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Unsupervised Deep Learning Framework for Data-Driven Gating 
in Positron Emission Tomography

Tiantian Lia, Zhaoheng Xiea, Wenyuan Qib, Evren Asmab, Jinyi Qia,*

aDepartment of Biomedical Engineering, University of California - Davis, Davis, CA 95616, USA

bCanon Medical Research USA, Inc., Vernon Hills, IL 60061, USA

Abstract

Background: Physiological motion, such as respiratory motion, has become a limiting factor in 

the spatial resolution of positron emission tomography (PET) imaging as the resolution of PET 

detectors continue to improve. Motion-induced misregistration between PET and CT images can 

also cause attenuation correction artifacts. Respiratory gating can be used to freeze the motion and 

to reduce motion induced artifacts.

Purpose: In this study, we propose a robust data-driven approach using an unsupervised deep 

clustering network that employs an autoencoder (AE) to extract latent features for respiratory 

gating.

Methods: We first divide list-mode PET data into short-time frames. The short-time frame 

images are reconstructed without attenuation, scatter or randoms correction to avoid attenuation 

mismatch artifacts and to reduce image reconstruction time. The deep AE is then trained 

using reconstructed short-time frame images to extract latent features for respiratory gating. No 

additional data are required for the AE training. K-means clustering is subsequently used to 

perform respiratory gating based on the latent features extracted by the deep AE. The effectiveness 

of our proposed deep clustering method was evaluated using physical phantom and real patient 

datasets. The performance was compared against phase gating based on an external signal 

(External) and image based principal component analysis (PCA) with K-means clustering (Image 

PCA).

Results: The proposed method produced gated images with higher contrast and sharper 

myocardium boundaries than those obtained using the External gating method and Image PCA. 

Quantitatively, the gated images generated by the proposed deep clustering method showed larger 

center of mass displacement and higher lesion contrast than those obtained using the other two 

methods.

Conclusions: The effectiveness of our proposed method was validated using physical phantom 

and real patient data. The results showed our proposed framework could provide superior gating 

than the conventional External method and Image PCA.

*Corresponding author: J Qi, qi@ucdavis.edu. 
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1. Introduction

Positron emission tomography (PET) imaging is an important image modality that provides 

quantitative information of various physiological and biochemical processes. Over the past 

few decades, efforts have been made by scientists and engineers to push the sensitivity and 

resolution of PET imaging further 1–3. As spatial resolutions of PET systems improve, 

motion blurring increasingly becomes a limiting factor for resolution in many PET 

applications. For instance, image blurring caused by patient cardiac and respiratory motions 

during a PET scan would lead to the distortion of organ shape, loss of signal-to-noise ratio, 

attenuation mismatch artifacts, and also cause inaccurate parameter estimates in dynamic 

studies.

To eliminate motion-induced artifacts, respiratory gating has been proposed to collect data 

acquired at the same respiratory position 4. The position information is traditionally acquired 

by an external device, such as a pressure belt or a motion camera along with gating 

software to process it. However, this requires extra setup time and can fail due to user 

errors, e.g. mispositioning of the sensor, detachment of marker, or poor calibration and 

synchronization 5. To address these problems, many data-driven gating (DDG) algorithms 

have been proposed to extract the respiratory signal directly from the raw PET data or 

pre-reconstructed images. Some previous clinical studies have demonstrated that DDG can 

provide comparable or even superior performance compared to external devices 6,7

Klein et al. proposed to use the axial component of the center of mass (COM) for list 

mode events as an indicator of motion8. The performance of this method could be further 

improved by incorporating TOF information to provide more accurate event localization 

and by applying a volume-of-interest (VOI) to reduce contributions from the stationary 

background 8–12. Since this method does not require reconstruction of images, it may be 

applied to motion detection at a very fine temporal scale. However, good performance for 

these COM based methods usually requires extra computation time or additional user inputs. 

Also, the drawback of above-mentioned COM based methods is that they rely on band pass 

filtering to get a smooth curve, which may not be able to preserve irregular or deep breathing 

cycles. Alternatively, the respiratory signal can also be extracted by applying principal 

component analysis (PCA) or spectral analysis to the sinogram or histogram of PET data 

sampled at short time intervals 13–15. As an alternative to sinogram-space approaches, 

image-space approaches were also proposed for respiratory signal acquisition. Compared 

with the sinogram-space methods based on the line integral of the radio-activity along 

each LOR, image-based methods can separate moving and stationary regions to achieve a 

higher SNR for extracting the motion signal. Moreover, the current list-mode reconstruction 

enables ultra-fast short time frame reconstruction, which makes image-based methods more 

attractive 16. As an alternative, Yang et al proposed to extract the respiratory motion signal 

from the summed singles rate without sorting the singles events into coincidences 17. While 
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this method is promising since it is simple and fast, its performance still needs improvement 

when the breathing pattern is irregular due to the low signal-to-noise ratio (SNR) in singles 

data for detecting respiratory motion using a standard PET scanner.

After the motion signal extraction, respiratory gating can be conducted based on either 

phase or amplitude of the motion signal 18. In phase-based gating, each respiratory cycle is 

divided into a set of approximately equal time bins. For irregular breathing patterns, phase-

based gating could mis-assign data from different respiratory positions to the same gate. In 

amplitude-based gating, each respiratory gate is formed by combining data corresponding 

to the same amplitude of the motion signal. The performance of amplitude gating could 

be affected by a baseline shift in the motion signal. A common limitation of the above-

mentioned methods is that respiratory gating is based only on a single respiratory signal, 

which cannot capture complicated motion patterns, such as hysteresis. Methods using 

multiple signals have been proposed and reviews of techniques on gating strategy and 

motion correction in PET can be found in 19,20.

Recently, deep clustering networks that use autoencoders (AE) to extract latent features and 

exploit intrinsic similarities without using supervisory labels for clustering have been found 

to be successful in many computer vision tasks 21,22. A similar idea based on utilizing 

clustering algorithms for gating has been demonstrated in brain PET applications, 23,24 

although the features used for clustering in the literature are still based on the COM 

or sinogram domain PCA. In this study, we propose a data-driven approach using an 

unsupervised deep clustering network that employs an AE to extract latent features from 

list-mode reconstructed short-time frames for respiratory gating. This method overcomes 

the limitation of PCA and spectral analysis mentioned above and the effectiveness of 

our proposed method was evaluated using physical phantom and real patient data. The 

results showed that the proposed approach (Deep Clustering) outperforms traditional phase 

gating based on an external signal (External) as well as image-domain PCA with K-means 

clustering (Image PCA).

2. Methods

2.1 Deep cluster framework

The proposed deep cluster framework includes two parts: a deep AE network to extract 

latent features and K-means clustering to perform respiratory gating based on the latent 

features. The AE comprises of an encoder qω z x  and a decoder pθ z x  (Fig.1 (a)). It 

aims to find a low-dimensional representation for each input image by minimizing the 

mean squared errors (MSE) between its input and output over all training datasets. To 

perform data-driven gating, list-mode data are first binned into short time frames and 

reconstructed frame-by-frame. The short-time frame images are reconstructed without 

attenuation, scatter or randoms correction to avoid attenuation mismatch artifacts and to 

reduce image reconstruction time. The reconstructed images are used to train the AE and 

to extract latent features. The input of the network is x ∈ ℝX × Y × Z, where X,  Y ,  Z denote 

the three spatial dimensions in the image. Unsupervised feature learning is performed 

by a 3D convolutional AE, in which only 3D or elementwise operations, such as 3D 

Li et al. Page 3

Med Phys. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



convolution, batch normalization (BN), and rectified linear units (ReLU), are used to exploit 

spatial structure information for spatial feature extraction (Fig. 1(b)). We further include a 

self-attention (SA) module in the AE framework 25,26. It calculates response at a position 

as a weighted sum of the features at all positions in the feature map, which allows the 

network to learn to suppress irrelevant features in an input image while highlighting desired 

features 27. It should be noted that this network is trained by using the same input images as 

the training labels and it does not require any additional data. As a result, spatial structure 

information can be encoded and learned in an unsupervised fashion. Once the AE is trained, 

the latent features z are extracted from the bottleneck layer of the network and are fed into 

a K-means clustering algorithm to group the short time frame images to a fixed number of 

respiratory gates. The K-means clustering results are then used to re-sort the list-mode data 

into respiratory gates for the final image reconstruction.

2.2 Reference phase selection and 4D phase matched CT generation

A fast helical non-gated CT protocol with free breathing is usually used for attenuation 

correction (AC), which could cause attenuation correction artifacts if it is used for all 

respiratory gates. To eliminate such attenuation mismatch artifacts, we propose to generate 

phase matched CT images for attenuation correction. We first reconstruct the gated PET 

images without AC and SC using ordered subset expectation maximization (OS-EM) with 

10 subsets and 2 iterations. The voxel size was 2.04× 2.04×2.04 mm3 and the image 

array size is 272×272×96. We computed the normalized cross-correlation (NCC) between 

the reconstructed PET images and the CT image and selected the reference phase with 

the maximum NCC. Then we apply our previously developed unsupervised deep learning 

model for deformable motion estimation 28. The estimated motion fields between the non-

attenuation corrected reference and moving gate reconstructions were then used to deform 

the CT image to obtain phase-matched CT images for each moving gate.

The overall diagram of our proposed framework is shown in Fig.2.

2.3 Implementation details

The list-mode PET data was first divided into short frames (200-500 ms) and were 

reconstructed using a list-mode Maximum Likelihood Expectation Maximization (ML-EM) 

with 2 iterations. We used a simplified geometric projection matrix for all reconstructions in 

this study 29. The ungated image was used for initialization and images were reconstructed 

without scatter and random correction to speed up the reconstruction. The voxel size was 

4.08× 4.08×4.08 mm3 and the image array size was 152×152×48.

The deep clustering network was implemented in Keras 2.2.4 with Tensorflow backend and 

trained on a NVIDIA GTX 1080Ti GPU. The learnable parameters of the network were 

updated using the adaptive moment estimation (ADAM) optimizer 30. The learning rate was 

0.0001 and the batch size was 1. For each training, the network was trained from scratch 

and all the trainable parameters were randomly initialized 31. The network was trained using 

reconstructed short-time frames with 3 epochs. The extracted latent features were fed into 

a K-means clustering algorithm 32. To force the clustering to focus more on respiratory 

motion, we weighted each latent feature zi by the maximum magnitude of the frequency 
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component contained by zi inside the human breathing frequency range (0.14-0.33 Hz in 

this study). For the K-means initialization, PCA was first applied to the latent features 

and phase-based gating was performed using the first principal component to compute the 

initial cluster centers in the latent feature space. As with most DDG methods, the extracted 

movement direction from PCA could be opposite of the true motion direction. For a better 

comparison with the results from the external phase gating method, sign correction was 

applied to the first principal component based on the assumption that humans generally 

spend more time at expiration in each respiratory cycle 12. The peaks of the corrected 

signal represent end-inspiration and valleys represent end-expiration. After that, the cluster 

assignments can be obtained by iteratively optimizing the clustering objective by minimizing 

the sum of squared errors (SSD).

For phase-matched CT image generation, we used our previously proposed motion 

estimation neural network 28 to estimate the motion field between different gates. The 

network was fine-tuned for 200 epochs using the image pairs between the end-inspiration 

and end-expiration gated images from the External method. Eight moving-reference image 

pairs (4 patients each with 2 bed position) were fed into the network for the fine-tuning 

process. Negative NCC was chosen as the loss function with an L2 norm of the gradient 

of deformation field as regularization to encourage a smoothed motion field. The patient-

specific fine-tuning improved the motion estimation accuracy and could be avoided if we 

had enough respiratory gated patient data for network training. For the purpose of comparing 

Image PCA and Deep Clustering, we used the same motion estimation network that was 

fine-tuned using the External gated images. In practice, the network can be fine-tuned using 

gated reconstructions from any gating method. Motion fields for all moving-reference image 

pairs were estimated for External, Image PCA and Deep Clustering methods, respectively 

(4 patients × 2 bed position × 6 moving-reference image pairs × 3 gating methods). These 

estimated motion fields were then used to deform the CT image to each moving gate to 

obtain 4D phase-matched CT images.

A uniform cylinder scan was used to obtain normalization factors and the matched 

phase CT images were used to compute the attenuation factors 33. Scattered events were 

estimated using the single scatter simulation algorithm and randoms were estimated using 

the delayed random sinogram. The scatters and randoms were estimated based on ungated 

data and scaled based on the time duration of each gate. Finally, the gated PET data 

was reconstructed with full quantitative corrections using OS-EM with 10 subsets and 2 

iterations.

2.4 Experimental data acquisition

2.4.1 Physical phantom data—A motion phantom, as shown in Fig. 3 (a), was used 

to evaluate the effectiveness of the proposed method. The phantom had a rotating disc 

inside a cylinder filled with uniform activity as shown in Fig. 4 (a). The disc holds four 

fillable spheres, as shown in Fig. 4 (b), and rotated at a constant speed of 4.66 sec/cycle. 

The activity concentration ratio between sphere A and the uniform background (pointed 

by the thick red arrow in Fig. 4 (a)) was 4:1, and the other slots (B-D) had the same 

activity concentration as the background. The phantom dataset was scanned on a Canon 
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Celesteion whole-body TOF PET/CT scanner (Canon Medical Corporation, Tochigi, Japan) 

with a total of 166.5 MBq 18F-FDG for 10 mins (Fig. 3 (b)). A CT helical scan with 

120 kVp was acquired for AC. Since the physical phantom was entirely filled with water 

equivalent material, a single CT was used for all gated reconstructions. An Anzai system 

(Anzai Medical Co, Ltd., Tokyo, Japan) was used to record the external gating signal. The 

list-mode data were divided into 200 ms frames and were grouped into eight gates using the 

three methods. Images reconstructed using the gated data were evaluated qualitatively based 

on visual assessment and quantitatively based on gate assignments.

2.4.2 Real patient data—Four patient datasets with 216.0-249.9 MBq 18F-FDG 

administration were used for evaluation. List mode data was obtained from a Canon 

Celesteion whole-body TOF PET/CT scanner for two bed positions, each lasting 14 mins. 

By attaching the Anzai belt to the patient′s abdominal region, the movement of the 

abdominal surface due to respiration was recorded as the respiratory signal and subsequently 

used for gating. A free-breathing low-dose CT image was acquired at 120 kVp for each 

subject for AC. The list-mode data were divided into 500 ms frames and grouped into seven 

respiratory gates using the three different methods. Images reconstructed using the gated 

data were evaluated qualitatively based on visual assessment and quantitatively based on 

lesion contrast and maximum COM displacement.

2.5 Data analysis

2.5.1 Physical phantom—For the phantom data, since the disc rotated at a constant 

speed, the Anzai signal worked very well and was chosen as the ground truth. To avoid 

discretization error, the external gating was performed using a finer temporal resolution 

(25 ms). For quantitative evaluation, we computed the percentage gating accuracy and the 

absolute gate shift for each cluster. First, the gate center was obtained by averaging the true 

phase (in degrees) of all the frames assigned to each gate. Then the absolute phase shift of 

each frame was computed as the absolute phase difference between the frame phase and the 

gate center. Since we had eight gates per rotation, each gate covers an angular range of 45 

degrees. Therefore, a frame was counted as correctly assigned if its absolute phase shift is 

less than 22.5 degrees. The average gating accuracy of gate i was then computed as

Percentage Gating Accuracy = number of correctly assigned frames in gate i
total number of frames in gate i × 100% .

The mean absolute gate shift of gate i was computed as

Mean Absolute Gate Shift = 1
total number of frames in gate i ∑

f ∈ gate i
ϕf − ϕi

Where ϕf denotes the true phase in degrees of frame f and ϕi denotes the gate center of gate 

i.

2.5.2 Real patient data—For real datasets, both visual assessment and quantitative 

region of interest (ROI) analysis were performed. Among four patient datasets, three of 
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them had high myocardial uptake, while the fourth patient had a pulmonary lesion that was 

affected by the respiratory motion. A box ROI was drawn on the ungated image covering 

the whole moving trajectory of either the myocardium or pulmonary lesion. Due to the 

lack of the ground truth, maximum COM displacement for different gating methods was 

used for comparison. Displacement along x- y- z- directions were derived as the largest 

difference in the COM measurements obtained from all gated images and the length of 

the moving trajectory over gates was calculated. Statistical significance of the observed 

differences between different gating methods were analyzed using paired t-tests. A p value 

of < 0.05 (*) was considered to be statistically significant and < 0.01 (**) was considered 

highly significant. In addition, the average wall thickness of the left ventricle was computed 

by averaging the full-width-at-half-maximum of the intensity profiles at 25 locations along 

the inferior ventricular walls. For the purpose of assessing respiratory motion blurring, the 

profiles were taken parallel to the z-axis. For the patient with a pulmonary lesion, we also 

plotted the average contrast of the lung lesion of all gated images as a function of the ROI 

size.

3. Results

3.1 Physical phantom

We examined the frequency spectrum of the first 10 principal components from Image PCA 

and found that the second component has the strongest signal at the rotation frequency. 

Because the phantom motion is a circular rotation, if only one component was used for 

clustering, the result would be based on the amplitude only and cannot differentiate the 

hysteresis. Therefore, we used the first two principal components from Image PCA to 

perform the clustering for gating. For visualization purposes, we extracted the first principal 

component from the latent features of the deep clustering method and plotted it with the 

external motor signal and the 2nd component from Image PCA in Supplemental Material 

Figure S1, overlaid with color-coded dots representing different gates. The signals were 

normalized to the range of [−0.5, 0.5] by their min-max values. We can see that the single 

principal component of the latent features or images captures most of the motion signal. 

However, the clustering based on Image PCA cannot fully capture the phase information, 

even though we used two principal components. In comparison, the clustering based on 

the latent features can capture phase very well. Fig. 5 showed the reconstructed phantom 

images of the gated data for all three methods. Gated images with the Deep clustering gating 

visually provided comparable resolution and contrast to the External method, while some 

gates from Image PCA are very blurry. We acknowledge that conventional phase gating 

based on the second component of Image PCA would give a better gating result in this case, 

but phase gating has its own limitations, in particular in dealing with irregular motions.

For quantitative evaluation, we plotted the percentage gating accuracy and mean absolute 

phase shift for Image PCA and Deep Clustering methods in Fig. 6 (a–b). The percentage 

gating accuracy was 68% for Deep Clustering while it was only 24% for Image PCA. The 

mean absolute phase shift was 20.42 degrees (0.45 gate) and 61.82 degrees (1.37 gate) for 

Deep Clustering and Image PCA, respectively. Distribution of the count level variations over 

gates for three methods are also plotted in Fig. 6 (c), which showed the External and Deep 
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Clustering methods produced more even count distributions across gates, while Image PCA 

showed larger variations.

3.2 Real patient data

Fig. 7 shows sampled gated PET reconstructions at end-inspiration phase from the Deep 

Clustering method superimposed with (a) free-breathing helical CT image and (b) the 

generated phase matched CT image. We can clearly see that the phase-matched CT image 

aligns very well with the gated PET image in Fig. 7 (b). In Supplemental Material Figure S2, 

latent feature maps showed large activation on the voxels corresponding to the hot spot and 

liver boundary, which indicated the motion was highlighted by the latent vectors. Frequency 

analysis indicated that only the first principal component (PC) of Image PCA contains 

significant respiratory motion signal. Therefore, we used the first PC as the motion signal for 

gating in Image PCA. In Supplementary Figure S3, we plotted the motion signal from Image 

PCA and the first PC from latent features of Deep Clustering method with colored dots 

representing gate assignments. We also analyzed count distribution across seven gates. The 

mean count fraction is 0.14 for all gating methods and the standard deviations were 0.02, 

0.05 and 0.03 for External, Image PCA and Deep Clustering methods, respectively. The 

Image PCA showed larger count variation across different gates. Higher noise in gates with 

fewer counts could reduce the motion estimation accuracy and hence affect the generation 

of the phase-matched attenuation map. Fig. 8 (a–c) shows sampled respiratory gated images 

for the External, Image PCA and Deep Clustering methods. The yellow line marks the 

top of the myocardium position in Gate 3 (the reference gate). Substantial myocardium 

displacement can be observed in other gates for all three methods. The average FWHMs of 

the left ventricle were plotted as a function of gate and the average FWHMs over all gates 

were also included in Fig.8 (d). The deep clustering method provides sharper boundaries 

in the myocardium region and larger displacement on gated PET images compared with 

the External method. Sample reconstructed images of respiratory gated pulmonary lesion 

images were shown in Fig. 9. The lesion in Gate0 was blurred by respiration in the 

External method. In contrast, Image PCA and Deep Clustering gating provided a clear lesion 

boundary and higher lesion contrast than the External method.

For quantitative analysis, the COM displacements in a box region covering the heart/lesion 

region were evaluated. Both maximum displacement and the length of the 3D moving 

trajectory across all gates were listed in Table 1. The standard deviation of each metric was 

computed over all 8 datasets (4 patients each with 2 bed positions). Clearly, gated images 

from Deep Clustering provided larger COM displacement than the images from the External 

method (p < 0.05 for COM displacement along three directions) and slightly better than 

those from Image PCA (p < 0.01 for COM displacement along the x-direction). Fig. 10 

showed averaged contrast of 7 gated images for a pulmonary lesion as a function of lesion 

ROI size (number of voxels) for the External, Image PCA, Deep Clustering methods. Clearly 

Deep Clustering provided the highest lesion contrast for all ROI sizes, demonstrating the 

advantage of the proposed method.

To investigate the effectiveness of including the self-attention (SA) module, an ablation 

study was performed and the frequency spectrum of each element in latent features over 
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time before and after removing the SA module for a patient data was compared. Fig. 11 (b,c) 

show the spectrums of the latent feature with the maximum energy inside the respiratory 

frequency range extracted by the AE with and without the SA module, respectively. In 

comparison, the spectrum of the feature extracted with the SA module is less noisy and 

closer to the spectrum of the Anzai signal (Fig. 11 (a)) than the one without the SA module.

4 Discussion

In this study, we proposed a fully automatic data-driven gating approach using an 

unsupervised deep clustering network that exploits the autoencoder approach and clustering 

for respiratory gating. Convolutional neural networks can effectively transform data 

from a high-dimensional image domain into a lower-dimensional feature space while 

preserving contextual information, leading to improved clustering results. In comparison, 

the conventional PCA for dimension reduction is limited to linear decomposition which may 

lose useful features. Supplementary Figure S4 (a–c) shows the frequency spectrum of the 

first three principal components from Image PCA for the real data. We can see only the first 

component contains a prominent peak within the respiratory frequency range. The second 

principal component contains some second harmonics (around 0.4 Hz) of the fundamental 

frequency (around 0.2 Hz), but the SNR is very poor. No respiratory signal can be identified 

in the third principal component. Therefore, we did not expect that including the second or 

third component in Image PCA would result in improvements for real data. One potential 

way to improve Image PCA is to include the time derivative of the motion signal, which can 

be helpful to distinguish the phase between inspiration and expiration. Some studies show 

that the gradient can be used to characterize the complex breathing motion pattern 34,35. 

There are also several more advanced nonlinear dimension reduction approaches beyond 

the linear PCA, such as kernel PCA (KPCA) 36. KPCA computes the covariance matrix of 

the data after being transformed into a higher-dimensional space via a pre-selected kernel 

function. However, it is not trivial to find a good kernel, so KPCA does not guarantee good 

results for a specific dataset when using a fixed kernel.

It should be noted that the physical phantom was designed to have a circular motion, which 

is not representative of the respiratory motion in patients. For the image based PCA, the 

second component can capture the rotation signal. However, if only one component was 

used for clustering, the result would be based on the amplitude only and cannot differentiate 

the hysteresis. Using the image PCA derived signal with a phase-based gating or including 

its derivate as the second feature could likely be more suitable in this case.

Compared to other DDG methods, e.g., COM and sinogram based methods, we expect 

image-based methods to achieve a higher SNR by utilizing short-frame reconstructions 

to decouple the motion and non-motion components in the image. Figure S5 in the 

Supplemental Materials shows frequency spectra of the extracted motion signals from 

external Anzai system, our implementation of sinogram PCA, Image PCA and Deep 

clustering. We can see that the spectrum from sinogram PCA contains more noise at 

higher frequency compared to the Anzai signal and the image-based methods. However, 

our sinogram PCA method was not optimized, e.g., regarding downsampling or filtering 
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37, and it could therefore be further investigated if extending the Deep AE method towards 

sinograms would be beneficial.

Image-based methods need many reconstructions. Indeed, long computational time of the 

sinogram based reconstruction would limit its application as a standard clinical protocol 16. 

In this study, we use list-mode reconstruction and calculate the simple geometric projection 

matrix on-the-fly during forward and backward projection which means the computational 

time is proportional to the number of list-mode events. Hence, the short time frame images 

can be generated in a time period comparable to that of an ungated reconstruction. In this 

study, it took 0.11 sec for each 0.5s frame reconstruction (count level 56k).

In the training of our deep clustering network, the autoencoder was trained from scratch 

using the patient specific short-frame reconstructions in a self-supervised fashion. The 

training time is about 4 mins per epoch. The total workflow takes about 30 mins for gating 

each 14-min clinical dataset excluding the time spent on fine-tuning the image registration 

network. We can further improve the computational time by initializing the model weights 

with previous training results and fine-tune it using patient specific data to reduce training 

time. Alternatively, the network can be pre-trained with a sufficient amount of existing data 

and directly applied to new patient data without additional training. Besides, the cluster 

assignments were done with a basic K-means clustering and can also be clustered with other 

unsupervised algorithms such as Gaussian mixture model 38 or spectral clustering 39. In 

addition, the use of cluster analysis for respiratory gating provides potential for the patient 

specific selection of an optimal number of gates for gating. For example, the SSD from the 

cluster centers of the respective clusters could be plotted as a function of number of clusters 

and the “elbow” (the point of inflection on the curve) can be detected as the optimum point. 

Moreover, the proposed method is not limited to respiratory gating. One can choose 1 or 2 

sec frames for gross body motions or shorter frames, such as 0.1 sec frames, for cardiac and 

respiratory dual gating.

To address the attenuation mismatch, 4D phase-matched CT images can be generated 

based on gated PET-derived motion fields obtained from the non-rigid registration 40,41. 

We utilize our previously developed unsupervised motion estimation network to perform 

non-rigid registration between the reference and moving gates. This approach provides 

greater flexibility as one can change the reference gate and quickly obtain the motion vectors 

instead of running a full new set of non-rigid registration algorithms. In future work, we will 

further incorporate the CT at reference phase into the motion estimation network training 

assuming the anatomical information would potentially improve the image registration. The 

image quality of different gating methods will be evaluated blindly by clinicians in the 

future.

5 Conclusions

In this study, we proposed a fully automatic data-driven gating approach using an 

unsupervised deep clustering network that exploits the autoencoder approach for respiratory 

gating. The effectiveness of our proposed method was validated using physical phantom and 
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real patient data. The result showed our proposed approach could provide superior gating 

than the conventional External and Image PCA methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
(a) Autoencoder-based deep clustering network framework. (b) The schematic diagram of 

the AE with a self-attention gate. The number of features in each layer are indicated at the 

bottom of the graph.
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FIGURE 2. 
The overall diagram of our proposed unsupervised deep learning framework for data-driven 

gating.
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FIGURE 3. 
(a) Picture of the respiratory motion phantom and (b) the acquisition setup with the Anzai 

belt attached to the phantom.
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FIGURE 4. 
(a) Mechanical drawing of the rotating disk. There are 4 holes in the rotating disc, and radial 

distance of each hole to the rotating center is 40 mm for “A”, 30 mm for “B”, 20 mm for 

“C” and 25 mm for “D”. (b) Mechanical drawing of each hole. A hot source (inner diameter: 

16mm) was filled using a smaller cylinder in the hole “A”, and the other 3 holes were left 

empty (the diameter of each hole is 23mm). The empty holes are filled with the background 

activity.
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FIGURE 5. 
Reconstruction of gated data using (a) External, (b) Image PCA and (c) Deep Clustering 

methods.
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FIGURE 6. 
Comparison between Image PCA and Deep Clustering methods. (a) Percentage gating 

accuracy. (b) Mean absolute phase shift relative to the gate centers. (c) Distribution of the 

count level over gates for the External, Image PCA and Deep Clustering methods.
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FIGURE 7. 
Gated PET reconstructions at end-inspiration phase from Deep Clustering method 

superimposed with (a) free-breathing helical CT and (b) phase matched CT.

Li et al. Page 20

Med Phys. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 8. 
Sampled reconstruction of gated images using (a) External, (b) Image PCA, (c) Deep 

Clustering methods. The yellow line marks the top of the myocardium position in Gate 3 

(the reference gate). The average FWHMs over 25 different locations of the intensity profile 

(indicated by the red line) through the (d) inferior myocardial wall were plotted as a function 

of gate number (solid lines). The dashed lines denote the mean FWHMs over all gates of the 

three methods.

Li et al. Page 21

Med Phys. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 9. 
Sampled reconstruction of gated images using External, Image PCA, Deep Clustering 

methods. The red circle marks the lesion used for quantification in Figure 10.
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FIGURE 10. 
Averaged contrast for a pulmonary lesion (marked by the red circle in Fig. 9) as a function 

of the lesion ROI size (number of voxels) for the External, Image PCA, Deep Clustering 

methods.
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FIGURE 11. 
Comparison of the frequency spectrums of (a) the Anzai signal and (b,c) the latent features 

with the maximum energy inside the respiratory frequency range extracted by the AE (b) 

with and (c) without the self-attention module.
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TABLE 1.

Center of mass displacement in millimeters (mm) along x, y, z direction and the trajectory length for External, 

Image PCA, Deep clustering method.

The p-values are indicated by ‘*’ (p < 0.05) and ‘**’ (p < 0.01), respectively.
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