]

+
[
E(2Fα,2Fβ)−E(2Fα,−2Fβ)

−E(−2Fα,2Fβ)+E(−2Fα,−2Fβ)
]]

All calculations were performed with Molpro (version 2012.1).181 Fields of 0.005 a.u.

were used to ensure numerical stability, and the accuracy was validated with respect to



61

the corresponding analytical calculations, which, however, are possible in Molpro only at

the HF and MP2 levels.

4.2.2 Choice of the metrics for many-body convergence

In contrast to the many-body expansion of the interaction energy, the convergence

of Eq. 4.3 for both dipole and polarizability is somewhat more difficult to demonstrate.

The symmetry of simple systems can be exploited to examine the variation of only one

component of the dipole or polarizability (e.g., the longitudinal dipole and polarizability

of linear chains of HF168) or to eliminate off-diagonal components in the polarizability

tensor (e.g., the water dimer in C2v symmetry172). However, one is often interested in

the properties of structures that do not necessarily exhibit a well-defined symmetry (e.g.,

the global-minimum water dimer,174 DNA base pairs,182 and formaldehyde chains in

the crystal structure configuration170). Since several approaches have been proposed in

the literature, three different metrics are first discussed here in the context of the N-body

decomposition of the dipole. In the simplest case, the N-body contribution to the total

dipole, ∆µN , is defined as the ratio between the magnitude of the N-body term and the

magnitude of the total dipole,

∆µN =
||µµµN ||
||µµµT ||

. (4.9)

This metric suffers from two main problems: 1) it is not normalized (∑i ∆µiB 6= 1) and 2)

it does not provide any indication of how the many-body components combine to define

the orientation of the dipole moment. These deficiencies can be partially addressed by

comparing the magnitude of the sum of the many-body contributions up to order N with

the total magnitude,

ε
N
µ =
||∑N

i=1 µµµiB||
||µµµT ||

(4.10)
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To study the many-body convergence of a property measured through Eq. 4.10, differences

between the N and N-1 terms are calculated with the exception of the 1B contribution,

ε1
p, which is simply given by

∆pN =


ε1

p N = 1

εN
p − εN−1

p N > 1
(4.11)

Using this definition, it is evident that Eq. 4.10 is normalized with respect to the total

dipole. Although Eq. 4.10 represents an improvement over Eq. 4.9, it can nonetheless

be ambiguous because any term with incorrect direction but correct magnitude would

have no error. To address this problem, a different quantity is considered in which the

magnitude of the error vector µµµN
err is compared to the magnitude of the total dipole,

µµµN
err = µµµT −

N

∑
i=1

µµµiB (4.12)

ε
N
µ = 1− ||µ

µµN
err||
||µµµT ||

(4.13)

To guarantee a proper normalization, the many-body contributions of Eq. 4.13 are

calculated through Eq. 4.11.

The 1B, 2B, 3B, and total dipole moments of the water trimer in the global

minimum configuration are reported in the top half of Table 4.1, while the analysis of

the relative contributions performed with the three metrics presented in Eqs. 4.9-4.13 is

shown in the bottom half of the same table. Although Eq. 4.9 is not guaranteed to be

normalized, in this case it correctly describes the relative contributions of 1B, 2B, and

3B terms. Since the 1B term has nearly the correct magnitude but the incorrect direction,

Eqs. 4.10-4.11 erroneously predict the 2B dipole to have no contribution. The analysis of

the Cartesian components of the many-body expansion reveals that the 2B contribution
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Table 4.1: Measures of the many-body convergence of the dipole. The structure
examined is the global minimum water trimer at the BSSE-corrected CCSD(T)/d-aug-
cc-pVTZ level. Dipoles are reported in Debye.

Dipole moment
1B 2B 3B Tot

x 0.036 -0.034 0.000 0.002
y 0.039 -0.001 -0.002 0.036
z -0.970 -0.001 0.002 -0.969

Many-body dipole contributions, ∆µN

1B 2B 3B Tot
Eq. 4.9 100.2% 3.5% 0.2% 104.0%

Eq. 4.10 100.2% 0.0% -0.2% 100.0%
Eq. 4.13 96.5% 3.3% 0.2% 100.0%

instead acts to mostly preserve the magnitude of the dipole while reorienting it, an effect

that is correctly captured by Eqs. 4.13 and 4.11.

The rank-two tensor nature of the polarizability poses additional complications.

The many-body convergence of the average diagonal elements has often been used in the

literature,

αavg =
1
3
[
αxx +αyy +αzz

]
. (4.14)

However, for (N > 1)-body polarizabilities, the analysis in terms of the average polariz-

ability can be somewhat ambiguous, as will be discussed below. Similarly to the dipole

moment, the many-body convergence of the polarizability can also be studied through

the magnitude of an error matrix,

ααα
N
err = ααα

T −
N

∑
i=1

ααα
iB (4.15)

ε
N
α = 1− ||α

ααN
err||F

||αααT ||F
(4.16)

where || . . . ||F indicates the Frobenius norm.
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To investigate the proposed decrease in polarizability upon solvation, the con-

vergence of the eigenvalues of the polarizability tensor is analyzed here for a few cases.

For example, to estimate the contribution of the 3B polarizability, the eigenvalues of the

polarizability with up-to-3B terms (ααα1B +ααα2B +ααα3B) can be calculated and normalized

with respect to the eigenvalues of the total polarizability (Eq. 4.18),

ΛΛΛ(αN) =VVV−1

[
N

∑
i=1

ααα
iB

]
VVV (4.17)

ε
N
α;a =

Λaa(α
N)

Λaa(αT )
(4.18)

The contribution of the 3B polarizability is then given by applying Eq. 4.11 to each eigen-

value. Table 4.2 reports the results for the many-body convergence of the polarizability

calculated for the global minimum energy configuration of the water trimer. This analysis

clearly shows that focusing on the average polarizability may have several drawbacks.

First, the components of the many-body polarizability tensors are signed and, therefore,

can cancel one another when summed. For this reason, the 2B polarizability of the water

trimer appears to be nearly negligible when measured through the average polarizability.

By contrast, examination of the individual eigenvalues shows that the 2B term plays a

significant role by acting to reorient the trimer polarizability. Importantly, although the

net effect of the 2B terms is to decrease the monomer polarizabilities, the polarizability

is actually enhanced along some directions. A second drawback is that the off-diagonal

elements are neglected. Though the off-diagonal elements are often small relative to the

diagonal 1B components, in the case of the 2B term they can be as large as the diagonal

ones. This underscores the need to calculate the full polarizability tensor when examining

differences in polarizability tensors for systems where the off-diagonal elements are not

zero by symmetry.
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Figure 4.1: Dependence of µ and α on basis set/method. The configuration examined
is the water dimer global minimum structure. In the basis set abbreviations on the
x-axis, the lower-case letter refers to the size of the diffuse basis (a is “aug-” and d is
“d-aug-”) and the capital letter refers to the cardinal number from the cc-pVXZ basis set
(X ∈ {D,T,Q,5,. . . }). E.g., dD is the d-aug-cc-pVDZ basis set. To compare the dipole
and polarizability, the range of the y-axes are normalized to a 25% deviation from the
CCSD(T)/dQ value. The values plotted in this figure are available in the supporting
information for further inspection.
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Table 4.3: Sensitivity of the many-body decomposition to BSSE. The many-body
percent contributions for the prism hexamer properties were calculated using different
BSSE correction schemes. To make comparison with the 14-mer calculations presented
later, these calculations are performed at RI-MP2/aug-cc-pVDZ. See Section 4.2.3 for
details.

Dipole Polarizability
1B 2B 3B 1B 2B 3B

SSFC 90.3 7.4 2.1 95.0 4.0 0.9
VMFC 90.2 7.6 2.1 94.7 4.2 0.9

VMFC(3B) 90.3 7.6 2.2 94.8 4.2 0.9
VMFC(SMol) 90.7 6.7 2.1 97.0 -1.5 -0.7

4.2.3 Basis-Set Superposition Error

As is well known, the basis-set superposition error (BSSE) is an artifact as-

sociated with the incomplete nature of the basis functions that are used to calculate

intermolecular interactions.103 The most commonly used correction to this problem

is the Boys-Bernardi counterpoise (CP) method.103 The CP method was extended to

the calculation of higher-order many-body interactions through the “site-site” function

counterpoise (SSFC) method, which requires the N-body and lower-order interactions

to be calculated in the basis-set of the N-mer system.120 The SSFC method is advanta-

geous in that its many-body contributions can be directly summed to give the energy of

the whole N-molecule system. To achieve this, however, the SSFC method causes the

M<N-body interactions to depend on the basis set of the complete N-mer (except at the

complete basis set limit). A different approach to the many-body BSSE correction is

the Valiron-Mayer function counterpoise (VMFC) method.183, 184 VMFC addresses the

SSFC dependence on the N-mer basis set through the calculation of the 1B interaction in

the monomer basis, the 2B interaction in the dimer basis, etc. The methods to correct

for BSSE within the many-body expansion are reviewed in detail Appendix A for the

reader’s convenience.
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Since both dipole and polarizability are calculated through partial derivatives of

the energy with respect to external electric fields, the electrostatic properties discussed

here intrinsically suffer from BSSE. For most calculations presented in this study, the

SSFC method is used to correct for BSSE. For larger systems, (i.e., the water 14-mers

discussed in Section 4.3), it is not feasible to perform the many-body decomposition

using the full cluster basis set, and, therefore, the VMFC method is used. Because the

VMFC method lacks a simple relation to the total cluster energy, the convergence of

the many-body expansion can in principle be established only after computing the full

many-body decomposition (up to 14B interactions).

As this is clearly impractical, the effect of approximating the true VMFC correc-

tion with the sum of 1B through 3B contributions [VMFC(3B)] is studied in Table 4.3

using the (smaller) water hexamer at the RI-MP2/aug-cc-pVDZ level. The VMFC(3B)

many-body contributions are in good agreement with the true VMFC contributions as

well as the SSFC results. This indicates that 1B-3B terms effectively dominate the dipole

and polarizability of water independently of the system size. This analysis also demon-

strates that it is inappropriate to compare the VMFC many-body contributions to the

total supermolecular cluster calculation [VMFC(SMol)]. Since a consistent application

of either SSFC or VMFC requires a significant amount of computational resources and

considering that VMFC(3B) provides comparable accuracy, it thus appears reasonable to

apply the VMFC(3B) method to the study of the 14-mer cluster.

4.2.4 Treatment of electronic correlation and the basis set

The dependence of the many-body dipole and polarizability on the electron

correlation was investigated using three different methods: HF, MP2, and CCSD(T).83, 186

Dunning’s correlation consistent basis sets, cc-pVXZ, with X = D, T, Q, and 5, were

used in the calculations.84 Because an accurate determination of the polarizability



69

0
.0

0

0
.0

2

0
.0

4

0
.0

6

µ
1
B

0
.0

0

0
.0

5

0
.1

0

0
.1

5

a
D

d
D

a
T

d
T

a
Q

d
Q

a
D

d
D

a
T

d
T

a
Q

d
Q

a
D

d
D

a
T

d
T

a
Q

d
Q

α
1
B

H
F

M
P

2
C

C
S

D
(T

)

µ
2
B

a
D

d
D

a
T

d
T

a
Q

d
Q

a
D

d
D

a
T

d
T

a
Q

d
Q

a
D

d
D

a
T

d
T

a
Q

d
Q

α
2
B

H
F

M
P

2
C

C
S

D
(T

)

Fi
gu

re
4.

2:
B

as
is

se
tc

on
ve

rg
en

ce
of

di
m

er
el

ec
tr

os
ta

tic
s.

Sp
ec

ifi
ca

lly
,t

he
ba

si
s

se
t

de
pe

nd
en

ce
of

th
e

de
co

m
po

si
tio

n
of

th
e

to
ta

ld
ip

ol
e

an
d

po
la

ri
za

bi
lit

y
fo

r
th

e
gl

ob
al

m
in

im
um

di
m

er
in

to
1B

an
d

2B
co

nt
ri

bu
tio

ns
is

pr
es

en
te

d.
O

n
th

e
x-

ax
is

is
th

e
m

et
ho

d/
ba

si
s.

T
he

ba
si

s
se

ta
bb

re
vi

at
io

ns
ar

e
as

de
sc

ri
be

d
in

Fi
g.

4.
1.

O
n

th
e

y-
ax

is
,

th
e

m
ag

ni
tu

de
of

th
e

di
ff

er
en

ce
s

be
tw

ee
n

ea
ch

m
et

ho
d/

ba
si

s
an

d
th

e
C

C
SD

(T
)/

d-
au

g-
cc

-p
V

Q
Z

va
lu

es
ar

e
pr

es
en

te
d

w
ith

re
sp

ec
t

to
th

e
m

ag
ni

tu
de

of
th

e
to

ta
l

pr
op

er
ty

(s
ee

E
q.

4.
19

).
B

SS
E

-c
or

re
ct

ed
va

lu
es

(u
si

ng
SS

FC
)

ar
e

pl
ot

te
d

w
ith

so
lid

ci
rc

le
s,

un
co

rr
ec

te
d

va
lu

es
w

ith
op

en
sq

ua
re

s.
T

he
va

lu
es

pl
ot

te
d

in
th

is
fig

ur
e

ar
e

av
ai

la
bl

e
in

th
e

Su
pp

or
tin

g
In

fo
rm

at
io

n
of

R
ef

.1
85

fo
rf

ur
th

er
in

sp
ec

tio
n.



70

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

µ
1

B

0
.0

0

0
.0

5

0
.1

0

0
.1

5

a
D

d
D

a
T

d
T

a
Q

a
D

d
D

a
T

d
T

a
Q

a
D

d
D

a
T

d
T

α
1

B

H
F

M
P

2
C

C
S

D
(T

)

µ
2

B

a
D

d
D

a
T

d
T

a
Q

a
D

d
D

a
T

d
T

a
Q

a
D

d
D

a
T

d
T

α
2

B

H
F

M
P

2
C

C
S

D
(T

)

µ
3

B

a
D

d
D

a
T

d
T

a
Q

a
D

d
D

a
T

d
T

a
Q

a
D

d
D

a
T

d
T

α
3

B

H
F

M
P

2
C

C
S

D
(T

)

Fi
gu

re
4.

3:
B

as
is

se
tc

on
ve

rg
en

ce
of

tr
im

er
el

ec
tr

os
ta

tic
s.

Sp
ec

ifi
ca

lly
,t

he
ba

si
s

se
t

de
pe

nd
en

ce
of

th
e

de
co

m
po

si
tio

n
of

th
e

to
ta

ld
ip

ol
e

an
d

po
la

ri
za

bi
lit

y
fo

r
th

e
gl

ob
al

m
in

im
um

tr
im

er
in

to
1B

,2
B

an
d

3B
co

nt
ri

bu
tio

ns
is

pr
es

en
te

d.
T

he
va

lu
es

pl
ot

te
d

in
th

is
fig

ur
e

ar
e

av
ai

la
bl

e
in

th
e

Su
pp

or
tin

g
In

fo
rm

at
io

n
of

R
ef

.1
85

fo
rf

ur
th

er
in

sp
ec

tio
n.

Se
e

th
e

ca
pt

io
n

of
Fi

g.
4.

2
fo

ra
m

or
e

de
ta

ile
d

de
sc

ri
pt

io
n.



71

requires diffuse basis functions,187 augmented (aug-) and double augmented (d-aug-)

functions118, 188 were added to the cc-pVXZ basis sets. Unless otherwise stated, all

calculations were corrected for BSSE using the SSFC method as described previously.

Note that all calculations presented in this article use flexible monomer geometries.

In Fig. 4.1, the convergence of the total dipole and polarizability of the global

minimum energy configuration of the water dimer is presented as a function of the basis

set for HF, MP2, and CCSD(T). This analysis clearly show that the treatment of correla-

tion effects is the primary source of error. In addition, as expected, the polarizability is

more sensitive to the basis-set size than the corresponding dipole. To test the dependence

of the decomposition of the dipole and polarizability 1B and 2B terms on the basis set

and method, the many-body contributions of the water dimer global minimum geometry

are presented in Fig. 4.2. The basis-set convergence of the 3B dipole and polarizability is

studied using the results obtained for the global minimum energy configuration of the

water trimer in Fig. 4.3. The basis set convergence is studied using

σ(pN) =
||pppNB

ref − pppNB
method||

||pppT
ref||

, (4.19)

where p indicates the electrostatic property. These values, plotted in Figs. 4.2 and 4.3,

can be interpreted as the relative error that a given N-body term contributes to the total

property. Partially because both dipole and polarizability are dominated by the 1-body

interactions (see Section 4.3), correlation effects and basis set truncation artifacts most

significantly impact the total values at the 1B level. Similarly to the results shown in

Fig. 4.1, the accuracy is primarily limited by the treatment of the electronic correlation,

although the error associated with basis-set truncation can contribute up to 2.5%.

At the 1B level, the difference between the HF and CCSD(T) results may be

as large as 8% for the dipole and 12% for the polarizability. At the 2B level on the
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other hand, the post-HF correlation accounts for only 1% of the dipole and 2.5% of

the polarizability. MP2 recovers much of the correlation effects at the 1B and 2B

levels, falling within 0.1%-1% and 0.7%-2% of the CCSD(T) results for the dipole and

polarizability, respectively. Correlation and finite-size basis set effects are much smaller

at the 3B level, which is consistent with observations made about the 3B interaction

energy.31 Note that because the many-body expansion used here is defined by the

cluster’s (clamped) nuclear coordinates, our analysis includes the monomer distortion

effects in the 1B term. In all cases studied, correcting for BSSE almost always improves

the agreement of the specific property relative to the converged basis-set result for a

particular method. As the polarizability is more sensitive to the basis-set size, it also

exhibits larger BSSE than the dipole for a given method/basis. For basis sets larger than

aug-cc-pVQZ, however, the BSSE becomes negligible.

4.3 Many-body decomposition of the dipole moment and

polarizability of water clusters

The many-body decomposition of both the dipole and the polarizability of small

(H2O)N clusters with N = 4− 6 is presented in Tables 4.4 and 4.5, respectively. The

clusters, arranged from top to bottom in order of increasing binding energy, are obtained

from Refs. 127 and 30. As is well known, the lowest energy isomers of the 4-mer and

5-mer are cyclic, with all oxygen atoms lying in the same plane. The hexamer is the

smallest water cluster whose minimum-energy configuration has a three-dimensional

hydrogen-bond network. Because the hexamer has several nearly iso-energetic yet

topologically distinct isomers, characterizing the properties of the hexamer in particular

has long been of interest to both theorists29–31, 35, 189 and experimentalists.190–194 Based

on the results presented in Figs. 4.2 and 4.3, all calculations for these clusters were
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Table 4.4: Many-body convergence of the dipole for small clusters. The percent con-
tributions of the many-body dipoles to the total cluster dipole were computed at the
RI-MP2/aug-cc-pVTZ level. BSSE was corrected through the SSFC method. All
greater-than-4B dipoles are less than 0.1%. C/D refers to constructive or destruc-
tive interference of the dipoles, with the percentage being the difference between the
orientation independent and dependent measures (Eqs. 4.10 and 4.13, respectively).

Isomer C/D
Dipole

1B 2B 3B 4B

4-
m

er S4 — — — — —
Ci — — — — —

Pyramid D(4%) 96.4 2.5 1.1 0.0

5-
m

er

Cyclic D(6%) 95.4 4.1 0.4 0.1
FR-B D(7%) 93.7 5.0 1.1 0.1

Cage-C C 96.1 2.1 1.8 0.1
Cage-A C 96.4 2.0 1.4 0.2
Cage-B C 92.4 6.1 1.2 0.1
FR-C D(4%) 95.1 3.7 1.8 0.1
FR-A D(4%) 97.4 1.4 1.2 0.0

6-
m

er

Prism D(4%) 90.3 7.4 2.2 0.0
Cage D(8%) 84.8 13.1 1.9 0.1
Book D(5%) 90.5 6.7 2.4 0.3
Cyclic — — — —
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Table 4.5: Many-body convergence of the polarizability for small clusters. The percent
contributions of the many-body polarizabilities to the total cluster polarizability were
computed at the RI-MP2/aug-cc-pVTZ level. BSSE was corrected through the SSFC
method. All greater-than-4B polarizabilities are less than 0.1%.

Isomer
Polarizability

1B 2B 3B 4B

4-
m

er S4 91.1 8.0 0.7 0.2
Ci 90.9 8.3 0.7 0.1

Pyramid 96.7 2.8 0.5 0.0

5-
m

er

Cyclic 90.6 8.4 0.8 0.1
FR-B 92.4 6.7 0.8 0.1

Cage-C 95.0 4.1 0.7 0.1
Cage-A 94.9 4.4 0.7 0.1
Cage-B 95.2 3.8 0.9 0.1
FR-C 94.2 4.9 0.7 0.2
FR-A 93.0 6.2 0.7 0.2

6-
m

er

Prism 95.1 3.8 1.0 0.1
Cage 93.5 5.5 0.9 0.1
Book 92.6 6.2 1.0 0.1
Cyclic 91.0 8.1 0.8 0.1
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Table 4.6: Many-body contributions to 14-mer dipoles and polarizabilities. Calculations
were performed at RI-MP2/aug-cc-pVDZ level and corrected for BSSE using the
VMFC(3B) method. The global minimum configuration is from an extensive study of
the AMOEBA potential energy surface.197

Isomer C/D
Dipole Polarizability

1B 2B 3B 1B 2B 3B

liquid1 C 62.6 35.6 1.7 96.7 1.8 1.5
liquid2 D(6%) 82.2 14.7 3.0 95.4 3.1 1.5

ice1 D(28%) 46.3 51.1 2.7 96.2 3.0 0.9
ice2 C 65.7 33.0 1.3 96.1 2.8 1.2

Global min197 D(7%) 90.1 6.0 3.9 93.4 4.3 2.2

performed at the BSSE-corrected RI-MP2/aug-cc-pVTZ level.195, 196 RI-MP2 was found

to agree with MP2 to within 10−6 a.u. for the dipole and 10−3 a.u. for the polarizability.

The many-body decomposition of the small cluster dipoles is presented in Ta-

ble 4.4. The dipole moments of the S4 and Ci 4-mer and the cyclic hexamer are zero

by symmetry. For nearly all clusters, the permanent dipole of the non-interacting water

monomers in the cluster configuration comprises more than 80% of the total dipole.

Surprisingly, to a good approximation, the dipole for these clusters is largely pairwise

additive. While 3B interaction energies can constitute up to 30% of the interaction energy

for these clusters, non-additive induced dipole effects account only for < 2.5% of the

total dipole. Similarly to the dipole, the many-body decomposition of the polarizability is

dominated by the 1B term. As shown in Table 4.5, the 2B polarizability contributes up to

9%, while the 3B term is responsible for roughly 1%. For both dipole and polarizability,

4B and higher contributions give rise to at most 0.2% to the total property.

In an attempt to assess the convergence of Eq. 4.3 for condensed phase water

systems, the global minimum energy configuration of the 14-mer cluster (as was recently

determined Kazachenko and Thakkar197 using the Amoeba force field60) is also analyzed

along with four 14-mer clusters that were randomly extracted from 100ps classical

molecular dynamics simulations of liquid water at ambient density at 298K and ice Ih at
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50K using the HBB2-pol91, 98 and TTM3-F58 potentials, respectively. The liquid and ice

14-mer configurations can be found in the supporting information of this paper, while the

configuration of the AMOEBA 14-mer global minimum structure can be found in the

supporting information of Ref. 197. The 14-mer clusters were specifically chosen because

they are large enough to contain at least one molecule that is completely “solvated” by

the remaining molecules, yet of sufficiently small size that the many-body decomposition

of both dipole and polarizability is still feasible. As discussed in Section 4.2.3, since the

SSFC method becomes prohibitively expensive for large clusters, the VMFC(3B) method

was used to correct for BSSE in all calculations of the 14-mer clusters that were carried

out at the RI-MP2/aug-cc-pVDZ level.

The many-body convergence of the polarizability is consistent between small

clusters and 14-mers, with the 1B term contributing more than 90%, the 2B term 2-5%,

and 3B less than 2.5%. For the many-body convergence of the dipole, the contributions of

the 1B and 2B dipoles are in competition. This behavior, which is distinct from that of the

polarizability, originates in part from the fact that, while the 1B polarizability eigenvalues

are always large and positive, the 1B dipole moments can combine constructively or

destructively, depending on their orientation. The extent to which the many-body dipoles

constructively or destructively interfere can be determined by the difference between the

orientation-independent (Eq. 4.10) and orientation-dependent (Eq. 4.13) convergence

metrics. When the difference is zero, the many-body dipoles are adding constructively,

otherwise the many-body dipoles are destructively interfering with one another. This

effect is presented in Tables 4.4 and 4.6 where the threshold for interference to be

considered destructive is taken as 3%.

Although the global minimum configuration of the 14-mer clusters (as predicted

by the Amoeba force field60) has dipole contributions that are similar to those obtained

for the smaller cluster minima, the broken hydrogen-bond configurations extracted
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from liquid and ice simulations exhibit different behavior. For these condensed phase

configurations, it is seen that even when the 1B and 2B terms add constructively, the

2B term can still contribute substantially. Interestingly, while the many-body dipoles

often destructively interfere to a small extent, in the case of the ice1 configuration the 2B

term acts to reorient the 1B contribution to such an extent that the interaction-induced 2B

dipole actually overcomes the monomer contribution. By contrast, the 3B dipoles make

minor contributions in all cases, which is likely related in part to the rapid convergence

of the many-body polarizability.

4.4 Summary

The convergence of the many-body expansion of the dipole and the (dipole-dipole)

polarizability for water was examined. It was demonstrated that methods commonly used

to assess the many-body convergence of these two properties can often provide ambiguous

results, especially for systems of lower symmetry. Alternative measures were introduced

and used to study the dependence of both dipole and polarizability on electronic structure

methods, basis sets, and schemes for correcting for the basis-set superposition error. It

was found that, although the average diagonal polarizability elements associated with

the 2B and 3B terms appear to slightly decrease relative to the gas-phase (1B) term, an

analysis of the many-body convergence based on this observation may be incomplete.

By considering the convergence of the eigenvalues individually, it was observed that the

2B polarizability can play a significant role, with water systems often becoming more

polarizable in some directions relative to an isolated molecule.

The many-body convergence of both dipole and polarizability of (H2O)N clus-

ters with N = 4− 6,14 was also examined. It was shown that if the total dipole and

polarizability of these clusters are treated as pairwise additive, more than 97.5% of the
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total value is recovered. The dipole and polarizability become accurate to within 99.8%

if 3B terms are also included. This analysis suggests that a theoretical/computational

strategy based on the many-body expansion of the electrostatic properties can be used

to accurately determine the dipole and polarizability of condensed-phase water systems

from highly correlated electronic structure calculations, as already done for the total inter-

action energy.78–80, 91 This, in turn, will enable the calculation of (linear and nonlinear)

water vibrational spectra entirely from “first principles”.

Portions of this chapter appeared in our previously published work, Medders,

G.R.; Paesani, F. “Many-body convergence of the electrostatic properties of water”,

J. Chem. Theory Comput. 2013 9, 4844–4852. This material was reproduced with

permission from the publisher.



Chapter 5

Many-body models for the dipole

moment and polarizability of water

Having established in the previous chapter the many-body convergence of the

dipole moment and polarizability for water, we now recall from Chapter 1 that, within

linear response theory and the dipole approximation, infrared and Raman spectra can be

obtained through the quantum time-correlation function of the dipole moment and polar-

izability, respectively (see Eqs. 1.3 and 1.4). Through this time-dependent formulation of

the vibrational spectra, it is thus possible to identify three different elements that are nec-

essary for a rigorous calculation of vibrational spectra: 1) a simulation approach capable

of correctly describing the quantum dynamics of the system of interest, 2) an accurate

representation of the underlying (Born-Oppenheimer) potential energy surface entering

the Hamiltonian that governs the system dynamics, and 3) accurate representations of the

multidimensional dipole moment and polarizability surfaces as a function of the system’s

degrees of freedom.

By far the most common approach to solving Eqs. 1.3 and 1.4 is to approximate

them through their classical counterparts. Classical correlation functions can be easily ob-

79
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tained from classical molecular dynamics (MD) simulations. For liquid water at ambient

conditions, classical spectra describe the low frequency (least quantum-mechanical) vibra-

tions reasonably well,198–203 but predict relatively large blueshifts for the high-frequency

(more quantum-mechanical) vibrations, such as the OH stretch.135, 204

Methods that attempt to directly obtain quantum time-correlation functions for

condensed-phase systems can be classified in two main groups. The first group contains

methods that treat quantum mechanically only a subset of the system’s vibrations, with

all remaining degrees of freedom being described at the classical level.205–211 These

mixed QM/MM methods have been extensively applied to model vibrational spectra of

isotopically dilute solutions of HOD in H2O (D2O),208, 212, 213 where, because of large

frequency separations, the OD (OH) stretch of HOD can be considered to be effectively

decoupled from all other system’s vibrations. Although mixed QM/MM methods have

been successful in reproducing the OD (OH) line shape of HOD in H2O (D2O), recent

ultrafast spectra measured for HOD in D2O have demonstrated that the OH stretch of

HOD is not fully decoupled from the other degrees of freedom.214

The second group of methods attempt to treat all nuclear degrees of freedom

quantum mechanically by extending Feynman’s path-integral formulation of statistical

mechanics to dynamical properties. One of the first and more common approaches

belonging to this group is centroid molecular dynamics (CMD) which, building upon path-

integral molecular dynamics (PIMD), approximates the exact quantum dynamics in terms

of classical-like equations of motion for the centroids of Feynman’s ring-polymers.141, 143

Depending on the shape of the underlying potential energy surface, CMD may suffer

from the so-called “curvature problem”, which can limit its applicability to molecular

clusters and low-temperature condensed-phase systems.215, 216 However, it has been

demonstrated that for water at ambient conditions the curvature problem is negligible,

with IR spectra obtained from CMD being in very good agreement with those obtained
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from mixed QM/MM methods.135, 216, 217 With the same spirit as CMD, ring-polymer

molecular dynamics (RPMD) was subsequently introduced as an ad hoc approach to

extending PIMD to the calculation of dynamical properties.218 Vibrational spectra

of water calculated from RPMD are contaminated by spurious resonances of the ring-

polymer lying within the frequency window of the OH stretch.219 A thermostatted version

of ring-polymer molecular dynamics (TRPMD) has also been proposed, which removes

the spurious resonances from the spectral region of interest by thermostatting the normal

modes of the ring-polymers.220 A systematic analysis of the OH line shape of HOD in

D2O has recently shown that the line shape predicted by TRPMD is significantly broader

and somewhat blueshifted relative to the corresponding mixed QM/MM results.135

Regardless of the simulation method used to evaluate the relevant quantum time-

correlation functions, a potential energy surface (PES) must be defined. For the case of

liquid water, innumerable models of varying degrees of empiricism have been developed.

A systematic comparison of the accuracy with which different models describe the Born-

Oppenheimer PES for water was presented in Chapter 1 through a detailed analysis of

the corresponding many-body expansion of interaction energies (see Figs. 1.1 and1.2).91

Among existing water models, our many-body potential with explicit polarization, MB-

pol,115, 122 was shown in Chapter 2 to accurately reproduce both structures and energetics

of small clusters,115, 122 as well as thermodynamic and dynamical properties of bulk water

at ambient conditions in Chapter 3.221 Improving upon other many-body potentials (e.g.,

CC-pol,78, 79, 81, 82, 222 WHBB,80, 209 and HBB2-pol91, 98), MB-pol was derived entirely

from a large dataset of highly-correlated many-body interaction energies using machine

learning techniques and employing mathematical functions that are sufficiently flexible

to capture the multidimensional complexity of the reference electronic structure data.

The final element needed to solve Eqs. 1.3 and 1.4 are the system’s dipole moment

and polarizability surfaces. In MD simulations with empirical (nonpolarizable and polariz-
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able) potentials, the dipole moment and polarizability of the water molecules can be easily

calculated from the corresponding parameters defined within the model.58, 59, 200, 223–225

In the case of ab initio simulations, the system’s dipole moment and polarizability can

be obtained from the electronic density.201, 202, 226–230 Within the MB framework, the

many-body potential used in the actual MD simulations does not contain any information

about the distribution of the electron density and the dependence of the energy on external

electric fields. For this reason, many-body potentials cannot, in principle, be used to

derive electrostatic properties, such as the system’s dipole moment and polarizability,

which are required for modeling IR and Raman spectra. While MB potentials employ

some form of polarizable electrostatics to describe higher-order molecular interactions,

the energy arising from this approximate electrostatics model is corrected with functions

(e.g., permutationally invariant polynomials in the case of WHBB,80, 209 HBB2-pol,91, 98

and MB-pol115, 122, 221) that account for quantum-mechanical effects neglected by purely

polarizable models, including correlation, exchange, charge penetration and charge trans-

fer. While these effects clearly affect both the charge distribution and polarizability, the

extent to which these contributions affect the infrared and Raman vibrational spectra

of liquid water is less clear. It is interesting to note that the same reasoning should be

extended to empirical water models, in which partial charges and/or atomic polarizabili-

ties, which are primarily fitted to reproduce structural and thermodynamic properties of

the system of interest, do not necessarily have a rigorous connection to the underlying

multidimensional dipole moment and polarizability surfaces.

In this study, we introduce accurate, “first principles” representations of the

multidimensional dipole moment and polarizability of water which enable molecular-

level investigations of IR and Raman spectra at a fully quantum-mechanical level. Our

contribution builds upon the observation that the dipole moment and polarizability of

a molecular system can rigorously be calculated through derivatives of the system’s
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energy with respect to external electric fields,114 which thus allows one to derive formally

exact many-body expansions of the dipole moment and polarizability. Exploiting the

convergence of the many-body expansion for the dipole moment and polarizability of

water, in Section 5.1, we describe the theoretical and technical details associated with

the development of many-body representations of the dipole moment and polarizability

for water. In Section 5.2, we demonstrate that these MB representations are capable

of accurately describing the dipole moment and polarizability of water systems in both

gas and condensed phases. Finally, we combine the newly developed many-body dipole

moment and polarizability surfaces with CMD simulations carried out with our many-

body MB-pol potential to model both IR and Raman spectra of liquid water at ambient

conditions. A brief summary and outlook is given in Section 5.3.

5.1 Technical details of the MB-µ and MB-α models

Within the many-body formalism, the total dipole moment of a molecular system

can be expressed as

µN−mer
α (1, . . . ,N) =

N

∑
i

µ1B
α (i)+

N

∑
i, j

µ2B
α (i, j)+ · · ·+µNB

α (1, . . . ,N), (5.1)

where µnB is the n-th interaction-induced dipole term and the subscript Greek letters are

the Cartesian tensor indices. An analogous expression can be written for the system

polarizability

α
N−mer
αβ

(1, . . . ,N) =
N

∑
i

α
1B
αβ
(i)+

N

∑
i, j

α
2B
αβ
(i, j)+ · · ·+α

NB
αβ

(1, . . . ,N), (5.2)

where αnB is now the n-th interaction-induced polarizability. In Ref. 185, we established

the convergence of Eqs. 5.1 and 5.2 for water clusters of different sizes and demonstrated
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that, for these systems, the dipole moment and polarizability are dominated by 1B and

2B contributions, with higher-order terms contributing by less than 4%. Unlike the

interaction energy, where 3B terms make a substantial contribution,31, 38, 39, 42–46, 126 the

more rapid convergence of Eqs. 5.1 and 5.2 suggests that accurate representations of the

dipole moment and polarizability surfaces for water can focus on 1B and 2B contributions

only, allowing 3B and higher-order terms to be treated in an effective way (or neglected

entirely, depending on the desired level of accuracy). Importantly, as discussed in

Ref. 185, an explicit description of the 2B term is required to correctly capture electronic

quantum-mechanical effects arising from exchange and charge transfer,96, 231, 232 which

play an important role at short-range and are neglected in purely polarizable models.

Exploiting Eqs. 5.1 and 5.2 and building upon our previous results,185 we intro-

duce here many-body representations of the dipole moment (MB-µ) and polarizability

(MB-α) surfaces for water derived from highly-correlated electronic structure calcula-

tions. The 2B terms were fit to 2B dipoles and polarizabilities calculated for 42,495

configurations defined in Ref. 115 at RI-MP2/aug-cc-pVTZ level using the counterpoise

method to correct for the basis set superposition error (BSSE).103 It was previously

demonstrated by us that this level of theory accurately describes 2B electrostatic proper-

ties of water.185 Both dipole moment and polarizability were calculated through finite

field calculations with an electric field of 0.005 a.u.180 using Molpro (version 2012.1).181

MB-µ is constructed as a sum of explicit 1B and 2B terms, with higher-order terms

being described through many-body polarization. Specifically, the 1B term corresponds

to the LTP2011 dipole moment surface developed by Lodi et al.,233 which was fitted to the

water molecular dipole obtained from all-electron, internally contracted multireference

configuration interaction calculations in the aug-cc-pV6Z basis set, including corrections

for size-extensivity and relativistic effects. The 2B dipole moment is modeled through two

distance-dependent contributions. In the long-range region, where two water molecules
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are well separated, the total dipole moment is represented through classical electrostatic

interactions (µ2B,ind) described by the Thole-type point polarizable dipole model of

Burnham and co-workers,59 with minor modifications described in Ref. 115 and referred

to here as TTM4-Ind. At short-range, where the electron densities of the individual

monomers overlap, permutationally invariant polynomials are used to correctly capture

the complexity of electronic quantum-mechanical effects contributing to the 2B dipole

moment (µ2B,poly),

µ2B
α (i, j) = s2

(
t(rOO)

)
µ2B,poly

α (i, j)+
[
1− s2

(
t(rOO)

)]
µ2B,ind

α (i, j). (5.3)

Here, s(t(rOO)) is a switching function which smoothly transitions from 1 to 0 as a

molecule is moved from the short-range to the long-range region, with the range of the

transition region being controlled by t(r) = r−Ri
Ro−Ri

. The inner and outer limits of the

transition region, Ri and Ro, correspond to 5.5 and 7.5 Å, respectively. The explicit form

of the switching function is given by:

s2(x) =


1 if x < 0

1+ x2(2x−3) if 0≤ x < 1

0 if x≤ 1

. (5.4)

The short-range dipole moment is represented as a sum over atom-centered effective

charges multiplied by the corresponding cartesian positions of the atoms,

µ2B
α =

6

∑
i

qi(ξ
µ
0, . . . ,ξ

µ
14)r

i
α. (5.5)

The effective charges depend on the internal geometry of the water dimer through the

auxiliary variables, ξ, which are formed from the exponentiated interatomic distances,
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e−kr, where k is a parameter controlling the range of the exponent and r is the interatomic

distance as shown in the Supporting Information of Ref. 234. These auxiliary variables

are used to form polynomials that are invariant with respect to permutation of all other

like atoms and co-vary when permuted with any other like atom. A more complete

description of the symmetrization procedure can be found in the appendix of Ref. 80.

Importantly, to ensure invariance of the dipole moment upon changes of the origin, the

sum of the effective charges was constrained to zero during the fitting. Because charge

neutrality is only achieved within a given tolerance (in this study, an RMS error of 10−6

charge units), each dimer was positioned such that the oxygen-oxygen (O-O) center of

mass was located at the origin of the reference frame. This was enforced both during the

fitting and the evaluation of the 2B dipole. The charges, qi in Eq. 5.5 are described in

terms of 5th order polynomials in the auxiliary variables presented in Table S1, resulting

in 1826 terms for qH and 1052 for qO. The linear coefficients of the polynomials were

fitted with singular value decomposition, while the 6 nonlinear parameters describing the

range of the auxiliary variables were optimized using the simplex algorithm, with the

least squares solution solved at each iteration, as described in Ref. 115. For the 2B dipole,

the 6 nonlinear parameters were those controlling the range of the auxiliary variables

(kO
OO,k

O
OH ,k

O
HH ,k

H
OO,k

H
OH ,k

H
HH), where the superscript indicates the effective charge to

which the variable contributes and the subscript indicates the atom pair that forms the

distance. All higher-order terms of MB-µ are described by the TTM4-Ind model.59, 115

For the training set of 42,495 2B dipoles moments, the RMS error is 0.01 Debye. When

restricting the set to the ∼32,000 dimers with binding energies less than 25 kcal/mol, the

RMS error is 0.003 Debye.

Similarly to MB-µ, the many-body representation of the water polarizability

(MB-α) is described as a sum of explicit 1B and 2B contributions, and a many-body term
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defined as

α
N−mer
αβ

(1, . . . ,N) =
N

∑
i

α
1B
αβ
(i)+

N

∑
i, j

α
2B
αβ
(i, j)+α

MB
αβ

(1, . . . ,N). (5.6)

Here, α1B
αβ

is the 1B polarizability model of Avila, which was fitted to molecular polar-

izabilities calculated at the CCSD level.235 Unlike the 2B term of the dipole moment,

the short-range 2B contribution to the polarizability was directly built on top of the

TTM4-Ind polarizability. The 2B polarizability thus takes the form:

α
2B
αβ
(i, j) = s2

(
t(rOO)

)
α

2B,poly
αβ

(i, j)+α
2B,ind
αβ

(i, j) (5.7)

where the switching function again turns off the short-range 2B polynomial over a

transition region from 5.5 to 7.5 Å. The short-range 2B term is represented by effective

isotropic polarizabilities, αi, which are cast into the lab frame by multiplication by the

unit vectors, ε̂i, associated with the sites carrying the effective polarizabilities,

α
2B,poly
αβ

=
10

∑
i

α
i(χα

0 , . . . ,χ
α
30)ε̂

i
αε̂

i
β
. (5.8)

This functional form has the advantage of generating a symmetric polarizability tensor.

The invariance of the polarizability with respect to the choice of origin is achieved by

centering the O-O centroid of the dimer at the origin. Importantly, unlike the dipole

moment, where the effective charges were placed only on the atomic sites, there effective

polarizabilities are positioned on both the 3 atomic sites and 2 additional lone-pair sites

of each molecule. As in Ref. 115, the 2 lone-pair positions are defined by:

rrr±L = rrrO +
1
2

γ‖(rrrOH1 + rrrOH2)± γ⊥[rrrOH1× rrrOH2] (5.9)
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The parameters γ‖ and γ⊥ determine the position of the lone pair and were optimized

during the fitting process. The effective polarizabilities are represented by polynomials

formed from auxiliary variables depending on the interatomic distances (Table S1),

maintaining the same in-/co-variant properties as for the dipole moment. Due to the

larger number of possible interatomic distances, the exponential range parameters were

assumed to be the same regardless of the effective polarizability (i.e., kO
ab = kH

ab = kL
ab).

This results in the following nonlinear parameters: kOO,kOH ,kOL,kHH ,kHL,kLL,γ‖, and

γ⊥. Third-degree polynomials, composed of 435 terms for αO, 603 terms for αH, and 588

terms for αL, were found to accurately fit the reference data, with a RMS error of 0.03

Å3 over the entire training set and 0.009 Å3 for dimers with binding energy less than 25

kcal/mol. In the same way as for MB-µ, all higher order term in MB-α are represented

through the many-body polarizability arising from the TTM4-Ind model.59, 115

5.2 Results

5.2.1 Electrostatic properties of clusters

Since MB-µ and MB-α correctly reproduce the reference dipole moment and

polarizability of the corresponding training sets, their transferability is tested here on

small water clusters. Specifically, we compare the 2B dipole moment and polarizability

predicted by MB-µ and MB-α for fourteen water clusters containing from 4 to 6 molecules

against reference values obtained at the RI-MP2/aug-cc-pVTZ level of theory including

the counterpoise correction for BSSE. Fig. 5.1 shows the RMS error in the dipole

moment (panel a) and polarizability (panel b) obtained for different (electrostatics)

models, including TTM4-Ind, WHBB, and the present many-body representations, MB-µ

and MB-α. In these comparisons, TTM4-Ind refers to the polarizable model derived

from the TTM4-F water potential which MB-µ and MB-α are built upon, while WHBB
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is the model of Refs. 209 and 80 in which the total dipole is expressed as a sum of 1B

and 2B contributions only. Following our previous analysis of the electrostatic properties

of water clusters,185 the RMS errors shown in Fig. 5.1 for each model were calculated as

||pppMP2− pppmodel||F, (5.10)

where ppp is either the dipole moment or the polarizability. The absolute values of the

dipole moment and polarizability calculated for each cluster at the RI-MP2/aug-cc-pVTZ

level of theory are also shown in Fig. 5.1a and c, respectively, as a reference.

MB-µ and MB-α clearly provide a significant improvement upon the underlying,

purely induced-electrostatics model (TTM4-ind), with an error in the 2B properties of at

most 5% and 6% for the dipole moment and polarizability, respectively. Since both MB-µ

and WHBB are built within the same theoretical framework, they would be expected

to be able to describe the 2B dipole moment of water clusters with similar accuracy.

This suggests that the relatively larger RMS errors predicted by WHBB in Fig. 5.1

compared to MB-µ likely arise from differences in the composition of the corresponding

training sets as well as in the level of theory used in the calculations of the reference data.

Specifically, the WHBB 2B dipole moment surface was derived from BSSE-uncorrected

MP2/aug-cc-pVTZ dipole moments, while the reference data used to develop MB-µ were

calculated including the counterpoise correction to remove the BSSE.

5.2.2 Comparison of two-body properties from liquid simulations

Having established that MB-µ and MB-α correctly describe the dipole moment

and polarizability of water clusters, the accuracy of both many-body surfaces is assessed

here for liquid water. While reference data for the energetics of water systems in

periodic boundary conditions have recently become available from quantum Monte Carlo
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Figure 5.1: Accuracy of 2B dipole and polarizability models for clusters. The ability of
different models for the dipole moment and polarizability to reproduce the two-body
electrostatic properties was examined for clusters ranging from 4 to 6 water molecules.
On the x-axis is the isomer index, corresponding to the clusters of Refs. 127 and 30,
where the first number indicates the number of water molecules in the cluster. Panel a)
shows the RMS error in the 2B dipole, while panel b) shows the RMS error in the 2B
polarizability. The reference electronic structure method is RI-MP2/aug-cc-pVTZ with
BSSE-correction.
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calculations,128, 236 we are unaware of any benchmark calculations for the electrostatic

properties of liquid water. For this reason, we investigate here the accuracy of MB-µ

and MB-α in reproducing the dipole moment and polarizability of a hydrogen-bonded

dimer along a 2 ps CMD trajectory extracted from a simulation of liquid water at ambient

conditions.221 During the course of the 2 ps trajectory, the distance between the oxygen

atoms of the two water molecules within the dimer varies from 2.6 to 3.6 Å(with an

average value of 3.15 Å), exploring a wide range of hydrogen bond strengths. For

each trajectory frame, reference 2B dipoles and polarizabilities were calculated at the

RI-MP2/aug-cc-pVTZ level of theory including the counterpoise correction for BSSE.

It is important to emphasize that none of the 1000 dimer configurations visited during

the CMD trajectory were included in the training sets used for the development of both

MB-µ and MB-α.

The fractional errors (||pppMP2− pppmodel||F/||pppMP2||F) associated with the dipole

moment and polarizability calculated with different models, including four density

functionals commonly used in water simulations (BLYP, B3LYP, PBE, and PBE0) are

shown in Fig. 5.2. All DFT calculations were carried out with the aug-cc-pVTZ basis and

were corrected for BSSE using the counterpoise method. Given the similarity between

the results obtained with BLYP and PBE, and with B3LYP and PBE0, only the PBE and

PBE0 fractional errors are included in Fig. 5.2. Figures including the results of BLYP

and B3LYP are reported in the Supporting Information of Ref. 234.

Fig. 5.2 clearly demonstrates that the 2B polarizability is more difficult to re-

produce than the 2B dipole moment. Among all models considered here, MB-µ and

MB-α provide the closest agreement with the reference data, with fractional errors of

0.4% and 2% in the 2B dipole moment and polarizability, respectively. GGA functionals

(i.e., PBE and BLYP) have errors of ∼20% for the dipole moments and more than 60%

for the polarizabilities. Compared to the GGA functionals, hybrid functionals predict
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Figure 5.2: Accuracy of 2B dipole and polarizability models for liquid water. Frac-
tional errors in the 2B dipole moments (a) and polarizabilities (b) are examined for
hydrogen-bonded dimers extracted from a CMD simulation of liquid water. The refer-
ence properties were calculated at the RI-MP2/aug-cc-pVTZ level with BSSE correction.
The properties obtained for PBE and PBE0 density functionals are also presented (ob-
tained in the aug-cc-pVTZ basis with BSSE correction). Results for BLYP and B3LYP
are shown in the supporting information.
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relatively smaller fractional errors for all configurations visited along the CMD trajectory,

which suggests that inclusion of Hartree-Fock exchange is likely important for correctly

describing the electrostatic properties of liquid water.

5.2.3 Vibrational spectra of liquid water

Given the accuracy of our MB-pol, MB-µ, and MB-α models in describing the

water interactions, dipole moment, and polarizability, respectively, these three surfaces

were combined in CMD simulations of IR and (anisotropic) Raman spectra of liquid

water at ambient conditions. The frequency dependence of the IR absorption coefficient,

α(ω), was calculated as

α(ω)n(ω) =
[

2ω

3Vh̄cεvac

]
tanh

(
h̄ω

kT

)∫
∞

−∞

dt e−iωt〈µµµ(0)µµµ(t)〉, (5.11)

where V is the volume of the simulation cell, c is the speed of light, n(ω) is the fre-

quency dependent refractive index of the system, and 〈µµµ(0)µµµ(t)〉 is the quantum dipole

autocorrelation function.200 The anisotropic reduced Raman spectrum was obtained

through

R(ω) =
2ω

(ωI−ω)4 tanh
(

h̄ω

kT

)∫
∞

−∞

dt e−iωt〈Tr[βββ(0)βββ(t)]〉 (5.12)

where βββ is the anisotropy of the dipole-dipole polarizability, obtained by removing the

isotropic component of the polarizability tensor: βαβ = ααβ− 1
3Tr[ααα].200 MB-µ and

MB-α were used to calculate the correlation functions appearing in Eqs. 5.11 and 5.12,

and the nuclear quantum dynamics was approximated by adiabatic CMD using the

MB-pol potential energy surface to describe the interactions between water molecules.

Specifically, 10 CMD simulations were performed, each of which was 27 ps long and

was seeded from different initial conditions obtained from PIMD simulations carried out

at 298.15 K. The CMD propagation was performed in the normal-mode representation,
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and decoupling between the dynamics of the centroid and non-zero frequency normal

modes was obtained with an adiabaticity parameter γ = 0.1.135, 237 A timestep of 0.02 fs

was found to be sufficient for energy conservation. To enable the study of local solvation

dynamics, instead of simulating pure H2O, a single HOD molecule was placed in 215

H2O molecules. In this very low concentration, the HOD molecule is expected to have

negligible effect on the calculated vibrational spectra (indeed, no OD stretch or HOD

bend is discernible in the calculated spectra).

The IR and Raman spectra calculated using our MB-MD approach are compared

with the corresponding experimental results in Fig. 5.3. The reduced anisotropic Raman

spectra (Fig. 5.3 c-d) are presented in arbitrary units, with the experimental spectrum

being adapted from Ref. 238. Due to the use of arbitrary units in the experimental results,

the Raman spectrum was normalized to the maximum intensity of the OH stretch, with

successive levels of magnification employed for the bend and the low-frequency features.

Examination of the low-frequency features of the IR and Raman indicates that MB-pol

provides an accurate description of the hydrogen-bonding dynamics. The maximum

of the calculated librational band (the broad feature between 400-800 cm−1 that is

related to the hindered reorientation of molecules due to intermolecular interactions) lies

within a few wavenumbers of the corresponding experimental value. In addition, the

frequency of hydrogen-bond stretches (∼180 cm−1) is also in very good agreement with

experiment. For the Raman spectra, the agreement between simulation and experiment

is somewhat less good, with the position of hydrogen-bond stretches being slightly

blueshifted and the tapered plateau of the librations being less defined. As is apparent

in Fig. 5.3, some imbalance in the relative intensities of the stretch, bend, and librations

is also present in the calculated Raman spectrum compared to the experimental results.

Given the good agreement between the calculated and measured IR spectra, which

implies that the underlying (quantum) molecular dynamics is correctly described, and
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the high accuracy of the 1B and 2B polarizabilities, the differences found between the

calculated and experimental Raman spectra suggests that effects neglected by MB-α

may be important for the low-frequency Raman spectra, such as higher-order many-

body effects, frequency-dependence of the polarizability, or higher-order polarizability.

In addition, the association band around 2250 cm−1 (arising from the combination of

librational modes with the bending vibration) is barely visible in the IR spectrum and

is missing in the Raman spectrum. It has been suggested that this feature, which may

partially be recovered in the local monomer approximation,135 may not be completely

captured through approximate quantum dynamics methods such as CMD.

The position of the OH stretch feature has proven quite difficult to reproduce the-

oretically due to its anharmonicity and highly quantum-mechanical nature. For instance,

empirically parameterized fixed-charge water models typically struggle to capture the

average position of the OH band and predict shape and intensity (even after inclusion

of quantum correction factors) that are significantly different from the experimental

measurements.49, 50 Inclusion of polarization effects improves the agreement, particularly

in the intensity,58, 59, 223, 225 although empirical parametrizations are often still required

to correctly predict the position of the OH band. More recently, ab initio molecular dy-

namics simulations have also been employed to model vibrational spectra. Classical MD

simulations with GGA functionals predict strongly redshifted bands (upon which nuclear

quantum effects can be expected to lead to an additional redshift of 100-150 cm−1).227–229

Somewhat better results were obtained with hybrid functionals, although both position

and intensity of the OH stretch band are generally not well reproduced.230 The position

of the OH stretch band predicted by our MB-MD approach is in good agreement with the

corresponding experimental results, with the intensity maxima being slightly shifted to

the blue by roughly 40 and 30 cm−1 in the IR and Raman spectra, respectively. However,

the shape of both the calculated IR and Raman OH bands is somewhat skewed. In
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particular, while both the onset 2850 cm−1 and the position and shape of the blue side of

the band are in good agreement with experiment, the low-frequency portion of the band

is lacking in intensity.

To understand the origin of the missing stretch intensity, it is important to consider

the interplay between the bend and stretch bands. With a maximum at ∼1640 cm−1

in both IR and Raman experimental spectra, the bend overtone lies squarely within the

OH stretching region. For this reason, it has long been proposed that a Fermi resonance

may exist in liquid water between the bend overtone and the OH stretch fundamental,

contributing additional intensity to the signal in the strongly H-bonded stretch region.

Therefore, in order to correctly reproduce the shape of the OH stretch band, 1) the bending

frequency must be correctly positioned such that its overtone coincides with the stretch

fundamental, and 2) the dynamical method must be able to describe the Fermi resonance

between the two vibrational modes. While it is unclear the extent to which CMD can

capture Fermi resonances, the present situation is undoubtedly complicated by the fact

that the water bend is slightly red-shifted with respect to experiment, by 28 and 14 cm−1

for the IR and Raman spectra, respectively. Given the overall good agreement between the

calculated and experimental bending frequency and similar baselines for the calculated

and experimental OH bands, it thus seems plausible that the lack of intensity in the red

portion of the calculated OH band may be due to quantum dynamical effects associated

with the Fermi resonance, rather than to missing hydrogen-bonded configurations.

5.2.4 Characterizing the stretch line shape

To provide further insights into the origin of the OH line shape, the contributions

of the potential energy surface and the Fermi resonance are isolated by studying the

vibrationally decoupled OD stretch of the dilute HOD molecule in H2O. Due to the

difference in molecular mass, the bend overtone of HOD lies outside the OH stretch
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band, removing the effect of the Fermi resonance. In addition, because the O-O radial

distribution function given by MB-pol is in excellent agreement with the experimental

data, this suggests that the differences in the vibrational structure between simulations

and experiment are likely associated to the distribution of the hydrogen atoms, which

can be efficiently probed by focusing on the OD vibrational frequencies of HOD in H2O.

Therefore, this isotopically dilute system is ideally situated to disentangle dynamical

effects from the underlying potential energy landscape.

To assess the accuracy of MB-pol in describing the OD vibrational frequencies

of the HOD molecule in H2O, QM/MM calculations at the MP2/cc-pVTZ level were

performed for 2500 cluster configurations extracted from a 10 ps CMD simulation

of HOD in H2O. Following the procedure outlined by the Skinner group,212 water

molecules were assigned to the QM region if their oxygen atoms were within 4.2 Å of the

deuterium atom of the central HOD molecule. In addition to these QM H2O molecules, a-

SPC/Fw partial charges placed on the next closest 80 molecules were included in the MM

region.240 For each cluster configuration, the fully anharmonic OD transition frequency

from the v=0 to the v=1 energy level was obtained by calculating the potential energy

curves associated with the OD stretch and solving the corresponding one dimensional

vibrational Schrödinger equation . Analogous QM/MM calculations were carried out

using MB-pol to describe the QM region. The resulting in the frequency distributions are

shown in Fig. 5.4.

The comparison clearly shows that the frequencies obtained from MB-pol and

MP2 are effectively identical. However, the frequency distributions cannot be compared

directly to the OD IR or Raman line shape because they lack dynamical effects (e.g.,

motional narrowing and non-Condon effects216, 217, 241), which are known to red-shift and

narrow the underlying distribution. Nonetheless, the close agreement between MB-pol

and MP2 provides further evidence that the MB-pol is comparable in accuracy with
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Figure 5.4: Frequency distributions of dilute HOD in H2O: MB-pol vs. MP2. OD
frequency distributions of dilute HOD in H2O obtained from QM/MM calculations with
MB-pol (red) and MP2/cc-pVTZ (blue) used in the QM region.

correlated electronic structure methods, suggesting that the origin of the differences

between the calculated and experimental spectra in the OH region lies elsewhere. To

enumerate possible sources of differences, we first note that the intramolecular geometry

of water molecules in the liquid may be (slightly) different for MB-pol and MP2, resulting

in (slightly) different OH vibrational frequencies. These differences cannot be identified

in the QM/MM calculations, which probe only one of the intramolecular degrees of

freedom. To test this hypothesis, CMD simulations at the MP2 [and possibly CCSD(T)]

levels should be carried out. Unfortunately, despite much recent progress,107 such

simulations are currently out of reach. Second, an exact treatment of nuclear quantum

dynamics is required to rigorously capture the nature of the OH stretch band. While not

yet possible, this is also an active area of research.242 Finally, the differences between the

experimental and simulated line shape could arise from intrinsic limitations of current,

state-of-the-art electronic structure methods from which the many-body surfaces are

derived.243, 244
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5.3 Summary

Accurately modeling vibrational spectra from first principles requires a robust

treatment of quantum dynamical effects, a potential energy surface that gives rise to

the vibrational motion of the system, and a faithful description of the dipole moment

and polarizability as a function of the system’s degrees of freedom (which determine

the IR and Raman activity of the underlying vibrations, respectively). In this chapter,

we developed first principles models for the dipole moment (MB-µ) and polarizability

(MB-α) of water by exploiting the rapid convergence of the many-body expansion of

interactions. Centroid molecular dynamics simulations were used to simulate the quantum

dynamics of liquid water at ambient conditions using the MB-pol PES. Using MB-µ and

MB-α to evaluate the dipole and polarizability time correlation functions, it was found

that the both the positions and intensities of the infrared and Raman spectral features are

in good agreement with experiment, without relying on any ad hoc parameters. While

the overall position and intensity of the OH vibrational band are accurate, the line width

is somewhat too narrow, lacking intensity on the red side.

To provide insights into the origin of the OH line shape, QM/MM calculations

of dilute HOD in H2O were carried out using MB-pol and MP2 in the QM region. The

close agreement between the OD frequency distributions obtained at the MB-pol and

MP2 level provides further evidence for the accuracy of MB-pol. This also suggests that

the differences between the calculated and experimental spectra may be due to inher-

ent limitations in the electronic structure methods (even at the correlated level)243, 244

and/or an incomplete description of the nuclear quantum dynamics (e.g., combination

bands and Fermi resonances). Given that MB-pol, MB-µ, and MB-α are built purely

from “first principles” and provide good agreement with correlated electronic structure

calculations, this analysis suggests that empirical models that provide the correct OH
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line width for H2O using MD or CMD simulations may benefit from unphysical compen-

sation of effects—artificially encoding quantum dynamical effects into the empirically

parametrized interactions. While improvements to electronic structure and quantum

dynamics methods may be necessary to quantitatively capture subtle, quantum mechan-

ical effects, the many-body molecular dynamics (MB-MD) approach introduced here

represents a powerful, “first principles” method for the study of vibrational spectroscopy.

Portions of this chapter appeared in our previously published work, Medders,

G.R.; Paesani, F. “Infrared and Raman spectroscopy of liquid water through first princi-

ples many-body molecular dynamics”, J. Chem. Theory Comput. 2015 11, 1145–1154.

This material was reproduced with permission from the publisher.



Chapter 6

The Role of the Interplay of the

Potential Energy and Dipole Moment

Surfaces in Controlling the Infrared

Activity of Liquid Water

From the theoretical point of view, a consistent interpretation of the vibrational

spectra of water has been complicated, in part, by the existence of numerous (both ab

initio and empirically parametrized) molecular models that can sometimes give conflicting

explanations for the same spectroscopic features.17, 23 To address this issue, in the

previous chapter summarized our recently introduced unified methodology for modeling

molecular systems, denoted many-body molecular dynamics (MB-MD), which is built

entirely upon correlated electronic structure data and includes a quantum-mechanical

description of the molecular motion.234 By construction, MB-MD thus enables “first

principles” calculations of structural, thermodynamic, dynamical, and spectroscopic

properties of molecular systems from the gas to the condensed phase. Through the

102
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MB-MD methodology, empirical parameter-free representations of the two properties

that are required for the calculation of IR vibrational spectra, the multidimensional

potential energy surface (PES) and dipole moment surface (DMS), are independently

derived from large datasets of correlated electronic structure calculations.234 While

dynamical effects, such as motional narrowing, play an important role in determining the

final line shapes,208, 245, 246 from a static perspective, the IR spectrum can be related to

the frequencies of the vibrational modes determined by the multidimensional potential

energy surface weighted by the associated squared transition dipoles. In this contribution,

we seek to understand the roles of both PES and DMS in determining the IR activity of

liquid water by investigating the properties of three different molecular models that have

been previously applied to the study of IR spectra.

The first model, q-TIP4P/f, is a flexible point charge force field that was em-

pirically parametrized to reproduce thermodynamic and dynamical properties of bulk

water.49 q-TIP4P/f employs fixed point charges located on the hydrogen atoms and a

fictitious “M-site” located along the HOH bisector. Fixed charge models are, however,

unable to correctly describe the geometry dependence of the molecular dipole of water, an

effect which is important for reproducing the correct IR spectral intensities of water.90, 246

Furthermore, such models predict that molecules with the same internal geometry but

which reside in different hydration environments have the same dipole moments, which

limits the ability of such models to reproduce the IR absorption intensities.200, 224 Po-

larizable force fields, on the other hand, allow the molecular charge distributions to

adapt to the surrounding electrostatic environments.247 As a representative example of

polarizable force fields, we consider the TTM3-F model,58 which has been extensively

used in simulations of vibrational spectra.34, 219, 248 TTM3-F was fitted to a relatively

small set of ab initio data and employs “Thole type” damped point polarizable dipoles

to recover induced dipole effects.57 Though its associated molecular DMS is based on
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an accurate fit to correlated electronic structure data,116 the TTM3-F model empirically

adjusts the gas phase dipole moment to generate an effective DMS that partially accounts

for environmental effects in the condensed phase.58 This is similar to strategies employed

in other polarizable models, where the charges were modified to reproduced spectroscopic

features.223, 225

The final model considered here is the many-body MB-pol PES and the as-

sociated MB-µ DMS, recently developed by us.234 Both MB-pol PES115, 122, 221 and

MB-µ DMS234 were independently developed by using the many-body expansion of the

interaction energy (and its derivatives with respect to electric fields),

EN(x1, . . . ,xN) = ∑
a

V (1B)(xa)+ ∑
a<b

V (2B)(xa,xb)+ · · ·+V (NB)(x1, . . . ,xN). (6.1)

Eq. 6.1 is a rigorous representation of the total interaction energy of a generic N-molecule

system which is expressed as a sum of one-body (1B) monomer distortion energies, two-

body (2B) pairwise interactions, up to N-body interactions.91 The MB-pol PES relies on

explicit fits to a large number of correlated electronic structure data for the 1B, 2B, and

3B interactions, while including all higher-order terms in Eq. 6.1 through many-body

induction.59, 115 The even more rapid convergence of the many-body expansions for the

water dipole moment and polarizability (established in Ref. 185) allowed us to introduce

highly accurate multidimensional representations for these properties (called MB-µ and

MB-α, respectively). These many-body representations describe the dipole moment and

polarizability of an N-molecule water system in terms of explicit 1B and 2B contributions

derived from correlated electronic structure data, with all higher-order interactions being

included through many-body induction.234 The MB-µ and MB-α surfaces were employed

in adiabatic centroid molecular dynamics (CMD)141, 237 simulations carried out with

the MB-pol PES to model the infrared and Raman spectra of liquid water at ambient
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conditions.234 Detailed comparisons with experimental measurements and electronic

structure data obtained at the MP2 level demonstrated the accuracy of the MB-MD

methodology in reproducing both positions and shapes all spectral features. The analysis

of the stretching band calculated for pure H2O and a dilute mixture of HOD in H2O

also highlighted some differences in the low-frequency portion of the band (∼3000-

3250 cm−1) compared to the experimental line shape. We refer the reader to Ref. 234 for

a discussion of possible sources for this missing intensity.

In this contribution, following Ref. 234, the calculation of the relevant quantum

dipole autocorrelation function (Eq. 5.11) was carried out within the CMD formalism,

which has been shown to provide an approximate yet accurate description of several

quantum dynamical properties of liquid water at ambient conditions.135, 216 Specifically,

for each model PES described above (q-TIP4P/f, TTM3-F, and MB-pol), path-integral

molecular dynamics (PIMD) simulations137 were initially performed in the NVT en-

semble for systems containing 216 molecules at 298.15 K and experimental density.

Using 10 different initial conditions obtained from the PIMD simulations, 27 ps adiabatic

CMD simulations were then performed in the normal-mode representation. The quantum

partition function was discretized using 32 quasiparticles or “beads”, and an adiabaticity

parameter γ = 0.1 was used to guarantee a sufficient decoupling between the dynamics

of the centroid variables and the non-zero frequency normal modes.135, 237 A time step

of 0.02 fs was used to ensure energy conservation and the dynamical trajectories were

saved every 2 fs to enable the calculation of the quantum dipole autocorrelation function

required by Eq. 5.11. The “time-reversible always stable predictor-corrector” method

was used with fourth order extrapolation in the predictor to obtain the induced dipoles.249

We begin the analysis of the infrared spectra of water by briefly summarizing the

main spectroscopic features of interest: 1) a small shoulder at∼180 cm−1 associated with

the hydrogen bond stretch corresponding to hindered translations of molecules within the



106

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (cm
-1

)

0e+00

1e+04

2e+04

3e+04

In
fr

a
re

d
 I

n
te

n
s
it
y
 (

c
m

-1
)

Experiment

q-TIP4Pf

TTM3-F
MB-µ / MB-pol
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The spectra were calculated through Eq. 5.11, with the ensemble average obtained
through centroid molecular dynamics (CMD) simulations performed at 298.15 K. The
experimental data (black) are adapted from Ref. 239.
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liquid; 2) a broad librational band at <1000 cm−1 associated with hindered reorientations

of molecules within the hydrogen bonding network; 3) a peak at∼1650 cm−1, associated

with the HOH bending vibration; 4) a small, broad feature near ∼2250 cm−1 correspond-

ing to the combination band of the bending vibrations with librations; and 5) a broad

feature at 3000-3750 cm−1, corresponding to the OH stretching vibrations. Although

the details of these features will be discussed in depth later, it is useful to make some

general comments about the performance of the three different water models. As was

mentioned earlier, because the q-TIP4P/f molecular dipole moment does not respond to

the fluctuating electric field of the surrounding environment, it is to be expected that the

infrared intensities predicted by q-TIP4P/f differ significantly from experiment. Despite

the fact that the q-TIP4P/f bend and stretch features are thus predicted to have nearly the

same intensity, the overall position of these features are in reasonably good agreement

with experiment as a result of the empirical parameterization. TTM3-F, which includes

induced dipole effects, more accurately predicts the relative intensities for the bending

and stretching bands. However, while position and width of the classical TTM3-F stretch

and bend features were shown to be in good agreement with experiment,58 inclusion of

nuclear quantum effects results in a significant redshift of both bands.219 The bending

and stretching spectral features predicted by the MB-pol PES in combination with the

MB-µ DMS are in good agreement with experiment in terms of their positions, shapes,

and intensities, although, as discussed in Ref. 234, the intensity is underestimated on the

red portion of the OH stretching band.

While Fig. 6.1 is sufficient to make general statements about the accuracy of the

three different water models, it does little to explain what physical aspects of a model

make it more or less accurate. Since the infrared activity is related to both the vibrational

structure of the energy landscape and the dipole derivatives along those vibrational

coordinates, we attempt to better assess the accuracy of each model by decoupling the
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effects associated with the corresponding PES and DMS. For this purpose, the dynamical

trajectories obtained from the CMD simulations carried out with each model PES are

combined in turn with the DMSs associated with the other models. This results in 9

different quantum dipole autocorrelation functions, leading to the 9 IR spectra shown in

Fig. 6.2, each of which is labeled according to the notation “DMS / PES”.

The hydrogen bond stretch at∼180 cm−1 is a key feature to highlight polarization

effects on the IR spectra. While all three model PESs are capable of describing hindered

translations between hydrogen bonded molecules, the q-TIP4P/f simple point charge

representation of the dipole moment, which is independent of the surrounding chemical

environment, necessarily generates no IR signal from this purely translational motion.200

This effect can be clearly seen in the top row of Fig. 6.2 (corresponding to the q-TIP4P/f,

TTM3-F, and MB-pol CMD trajectories combined with the q-TIP4P/f DMS), where no

distinct feature corresponding to the hydrogen bond stretch can be identified in the region

between 0 and 250 cm−1. When the CMD trajectories are combined with the TTM3-F

DMS (middle row of Fig. 6.2), some enhancement in the 0-250 cm−1 region is observed,

particularly in the case of MB-pol trajectories (panel f ), although the hydrogen bond

stretch is still not well resolved with any of the combinations of the TTM3-F DMS with

the three PESs. On the other hand, the hydrogen bond stretch feature is found to be

in good agreement with experiment when the MB-µ DMS is combined with the CMD

trajectories performed with the MB-pol PES.

The different shapes of the hydrogen bond stretch features of the MB-pol PES

identified in panels f and i can be traced back to (at least) two main differences be-

tween the MB-µ and TTM3-F DMSs. First, the TTM3-F DMS, which has only a

single (isotropic) polarizable site on each molecule, is unable to completely capture the

anisotropy of the induced dipole along the hydrogen bond stretching coordinate. Second,

the TTM3-F DMS only accounts for induced dipoles, neglecting charge transfer effects
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which have been proposed to be an important source of spectral intensity for the hydrogen

bond stretching vibration in Raman calculations.202 The MB-µ DMS, on the other hand,

includes both the anisotropy of the 2B induced dipole and all charge transfer effects,

which are accurately modeled at the MP2 level. Unfortunately, a precise decomposition

of the different electronic contributions to the IR intensity associated with the hydrogen

bond stretching vibration can not be obtained through the analysis of the TTM3-F and

MB-µ DMSs since such analysis requires models that are capable of accurately and

explicitly distinguishing charge transfer from induction. It can also be noted that the

hydrogen bond stretch of both the q-TIP4P/f and TTM3-F PESs are blue shifted (by

80 and 30 cm−1, respectively) relative to experiment when calculated using the MB-µ

DMS, indicating that the hydrogen bonds in these models are possibly too strong. The

librational band is well described by both q-TIP4P/f and MB-pol PESs when the accurate

many-body MB-µ DMS is used (panels g and i), while it appears to be slightly too narrow

in the case of the TTM3-F PES (panel h). By contrast, both q-TIP4P/f and TTM3-F

DMSs tend to overestimate the intensity of the librational band, particularly near the

maximum at ∼600 cm−1.

Examining the spectral features associated with the intramolecular bending and

stretching vibrations, it is clear that the energy landscape defined by the individual

PESs primarily controls the position of these two bands. To understand the spuriously

similar intensity of the spectral features associated with the bending and stretching

vibrations in the q-TIP4P/f spectrum shown in Fig. 6.1, the MB-µ DMS is applied to

the q-TIP4P/f PES in panel g of Fig. 6.2. The overestimated intensity of the OH stretch

band when using an accurate DMS indicates that the q-TIP4P/f PES may not be capable

of accurately describing the dependence on the intramolecular stretching vibrations on

strength of the intermolecular hydrogen bonds. In particular, the high infrared intensity

of the OH stretching band may suggest that the underlying frequency distribution of
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the q-TIP4P/f OH stretch is too narrow, implying that the q-TIP4P/f OH oscillators

either sample a restricted range of hydrogen bonding environments or that the two OH

oscillators of each molecule do not sufficiently couple to one another to acquire partial

symmetric/asymmetric splitting.250

At the same time, the q-TIP4P/f DMS also suffers from deficiencies. An accurate

1B representation of the DMS should have a low intensity in the OH stretching region

(see Fig. 6.3). Despite the fact that it uses a purely 1B representation of the DMS, the

q-TIP4P/f DMS applied to the MB-pol PES results in an artificially enhanced height of

the OH stretch band. The electrostatic origin of this spuriously large intensity can be more

clearly seen in the bending region. Regardless of which PES is used, the q-TIP4P/f DMS

always predicts a high bend intensity. However, applying either the TTM3-F or the MB-µ

DMS to the q-TIP4P/f PES brings the bend intensity into reasonable agreement with

experiment. This high intensity caused by the q-TIP4P/f DMS would likely be observed

in all fixed point charge models of water which represent the enhanced condensed-phase

dipole through the use of artificially large effective charges. Through the analysis of the

q-TIP4P/f infrared line shape, it can thus be seen that decoupling the influence of the

PES from the DMS in the calculation of infrared spectra provides specific insights that

are useful to assess the ability of a model to correctly reproduce the underlying physics.

To further investigate the role of the DMS in determining the position and shape

of the OH stretching band, we performed a many-body decomposition of the dipole

moment using the MB-µ DMS. Specifically, for the set of CMD trajectories carried out

with the MB-pol PES, the total dipole moment was calculated according to three different

approximations: the 1B approximation (i.e., only including all molecular gas-phase

dipoles in the geometry of the liquid), the 1B+2B approximation (i.e., adding all short-

ranged pairwise interaction-induced dipoles to the 1B total dipole moment), and the MB

approximation using with the full MB-µ DMS (i.e., including 3B and higher-order induced
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Figure 6.3: Many-body dipole contributions to the IR spectrum of water. Specifically,
the decomposition of the IR spectrum obtained from CMD trajectories with the MB-pol
PES was performed in terms of the many-body components of the MB-µ DMS. 1B-Dip
indicates that the one-body (gas-phase monomer) dipoles were used to calculate the
dipole of the molecules sampled along the MB-pol CMD trajectories, from which the
IR spectrum was calculated. (1B+2B)-Dip indicates that short-ranged two-body dipoles
were used in addition to the one-body dipoles. MB-Dip is the full MB-µ many-body
dipole. The inset shows each curve normalized to its corresponding maximum. The
spectra were smoothed to facilitate the comparison between the line shapes obtained
using the different approximations.
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dipoles to the 1B+2B total dipole). Focusing on the OH stretch band shown in Fig. 6.3,

the 1B dipole approximation predicts a very weak OH stretch intensity. This result is not

unexpected since the average dipole moment of a water molecule increases significantly

upon solvation relative to its gas-phase value. Therefore, neglecting all solvation-induced

effects, the 1B approximation consistently underestimates the infrared intensity. Inclusion

of the short-ranged (i.e., for pairs of molecules with an oxygen-oxygen separation of

< 3.7 Å) pair-wise interaction-induced dipoles results in a substantial increase in the

OH stretch intensity, with the full many-body dipole contributing a slight additional

enhancement and bringing the total intensity into good agreement with experiment. The

many-body dipoles also have an additional effect on the position of the OH stretching

band as demonstrated in the inset of Fig. 6.3 by normalizing 1B, 1B+2B, and MB bands

to the corresponding maxima. While the 2B dipole enhances the overall intensity, it

does so preferentially for OH stretches in more strongly H-bonded configurations. In

general terms, this is consistent with the picture that the magnitude of the change of the

dipole moment with respect to a vibrational coordinate is much larger when the OH is

vibrating into a nearby H-bond acceptor relative to its rate of change in a weak or broken

H-bond configuration. The many-body analysis shown in Fig. 6.3 thus demonstrates

that this “non-Condon” effect plays an important role at the 2B dipole level,241 with

all higher-order induced dipoles having a negligible impact on the position of the OH

stretching band.

It is often assumed that the underlying multidimensional PES is primarily re-

sponsible for the position (and, to a large extent, the shape) of the infrared spectrum of

liquid water. There are, however, interesting cases for which this first order assumption

breaks down, namely, where there exists a non-uniform distribution of dipole derivative

magnitudes that can result in a preferential enhancement of some portions of the line

shape with respect to others. Here, we illustrated an excellent example of this through



114

the analysis of the hydrogen bond stretch feature at ∼180 cm−1. While non-existent in

intensity for models which have no induced, many-body dipoles, the peak appears (al-

though is not well-resolved) for a non-polarizable PES when combined with a many-body

DMS. Ultimately, an accurate representation of both the potential energy surface and

the dipole moment surface is necessary to obtain good agreement with the experimental

infrared spectrum of liquid water. By examining the detailed many-body contributions

of the dipole to the infrared spectrum, the line shape of the OH band is shown to be

well described through a sum of molecular dipoles and short-ranged two-body dipoles.

This supports an interpretation of the IR intensity of the OH band of liquid water as a

probe of the local hydration environment. A question that remains to be addressed is the

extent to which the underlying frequency distribution is affected by delocalized collective

vibrations.

Portions of this chapter appeared in our previously published work, Medders,

G.R.; Paesani, F. “On the interplay of the potential energy and dipole moment surfaces in

controlling the infrared activity of liquid water”, J. Chem. Phys. 2015 142, 212411. This

material was reproduced with permission from the publisher.



Chapter 7

Conclusions and Future Directions

Perhaps due to its ubiquity and its simple molecular structure, it may surprise

to the reader to learn that many aspects of water remain poorly understood. In fact,

the literature on water properties contains numerous controversies, ranging from such

fundamental topics as the structure of liquid water to the proposed existence of a critical

point in supercooled water.251–253 While theory and molecular simulation can be useful

tools to explain and predict these phenomena, many of the controversies are instead

exacerbated by conflicting results obtained from computational studies themselves. An

intrinsic issue to results obtained from molecular simulations is the choice of the potential

energy surface (PES) that governs the system. Common strategies for modeling the PES,

as discussed in Section 1.3.1, involve the parametrization of effective interactions to

empirical data; however, the transferability of such a strategy to water in different phases

or under different conditions is clearly questionable. Alternative approaches such as

ab intio molecular dynamics attempt to solve the electronic structure problem on the

fly; however, such simulations are currently limited in accuracy both due to intrinsic

deficiencies in the electronic structure method and their computational cost, which can

severely affect the statistical convergence of such results.

115



116

The aim of this work is to present an alternate approach to studying systems from

gas to condensed phases by the development of computationally tractable yet purely

“first principles”-based models for the potential energy surface of water. Relative to

conclusions derived from empirically tuned force fields, there is comparably less room

to dispute results derived from highly-correlated electronic structure calculations. To

circumvent the (often prohibitive) cost of calculating ab initio energies for condensed

phase systems, the total (binding) energy can be instead expressed as a many-body

expansion of the intermolecular interactions (see Section 1.2):

E(1, . . . ,N) =
N

∑
i

V 1B(i)+
N

∑
i< j

V 2B(i, j)+
N

∑
i< j<k

V 3B(i, j,k)+ · · ·+V NB(1, . . . ,N). (7.1)

In systems for which it converges quickly, such as water, the many-body expansion

provides a route through which the cost of the electronic structure calculations can

mitigated.

In Chapter 1, we assessed the ability of different strategies (including polariz-

able and non-polarizable force fields, semi-empirical methods, density functional theory

models, and MP2) to reproduce thousands of CCSD(T) reference two- and three-body

interaction energies,91 leading us to develop an exploratory model, HBB2-pol, with

the accuracy of CCSD(T) but with efficiency comparable to a polarizable model.91, 98

Building on that work, Chapter 2 describes our refined model, named MB-pol, that

consistently employs an accurate description of dispersion and (many-body) electrostatic

interactions combined with short-ranged terms at the two- and three-body, which account

for short-range quantum mechanical effects.115, 122, 221 Importantly, MB-pol reproduces

experimental measurements of cluster properties and, as shown in Chapter 3, thermody-

namic and dynamical properties of bulk water at ambient conditions, without relying on

any empirical parametrization to experiment.115, 122, 221
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However, unlike the electronic structure calculations to which MB-pol was fitted,

the PES has no knowledge of the electron distribution and, for this reason, the many-body

PES can not used to calculate electrostatic properties such as the dipole moment or

polarizability, which are required to obtain the IR and Raman spectra. In Chapter 4, we

demonstrated that the many-body expansions of the dipole and polarizability, defined

through derivatives of Eq. 7.1 with respect to electric fields, also converge for water.185

From this finding, in Chapter 5 we built many-body models for the dipole moment surface

and polarizability surface of water, that were parametrized to large datasets of highly

correlated electronic structure calculations.234 Importantly, since IR and Raman spectra

can be calculated through quantum time correlation functions of dipole and polarizability,

respectively, which can be approximate calculated through centroid molecular dynamics

simulations using the MB-pol PES, this many-body molecular dynamics (MB-MD)

approach allows us to rigorously model vibrational spectra from first principles.234, 254

Finally, in Chapter 6, the MB-MD approach was employed to decouple the contributions

of the potential energy surface and the dipole moment surface from the IR spectrum of

liquid water.

While the work presented so far has been applied only to linear vibrational spectra

and to systems containing only water molecules, the simulation strategies developed here

are extendable to a much broader class of problems. We take this opportunity to briefly

highlight ongoing work in one such direction.

7.1 Application of MB-MD to modeling vibrational sum

frequency generation spectroscopy

In recent years, vibrational sum frequency generation (vSFG) spectroscopy has

emerged as a potentially powerful tool for probing the molecular structure and dynamics
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of interfaces. As a second-order nonlinear spectroscopy, vSFG is intrinsically sensitive

to interfaces, with its signal being generated by vibrational modes that are both IR and

Raman active and which reside in non-centrosymmetric environments. While vSFG

provides an experimentally measurable probe of molecular motions in the first few

monolayers of an interface,23 resolving the spectral features into a molecular level picture

poses substantial difficulties. Recently developed phase sensitive experimental vSFG

techniques allow for the direct measurement of the imaginary component of the resonant

nonlinear susceptibility, which can be calculated from the time-correlation function:255

χ
R,(2)
i jk (ω) =

iω
kBT

∫
∞

0
dte−iωt〈αi j(t)µk(0)〉. (7.2)

Here, ω is the frequency, χR,(2) is the resonant (vibrationally enhanced) SFG susceptibility,

and i,j,k are the components related to the polarization conditions. In the SSP polarization,

the sign of the imaginary part of Eq. 7.2 is related to the direction of the transition dipole

at a given vibrational frequency.

Presented in black in Fig. 7.1 is the experimental spectrum of Im[χ
R,(2)
i jk (ω)] of the

air/water interface. The narrow and positive feature at ∼ 3700 cm−1 is referred to as the

“free OH” peak, corresponding to OH stretches that are pointed out of the bulk. The broad,

negative portion of the spectrum from 3200–3600 cm−1 correspond to the stretches of

hydrogen-bonded water molecules pointed into the bulk. One particularly controversial

aspect of the imaginary component of the χR is the explanation for the low-frequency

positive-going feature in the OH stretching region of the air/water interface (between

3000 to 3200 cm−1). Insights from computer simulations into the molecular level origin

of this feature offer (at least) two distinct explanations: one attributes this feature to

the presence of specific configurations related to three-body interactions;23 the other

attributes the positive intensity to an anisotropic induced dipole of strongly hydrogen-
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Figure 7.1: Sum frequency generation spectra of the air/water interface. The SSP
polarization condition is examined. Black is the experimentally measured spectrum
of Ref. 17. The red dashed line is the classical vSFG spectrum obtained using the
MB-pol PES and the MB-µ and MB-α dipole and polarizability, respectively, in Eq. 7.2.
The blue line is the classical result shifted by 150cm−1 to roughly account for nuclear
quantum effects.

bonded interfacial water molecules.17 Importantly, however, both sets of simulations

employ some degree of empiricism in modeling the positive feature of the vSFG spectra.

If a set of models could be developed and applied successfully to simulating the vSFG

without including any a priori knowledge of the spectrum, such a result would perhaps

provide some chance of resolving the controversies surrounding the molecular level

origins of the vSFG.

For this reason, here we rely on our three “first principles”-based models that

have been demonstrated accurately recover the total (binding) energy, dipole moment,

and polarizability of arbitrary water systems with respect to highly correlated electronic

structure methods The dashed red lines in Fig. 7.1 correspond to the SFG spectrum

obtained with classical MD simulations of the MB-pol PES. In these simulations, the

system was composed of 512 molecules in a slab geometry for a 26x26x100 box in

periodic boundary conditions. The water molecules formed a stable slab at the center of
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the cell when equilibrated in the NVT ensemble at 298.15 K. Over the course of a 2.5 ns

NVT simulation, 415 initial conditions were extracted. For each initial condition, a 50 ps

NVE simulation was performed. The results ∼ 20 ns of NVE trajectories were used to

calculate the correlation function of Eq. 7.2 corresponding to the SSP polarization. The

total SSP correlation function was defined as

〈αxx(t)µz(0)〉+ 〈αyy(t)µz(0)〉
2

(7.3)

where the z direction is perpendicular to the interface and the averaged xx and yy compo-

nents of the polarizability were used to exploit the symmetry in the plane of the air/water

interface. Due to the slab configuration and the signed nature of the dipole moment,

the z component of the dipole for molecules in the lower half of the slab was mirrored

following the protocol of Ref. 26. Finally, while the full MB-µ model was used in

the calculation of the dipole, the NB contribution to the polarizability was neglected.

While this approximation will affect the overall intensity of the spectral features, it is not

expected to alter the lineshape.234 Furthermore, since the SFG spectra are reported in

arbitrary units, neglecting αNB is expected to have negligible impact on the results.

As discussed in Chapter 5, vibrational spectra of bulk water in the OH stretching

region obtained from classical MD simulations are artificially blue shifted with respect

to those obtained from CMD. For both IR and Raman of bulk water obtained from

MB-MD, the OH stretching band obtained from classical MD is artificially blue shifted

by ∼ 150cm−1 relative to CMD. To roughly account for these missing nuclear quantum

effects in the SFG results obtained with classical MD simulations, the blue line of

Fig. 7.1 has been rigidly shifted 150cm−1. While the net role of nuclear quantum

effects on the lineshape may be different between the bulk liquid and the air/water

interface, this simplistic shift at least provides an initial point of comparison between the



121

classical spectra and experiment. As shown in Fig. 7.1, both the MB-MD linewidth of

the free OH peak and position/depth of the H-bonded region around 3400cm−1 are in

very good agreement with experiment. While the intensity dies off more quickly than

experiment in the region from 3200-3350cm−1, the extent of the negative-going feature

is in qualitatively good agreement with experiment.

Curiously, no positive signal is observed in the very low frequency part of the

OH stretching region. This disagreement may arise from approximating the quantum

spectrum as a shifted classical spectrum. CMD simulations of the air/water interface

are currently underway. Importantly, however, since the models employed here were

fitted only to correlated electronic structure calculations and, by construction, accurately

describe the two-body induced electrostatic properties at the MP2/aug-cc-pVTZ level

and the three-body intermolecular interactions at the CCSD(T)/aug-cc-pVTZ level, these

simulations should ultimately shed light on the controversial hypotheses for the molecular

level origins of the Im[χ
R,(2)
ssp (ω)] of the vSFG of the air/water interface.

7.2 Future Directions

While the research presented in this dissertation has already been useful itself in

probing questions ranging from the vibrational structure of liquids to the isomeric stability

of small clusters, perhaps the most exciting aspect of this work is the future studies it

enables. The development of empirical force fields for molecular simulation has long been

fraught with difficulty. Furthermore, while great promise exists for ab initio molecular

dynamics approaches (enabled, in part, due to ever-increasing computational power),

such simulations currently afford limited predictive ability due to both inaccuracies in

commonly used density functionals and current limitations in sampling ability.

On the other hand, by exploiting the convergence of the many-body expansion
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of interactions, we have demonstrated the ability to predict the properties of water in

environments ranging from small gas phase clusters to the liquid – without any empirically

derived parameters. While the “proof-of-concept” work presented here was applied only

to pure water system, these techniques are expected to be equally applicable to any system

for which the many-body expansion converges. This, in turn, will open the doorway

to studying problems ranging from solvation of ions to the dynamics of molecules at

atmospherically relevant interfaces with predictive accuracy.



Appendix A

Basis-set superposition error in the

many-body expansion

While the many-body expansion of interaction energies provides a computation-

ally tractable approach for accurately characterizing molecular systems, the accurate

calculation of the many-body terms can be somewhat tricky.256 A primary issue in-

volves the treatment of basis-set superposition error, which arises from an incomplete

description of the wavefunction or density. In the classic example of the dimer interaction

energy, Eq. 1.6, basis-set superposition has the consequence of over-stabilizing the dimer.

This is because the dimer calculation effectively has access a larger basis set than the

isolated monomers, resulting in a artificially lower energy within variational methods.103

The counterpoise correction of Boys and Bernardi proposes an intuitive solution to this

issue;103 rather than calculating the monomer energies in their own basis sets, each

monomer calculation is instead performed in the basis set of the dimer, eliminating any

inconsistency in the size of the basis sets:

V 2B(1,2) = E(1,2)−E(1;G2)−E(2;G1). (A.1)

123
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In this notation, E(1;G2) indicates a calculation of the cluster composed of energy of

fragment 1 in presence of the “ghost” orbitals of fragment 2 (but without the electrons

and nuclear charges of fragment 2).

Unfortunately, however, there is no unique way to account for BSSE within the

many-body expansion beyond the two-body level. For this reason, several strategies exist

to treat BSSE for systems containing many fragments.

Site-site function counterpoise method:

The site-site function counterpoise (SSFC) method treats BSSE consistently at

all levels of the many-body expansion by performing each energy evaluation in the basis

set of the full system.120 The many-body terms become:

V 1B =E(i;G jkl...) (A.2)

V 2B =E(i j;Gkl...)−E(i;G jkl...)−E( j;Gikl...)

V 3B =E(i jk;Gl...)−
3

∑
i< j

V 2B(i j)−
3

∑
i

V 1B(i)

=E(i jk;Gl...)−
[
E(i j;Gkl...)+E(ik;G jl...)+E( jk;Gil...)

]
+E(i;G jkl...)+E( j;Gikl...)+E(k;Gi jl...).

As the complete basis-set limit is approached and the effect of the ghost orbitals disap-

pears (e.g., E(i;G jkl...)→ E(i)), the original many-body terms are obtained.

An important property of the many-body expansion is that each interaction is

defined only in terms of the N-molecules required to specify the N-body interaction.

In contrast, while the SSFC method systematically corrects for BSSE at all levels of

the many-body expansion, it also has the unfortunate effect of making each term in the

many-body expansion depend on the orbitals of the complete cluster. For example, to

obtain the 1B energies of molecules embedded in a larger cluster with the SSFC method,
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one must calculate the energy for each monomer in the ghost orbitals of the complete

cluster, even if every monomer in the system has the same geometry!

Valiron-Mayer Function Counterpoise Method:

To avoid the issue of N-body interactions depending on more than N molecules,

one could envision an alternative approach where the orbitals of all molecules forming the

N-body interactions are always used in the calculation of that interaction, but where the

orbitals of all other molecules are neglected. This approach, known as the “Valiron-Mayer

Function Counterpoise” (VMFC) method,183, 184 can perhaps be more easily understood

through an example (adapted from Ref. 31). Consider the 3B interaction from molecules

2, 4, and 6 within a hexamer; the full SSFC corrected 3B interaction (which requires

that the 3B interaction be calculated in the hexamer basis), could be approximated by

neglecting the effects of molecules 1, 3, and 5 and performing an SSFC corrected 3B

calculation in the trimer basis formed by molecules 2, 4, and 6. Thus, within this VMFC

framework, the BSSE-corrected many-body interactions are:

V 1B =E(i) (A.3)

V 2B =E(i j)−E(i;G j)−E( j;Gi)

V 3B =E(i jk)−
[
E(i j;Gk)+E(ik;G j)+E( jk;Gi)

]
+E(i;G jk)+E( j;Gik)+E(k;Gi j).

. . . (A.4)

While this approach solves the “embedded many-body” problem of the SSFC method,

when one attempts to reconstruct the total energy of the cluster from the VMFC approach,
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however, the following is obtained (for an example trimer):

E(i jk) =
3

∑
i

V 1B(i)+
3

∑
i< j

V 2B(i j)+V 3B(123) (A.5)

=
[
E(i)+E( j)+E(k)]

+

[[
E(i j)−E(i;G j)−E( j;Gi)

]
+
[
E(ik)−E(i;Gk)−E(k;Gi)

]
+
[
E( jk)−E( j;Gk)−E(k;G j)

]]
+

[
E(i jk)−

[
E(i j;Gk)+E(ik;G j)+E( jk;Gi)

]
+E(i;G jk)+E( j;Gik)+E(k;Gi j)

]
.

Collecting the terms by interaction order, it is easily seen that the total energy is only

recovered when:

E(i)+E( j)+E(k) =
[
E(i;G j)+E(i;Gk)+E( j;Gi)+E( j;Gk)+E(k;Gi)+E(k;G j)

]
−
[
E(i;G jk)+E( j;Gik)+E(k;Gi j

]
(A.6)

and

E(i j)+E(ik)+E( jk) =
[
E(i j;Gk)+E(ik;G j)+E( jk;Gi)

]
. (A.7)

These conditions are only satisfied in the CBS limit, implying that the VMFC method

does not maintain the relationship between the many-body expansion and the cluster

(binding) energy, except in the CBS limit. Therefore, while the VMFC method decreases

the sensitivity of the many-body calculations to basis-set truncation, one must nonetheless

exercise care to the many-body interactions are calculated in the CBS limit.

Cluster counterpoise method:

Recently, an alternative formulation of the counterpoise method has been intro-
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duced, which preserves the connection between the many-body interactions and the

total energy of the system. In this “cluster counterpoise” method, the BSSE-corrected

interaction energy of an N molecule system is expressed as:

ECCP
N−mer(1, . . . ,N) = E(1, . . . ,N)−

N

∑
i

[
E(i;G1,...,N; 6=i)−E(i)

]
(A.8)

Using Eq. 1.5 in combination with the above to generate the BSSE-corrected many-body

interactions, one obtains:

V 1B =E(1) (A.9)

V 2B =ECCP(12)−
2

∑
i

V 1B(i)

=

[
E(12)−

[
E(1;G2)−E(1)

]
−
[
E(2;G1)−E(2)

]]
−E(1)−E(2)

=E(12)−E(1;G2)−E(2;G1) (A.10)

V 3B =ECCP(123)−
3

∑
i< j

V 2B(i j)−
3

∑
i

V 1B(i)

=

[
E(123)−

[
E(1;G23)−E(1)

]
−
[
E(2;G13)−E(2)

]
−
[
E(3;G12)−E(3)

]]
−
[[

E(12)−E(1;G2)−E(2;G1)
]
+
[
E(13)−E(1;G3)−E(3;G1)

]
+
[
E(23)−E(2;G3)−E(3;G2)

]]
−
[

E(1)+E(2)+E(3)
]

=

[
E(123)−E(1;G23)−E(2;G13)−E(3;G12)

]
−
[[

E(12)−E(1;G2)−E(2;G1)
]
+
[
E(13)−E(1;G3)−E(3;G1)

]
+
[
E(23)−E(2;G3)−E(3;G2)

]]
(A.11)

While requiring more calculations than either the SSFC or VMFC approaches, this
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definition may seem preferable because the V 1B, V 2B, V 3B expressions still revert to

the correct expressions in the CBS limit and each N-body calculation naturally requires

only the basis set of the N-mer. Furthermore, regardless of the system size, the BSSE-

corrected binding energy of the cluster is recovered when many-body interactions are

summed. This approach was used by us in our 2013 paper,91 although the details of the

method were outside the scope of that article. Around the same time, this method was

independently developed and reported by the Herbert group.257

In summary, since the counterpoise method of Boys and Bernardi cannot be

uniquely adapted to treatment of BSSE beyond the 2B level, many method exist for the

correction of BSSE. To these ends, the following general guidelines may help the reader

choose what variant of the counterpoise correction may be most appropriate for a given

problem.

• In situations where a quick and accurate estimate of a cluster’s interaction energy

are desired, but where the accuracy of each individual many-body interaction is of

secondary importance, the cluster counterpoise method is an appropriate choice.257

• If both accurate many-body interactions and the correct interaction energy are

desired, the SSFC method is clearly the best choice. However, the computational

expense of this method significant because the SSFC many-body interactions

depend on the geometry of the total cluster. Taking a 20 molecule system as an

example, the three-body interaction of molecules ABC must be calculated in the

basis of the 20-mer. As a consequence, if the position of even a single atom of one

of the 17 other molecules is changed, the SSFC three-body interaction of ABC is,

by definition, different.120

• The VMFC enables the calculation of accurate many-body interactions that do not

depend on the (larger) cluster of interest. However, one must be very careful when
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using this approach because the summed VMFC many-body interactions do not

give the correct interaction energy except in the complete basis limit.183, 184
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76 J. Wang, G. Román-Pérez, J. M. Soler, E. Artacho, and M. V. Fernández-Serra, J.
Chem. Phys., 134, 024516 (2011).

77 E. Murray and G. Galli, Phys. Rev. Lett., 108, 105502 (2012).

78 R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. van Der Avoird, J. Chem.
Phys., 128, 094314 (2008).

79 R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. van Der Avoird, J. Chem.
Phys., 128, 094313 (2008).

80 Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys.,
134, 094509 (2011).

81 R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. v. d. Avoird, Science, 315,
1249–52 (2007).

82 C. Leforestier, K. Szalewicz, and A. v. d. Avoird, J. Chem. Phys., 137, 014305 (2012).

83 K. Raghavachari, G. W. Truck, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett.,
157, 479–483 (1989).

84 T. H. Dunning, J. Chem. Phys., 90, 1007 (1989).

85 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 7, 3297–3305 (2005).

86 A. Schafer, C. Huber, and R. Ahlrichs, J. Chem. Phys., 100, 5829–5835 (1994).

87 F. Wennmohs and F. Neese, Chem. Phys., 343, 217–230 (2008).

88 R. C. Walker, M. F. Crowley, and D. A. Case, J. Comput. Chem., 29, 1019–1031
(2008).

89 http://cp2k.berlios.de/.

90 C. J. Burnham and S. S. Xantheas, J. Chem. Phys., 116, 5115 (2002).

91 G. R. Medders, V. Babin, and F. Paesani, J. Chem. Theory Comput., 9, 1103–1114
(2013).

92 J. VandeVondele and J. Hutter, J. Chem. Phys., 127, 114105 (2007).

93 A. D. Becke, J. Chem. Phys, 98, 5648 (1993).

94 P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98,
11623–11627 (1994).



135

95 J. Klimes and A. Michaelides, J. Chem. Phys., 137, 120901 (2012).

96 W. Chen and M. S. Gordon, J. Phys. Chem., 100, 14316–14328 (1996).

97 A. Shank, Y. Wang, A. Kaledin, B. J. Braams, and J. M. Bowman, J. Chem. Phys.,
130, 144314 (2009).

98 V. Babin, G. R. Medders, and F. Paesani, J. Phys. Chem. Lett., 3, 3765–3769 (2012).

99 B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem., 28, 577–606 (2009).

100 Z. Xie and J. M. Bowman, J. Chem. Theory Comput., 6, 26–34 (2010).

101 E. Mas, R. Bukowski, and K. Szalewicz, J. Chem. Phys., 118, 4386–4403 (2003).

102 J. Caldwell, L. X. Dang, and P. A. Kollman, J. Am. Chem. Soc, 112, 9144–9147
(1990).

103 S. F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970).

104 R. Car and M. Parrinello, Phys. Rev. Lett., 55, 2471–2474 (1985).

105 W. Xie, L. Song, D. G. Truhlar, and J. Gao, J. Chem. Phys., 128, 234108 (2008).

106 M. S. Gordon, L. Slipchenko, H. Li, and J. H. Jensen, Annu. Rep. Comput. Chem., 3,
177–193 (2007).

107 M. Del Ben, M. Schönherr, J. Hutter, and J. VandeVondele, J. Phys. Chem. Lett., 4,
3753–3759 (2013).
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