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Abstract

Recent developments in the basic theory, algorithms, and applications
for curves with rational rotation–minimizing frames (RRMF curves)
are reviewed, and placed in the context of the current state–of–the–art
by highlighting the many significant open problems that remain. The
simplest non–trivial RRMF curves are the quintics, characterized by a
scalar condition on the angular velocity of the Euler–Rodrigues frame

(ERF). Two different classes of RRMF quintics can be identified. The
first class of curves may be characterized by quadratic constraints on
the quaternion coefficients of the generating polynomials; by the root
structure of those polynomials; or by a certain polynomial divisibility
condition. The second class has a strictly algebraic characterization,
less well–suited to geometrical construction algorithms. The degree 7
RRMF curves offer more shape freedoms than the quintics, but only
one of the four possible classes of these curves has been satisfactorily
described. Generalizations of the adapted rotation–minimizing frames,
for which the angular velocity has no component along the tangent, to
directed and osculating frames (with analogous properties relative to
the polar and binormal vectors) are also discussed. Finally, a selection
of applications for rotation–minimizing frames are briefly reviewed —
including construction of swept surfaces, rigid–body motion planning,
5–axis CNC machining, and camera orientation control.
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1 Introduction

The characterization of the spatial motion of a rigid body involves specifying
its position and orientation as functions of time. The path of a distinguished
point (e.g., the center of mass) may be used to specify the variation of position
as a parametric curve r(t). To describe the variation of orientation, one may
employ an orthonormal frame (f1(t), f2(t), f3(t)) embedded in the body. When
the parameter t represents time, the first and second curve derivatives define
the velocity and acceleration of the body, and the frame derivatives define its
angular velocity and acceleration. For a general parameterization, the chain
rule must be used to determine physical velocities and accelerations.

The most general rigid–body motion admits independent specification of
position and orientation. In a variety of contexts, however, it is desirable or
natural to consider motions that involve a correlation between them. Among
such constrained spatial motions, those based on rotation–minimizing frames

are of special interest. In general terms, they are characterized by specifying
a unit vector field v(t) along the path r(t), and requiring the angular velocity
ω(t) of the frame (f1(t), f2(t), f3(t)) to maintain a vanishing component along
the prescribed direction v(t) — i.e., the constraint v(t) ·ω(t) ≡ 0 is satisfied.
Intuitively, this means that the frame vectors have no instantaneous rotation
about v(t) upon traversing the curve r(t). In many cases of practical interest,
the direction field v(t) coincides with one of the frame vectors.

A familiar frame on a space curve is the Frenet frame (t,p,b) comprising
the tangent t defining the instantaneous direction of motion along the curve,
the principal normal p pointing to the center of curvature, and the binormal
b = t × p [44]. This frame is rotation–minimizing with respect to p — i.e.,
t and b exhibit no instantaneous rotation about p as we traverse the curve.
When the normal–plane vectors p,b are replaced by vectors u,v in that plane
having no instantaneous rotation about t, we obtain a rotation–minimizing
adapted frame (t,u,v) — also known as a Bishop frame [3]. A frame (f , g,b)
retaining the binormal b but replacing the vectors t,p in the osculating plane
(i.e., the plane that most nearly contains the curve at each point) by vectors
f , g in that plane having no instantaneous about b, is a rotation–minimizing
osculating frame [20]. Other types of rotation–minimizing frame, not based
on modifying the Frenet frame, are also possible. For example, the rotation–
minimizing directed frame comprises the polar vector o(t) = r(t)/|r(t)| and
two vectors p(t), q(t) spanning the image plane orthogonal to o(t), that have
no instantaneous about it. Such frames are of interest in defining the motion
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of a camera that images a stationary object located at the origin [15].
Among these different frames, the rotation–minimizing adapted frame has

by far received the most attention, motivated by its applications in robotics,
computer animation, swept surface constructions, spatial motion planning,
and related fields. Many methods for the approximation of such frames have
been proposed [23, 34, 35, 36, 37, 40, 43, 50, 52, 53, 55]. However, recent years
have witnessed a growing interest in the characterization and construction of
exact (i.e., rational) rotation–minimizing frames on space curves. The goal of
this study is to survey recent results in this area, and to assess the prospects
for further advances in basic theory, algorithms, and applications. Obviously,
it is impractical to include complete details of proofs and derivations here,
for which the reader may consult the cited references. Instead, the focus is
on a succinct but comprehensive enumeration of the new results, identifying
their inter–relationships, and highlighting the open problems they pose.

The plan for the remainder of this paper is as follows. Following a synopsis
of the rotation–minimizing frame (RMF) problem in Section 2, a brief review
of the properties of spatial Pythagorean–hodograph (PH) curves is presented
in Section 3. The PH curves play a fundamental role in the identification of
space curves with rational adapted RMFs, since only PH curves have rational
unit tangents. In particular, PH curves admit a rational adapted — but not
rotation–minimizing — frame, the Euler–Rodrigues frame (ERF), that serves
as a reference for identifying rational adapted RMFs. The angular velocity of
the ERF is reviewed in Section 4, and used to express an existence condition
for PH curves with rational rotation–minimizing adapted frames — or RRMF

curves. Based on this result, Section 5 gives an account of the current state of
knowledge concerning low–degree RRMF curves. Other RMF types, namely
the osculating and directed frames, are briefly reviewed in Section 6. Finally,
Section 7 describes some applications of the RRMF curves, while Section 8
enumerates desiderata in the existing theory and algorithms.

2 Many ways to frame a space curve

The first systematic study of space curves — regarded1 as “curves of double
curvature” — is found [4] in the Recherches sur la courbes à double courbure

of Alexis Claude Clairault (1713–1765), as presented to the French Académie
des Sciences at the age of sixteen. Essentially, a space curve C is determined

1This term was first introduced by Henri Pitot (1695–1771) in 1724.
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by defining x and y as functions of z, the “double curvature” referring to the
individual curvatures of the planar curves defined by these functions, i.e., the
projections of C onto the (x, z) and (y, z) planes. A key point recognized in
Clairault’s work is that, while a smooth space curve has a unique tangent at
each point, there are infinitely many normals, defining the normal plane.

Further elucidation of the geometry of space curves was contingent on the
development of calculus, culminating in the theory of differential geometry.
In particular, a consideration of the first three derivatives of the arc–length
parameterization r(s) = (x(s), y(s), z(s)) of a space curve, satisfying

(

dx

ds

)2

+

(

dy

ds

)2

+

(

dz

ds

)2

≡ 1 ,

leads to the identification of three mutually orthogonal intrinsic directions at
each point of a space curve — the tangent, principal normal, and binormal.
The variation of the orthonormal frame specified by these directions can be
completely characterized by two scalar functions, the curvature κ(s) and the
torsion τ(s), which uniquely determine a space curve with a prescribed initial
point and tangent. These developments were first elucidated [39] in the work
of Michel–Ange Lancret (1774–1807), Augustin–Louis Cauchy (1789–1857),
Fréderic–Jean Frenet (1816–1900), and Joseph Alfred Serret (1819–1885).

In modern terms, the Frenet–Serret frame (t,p,b) comprising the tangent
t, principal normal p, and binormal b is specified [44] in terms of a general
parameterization r(ξ) = (x(ξ), y(ξ), z(ξ)) by

t =
r′

|r′| , p =
r′ × r′′

|r′ × r′′| × t , b =
r′ × r′′

|r′ × r′′| , (1)

and its variation along the curve is characterized by the relations

dt

dξ
= σκp ,

dp

dξ
= σ(τ b− κ t) ,

db

dξ
= −στ p , (2)

the parametric speed (the derivative ds/dξ of arc length with respect to the
curve parameter ξ) and the curvature and torsion of r(ξ) being defined by

σ = |r′| , κ =
|r′ × r′′|
|r′|3 , τ =

(r′ × r′′) · r′′′
|r′ × r′′|2 . (3)

The relations (2) may be more succinctly expressed in the form

dt

ds
= d× t ,

dp

ds
= d× p ,

db

ds
= d × b , (4)
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where the Darboux vector

d = κb + τ t , (5)

named after Jean Gaston Darboux (1842–1917), defines the angular velocity

of the Frenet–Serret frame, on traversing the curve at unit speed (ds/dt ≡ 1).
Despite its fundamental nature, the Frenet–Serret frame (1) is not without

shortcomings. In general, on a polynomial or rational curve r(ξ), none of the
frame vectors (t,p,b) depend rationally on the curve parameter, making it
difficult to ensure rational surfaces as the outcome of sweep operations. At an
inflection of the curve (i.e., a point where κ = 0) the normal–plane vectors p

and b are indeterminate, and generally suffer a sudden inversion on passing
through such points. Finally, the insistence of p on pointing to the center of
curvature is, in certain contexts, a nuisance rather than an advantage.

It is possible to identify certain special curves with rational Frenet–Serret
frames [51], which correspond to the double PH (DPH) curves [16, 17, 47] —
a subset of the spatial PH curves described in Section 3 below, characterized
by the property that | r′(ξ) | and | r′(ξ) × r′′(ξ) | are both polynomials in ξ.
Every DPH curve of degree ≤ 5 is a helical curve, whose tangent maintains a
constant inclination ψ with respect to a fixed direction (the axis of the helix)
— equivalently, the ratio of curvature to torsion has the constant value tanψ.
However, these curves are of relatively limited scope, and do not remedy the
other shortcomings of the Frenet–Serret frame mentioned above.

In the Darboux vector (5), the term τ t specifies a rotation rate for the
normal–plane vectors p,b about the tangent t. This term is superfluous to an
adapted frame comprising the tangent and two vectors that span the normal
plane at each point, and by eliminating it one can find normal–plane vectors
u,v that do not rotate about t. This fact was observed in the paper There is

more than one way to frame a curve [3] by Bishop, who couched the problem
in terms of parallel transport of the vectors u,v along the curve — from any
initial orientation, the variation of u,v should be only such as to suffice to
keep them in the normal plane, i.e., their derivatives must always be parallel
to t. Since the construction of such “relatively parallel” normal–plane vector
fields is an initial–value problem, any curve admits a one–parameter family of
rotation–minimizing adapted frames, also called [45, 49, 54] Bishop frames.
The Frenet and rotation–minimizing frames are compared in Figure 1.

The rotation–minimizing or Bishop frame has a physical interpretation
in the theory of elasticity. When an initially straight and uniform elastic rod
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Frenet RMF

Figure 1: Comparison of Frenet frame (left) and rotation–minimizing frame
(right) on a space curve with an inflection point (for clarity, only the normal–
plane vectors are shown). Note the sudden inversion of the principal normal
and binormal vectors in the Frenet frame, on passing through the inflection.

is deformed into a general smooth shape, the stored strain energy consists of
bending and twist components. The former depends only on the curvature,
while the latter is determined by the variation of normal–plane vectors along
the deformed shape, that were initially invariant along the undeformed rod.2

Among all possible variations of the normal–plane vectors, that defined by a
rotation–minimizing frame has least (zero) twist energy [23, 46]. The twist
of framed space curves is also of interest in analyzing DNA structure [5].

An important application for the rotation–minimizing frames arises in the
construction of the swept surfaces generated by the motion of a closed planar
profile curve along a spatial sweep curve, such that the profile curve always
lies in the sweep curve normal plane. In this context, Klok [40] compared the
results obtained by using the Frenet–Serret and rotation–minimizing frames
to define the orientation of the profile curve within the sweep curve normal
plane. Typically, the latter choice results in surfaces of superior shape (and
parameterization). In [40], the RMF normal–plane vectors are characterized
as solutions to the differential equation

w′(ξ) = − r′′(ξ) ·w(ξ)

|r′(ξ)|2 r′(ξ) ,

2The variation of twist along the rod can be freely specified, and should not be confused
with the torsion, which is purely a function of the deformed shape.
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where w(ξ) = u(ξ) or v(ξ). As noted by Guggenheimer [31], this prescription
is equivalent to specifying the RMF vectors u,v relative to p,b through a
rotation of the form

[

u(ξ)
v(ξ)

]

=

[

cos θ(ξ) sin θ(ξ)
− sin θ(ξ) cos θ(ξ)

] [

p(ξ)
b(ξ)

]

. (6)

where the rotation angle θ(ξ) is defined by

θ(ξ) = θ0 −
∫ ξ

0

τ(u) σ(u) du . (7)

Note that an incorrect sign before the integral is given in [31]. Since dθ/ds =
− τ , this prescription exactly cancels the component τ of the angular velocity
in the direction of t that appears in the Darboux vector (5). The integration
constant θ0 reflects the freedom in choosing the orientation of the initial RMF
vectors u(0),v(0). A trivial corollary of (6) and (7) is that the Frenet–Serret
frame is an RMF for any planar curve, satisfying τ(ξ) ≡ 0.

Although equations (6) and (7) constitute a closed–form definition for the
RMF, it has some shortcomings. For general polynomial and rational curves,
the integral in (7) has no closed–form reduction, and must be evaluated by
numerical quadrature. Also u(ξ) and v(ξ) as defined by (6) are indeterminate
at the inflections of r(ξ) — in order to ensure continuity through inflection
points, an appropriate limit argument must be invoked.

Ideally, an exact (rational) representation is desirable for the RMF vectors
(t(ξ),u(ξ),v(ξ)). To achieve this, one must focus on Pythagorean–hodograph

(PH) curves, since only the PH curves possess rational unit tangent vectors.
Moreover, as described below, the PH curves admit a rational adapted frame,
the Euler–Rodrigues frame (ERF), the circumvents the defects of the Frenet–
Serret frame as a reference for computing rational RMFs [7].

3 Spatial Pythagorean–hodograph curves

We focus here on polynomial PH curves. Rational PH curves employ entirely
different methods for their construction [30, 41] and, in general, do not admit
rational arc lengths. A discussion of the use of the Möbius transformation in
R

3 to generate rational curves with rational RMFs may be found in [1].
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The distinctive feature of a polynomial PH curve r(ξ) = (x(ξ), y(ξ), z(ξ))
is that the components of its derivative r′(ξ) = (x′(ξ), y′(ξ), z′(ξ)) satisfy

x′2(ξ) + y′2(ξ) + z′2(ξ) = σ2(ξ) (8)

for some polynomial σ(ξ). The quaternion and Hopf map forms [9] are two
alternative (equivalent) models for the construction of spatial PH curves that
are rotation–invariant [13]. The former generates a Pythagorean hodograph
from a quaternion3 polynomial

A(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ)k , (9)

and its conjugate A∗(ξ) = u(ξ)− v(ξ) i− p(ξ) j− q(ξ)k through the product

r′(ξ) = A(ξ) iA∗(ξ) = [ u2(ξ) + v2(ξ) − p2(ξ) − q2(ξ) ] i

+ 2 [ u(ξ)q(ξ) + v(ξ)p(ξ) ] j + 2 [ v(ξ)q(ξ)− u(ξ)p(ξ) ]k . (10)

The latter generates a Pythagorean hodograph from complex polynomials

α(ξ) = u(ξ) + i v(ξ) , β(ξ) = q(ξ) + i p(ξ) (11)

through the form

r′(ξ) = (|α(ξ)|2 − |β(ξ)|2, 2 Re(α(ξ)β(ξ)), 2 Im(α(ξ)β(ξ))) . (12)

The equivalence of (10) and (12) can be verified by identifying the imaginary
unit i with the quaternion element i, and setting A(ξ) = α(ξ) + kβ(ξ). We
shall always assume, in (9) or (11), that gcd(u, v, p, q) = constant — this is
a necessary, but not sufficient, condition for r′(ξ) = (x′(ξ), y′(ξ), z′(ξ)) to be
a primitive hodograph, i.e., gcd(x′(ξ), y′(ξ), z′(ξ)) = constant.

The parametric speed σ(ξ) = |r′(ξ)| of the curve defined by integrating
(10) or (12) is the polynomial

σ(ξ) = |A(ξ)|2 = |α(ξ)|2 + |β(ξ)|2 = u2(ξ) + v2(ξ) + p2(ξ) + q2(ξ) , (13)

and integrating it gives the polynomial arc length function

s(ξ) =

∫ ξ

0

σ(u) du .

3The scalar and vector parts of a quaternion A are denoted by scal(A) and vect(A) —
see Chapter 5 of [11] for a review of the quaternion algebra suited to the present context.
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We consider here only regular curves, satisfying σ(ξ) 6= 0 for all real ξ.
Any spatial PH curve admits a closed–form reduction of the integral (7)

specifying the orientation of the RMF vectors relative to the principal normal
and binormal, through a partial–fraction decomposition of the integrand [10].
However, it is necessary to compute the complex–conjugate roots of σ(ξ) and
the resulting expression incorporates transcendental terms. We focus here on
those PH curves for which the RMF admits an exact rational representation.

4 Euler–Rodrigues frame angular velocity

The Euler–Rodrigues frame (ERF) is a rational adapted orthonormal frame,
defined on any spatial PH curve [7] through the expressions

(e1(ξ), e2(ξ), e3(ξ)) =
(A(ξ) iA∗(ξ),A(ξ) jA∗(ξ),A(ξ)kA∗(ξ))

|A(ξ)|2 . (14)

The frame vector e1(ξ) is the curve tangent, while e2(ξ) and e3(ξ) span the
normal plane. In terms of the components of the quaternion polynomial (9)
or complex polynomials (11), the frame vectors (14) are

e1 =
(u2 + v2 − p2 − q2) i + 2(uq + vp) j + 2(vq − up)k

u2 + v2 + p2 + q2
,

e2 =
2(vp− uq) i + (u2 − v2 + p2 − q2) j + 2(uv + pq)k

u2 + v2 + p2 + q2
,

e3 =
2(up+ vq) i + 2(pq − uv) j + (u2 − v2 − p2 + q2)k

u2 + v2 + p2 + q2
. (15)

The ERF variation is specified by its angular velocity4 ω through the relations

e′

1
= ω × e1 , e′

2
= ω × e2 , e′

3
= ω × e3 , (16)

and when ω is expressed in terms of the ERF frame vectors as

ω = ω1e1 + ω2e2 + ω3e3 , (17)

4Angular velocity is usually defined through time derivatives, or arc length derivatives
(assuming a unit speed traversal). For brevity, we henceforth use derivatives with respect
to the general parameter ξ. This does not materially alter any of the subsequent results.
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its components are given by

ω1 = e3 · e′

2
= − e2 · e′

3
=

2(uv′ − u′v − pq′ + p′q)

u2 + v2 + p2 + q2
,

ω2 = e1 · e′

3
= − e3 · e′

1
=

2(up′ − u′p+ vq′ − v′q)

u2 + v2 + p2 + q2
,

ω3 = e2 · e′

1
= − e1 · e′

2
=

2(uq′ − u′q − vp′ + v′p)

u2 + v2 + p2 + q2
. (18)

From (15) and (17)–(18), one can verify that

σω = 2 (uv′ − u′v + pq′ − p′q) i

+ 2 (up′ − u′p− vq′ + v′q) j

+ 2 (uq′ − u′q + vp′ − v′p)k = 2 vect(A′A∗) .

Consequently, since σ′ = 2(uu′+vv′+pp′ +qq′) = 2 scal(A′A∗), we note that

σ′2 + σ2|ω|2 = 4 |A|2|A′|2 .

The ω1 component of the ERF angular velocity specifies the rotation rate
of the normal–plane vectors e2, e3 about the curve tangent e1 = t — i.e., the
deviation of the ERF from an RMF. The existence of low–degree PH curves
for which the ERF is an RMF (i.e., ω1 ≡ 0) was first discussed in [7]. It was
shown that any cubic or quintic with this property is degenerate (i.e., planar),
but that non–degenerate degree 7 PH curves with rotation–minimizing ERFs
exist, and an algebraic characterization for these curves was developed.

Even if the ERF is not rotation–minimizing, a spatial PH curve may have
a rational RMF when a rational normal–plane rotation that maps e2(ξ), e3(ξ)
onto RMF vectors u(ξ),v(ξ) exists. Such a rotation must be of the form

[

u(ξ)
v(ξ)

]

=
1

a2(ξ) + b2(ξ)

[

a2(ξ) − b2(ξ) −2 a(ξ)b(ξ)
2 a(ξ)b(ξ) a2(ξ) − b2(ξ)

] [

e2(ξ)
e3(ξ)

]

, (19)

for polynomials a(ξ) and b(ξ), corresponding to the rotation angle

θ(ξ) = − 2 arctan
b(ξ)

a(ξ)
. (20)

Differentiating (20), we see that the normal–plane rotation (19) has angular
velocity θ′ = 2(a′b− ab′)/(a2 + b2) in the direction of e1 = t. If u and v are
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to be rotation–minimizing, this must exactly cancel ω1, i.e., the components
of (9) must be such as to ensure satisfaction of the condition

uv′ − u′v − pq′ + p′q

u2 + v2 + p2 + q2
=

ab′ − a′b

a2 + b2
(21)

for some polynomials a(ξ), b(ξ) with gcd(a(ξ), b(ξ)) = constant. This result
was first derived in [32] and used to prove that non–planar PH cubics cannot
have rational RMFs. The function on the left in (21) can be more compactly
expressed as scal(A iA′∗)/|A|2. For the Hopf map representation, condition
(21) is equivalent to requiring the existence of a complex polynomial w(ξ) =
a(ξ) + i b(ξ), with gcd(a(ξ), b(ξ)) = constant, such that

Im(αα′ + ββ′)

|α|2 + |β|2 =
Im(ww′)

|w|2 . (22)

Equation (21) is the fundamental constraint identifying those PH curves that
admit rational rotation–minimizing frames, henceforth called RRMF curves.
Curves for which the ERF is itself rotation–minimizing are subsumed as the
special case where a(ξ), b(ξ) are constants, so that ab′ − a′b ≡ 0.

For a quaternion polynomial (9) of degree m, defining a PH curve of odd
degree n = 2m+1, the generic solutions to (21) involve polynomials a(ξ), b(ξ)
of degree m. However, solutions may also arise [29] for which deg(a, b) < m,
through a cancellation of factors common to the numerator and denominator
on the left in (21). Such curves define a subspace of the set of RRMF curves of
given degree. To distinguish between these different possibilities, the curves
satisfying (21) with deg(a, b) = m, . . . , 0 are known [29] as Class 1, . . . , m+1
RRMF curves of degree 2m+ 1. For example, the degree 7 curves that have
rotation–minimizing ERFs identified in [7] are Class 4 RRMF curves.

5 Rational rotation–minimizing frames

We now enumerate the known characterizations for non–degenerate types of
low–degree RRMF curves satisfying (21) with deg(u, v, p, q) ≤ 3. Algorithms
to construct each type may be found in the cited references. These algorithms
also furnish the polynomials a(ξ), b(ξ) occurring on the right in (21), which
are required to compute the associated rational RMFs through (19).
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5.1 Class 1 RRMF quintics

The simplest and most intensively studied RRMF curves are Class 1 quintics.
A PH quintic is generated by substituting a quadratic quaternion polynomial

A(ξ) = A0(1 − ξ)2 + A12(1 − ξ)ξ + A2ξ
2 (23)

into expression (10) and integrating. Alternatively, for the Hopf map form,
we substitute in (12) the two complex quadratic polynomials

α(ξ) = α0 (1 − ξ)2 + α1 2(1 − ξ)ξ + α2 ξ
2 ,

β(ξ) = β0 (1 − ξ)2 + β1 2(1 − ξ)ξ + β2 ξ
2 . (24)

The first characterization of the Class 1 RRMF quintics involved constraints
of degree 4 and 6 on the coefficients of the two complex polynomials (24) used
in the Hopf map form [18]. However, these constraints were not symmetric
with respect to reversing the order of the coefficient indices 0, 1, 2 (a desirable
property, corresponding merely to the re–parameterization ξ → 1 − ξ).

A much simpler characterization, phrased in terms of both the quaternion
and Hopf map forms, was subsequently developed [12]. This characterization
involves only quadratic coefficient constraints, and has the desired coefficient
index symmetry. It may be summarized as follows.

Proposition 5.1. A spatial PH quintic defined by the quaternion form (10)
has a rational RMF if and only if the coefficients of the quaternion polynomial

(23) satisfy

vect(A2 iA∗

0
) = A1 iA∗

1
. (25)

For the Hopf map form (12), the corresponding conditions on the coefficients

of the complex polynomials (24) are

Re(α0α2 − β
0
β

2
) = |α1|2 − |β

1
|2 , α0β2

+ α2β0
= 2 α1β1

. (26)

A key step in simplifying the derivation is the reduction to canonical form, in
which A0 = 1 for the quaternion form, and (α0,β0

) = (1, 0) for the Hopf map
form. For a regular curve with r′(0) 6= 0, this can always be achieved by a
scaling/rotation transformation in R

3. Complete details on the derivation of
Proposition 5.1 can be found in [12]. Note that vect(A0 iA∗

2
) = vect(A2 iA∗

0
),

so (25) has the desired symmetry; the symmetry of (26) is obvious.
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Frenet ERF RMF

Figure 2: Comparison of adapted frames defined on a Class 1 RRMF quintic
— from left to right: the Frenet frame, Euler–Rodrigues frame, and rational
rotation–minimizing frame. Only the normal–plane vectors are shown here.

Figure 2 compares the Frenet frame, Euler–Rodrigues frame, and rational
rotation–minimizing frame on a class 1 RRMF quintic, satisfying (25) with
A0 = 1 + 2 i + j − 2k, A1 = (1 + i + j − 3k)/

√
2, A2 = 2 − i + 2 j− k. The

corresponding Bernstein coefficients of the polynomials a(ξ) and b(ξ) in (21)
are (a0, a1, a2) = (1, 1/

√
2, 3/5) and (b0, b1, b2) = (0, 0,−4/5). The angular

velocities of the Frenet frame and rational RMF are illustrated in Figure 3.
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Figure 3: Comparison of angular velocities for the Frenet frame and rational
rotation–minimizing frame on the Class 1 RRMF quintic shown in Figure 2.

Since (25) is a vector constraint, it determines any one of A0,A1,A2 in
terms of the other two and a free parameter. Regarding A0,A1,A2 as points
in R

4, the following geometrical interpretation of (25) was derived in [22].
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Proposition 5.2. For given A0, A2 let w = wxi+wyj+wzk = vect(A2 iA∗

0
),

and in terms of (λ, µ, ν) = (wx, wy, wz)/|w| define the unit quaternions

E1 = 1 − ν

1 + λ
j +

µ

1 + λ
k , E2 = i +

µ

1 + λ
j +

ν

1 + λ
k ,

which may be regarded as orthonormal vectors in R
4. Then condition (25) is

satisfied if and only if A1 lies on the circle in R
4 specified by

A1(φ) =
√

1

2
(1 + λ)|w| (cos φ E2 − sinφ E1) .

The preceding results characterize Class 1 RRMF quintics by constraints
on the coefficients of the pre–image polynomial (23). Apart from a constant
factor, a polynomial can be specified by its coefficients or its roots. Because
of the non–commutative nature of the quaternion product, the problems of
defining and computing the roots of polynomials with quaternion coefficients
are more subtle than in the real or complex case. An algorithm for the case
of quadratic quaternion polynomials was described in [14], and used to derive
the following characterizations for Class 1 RRMF quintics.

Lemma 5.1. If a quadratic quaternion polynomial generating a Class 1

RRMF quintic has a double root the curve is degenerate, i.e., planar or linear.

Proposition 5.3. The quadratic quaternion polynomials that generate Class

1 RRMF quintics have roots Q = λ (q,q) where λ > 0 while q and q depend

on a real value b, a unit vector b = (bx, by, bz), and a parameter τ ∈ [−1,+1 ]
through the expressions

q =
1

2

(

− b± |τ |
√

1 + b2x
1 − τ 2

)

,

q =
− bx(b

2

x + τ 2) i − (1 + b2x) [ (by − bzτ) j + (bz + byτ)k ]

2 (1 + b2xτ
2)

∓ sign(τ)

√

1 + b2x
1 − τ 2

(b2x + τ 2) i + bx(1 − τ 2) [ (by − bzτ) j + (bz + byτ)k ]

2 (1 + b2xτ
2)

.

It is not easy to extend these results to higher–order curves. Determining
the roots of a quadratic quaternion polynomial entails the solution of a (real)
cubic equation by Cardano’s method. Higher–order quaternion polynomials
have, in general, no closed–form solutions for their roots.
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5.2 Class 2 RRMF quintics

The existence of non–planar Class 2 RRMF quintics was first established in
[29]. As observed in [7], there are no non–planar Class 3 RRMF quintics (i.e.,
quintics with rotation–minimizing ERFs), so the classification of all possible
RRMF quintics is complete. In characterizing the Class 1 RRMF quintics, a
canonical form through a scaling/rotation transformation that maps r′(0) to
the unit vector i was adopted. However, a different transformation is better
suited to the analysis of Class 2 curves. Specifically, a normal form reduction
is invoked, through which the components of (9) become

u(t) = t2 + u1t+ u0, v(t) = v1t+ v0, p(t) = p1t+ p0, q(t) = q1t+ q0. (27)

This reduction is always possible when A(t) is of true degree 2, and facilitates
[29] the following characterization.

Proposition 5.4. In normal form, the Class 2 RRMF quintics satisfying

(21) with deg(u, v, p, q) = 2 and deg(a, b) = 1 are defined by (27) when

u0, v0, p0, q0 are given in terms of free parameters r, u1, v1, p1, q1 with v1 6= 0
by

u0 = − (u1 + r)r − 4v2

1
(p2

1
+ q2

1
)/∆ ,

v0 = (u1 + r)v1 ,

p0 = v1q1 − p1r + 4v2

1
((u1 + 2r)p1 − 3v1q1)/∆ ,

q0 = − (v1p1 + q1r) + 4v2

1
((u1 + 2r)q1 + 3v1p1)/∆ ,

where ∆ = (u1 + 2r)2 + 9v2

1
+ p2

1
+ q2

1
.

This formulation allows one to construct non–planar examples of the Class
2 RRMF quintics through purely algebraic methods, but is less favorable to
the construction of such curves satisfying prescribed geometrical constraints
than the characterization of Class 1 RRMF quintics in Proposition 5.1.

5.3 Degree 7 RRMF curves

In principle, the degree 7 RRMF curves can be categorized into four distinct
classes — that satisfy (21) with deg(u, v, p, q) = 3 and deg(a, b) = 3, 2, 1, 0 —
but thus far only one of them has been satisfactorily analyzed. Since RRMF
quintics cannot match arbitrary first–order data in the rotation–minimizing
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rigid–body motion Hermite interpolation problem [19], the extra degrees of
freedom afforded by degree 7 RRMF curves are important, and the obvious
next step is to attempt a complete characterization of them.

Remark 5.1. One might think that the method used to derive the conditions
(25) and (26) that characterize the Class 1 RRMF quintics should be readily
extensible to degree 7 Class 1 RRMF curves, generated by a cubic quaternion
polynomial A(ξ) or complex polynomials α(ξ), β(ξ) specified in Bernstein
form. However, this problem has thus far defied concerted efforts to derive
satisfyingly simple analogs to (25) and (26) for the degree 7 case.

The only degree 7 RRMF curves for which a complete characterization is
known are the Class 4 curves, for which a(ξ), b(ξ) = constant. These curves
were first described in [7]. A more compact characterizaton is obtained [24]
by noting that, for such curves, the numerator on the left in (25) must vanish.
This can be stated, in terms of the quaternion representation, as follows —
see [24] for the equivalent constraints in the Hopf map representation.

Proposition 5.5. The degree 7 RRMF curves of Class 4 are characterized

by satisfaction of the five constraints

scal(A0 iA∗

1
) = scal(A0 iA∗

2
) = 0 ,

3 scal(A1 iA∗

2
) + scal(A0 iA∗

3
) = 0 , (28)

scal(A1 iA∗

3
) = scal(A2 iA∗

3
) = 0 ,

on the Bernstein coefficients of the cubic quaternion polynomial A(ξ) in (10).

5.4 The divisibility condition

A characterization for Class 1 RRMF curves of any degree, phrased in terms
of a polynomial divisibility condition, was identified in [27]. From (9) and
its derivative, one can form the polynomials

ρ = (up′ − u′p+ vq′ − v′q)2 + (uq′ − u′q − vp′ + v′p)2 , (29)

η = (uu′ + vv′ + pp′ + qq′)2 + (uv′ − u′v − pq′ + p′q)2 , (30)

which satisfy

ρ+ η = (u2 + v2 + p2 + q2)(u′2 + v′2 + p′2 + q′2) = |A|2|A′|2 . (31)
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The polynomial ρ(ξ) plays a key role in the theory of DPH curves [16, 17] —
since any PH curve satisfies

| r′(ξ) × r′′(ξ) |2 = 4 σ2(ξ) ρ(ξ) ,

the condition for a DPH curve is simply that ρ(ξ) must be a perfect square.
The following result arises [27] in the context of RRMF curves.

Proposition 5.6. A spatial PH curve generated from (10) by a quaternion

polynomial A(ξ) of any degree m is a Class 1 RRMF curve if and only if the

polynomials (29) and (30) are divisible by the parametric speed σ = |A|2 =
u2 + v2 + p2 + q2.

The equivalence of Propositions 5.1 and 5.6 was shown, for RRMF quintics,
in [28]. Because of (31), it is only necessary to check the divisibility of σ by
either ρ or η. Notwithstanding its generality, the value of Proposition 5.6 in
actually constructing higher–order RRMF curves is unclear.

5.5 Geodesics on ringed pre–image surface

The PH forms (10) and (12) both specify mappings from R
4 to R

3, for which
the pre–image of any point in R

3 is a circle in R
4 with center at the origin.

Consequently, the entire pre–image of any Pythagorean hodograph r′(ξ) is a
ringed surface of the form

S(ξ, φ) = A(ξ) exp(φ i) , (32)

with exp(φ i) = (cosφ, sinφ i). The geometry of this surface was investigated
in [22]. Any curve C(ξ) = S(ξ, φ(ξ)) on the surface (32), specified by defining
φ as a function of ξ, defines the same Pythagorean hodograph r′(ξ). However,
it was shown in [22] that certain curves have a special significance for RMFs.

Proposition 5.7. A curve C(ξ) = S(ξ, φ(ξ)) on the ringed pre–image surface

(32) in R
4 that generates a rotation–minimizing frame on a spatial PH curve

r(ξ) corresponds to a geodesic on that surface.

To generate a rational RMF, φ(ξ) must be such that sin 2φ(ξ) and cos 2φ(ξ)
are rational expressions in ξ. However, the corresponding pre–image curves
C(ξ) = S(ξ, φ(ξ)) are not, in general, rational geodesics on the surface (32).
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6 Other rotation–minimizing frames

As previously noted, the most commonly–studied RMF is the adapted frame,
which is rotation–minimizing with respect to the tangent t. The Frenet frame
is itself rotation–minimizing with respect to the principal normal p. A third
possibility, a frame that is rotation–minimizing with respect to the binormal
b, was studied in [20]. In the terminology of aerodynamics, these three frames
define roll–free, pitch–free, and yaw–free motions. In the latter case, we speak
of a rotation–minimizing osculating frame, since the rotation minimization
is associated with the frame vectors in the curve osculating plane.

It was shown in [20] that no DPH curves of degree less than 7 with rational
osculating RMFs exist. The study of curves with such frames was extended
in [42] to the rational case, based on the dual representation [30, 41], and it
was shown that rational curves with rational osculating RMFs of degree ≥ 6
exist, and the minimum degree of polynomial curves with this property is
7. The use of osculating RMFs to define ruled surfaces, with tangent planes
matching the osculating planes of a given space curve, and rulings having the
least rotation consistent with this constraint, was also discussed in [20, 42].

Rotation–minimizing directed frames, comprising the polar vector o(ξ) =
r(ξ)/|r(ξ)| and two vectors p(ξ),q(ξ) that span the image plane orthogonal to
it, having no instantaneous rotation about o(ξ), were first considered in [15]
— motivated by the problem of orienting a camera along a curved path. The
theory for adapted RMFs carries over to the context of directed RMFs if all
derivatives of r(ξ) are replaced by derivatives of order one less. Equivalently,
one can replace r(ξ) by its anti–hodograph, i.e., indefinite integral. This leads
to the notion of the polar differential geometry of r(ξ), involving the directed
Frenet frame, polar curvature, polar torsion, etc. Correspondingly, to obtain
a rational directed RMF, one must use Pythagorean (P) curves — satisfying
x2(ξ)+y2(ξ)+z2(ξ) = ρ2(ξ) for some polynomial ρ(ξ) — in lieu of PH curves.

7 Applications of RRMF curves

7.1 Design of rigid–body motions

The construction of a rational rotation–minimizing motion, that interpolates
prescribed initial/final positions pi, pf and orientations (ti,ui,vi), (tf ,uf ,vf )
of a rigid body, is a key application of the RRMF curves. This problem has
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been studied in [19] for the case of Class 1 RRMF quintics, which nominally
have sufficient freedoms to satisfy the specified boundary conditions. It was
shown in [19] that interpolation of the end frames is always possible, while
interpolation of the displacement pf −pi reduces to finding the positive real
roots of a degree 6 polynomial. However, it is possible to construct examples
in which this polynomial has no real roots, and the non–linear dependence
of its coefficients on the input data precludes simple a priori conditions for
the existence of solutions (although it can be verified in the asymptotic case
of sufficiently–dense data, sampled from a smooth curve).

An alternative approach to the problem, utilizing the degree 7 PH curves
with rotation–minimizing ERFs, has been described in [24]. In this case, the
problem can be reduced to solving a system of four quadratic equations in four
real variables. These equations incorporate two free parameters, representing
the magnitudes of the end derivatives, that can be used to optimize shape
properties of the interpolant. In general, iterative numerical methods must
be used to solve these equations and/or optimize the free parameters, and no
formal proof of the existence of solutions for some parameter values is known.
However, empirical evidence suggests that this is the case, and solutions are
obtained in instances where the RRMF quintics admit none (see Figure 4).

Figure 4: Example of a rational rotation–minimizing rigid–body motion with
prescribed initial/final states, as specified by a Class 4 degree 7 RRMF curve.

Although the degree 7 interpolants are of higher degree than the RRMF
quintics, their rational RMFs are actually of lower degree (6 versus 8), since
they are coincident with the ERF and do not require a rational normal–plane
rotation. Their main shortcoming, compared to the quintics, is their reliance
on numerical solution methods, instead of a closed–form procedure.
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7.2 5–axis tool orientation control

In 5–axis CNC machining of free–form surfaces with a ball–end cutter, it is
desirable to employ a fixed angle ψ between the tool axis a and the surface
normal n along the toolpath, so as to maintain a constant cutting speed. This
leaves the azimuthal orientation of a about n indeterminate, and the idea of
using a rotation–minimizing motion to fix it, so as to minimize actuation of
the machine rotary axes, has been proposed in [26]. Relative to the Darboux

frame (t,h,n) consisting [44] of the path tangent t, surface normal n, and
tangent normal h = n × t, the orientation of the tangent–plane component
of a is specified as a constant minus the integral of the geodesic curvature

[44] with respect to arc length along the toolpath. The inverse kinematics for
such a motion, determining the machine axis inputs necessary to maintain
the rotation–minimizing orientation of a, have been studied in [25].

7.3 Swept surface constructions

The rotation–minimizing frames play an important role in the construction
of swept surfaces, in which a surface is generated by the continuous spatial
motion and/or deformation of a given “profile” curve [38, 40, 48]. The canal

surfaces generated as the envelopes of one–parameter families of spheres with
varying centers and radii are one example [6, 8] — in this case, using the RMF
improves the quality of parameterization, but not the shape, of the surface.
In the case of an asymmetric planar profile curve (e.g., an ellipse) that moves
along a spatial sweep curve, so as to remain always in the sweep curve normal
plane, using the adapted RMF to orient the profile curve within that plane
can significantly improve the resulting swept surface shape — see Figure 5.

The adapted RMFs also have an intimate connection with certain intrinsic
curves on a surface. The fact that the Darboux frame is rotation–minimizing
with respect to the tangent along lines of curvature [44] on a smooth surface
can be used to construct rational patches bounded by lines of curvature, by
requiring the surface normal to coincide with any vector fixed relative to the
RMF normal–plane vectors u,v. Complete details may be found in [2].

7.4 Rotation–minimizing camera motions

The rotation–minimizing directed frame was introduced in [15] as a means
of reducing the apparent rotation of an object being imaged by an orientable
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Figure 5: Swept surfaces generated by an ellipse that remains in the normal
plane of a space curve (left) when the normal–plane orientation is specified
through the Frenet frame (center) and the rotation–minimizing frame (right).

camera that traverses a curved path. Such frames have possible applications
to endoscopic imaging or surgery, in which a miniature camera mounted on a
flexible tube is inserted through a small incision, and directed along a curved
path to image or sample tissue at a specific location in the body cavity. See
[21, 33] for further development of the directed RMF algorithms.

8 Closure

Notwithstanding the considerable progress recently made in elucidating the
characterization, properties, and construction algorithms for RRMF curves,
the results surveyed herein indicate that significant gaps in the understanding
and utilization of these curves still remain. This reflects the inherent difficulty
of these remaining open problems, arising from their non–linear nature. We
conclude by highlighting some of the key issues that remain unresolved.

• Proposition 5.1 gives an elegant and succinct characterization of Class
1 RRMF quintics, well–suited to use in construction algorithms. On
the other hand, the identification of Class 2 RRMF quintics in Propo-
sition 5.4 is rather opaque and complicated. A simpler description
of these curves, better suited to geometrical construction algorithms,
would be useful.

• Since the RRMF quintics have barely enough freedoms for geometrical
interpolation problems, full development of the degree 7 RRMF curves
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is desirable. Currently, only one of four possible classes of these curves
has been satisfactorily categorized. An analog of Proposition 5.1, for
the Class 1 degree 7 RRMF curves, remains to be developed.

• The divisibility condition for Class 1 RRMF curves in Proposition 5.6 is
attractive, since it applies to curves of any degree. It would be useful to
have methods that can apply this condition in a constructive manner.

• Currently available methods for designing rational rotation–minimizing
motions by means of Hermite interpolation offer scope for improvement.
The Class 1 RRMF quintics admit an essentially closed–form solution,
but cannot accommodate arbitrary input data, while the Class 4 degree
7 RRMF curves provide free parameters but rely on iterative solution
and/or optimization methods. A scheme offering a closed–form solution
compatible with arbitrary initial/final states is desirable.

• Although the results obtained thus far are useful and non–trivial, they
have been achieved on a case–by–case basis. An over–arching theory of
RRMF curves, that could set the established results in proper context
and help resolve the remaining open problems, is the ultimate goal.
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