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But blessed is the one who trusts in the Lord, 

whose confidence is in him. 

They will be like a tree planted by the water 

that sends out its roots by the stream. 

It does not fear when heat comes; 

its leaves are always green. 

It has no worries in a year of drought 

and never fails to bear fruit. 

Jeremiah 17:7-8 
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 Cancer is responsible for over 8 million deaths annually and the number of new cases 

is expected to increase by approximately 70% over the next 20 years. Surgery, chemotherapy 

and radiotherapy have been used for decades as primary strategies against cancer in patients; 
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however, cancer cell drug and radiation resistance development often leads to lower 

remission and higher relapse incidence. Cell therapies for cancer are emerging approaches 

to enhance tumor-specific killing and include expansion of patients’ tumor-infiltrating 

lymphocytes or complex engineering of the T cell receptor or Chimeric Antigen Receptors 

(CAR). The latter have shown unprecedented progress towards treating incurable cancers 

and are currently being examined in over 200 clinical trials. Developing successful 

therapeutic strategies using live cells entails the ability to determine their in vivo 

biodistribution and persistence after systemic administration. Non-invasive imaging 

techniques such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography 

are the best candidates for real time, quantitative assessment of tumor response. 

Perfluorocarbon (PFC) probes are composed of numerous fluorine atoms, which are not 

naturally present in the body and allow for background free quantitation by MRI. This thesis 

describes fluorinated imaging probes and methods for labeled cell tracking by 19F MR 

imaging and spectroscopy. Firstly, we show that, following transfer to the subject, 19F 

nuclear magnetic resonance allows quantification of local and systemic accumulation PFC-

labeled CAR T cells in a murine cancer model. As a second step, we report strategies to 

increase cell loading through cell penetrating peptides, enabling unbiased detection of 

lymphocytes in vivo. Finally, we exploit the property of PFC nanoemulsions to dissolve 

paramagnetic oxygen to measure tumor intracellular oxygenation changes in response to 

therapy. Overall, 19F MR imaging is a versatile technique that can provide insights into the 

survival and modes of actions of cell therapy against cancer.



  
1 

Chapter 1: Introduction 

 

 Considerable effort is being invested on the design of novel cellular based therapeutic 

strategies to treat individuals with genetic disorders, neurological disorders, and chronic 

conditions such as cancer and autoimmunity. Cancer immunotherapy is a relatively young 

field of research directing specific immune entities against cancer cells. Among those, 

adoptive T cell transfer has the potential to provide personalized less toxic and more 

efficacious treatment through the repair or activation of endogenous functions. Developing 

smarter, potent therapies could be accelerated by the ability to rapidly determine 

biodistribution and persistence in vivo. Cell labeling probes using perfluorocarbon 

nanoemulsions, paired with fluorine-19 (19F) MRI detection, enables quantification of cell 

localization and survival. This thesis focuses on developing 19F magnetic resonance imaging 

platforms to quantify T cell therapy biodistribution, persistence and efficacy in murine 

cancer model.  

 

1.1. The immune landscape of human tumors 

1.1.1. Mechanisms of immune escape in cancer 

 The central dogma of immunology has long been that when functioning correctly, 

the immune system is a powerful force actively preventing disease and neoplastic 

development through immunosurveillance1, 2. Immune cells such as T cells, natural killer 

(NK) cells, and dendritic cells (DCs) are critically involved in the elimination of foreign 

pathogens, recognition and removal of transformed cells, and repair of damaged tissue. The 
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innate immune system, including monocytes, macrophages, DCs and  NK cells, provide 

front line protection through cancer cell recognition, lysis, and pro-inflammatory cytokine 

production3. T and B cells are the main effectors of the adaptive immune system and mediate 

antigen-specific responses and long term memory4.  

 

 In the early 2000s, it was established that the immune system has a dual role in 

cancer. Not only is it involved in preventing tumor progression, it is also promoting its 

outgrowth5, 6. This refined hypothesis, coined as cancer immunoediting, describes the 

dynamic process in three phases: elimination, equilibrium, and escape. The elimination 

phase corresponds to the antitumor response by the immune system when detecting tissue 

damage engendered by neoplastic outgrowth.  If the immunosurveillance effectors fail to 

eradicate all transformed cells, the surviving tumors cells enter the phase of equilibrium with 

the immune system7. The immune system continues to target highly immunogenic 

transformed cells while increasing the selection pressure placed on the remaining tumor 

cells. The latter accumulate mutations eventually leading to antigen loss or non-presentation 

and are therefore no longer recognized by immune cells7. A trait shared by 40-90% of human 

cancers is MHC downregulation, which plays a major role in future tumor escape8. Cytokine 

secretion by the tumor cells creates an immunopriviledged microenvironment8, increasing 

resistance to immune cell attacks. The escape phase corresponds to the stage when tumor 

outgrowth is no longer hampered by the immune system. Tumor cells begin to recruit anti-

inflammatory immune cells (tumor associated macrophages, regulatory T cells) that inhibit 

anti-tumor responses9. While the equilibrium phase can last several years, the escape phase 

usually correlates with rapid development of clinical symptoms. Mechanisms of tumor 
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editing continue to be heavily investigated as well as numerous strategies to regulate or 

counteract these effects. 

 

1.1.2.  Glioblastoma multiforme 

 Glioma is a type of tumor originating from the glial cells in the brain. The World 

Health Organization (WHO) categorizes glioma as grades I-IV based on histopathology 

findings. This classification indicates tumor aggressiveness, prognosis and survival. 

Glioblastoma multiforme (GBM) is a grade VI glioma, meaning the most aggressive and 

most common (~54%) brain cancer10. According to the Central Brain Tumor Registry of the 

United States (CBTRUS), GBM incidence rate is about 3 per 100,000 people10. GBMs can 

occur spontaneously and referred to as ‘primary’ GBM or transform from lower grade 

gliomas and therefore termed ‘secondary’ GBMs. The mean GBM incidence age is 62-65 

years but still represents up to 8% of pediatric brain tumors10-12. Indicative symptoms include 

headaches, seizures and neurologic deficits. Diagnosis is then confirmed by abnormal 

findings on magnetic resonance images. In histopathology, GBM presents with irregular cell 

and nuclear shapes (atypia), high microvascular density and necrotic cores13. The median 

survival time is less than three months without treatment and 12-14 months with surgical 

resection and radiation therapy and/or chemotherapy14. 

 

1.1.3. Pillars of cancer therapy 

 Standard of care for primary GBMs involves surgical resection followed by 

radiotherapy and chemotherapy. This strategy has been used for decades against cancer in 

patients15 Surgery is a necessary, albeit not sufficient, procedure due to ill-defined tumor 
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border. Aggressive radiotherapy prolongs survival but some tumor cells develop resistance, 

preventing full recovery. Chemotherapy, including temozolomide (TMZ) and O6-

methylguanine DNA methyltransferase (MGMT) treatment also showed increased median 

survival (14 and 22 months respectively)16, 17. Numerous chemotherapy candidates now 

target tumor metabolism, survival, proliferation, apoptosis and angiogenesis.  

 Despite combination of these therapies, prognosis of GBM remains dismal, in part 

due to its highly proliferative and heterogeneous nature and ability to evade the immune 

system. Overall, non-specific cell toxicities and side effects from chemotherapy and 

radiation, as well as drug and radiation cancer cell resistance, has motivated investigators to 

seek new treatment approaches to achieve greater incidence of curative outcomes and 

improved quality of life.  

 

1.1.4. First strides in immunotherapy 

 In the 1990s, immunotherapy emerged as a means to engage the immune system in 

the fight against cancer. Antibodies specifically target tumor or immune cell receptors to 

block tumor function or recruit immune cells that will kill the target cancer cells. This 

strategy reduces off-site toxicities and side effects compared to traditional therapies. 

Immunotherapy proved successful in several solid tumors with the most notable examples 

being antibodies blocking immune-checkpoint proteins CTLA-4 and PD-118-20. Most 

immunotherapy strategies are nonetheless ineffective in GBM. It is postulated that the 

immunopriviledged status of the brain and the immunosuppressive environment created by 

tumor cells contribute to the lack of positive outcomes.  
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 GBM aside, one of the main disadvantages of this form of therapy is that tumor 

penetration is low, preventing full remission21. In addition, antibody clearance occurs 

rapidly, necessitating repeated treatments, leading to overall high therapy costs. In order to 

correct for this, the idea has been to use cells to continuously express these antibodies and 

therefore reduce the overall cost if curative. 

 

1.2. Adoptive cell therapy for cancer 

 Adoptive cell therapy focuses on utilizing the body’s natural immune defenses to 

treat cancer. The source of therapy is the patient himself and aims to counterbalance immune 

privilege by providing ‘new’ reactive cells to the body. 

 

1.2.1. Tumor infiltrating lymphocytes (TIL) 

 Initial adoptive cell transfer therapy was developed by Rosenberg et al. in 1988 and 

comprised T-cells derived from the tumor-bearing host, referred to as tumor-infiltrating 

lymphocytes (TIL)22. The strategy is to obtain cancer biopsies from patients, cut them into 

pieces, and digest them, followed by culture in T cell medium containing large amounts of 

IL2 for a few weeks to stimulate T cell expansion. TILs were shown to confer improved 

prognosis in melanoma patients but remained unsuccessful in fully clearing the tumor due 

to immunosuppressive tumor microenvironment and lack of TIL persistence in vivo23, 24. 

Chemotherapy or radiotherapy lymphodepletion prior to TIL infusion was shown to improve 

efficacy25. Although TILs can effectively be expanded from most solid tumors, so far 

melanoma appears to be the only cancer for which TILs are capable of specific tumor 

cytotoxicity and durable responses in patients.  
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1.2.2. Engineered T cell receptors (TCR) 

 The earliest engineered T cell trials relied on in vitro gene transfer of synthetic T cell 

receptor (TCR) for improved antigen affinity. They consist of an - and - chain associated 

with the CD3 receptor on the cell surface. TCRs are either cloned from TILs and transduced 

into blood-derived T cells or generated by immunizing HLA-I/II transgenic mice with cancer 

antigens later transduced into human T cells26. These synthetic antigen receptors recognize 

intracellular or extracellular antigens presented by the major histocompatibility complex 

class I (MHC-I) at the surface of the cell the T cell binds to. An important limitation of this 

system is that many tumors downregulate MHC expression to evade recognition by TCR 

engineered T cells. In addition, lack of TCR affinity for cancer antigens is hypothesized to 

be a reason for lack of efficacy but high affinity increases chances of adverse events such as 

cross-reactivity in non-cancerous cells27, 28. 

 

1.2.3. Chimeric antigen receptors (CAR) 

 Chimeric antigen receptors consist of extracellular single-chain variable fragment 

(scFv) for antigen binding and intracellular costimulatory domains (CD28, 4-1BB, OX40, 

etc.)29, 30. Unlike TCRs, CARs are highly specific towards their antigen and can initiate the 

killing cascade in an MHC-independent fashion (Fig. 1.1). Chimeric antigen receptor design 

has been somewhat empiric in order to determine which elements of the CAR influence its 

signaling. The progress in design of CARs included first antigen specificity, then T cell 

activation mechanism, effector function and T cell persistence31. So far, CARs have only 

been able to target extracellular antigens, which limits the number of possible candidates. In 
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addition, antigen targets are rarely expressed throughout the tumor, which may explain the 

so far limited effectiveness in patients. 

 

 

 

Figure 1.1: MHC-independent antitumor effects of CAR T cells against cancer cells. 

The antigen-specific scFv domain of the CAR recognizes its antigen on the target cancer 

cell. Using the co-stimulatory domains, the CAR receptor signals production of pro-

inflammatory cytokines, granzyme and perforin release, and expression of FasL and tumor 

necrosis factor–related apoptosis inducing ligand (TRAIL). As a result of these processes, 

cancer cells are eradicated. Adapted from Cartellieri et al.32 

 

 Of interest for the treatment of glioblastoma multiforme is the Epidermal growth 

factor variant III (EGFRvIII). EGFRvIII originates from a mutation in EGFR resulting in a 

coding sequence deletion and expression of a surface neoantigen. EGFRvIII is only 

expressed on malignant tissue and occurs in about 24-60% of GBMs33. EGFRvIII-targeted 

CAR T cells have shown significant tumor reduction in preclinical models34-36 and phase I 

clinical trials are currently underway to determine safety and efficacy in patients. Of note, 
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the CAR construct used throughout this thesis work targets EGFRvIII and was kindly 

provided by Dr. Okada at UCSF. Specifics of the construct are discussed in Chapter 2. 

 

 

Figure 1.2: General approach for CAR T cell therapy. A blood sample is collected from 

the patient or a donor. CD3 positive T cells are isolated from the peripheral blood 

mononuclear cell suspension and expanded in culture. A lentiviral vector containing the 

CAR construct is added to the T cells and expression levels of the CAR receptor is confirmed 

by flow cytometry. The CAR T cells are then re-introduced to the patient in the clinic or 

used in pre-clinical models to determine their efficiency.  

 

 To produce CAR T cells, a blood sample is collected from either the patient or a 

donor and the T cells are isolated by gradient centrifugation and negative magnetic sorting 

(Fig. 1.2). The T cells are then exposed to a lentiviral vector carrying the CAR construct and 

expression at the surface of the cells is confirmed by flow cytometry. In the clinic, the 

produced CAR T cells would be re-infused into the patient for therapeutic effect. In pre-

clinical testing, CAR T cells are infused to animal models. In this thesis, glioma tumors 
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(U87-EGFRvIII-Luc) expressing EGFRvIII and a luciferase reporter were injected 

subcutaneously in the flank of immune-compromized mice. 

 TCR and CAR T cell therapies are currently under investigation in over 300 clinical 

trials37. Combination of cell therapy with checkpoint blockade may enhance anti-tumor 

efficacy and remission rates38. All in all, immunotherapeutic strategies have emerged as the 

fourth pillar for cancer treatment which holds promise for fewer treatment side effects and 

more durable curative protections against residual primary cancers and metastases.  

 

1.3. Rationale for in vivo cell tracking 

1.3.1. Need for non-invasive tools to track cell therapy  

 A common assumption in preclinical and clinical research is that cell trafficking 

behavior in vivo may be predictive of therapeutic outcomes. For example, in CAR T cell 

trials against solid tumors39, a reasonable assumption is that therapeutic cell survival and 

trafficking to the tumor sites is required for a putative therapeutic effect. However, clinicians 

are currently in the blind as to whether cells actually reach their desired tissue targets. 

Conventional methods to evaluate efficacy and survival of treatments include invasive 

biopsies followed by histopathology or flow cytometry. Histology is laborious and only 

semi-quantitative, and flow cytometry only provides partial information from tissue biopsy 

or peripheral blood sample. A surrogate biomarker capable of visualizing and quantifying 

sites harboring cells in vivo as well as survival of ACT at tumor and lymphoid organ regions 

would be invaluable for the assessment of putative therapeutic activity following systemic 

administration. In addition to diagnostic feedback, there is also a need to image off-target 

effects of therapies tested pre-clinically and clinically. All in all, non-invasive imaging 
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methods could help accelerate therapy development and improve patient management, while 

identifying key players in cancer response to therapy. 

 

1.3.2. In vivo imaging modalities 

 There are multiple established methods to track cells in vivo non-invasively. These 

include optical imaging, tomography with radioactive tracers and magnetic resonance 

imaging. Optical imaging was the first non-invasive method developed using fluorescent 

moieties (Cydyes, DiO, DiD, etc.). Discovery of green fluorescent proteins (GFP) in the 

1950s and bioluminescence from luciferases in the 1960s40, 41 and engineering for imaging 

applications in the 1980s has made it the most used imaging method in preclinical research.  

Fluorescence and bioluminescence measurement accuracy is limited by depth attenuation; 

therefore, quantitative measurements should be limited to subcutaneous signals. Finally, 

optical imaging is not currently translatable to clinical practice or only for very limited 

applications such as lighting up cancer cells to guide surgeons during resection42.  

 

 Magnetic Resonance Imaging (MRI) and PET are the best candidates for real time, 

quantitative assessment of tumor response43-45. PET and single-photon emission computed 

tomography (SPECT) provide functional information with modest spatial resolution and  

high sensitivity46, 47, however, these modalities involve ionizing radiation shown to be 

detrimental to cells 48, 49 and label loss and decay limits longitudinal applications50. In 

addition, systemic injection of PET tracers such as 18F-FDG may reveal false-positive hot 

spots at inflammatory sites as well as tumor sites which can confound image interpretation51. 

MRI allows anatomical and functional investigation as well as disease diagnosis and 
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progression assessment. Therefore, it is widely used in clinical practice and is often preferred 

over other diagnostic tools.  

 

1.4. Magnetic resonance imaging 

1.4.1. Metal-ion-based contrast agents for MR imaging 

 Due to its routine use in the clinics, conventional 1H MRI contrast agents have long 

been the preferred probe choice for the development of contrasts agents highlighting cell 

sub-populations in vivo. The key constituents of 1H MRI contrast agents are paramagnetic 

metals ions (e.g., Gd or Fe) that are conjugated to metal binding ligands or formulated as 

nanoparticles. Metal ions interact with surrounding mobile water molecules by through-

space and contact magnetic interactions between the outer electrons and the water 1H and/or 

by disruption of the local magnetic field in proximity to the probe 52. The first generation of 

contrast agents consisted of gadolinium chelates, providing T1 contrast 53. Many compounds 

received FDA approval and are widely used in the clinic. Nonetheless, the modest sensitivity 

of gadolinium chelates for cell tracking applications and the difficulty in labeling specific 

cell populations led to the use of super-paramagnetic iron oxide nanoparticles (SPIO). With 

a mean diameter of >5 nm, they can be taken up by cells, often with the aid of transfection 

procedures if cells are labeled ex vivo, and provide strong T2 and T2
* contrast enhancement. 

Ultrasmall superparamagnetic iron oxide nanoparticles (USPIO) have also been 

investigated, but one of the major limitation of these labeling agents remains sensitivity. 

Larger, micron-sized particles of iron oxide (MPIOs) provide greater contrast, but their large 

size restricts internalization in certain cells. USPIOs and MPIOs’ large magnetic 

susceptibility can be exploited to create blooming artifacts and improve detection. 
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Gadolinium contrast media is routinely used in the clinic to improve image clarity but isn’t 

suitable for ex vivo cell labeling. Gadolinium nanoparticles are not easily endocytosed by 

cells and is known to diffuse out of the cells. In addition, Gadolinium exhibits low magnetic 

susceptibility and therefore, signal enhancement by blooming artifact is impossible.  In 

recent years there has been a large body of effort to design probes de novo that are optimized 

for the purpose of cell tracking using MRI 52. Often these new materials are formulated as 

colloidal suspensions or nanoparticles that strive for improved cell deliverability, as well as 

image sensitivity and specificity. 

 

1.4.2. Perfluorocarbon (PFC) probes for 19F MR imaging 

 Shortly after the introduction of proton MRI, the feasibility of fluorine-19 (19F) MRI 

was demonstrated by Holland et al.54. 19F is a natural halogen, non-radioactive isotope of 

fluorine. 19F has a relative sensitivity of 83% compared to 1H and essentially devoid in 

biological tissues of interest55, enabling background-free quantification of signals in vivo. 

One drawback of fluorine detection is the relative insensitivity of the signal, due to the low 

number of spins in the sample/animal. Perfluorocarbon (PFC) nanoemulsions containing 

large amounts of fluorine are specifically engineered to be endocytosed, even by non-

phagocytic cells56. 19F MRI signal intensity is linearly proportional to 19F-atom 

concentration, enabling unbiased and specific measurements of cell numbers from the 

acquired images57. These materials are therefore referred to as ‘tracer agents’ rather than 

contrast agents. PFCs are generally biochemically inert and non-toxic in vivo. Their MRI 

sensitivity depends on their chemical structure. Cyclic PFCs such as perfluoro-15-crown-5-

ether (PCE) and linear molecules such as perfluoropolyether (PFPE) are often used, with the 



  
13 

latter materials having desirable short T1/T2 ratios and endgroups that can be coupled with 

fluorescent dyes58. PFCs are formulated into small (<200 nm) nanoemulsions using 

surfactants. Key design considerations are discussed in Chapter 2. 

 

1.4.3. Therapeutic cell labeling and tracking 

 Primary methods of probe delivery include labeling a cell population of interest ex 

vivo and delivering these cells intravenously or locally. The first application of 19F MRI cell 

tracking was demonstrated by Ahrens et al. in 200559. The alternative is in vivo labeling, 

which consists of direct intravenous (IV) injection of the agent that generally leads to 

labeling of the recipient’s phagocytic cells in the reticulo-endothelial system. This enables 

imaging of inflammation in various disease models such as cancer, auto-immunity and graft 

rejection. Specifically, 19F signal in foci of inflammation is linearly proportional to 

macrophage burden, which is an indicator of tumor aggressiveness or disease severity60, 61. 

Aside from inflammation imaging, a body of work exists detecting various types of 

stem and progenitor cells using 19F MRI62-67. An early study used human hematopoietic stem 

cell (CD34+) to demonstrate that 19F labeling does not impact the differentiation potential 

of the CD34+ cells to fully form the full repertoire of immune cell types in an irradiated 

mouse68. Others have shown the feasibility of mesenchymal stem cell imaging62-64 with 19F 

MRI. Similarly, Boehm-Sturm and coworkers as well as Bible et al. tracked PFC-labeled 

human neural stem cells after stroke induction in mice65-67 

More recently, unprecedented efforts have been implemented to determine in vivo 

biodistribution, efficacy and persistence of immune cells using advanced MRI techniques. 
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Perfluorocarbon probes and 19F MRI have enabled cell tracking in numerous preclinical and 

clinical studies for adoptive cell transfer employing T lymphocytes (TILs, TCRs, CARs)56, 

69-72, natural killer73, 74, PBMC75 and dendritic cell43, 76, 77 therapies (Table 1.1). The recent 

first use of PFC MRI cell tracking in the clinic points to future developments of such 

compounds for numerous clinical applications43.   
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Chapter 2: Experimental methods focus 

 

2.1. CAR T cell engineering 

2.1.1. Construct 

 In order to optimize efficiency and cost, viral vector-based protocols are the most 

commonly employed for T cell transduction1. Lentiviral vectors can integrate large CAR 

constructs and continuously express the receptor after integration in the host cell DNA. CAR 

receptors are generally composed of (1) an extracellular antibody single chain variable 

fragment (scFv) specific to a given cancer antigen, (2) a CD3z domain to mimic the TCR 

intracellular signal-transduction pathway, (3) and a couple intracellular co-stimulatory 

domains such as CD28, 4-1BB, etc. We employed a vector for CAR consisting of a side 

chain fragment variable (scFv) specific to EGFRvIII fused to a CD8 hinge with 4-1BB, 

CD28 and CD3z intracellular domains (Fig. 2.1) as described by Ohno et al.2. 

Figure 2.1: Schematic diagram of lentiviral pELNS-3C10-CAR vector. The EF1α 

promoter drives the CAR construct containing the 3C10 scFv for targeting of EGFRvIII. The 

CAR also incorporates CD28 as well as 4-1BB and CD3ζ domains. Abbreviations: 

RSV/HIV-1 5’LTR = Hybrid RSV promoter-R/U5 long terminal repeat; EF1α = Human 

elongation factor 1α-subunit promoter; VH = Variable region in the heavy chain of the 3C10 

immunoglobulin; VL = Variable region in the light chain of the 3C10 immunoglobulin; HIV-

1 Δ-3′LTR = Self-inactivating 3′ long terminal repeat with deletion in U3 region. Schematic 

is adapted from Ohno et al.2. 
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 pELNS-3C10-CAR bacterial streak was kindly provided by Dr. Okada at UCSF. A 

single colony is harvested with a pipette tip and expanded overnight in 3 ml of Luria Bertani 

media (BD, Sparks, MD) with 100 mg/ml Carbenicillin (Sigma Aldrich, St Louis, MO) in a 

shaking incubator at 37 C. Transformed E-Coli are further expanded in 250 ml of Luria 

Bertani media overnight to obtain sufficient yield. Plasmid is then purified by Midiprep 

using the Nucleobond Xtra Midi kit (#740410.10, Macherey Nagel, Bethlehem, PA). 

Plasmid is reconstituted in 350 l autoclaved water and kept at -20 C before use. A 2 l 

aliquot is used to determine yield on a Nanodrop 2000 spectrophotometer (Thermofisher, 

Waltham, MA). Packaging and envelope plasmids psPAX2 and pMD2.G are produced using 

the same protocol. 

 

2.1.2. Virus production 

 The standard cell line for virus production is human embryonic kidney 293 cells 

(ATCC, Manassas, VA), referred to as 293T. They are renowned for transfection efficacy 

and high viral yields. For viral production, ten million 293T cells are plated in a T175 flask 

to establish ~ 70% confluence. Two transfection solutions are then prepared: (A) 4.5 ml of 

OptiMEM media (Gibco, Waltham, MA) with 180 l of Lipofectamine 2000 (Invitrogen, 

Carlsbas, CA) and (B) 4.5 ml of OptiMEM media with 2.03 g of pELNS-3C10-CAR, 1.57 

g psPAX2 and 0.41 g pMD2.G. After a few minutes, (A) and (B) are combined and 

incubated for 20 minutes at room temperature. Media is then removed from the 293T cells 

and replaced with the transfection cocktail. Five hours later, transfection cocktail is aspirated 

and replaced by full Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) media. At 24 

and 48 hours, 293T viral supernatant is harvested and filtered through a 0.22 m filter. 
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Supernatant is then transferred to ultracentrifuge tubes and centrifuged at 16,000 rpm for 2 

hours at 4C. Tube supernatant is aspirated without disturbing the viral pellet. Pellet is 

resuspended in 150 l Phosphate-Buffered Saline (PBS, Gibco) and used immediately. 

Transduction efficiency was first tested on Jurkat cells and then on primary human T cells. 

The optimal efficiency/viability was determined to correspond to 30 l of virus per 1 million 

cells. 

 

2.1.3. Human T cell isolation 

 Human T cells for CAR transduction are usually isolated from peripheral blood 

mononuclear cell (PBMC) preps for preclinical and clinical studies. In the lab, T cells are 

usually purified via gradient density centrifugation followed by negative magnetic sorting. 

Gradient density centrifugation: 

 One unit of leuko-reduction system-white blood cell (LRS-WBC) blood is obtained 

from the San Diego Blood Bank. This blood sample is enriched in white blood cells (average 

1.3x109 per unit). In the biosafety cabinet, LRS-WBC blood is resuspended in sterile PBS 

without calcium and magnesium at 1:4 ratio. A 50 ml conical tube containing 16 ml of Ficoll 

(HiSep # LS001, Sigma Aldrich) is prepared and the diluted blood sample is gently added 

on the Ficoll layer to avoid mixing. The tube is centrifuged for 30 min at 300 g at room 

temperature without brakes. After centrifugation, the plasma layer sits on top of the tube, 

followed by the lymphocyte and monocyte layer, and finally the Ficoll with erythrocytes. 

The plasma layer is aspirated and the buffy coat (mononuclear cells) is gently collected. The 

layer gathered is rinsed with washing buffer (PBS + 0.5% bovine serum albumin + 2mM 
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EDTA) and centrifuged at 300 g for 10 minutes with regular brakes. The pellet is 

resuspended in 5 ml washing buffer and ready for magnetic sorting. 

Magnetic-activated cell sorting (MACS) 

 For this step, the Miltenyi Pan T Cell Isolation kit (#130-096-535, MiltenyiBiotech 

Inc., Auburn, CA) is used, following the protocol provided by the supplier. Briefly, the cell 

suspension is filtered through a 40 m filter to obtain a single cell suspension and counted. 

The cell suspension is resuspended in T Cell Biotin-Antibody Cocktail. This cocktail 

captures all CD3-negative cells. The Microbead Cocktail is then added and incubated to affix 

a magnetic bead to the antibodies that bound to cells. The cell suspension is then passed on 

a ferromagnetic column affixed to a magnet (MidiMACS Separator # 130-042-302). The 

flow through consists of the non-magnetically labeled T-cells. Isolated T-cells are counted 

and are expected to be about half of the initial cell count.  

T cell culture conditions 

 T-cells need to be stimulated with IL2, CD3 and CD28 to maintain activity and grow 

in culture. Dynabeads Human T-activator CD3/CD28 (Gibco # 11131D) are used for this 

purpose. For fresh/thawed T cells, experience has shown that a concentration of 1-2 million 

T cells per ml of culture media is required for further expansion. Usually, 5-10 million cells 

are resuspended in 5 ml of full media (Roswell Park Memorial Institute (RPMI), 10% fetal 

bovine serum (FBS), 1% Penicillin/Streptomycin (Gibco) and 100 units/ml of human 

recombinant interleukin 2 (IL2, Peprotech, Rocky Hill, NJ). CD3/CD28 dynabeads (10 l) 

are also added to the media for initial stimulation but not in subsequent media changes, 

unless T cell growth slows. Manufacturer recommends re-stimulation every 7-10 days. After 
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overnight culture, cells should appear as multi-cellular clumps or grapes around the 

dynabeads (Fig. 2.2). This is an indication of healthy culture conditions. Media is changed 

every other day to renew IL-2 until cells are used or frozen down. 

 

 

Figure 2.2: CAR T cell appearance in culture. (a) After initial stimulation, CAR T cells 

form clumps/grapes around the dynabeads. (b) After a couple weeks in culture, CAR T cells 

detached from dynabeads and appear as individual cells.  

 

 The dynabeads used for T cell activation are composed for superparamagnetic 

paramagnetic iron oxides and therefore create image artifacts on MR images.  To remove 

dynabeads prior to in vivo use of T cells, cell suspension is transferred to a 15 ml conical 

tube and placed in a DynaMag-15 magnet for one minute. The magnet is tipped over a clean 

conical tube to collect cell suspension devoid of dynabeads. This step is repeated three times 

to guaranty removal of virtually all dynabeads. 
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2.1.4. Human T cell transduction 

 While in exponential growth phase and at the earliest passage possible (P1), human 

T cells are transduced with the CAR virus freshly produced. T cells are seeded in 6 well 

plates at a density of 1 million cells in 2 ml of full media (as above) and 3 g/ml Polybrene 

(Polybrene Transfection Reagent, Millipore, Billerica, MA). 30 l of CAR virus is added to 

each well and the 6-well plate is spinoculated for 1 hour at 1000 g at room temperature. The 

plate is then placed back in the incubator overnight. The next day, cells are centrifuged to 

remove the viral supernatant and resuspended in full media. Transduction efficacy is 

assessed after 5 days. 

 

2.1.5. Expression of CAR 

 To obtain significant anti-tumor results, a population of T cells comprising at least 

70%+ CAR T cells is desirable. Two flow cytometry methods enable CAR expression 

assessment on the surface of T cells. The first strategy is to co-incubate the transduced cells 

with a biotinylated EGFRvIII protein and detect bound cells with a fluorescent streptavidin 

secondary. The second strategy is to consider the mouse backbone of the CAR receptor and 

target it with an anti-mouse F(ab’) antibody fragment. The latter is very specific and ~ 100 

times cheaper than the modified EGFRvIII protein.  

 For flow analyses, newly generated CAR T cells and untransduced human T cells 

(negative control) are needed. Compensation beads are also used to minimize fluorescence 

spillover. 
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Flow markers used: 

- hCD3- APC-Cy7 (Biolegend, San Diego, CA) 

- hCD4-BV421 (Biolegend) 

- hCD8-FITC (Biolegend) 

- ‘CAR’-PE 

Incubation with primary antibody Biotin-SP-conjugated Affinipure F(ab’)2 

Fragment Goat Anti-Mouse IgG, F(ab’)2 fragment (dilution 1:200, 30 min at 

RT, Jackson Laboratories, Cat n. 115-066-006) followed by wash and 

secondary antibody Streptavidin-PE (dilution of 1:200, 15 min at 4 degrees, BD 

Pharmingen, Cat n. 554061). 

- 7-AAD (viability, PerCP-Cy5.5): added just prior to FACS acquisition (Biolegend) 

 

Conditions tested: 

- CAR T cell sample: Unstained/Single color CD3/Single color CD4/Single color 

CD8/Single color ‘CAR’/All colors 

- Untransduced T cell sample: Unstained/All colors 

- The viability marker 7-AAD can be added later on to the unstained sample for 

single color 7-AAD control as well as to ‘All colors’ sample. 

 

Cell samples are resuspend cells to final concentration of 5×105 cells in 200 μl FACS 

buffer  (# 4222-26, Invitrogen) + 1:100 heat inactivated human serum (Corning, NY) +1:100 

FC Block (CD16/32 mouse, Biolegend) optional since cells are human) per tube. Tubes are 



  
31 

kept on ice 10 min in the dark. ‘CAR’ primary antibody is added to ‘single color ‘CAR’’ 

and ‘all colors’ tubes. Tubes are incubated 30 min at RT, rinsed with FACS buffer and spun 

5 min at 1,000 rpm. Cells are resuspended in 200 μl FACS buffer + 1:100 heat inactivated 

human serum. Antibody cocktails are added to each tube at 1:200 dilution and incubated 15 

min in dark on ice. Samples are rinsed twice with FACS buffer and spun 5 min at 1,000 rpm. 

Cells are resuspended in 600 μl of FACS buffer and transfered to clear FACS tubes with 

cell-strainer cap. Cell are kept in dark and on ice and resuspend gently before analysis on 

the Fortessa FACS machine (BD Biosciences, San Diego, CA). 5,000 events are recorded 

for the compensation samples and 10,000 events are acquired for all other samples. 7-AAD 

viability marker is added to the samples minutes before recording viability data. 

 

Gates are established based on the unstained and untransduced T cell control (Fig. 

2.3 and 2.4) and the fraction of PE-positive events (CAR-T cells) is then determined. For 

each batch of CAR T cells produced, initial transduction efficacy was measured ~5 days 

after addition of the virus and at regular intervals until administration to the mouse. 
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2.2. Perfluorocarbon emulsion formulation 

2.2.1. Perfluorocarbons- basic properties 

 PFCS are hydrocarbons in which hydrogen atoms are replaced by fluorine atoms. 

PFC molecules have properties that are attractive for cell labeling and 19F MRI tracking 

applications3. Their strong C-F covalent bonds render them chemically inert and are not 

metabolized in vivo4. Moreover, PFCs often display simultaneous lipo- and hydro-phobic 

properties5 and do not dissolve in cell membranes. PFCs commonly used for 19F MRI 

imaging include perfluoropolyether (PFPE), perfluoro-15-crown-5-ether (PCE) and 

perfluorooctyl bromide (PFOB)3 (Fig. 2.5). PFPE and PCE are linear and cyclic polymers, 

respectively, each with numerous chemically-equivalent fluorine yielding high MRI 

sensitivity. PFOB has less MRI sensitivity overall due to chemically inequivalent F-sites6, 

but is slightly lipophobic due to its single Br atom, which accelerates body clearance of the 

agent.  

 

Figure 2.5: Molecular structure of PFPE, PCE and PFOB. PFPE possesses over 40 

equivalent fluorine atoms in the main chain with a resonance at -91.3 ppm on 19F NMR 

spectra and 4 in the end groups (resonance at -80.2 ppm). PCE is a macrocycle with 20 

equivalent fluorine atoms resulting in a single resonance at -92.5 ppm. PFOB is a linear 

perfluorocarbon with a bromide atom resulting in 8 resonances on 19F NMR spectra. 
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 An interesting intrinsic property of PFCs is that they display weak molecular 

cohesion, enabling gas dissolution 5. In fact, extensive work was conducted in the late 1990’s 

7, 8 to emulsify PFCs into biocompatible, excretable, and readily injectable blood substitutes 

to address hospital blood shortages 9. Building on in vivo cytometry technology, a logical 

extension is to exploit known bio-sensing properties of the PFC molecules inside the cell. 

Specifically, certain PFC molecules readily coordinate paramagnetic oxygen, which 

shortens the 19F spin-lattice relaxation time (T1), where T1 varies linearly with the absolute 

partial pressure of oxygen (pO2) 
10. (T1 is the characteristic time constant for the 19F nuclei 

to align along the MRI’s magnetic field, on the order of 0.5 to 2 s.) PFC emulsions have 

previously been used to measure pO2 in vivo using MR techniques 11-14. However, a novel 

use of 19F-based cell tracking is to use 19F T1 measurements to monitor intracellular 

oximetry. This will be the subject of Chapter 4. 

 

2.2.2. Key engineering properties of nanoemulsions for cell labeling 

 Key design considerations in nanoemulsion formulation include a small droplet size 

(typically 50-200 nm), a narrow size range (e.g., polydispersity index <0.2) and a high 

fluorine concentration (~20-30% w/v) to minimize volume added to culture. Nanoemulsion 

formulations may also be complexed with fluorophores, for example near infrared dyes, to 

create ‘dual-mode’ agents 3, 15, 16. Recent reviews exhaustively cover PFC nanoemulsion 

design 3, 17.  

Different published studies use a range of emulsion particle sizes 16, 18. The resulting 

mean emulsion droplet size can impact the cell labeling process. Larger oil droplets (>200 
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nm) experience a larger centrifugal force during washing, and this force can potentially pellet 

the labeling agent along with the cells thereby confounding the wash process 19. Larger 

particle sizes are effective in labeling flask-adherent cells, such as DCs, where successful 

wash steps can be implemented. A smaller droplet size (<180 nm) allows excess agent not 

taken up by cells to be discarded with the supernatant during wash. Emulsion production 

ideally yields a homogenous size distribution, which is easier to achieve with smaller droplet 

sizes. Unintended, outlying large droplets (‘stability demons’) may evade detection in 

dynamic light scattering particle size measurements of the batches. These demons can lead 

to emulsion instability over time 20 and may spin-down with the cells. Overall, in properly 

designed experiments, any free residual emulsion in the cell inoculant is de minimis and 

inconsequential in view of detection limits of the MRI technique. 

2.2.3. Surfactants 

 Neat PFC materials are dense oils. Emulsification is used to make a colloidal 

suspension of the PFC oil that is stabilized using a surfactant. Surfactants reduce the 

interfacial tension between water and PFC oils, thereby stabilizing the oil droplets. The 

surfactant coat can also impart desirable surface properties that promote cell uptake in 

culture 21, 22. The most commonly used classes of surfactants are pluronics and phospholipids 

23. Pluronics are commercially available block co-polymers that come in different chain 

lengths and hydrophilic/hydrophobic properties. F68 is a common pluronic (Fig. 2.6) for 

emulsion formulation and was used in the experiments of Chapters 4 and 5. 
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Figure 2.6: Molecular structure of pluronic F68 and egg yolk phospholipid (EYP). F68 

consists of hydrophilic ethylene oxide (x and z) and hydrophobic propylene oxide (y) repeats 

conferring optimal surfactant properties. EYP is an amphipathic structure comprising a 

hydrophilic polar head followed by saturated and unsaturated lipophilic fatty acid chains. 

 

 Egg yolk phospholipid is a common amphipathic lipid surfactant (Fig. 2.6). It is 

purified from egg yolks by column chromatography to remove neutral lipids and cholesterol. 

These are already used clinically in injectables as they enable long circulation in plasma.24. 

Nonetheless, our experience has shown that EYP is not an ideal candidate for cell labeling 

in vitro with occurrences of coalescence on the cell membrane instead of internalization. 

Another limitation that will be further discussed in Chapter 4 is that the unsaturated fatty 

acid tails oxidize in the presence of metals, creating toxic products. 

 

2.2.4. Emulsion formulation and characterization 

Sonication is a routine technique to formulate emulsions. Ultrasonic waves break 

intermolecular bonds and disperse the molecules in solution. Nonetheless, sonication 

engenders significant heat release, which may be detrimental for certain surfactants. In 

addition, sonication is uniform only for small volumes, which limits the scale up and 

reproducibility. Finally, sonication alone usually yields emulsions with wide size 

distributions25, 26, which is detrimental for cell labeling applications. Microfluidization, a 
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high shear homogeneization technique, is another common method for emulsion 

formulation. A pre-mix of PFC, surfactant, and water is pushed through an inlet reservoir 

and forced into a fixed-geometry chamber by a high pressure pump. Microfluidization 

produces smaller size nanoemulsions with narrow size distributions, which are better suited 

for cell labeling applications. For the experiments in chapters 4 and 5, two-minute sonication 

followed by 4 passes on the microfluidizer (LV1, Microfluidics, Westwood, MA) were used 

to formulate the crown-ether emulsions. Microfluidizer stroke was 6 ml, piston diameter was 

11 mm, pump pressure was set at 20,000 PSI and the interaction chamber and cooling coil 

were kept on ice to avoid heating of the emulsion. 

Emulsion size and polydispersity index (PdI) are measured by dynamic light 

scattering (DLS, Zetasizer, Malvern, Northhampton, MA). These are acquired at different 

time intervals and in different conditions (storage temperature, serum vs plain emulsion, etc.) 

to evaluate stability. In the lab, emulsions with a ratio of surfactant (F68) between 5-10% 

yielded emulsion sizes of 170-190 nm and a PdI of 0.08-0.12. PCE-F68 emulsions were 

stable for >3 weeks at 4C and at room temperature. 

 Eventually, nanoemulsions degrade via coalescence and Ostwald ripening27. 

Nanodroplets spontaneously attempt to reduce the interfacial surface area by coalescence, 

thereby increasing the mean droplet size. Ostwald ripening consists of smaller droplets being 

more soluble in the bulk phase and diffusing to larger droplets, raising their diameter.  These 

are major challenges in emulsion formulation and engineering strategies to delay this process 

are heavily investigated to enable long shelf life of future clinical products. 
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2.2.5. Enhanced nanoemulsions 

 The principle bottleneck that remains for longitudinal tracking of transferred immune 

cells is 19F MRI sensitivity. Strategies to increase cell loading include but are not limited to 

the use of transfection agents, electroporation, metalation, and coating of the nanoemulsions 

with cell penetrating peptides. Transfection agents and electroporation have not been shown 

to drastically improve fluorine uptake in conditions that preserve cell viability and function. 

Cell penetrating peptides such as the transactivator of transcription (TAT) from human 

immunodeficiency virus can be employed to enhance PFC cell loading. TAT peptides have 

been heavily studied and are known to facilitate cell loading of a range of cargo, including 

micelles and polymersomes28, 29. Incorporation of TAT peptide into nanoemulsions 

formulated with either lipid or pluronic (block co-polymer) surfactants is explored in 

Chapter 4 (Figure 2.7).  

 

Figure 2.7: Nanoemulsion design for MR sensitivity enhancement. Diketone chelator is 

blended with the fluorous phase of the emulsion. The resulting blend is formulated into a 

nanoemulsion incorporating TAT-surfactant moieties, and subsequently metalated with iron. 

 

 Iron(III)-bound fluorinated chelates, localized within the fluorous phase of a PFC 

nanoemulsion, have been shown to be relatively stable and induce strong spin-lattice 

relaxation time (T1) reduction, thereby increasing cell detection sensitivity30.  
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2.3 Immune cell labeling 

2.3.1. Determinants of cell uptake 

Cell labeling in culture is generally performed by simple co-incubation with 

contrast/tracer agent as another factor in the media, followed by a wash step. Physical 

techniques such as hypotonic swelling or electroporation have been used31, but chemical 

transfection techniques are most common. In the case of superparamagnetic iron oxide 

nanoparticles for proton imaging, the idea is to balance the negative charge of the particle 

surface with cationic transfection agents such as protamine sulfate or Fugene32 to improve 

cell loading. Though necessary, these labeling techniques remain controversial since the use 

of transfection agents or other physical manipulations increase the risk of diminished cellular 

viability and phenotype alterations. In the case of PFC cell labeling, generally the same 

labeling methodology considerations apply. However, we note that ‘self-delivering’16 PFC 

cell labeling agents have been devised that do not require any extra transfection agents or 

mechanical cell perturbations. 

 Labeling periods range from several hours 33-36 to a day or more 37-39 to allow for 

endocytic uptake to occur. Determinants of obtainable PFC cell uptake include (i) dose of 

PFC in media, (ii) cell cytoplasmic volume and (iii) phagocytic properties of cells. Typically, 

several concentrations and incubation times are tested to optimize uptake while minimizing 

potential cell viability and phenotype alterations 16. 
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2.3.2. Specific case of lymphocytes 

 Phagocytic cells such as macrophages and DCs possess a large cytoplasmic volume 

40 and thus are readily labeled to high levels of PFC.  In contrast, lymphocyte labeling can 

be challenging due to their small cellular and cytoplasmic size that limits the number of 

probe droplets it can hold. In addition, lymphocytes are not naturally phagocytic. Optimal 

labeling efficiency is attained when cells are in log phase of division. PFC uptake will follow 

a dose response in the shape of a sigmoidal curve (Fig. 2.8) 39. A critical factor for strong 

labeling of lymphocytes is that the culture must be viable and actively expanding, typically 

aided by aggressive cytokine and co-stimulatory molecule engagement (e.g., irradiated 4-

1BBL/IL-15 expressing feeder cells, CD3/CD28 beads, etc.) as discussed elsewhere 37, 41. 

Engineered PFC probes enable labeling of lymphocytes for in vivo tracking without the use 

of transfection agents 16, as shown in preclinical studies 3, 42.  

 

Figure 2.8: CAR T cell labeling with PFC nanoemulsion. (a) CAR T cell sigmoidal 

uptake of a PCE-F68 emulsion as measured by 19F NMR and (b) corresponding cell viability. 
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2.3.3. Confirmation of intracellular uptake 

 After washes, cell labeling levels can be measured in a pellet sample using 

conventional 19F NMR spectroscopy to yield the mean 19F/cell. Various cell microscopy 

methods have been used to validate intracellular compartmentalization of PFC droplets. 

Using transmission electron microscopy, the emulsion droplets appear as electron-sparse 

ovoids against counterstain 18, 43, 44. Emulsion droplets often coalesce into encapsulated 

vesicles consistent with lysosomal storage in lymphoid-type and stem cells 45.  

Dual-mode, PFC-fluorescence emulsions 16 containing bright fluorescent dyes 

enable flow cytometry of labeled cells, as well as optical microscopy in histology tissues. 

Confocal microscopy images of labeled immune cells clearly show intracellular localization 

(Fig. 2.9a). PFC localization is inconsistent with dominate cell surface labeling, which has 

been confirmed by explicit cell membrane staining using a second fluorescent dye targeting 

cell surface markers (Fig. 2.9a), or cellular proliferation dyes such as 5(6)-

Carboxyfluorescein N-hydroxysuccinimidyl ester (CFSE)37. Detailed fluorescent 

microscopy studies using a dual-mode emulsion with a pH sensitive dye confirm that the 

PFC emulsion traffics into low-pH (lysosomal) vesicles over time 45. This intracellular 

compartmentalization is the steady-state in living cells, as the PFC is not degraded in the cell 

and there is no evidence for active exocytosis 45. Thus, verification of PFC nanoemulsion 

location within a cell is not typically necessary given its aggregation tendency and it is 

compartmentalized in a manner consistent with other nanostructures of similar size. 
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Figure 2.9: Confirmation of intracellular localization of PFC nanoemulsion in CAR T 

cells. Panel (a) is a confocal microscopy image depicting CAR T cells with internalized dual 

mode PFC-Red agent. The nuclei are labeled with Hoeschst Nuclear stain and the membrane 

with CD3-FITC. 

 

2.3.4. Viability and phenotype testing 

 Cell labeling should not alter cell viability, proliferation, phenotypic markers, or 

function, as described in several reports 46, 47. PFCs have not been shown to change any of 

these characteristics in the multiple cell lines tested. The most detailed in vitro study to date 

involved PFC labeled primary human DCs 39; cells were assayed for viability, maturation 

phenotype, cytokine production, T cell stimulatory capacity, and chemotaxis 39, and no 

differences in these parameters were observed between labeled and unlabeled cells 39.  

 In the study described in Chapter 3, potential impact of PFC labeling was evaluated 

by measuring CD4, CD8, and 7-AAD viability marker by flow cytometry, as well as CAR 

T cell proliferation rate, at day 2, 7 and 14 post-labeling and compared to unlabeled control. 

Labeling experiments with PFC nanoemulsions at 10 mg/ml over a period of 12-hour co-

incubation displayed minimal viability impairment as assessed by Trypan blue exclusion test 
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(Average 95±1%, N=3 replicates) and flow cytometry viability measurements (Table 2.1, 

p>0.05). Moreover, PFC labeling does not appear to alter T cell phenotype as defined by 

CD4+ and CD8+ expression (Table 2.1, p>0.05). 

 

Table 2.1. Longitudinal characterization of PFC-labeled CAR T cells. Table displays 

average doubling time, CD4/CD8 ratio and viability as measured by flow cytometry of PFC 

labeled CAR T cells and control unlabeled CAR T cells at days 2, 7 and 14 after PFC labeling 

(N=3 replicates). No significant differences were seen between labeled and unlabeled CAR 

T cells for all criteria. 

 

 

2.4. Fluorine imaging methods 

2.4.1. Quantification of emulsion concentration and cell uptake by NMR 

 19F NMR measurements were gathered using a 400 MHz Bruker Advance NMR 

spectrometer. The 19F NMR spectra were acquired using: 17 μs pulse, 32,000 points acquired 

for free induction decay (FID), 100 ppm spectral width, 32 averages, and a recycle delay of 

15 s. For emulsion concentration calculation, 30 μl PFC nanoemulsion was added to 270 μl 

0.1% (w/v) Sodium Trifluoroacetate (TFA) in D2O. Perfluorocarbon concentration (CPFC, 

mg/mL) was determined by using the relative integrals of the TFA signal (ITFA = 1, -76.6 

ppm) and the perfluorocarbon signal (IPFC). As per the following equation:  
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𝐶𝑃𝐹𝐶 =
 𝐴 𝐼𝑃𝐹𝐶  𝐶𝑇𝐹𝐴𝑉𝑇𝐹𝐴 

𝐵𝑉𝑃𝐹𝐶  
 

 

CPFC and CTFA represent the concentration of perfluorocarbon emulsion and TFA 

respectively in mg/ml in the NMR sample, VPFC and VTFA indicate the respective volumes 

of nanoemulsion and TFA solution in ml in the NMR sample, A and B are constants to 

account for the percentage of fluorine by mass in TFA and PFC respectively (A = 42, B = 

65.5 for PCE and 58 for PFPE).  

 

 For uptake experiments, 1 million cells were plated in 1 ml full media in 24 well 

plates (n=3 wells per condition). PCE emulsions were added to each well and incubated 

overnight (16 h) at 37 oC, 5% CO2. The cells were then washed three times with phosphate 

buffered saline (PBS) to rinse free emulsion. Cells were counted and viability was assessed 

by trypan blue staining. Thereafter, the cells were spun down, resuspended in 150 l lysis 

buffer (1% Triton X in PBS) and transferred to a 5mm NMR tube. Fifty microliter 0.1% 

TFA was added to each tube and 19F NMR spectra were acquired (Fig. 2.10). Number of 19F 

atoms per cell was determined with the same equation as above and divided by the number 

of cells in each NMR tube. 
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Figure 2.10: Representative 19F NMR spectrum (9.4T) of CAR T cell pellet labeled with 

PFPE emulsion. The TFA reference registers at -76 ppm and the labeled cell pellet at -91.3 

ppm. The ratio of integrals multiplied by the number of TFA atoms and divided by the 

number of cells in the NMR tube yields the average uptake per cell. 

 

2.4.2. NMR cytometry limits of detection (LOD)  

 Limits of detection were also assessed on the 400 MHz NMR spectrometer. 

Exchangeable 5 mm and 10 mm sample-NMR probes (Bruker models BBFO and BBO, 

respectively) were evaluated. Sample standards with varying 19F content were prepared from 

serial dilutions of 0.05 to 0.5% TFA/D2O in volumes of 250 or 1,500 μl for 5 or 10 mm 

probes, respectively. All sample spins were contained within the receptive field of the NMR 

probe. The 19F NMR spectra were acquired using: 17 μs pulse, 32,000 points acquired for 

free induction decay (FID), 100 ppm spectral width, 128 averages, 20 min acquisition time, 

and a recycle delay of 10 s. The signal-to-noise ratio (SNR) of the TFA spectra were 

calculated using TopSpin software (Bruker, Billerica, MA). The results were plotted as the 

SNR versus 19F content measured for each NMR sample probe (5 or 10 mm), and LOD was 

defined as the 19F atom count where the extrapolated SNR=2 (Fig. 2.11). LOD were 
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approximately ~ 1014 and ~1015 19F atoms for the 5 and 10 mm probe respectively, 

corresponding to ~7103 and ~4104 cells assuming typical 19F labeling levels in T cells. 

 

Figure 2.11: Fluorine-19 NMR limit of detection (LOD) estimation. Panels display the 

signal to noise ratio (SNR) as a function of fluorine concentration in TFA reference for a 

standard 5 and 10 mm probe (left and right, respectively). After a linear fit, the LOD is 

defined as the 19F atom count where the extrapolated SNR=2. The results yield a LOD of 

approximately ~ 1014 and ~1015 19F atoms for the 5 and 10 mm probe respectively, 

corresponding to ~7103 and ~4104 cells assuming typical 19F labeling levels in T cells. 

All 19F NMR data were acquired on at 376.3 MHz with a 20 min acquisition time and using 

a 17 s pulse, 32,000 points of free induction decay (FID), 100 ppm spectral width, 128 

averages, and recycle delay of 10 s. 

 

2.4.3. Quantification of apparent cell numbers by NMR 

 Following the same principle as emulsion concentration and cell uptake 

determination by 19F NMR, tissue panel necropsies can be harvested from animals receiving 

labeled CAR T cells and fluorine content determined by NMR. Each tissue is placed in a 5 

or 10 mm NMR tube depending on organ size. Blood collected by cardiac puncture can also 

be measured by NMR. A sealed glass reference capillary containing a mixture of 0.1% (w/v) 

TFA as well as 0.325 mM MnCl2 is placed beside the organ sample in the NMR tube. MnCl2 
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enables shortening of the TFA’s T1 relaxation to match that of PFC nanoemulsion (T1 = 470 

ms at 9.4 Tesla) according to the following equation48: 

1

𝑇1
=

1

𝑇1𝑜
+ 𝑟1[𝑀𝑛𝐶𝑙2] 

T1 is the target we want to reduce the spin-lattice relaxation time of TFA to (470 ms at 9,4 

Tesla), T1o is the TFA spin-lattice relaxation time at baseline, r1 is the manganese chloride 

relaxivity, [MnCl2] is the concentration needed to shorten the T1 to expected value. 

 

 After shimming, the 19F NMR spectra were acquired with a 17 s  pulse,  32,000 FID 

points, 100 ppm spectral width, 32 to 1024 averages( depending on SNR) and a recycle delay 

of 1.5 s. Phase and baseline corrections were performed to improve measurement accuracy. 

19F content of each tissue was determined by calculating the ratio of the PFC peak integrated 

area to the TFA reference integral and multiplied by the number of fluorine atoms in the 

reference. The apparent cell number per organ was calculated by dividing the number 

obtained by the mean 19F/cell of T cells measured after labeling.  

 

2.4.4. In vivo MRI methods 

 The Molecular Imaging Center at the Sanford consortium (MICS) is equipped with 

an 11.7 T horizontal (16 cm bore) Bruker Biospec preclinical scanner (Fig.2.12a). All in vivo 

experiments were conducted on that system. Scans were acquired using a 40 mm dual-tuned 

1H/19F birdcage transmit-receive volume coil (Bruker #T12800V3, Fig 2.12b) or a 20 mm 

custom-built transmit-receive surface coil (Fig. 2.12c) 
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Figure 2.12: MRI system and coils for in vivo imaging. (a) 11.7 T horizontal (16 cm bore) 

Bruker Biospec preclinical scanner. (b) 40 mm dual-tuned 1H/19F birdcage transmit-receive 

volume coil used for tumor pO2 measurements. (c)  20 mm custom-built transmit-receive 

surface coil used for CAR T cell pO2 measurements. 

 

 When imaging with the volume coil, mice were anesthetized with 2% isoflurane in 

pure oxygen for no longer than 90 minutes per imaging session. For the surface coil, 

isoflurane signal impeded accurate image acquisition and R1 measurements (Fig. 2.13). 

Therefore, we pursued with injectable anesthesia, first via ketamine/xylazine and 

metedomidine (0.2mg/ml, 0.01 ml/g) bolus intraperitoneal (IP) injection and maintained by 

an IP catheter of metedomidine (0.4mg/ml, 0.2ml/h). 
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Figure 2.13: Representative spectrum of isoflurane contamination with surface coil. 

The PFC peak can be seen at -92 ppm but the linewidth of isoflurane (-84 ppm) prevents 

peak separation. 

 

In the magnet, the animals were placed prone and respiration rate was monitored 

with a pressure sensor placed below the animal’s chest (Fig. 2.14, blue line). Temperature 

was examined with a rectal probe (Fig. 2.14, black and white cable) and animal core 

temperature was maintained at 37 C using a small animal heater reaching inside the bore of 

the magnet. Acceptable pulse oximetry was confirmed with a mouse paw oximeter sensor 

(Fig. 2.14, image on the right) when 0.6 l/min continuous oxygen flow was delivered to the 

animals. Surface coil was tightly screwed right on top of the tumor (Fig. 2.14). 
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Figure 2.14: Mouse monitoring setup. Mouse is placed prone on a pressure pad (blue line) 

to monitor respiration. The black and white cable monitors animal temperature. On the right, 

a sensor is placed on the mouse paw to monitor blood oxygenation. The surface coil is tightly 

screwed right above the tumor to obtain optimal signal. 

 

 RARE (Rapid Acquisition with Relaxation Enhancement) is an enhanced spin echo 

MR sequence where multiple echoes (number of echoes = rare factor) are used to contribute 

to the same image. This reduces the imaging time compared to traditional spin echo 

sequences. Rare factor, repetition time (TR) and number of averages (NA) was optimized to 

yield highest signal to noise ratio per unit time (SNR/t). Excitation time (TE) was set at the 

minimum. TR is usually chosen between 1.2 and 3 times the PFC T1 to maximize signal in 

minimal time.  

 PRESS (Point-RESolved Spectroscopy) is a localized (single voxel) spectroscopy 

method consisting of three slice selective pulses in orthogonal planes. Signal comes from 

the intersection of the three planes. PRESS provides the highest SNR amongst localized 

spectroscopy sequences, but results in higher specific absorption rate (energy absorbed by 

the sample/subject when exposed to the radio frequency). For pO2 experiments, a voxel 

encompassing the whole tumor is defined and twelve TR values are used to measure the R1 

relaxation rate, ranging between 0.1 and 6 s.  
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2.4.5. R1 determination and pO2 extrapolation 

 PCE nanoemulsion dissolves oxygen, resulting in a linear increase in the 19F spin-

lattice relaxation rate (R1) with increasing pO2. A calibration curve was established by 

subjecting emulsion to different pressures of oxygen. Triplicate emulsion samples were 

placed in 5 mm NMR tubes and bubbled for 15 min with mixtures of oxygen and nitrogen 

ranging from 0% to 100%. Tubes were then sealed, placed in the 11.7T MRI instrument, and 

equilibrated to 37 °C. The R1 of each individual tube  was measured using a PRESS sequence  

and calculated by integrating the 19F peak acquired at different TR values (Fig. 2.15), and 

the resulting values are fit using a three-parameter single exponential equation in MNova 

6.0.2 software (Mestrelab, Spain). The signal is proportional to the exponential of -TRR1. 

Using the same methodology, PCE-labeled cancer or T cell pO2 can be determined using the 

calibration curve (Fig. 2.16) 49, 50. 

 

 

Figure 2.15: Determination of voxel R1. The signal acquired for each repetition time value 

is integrated and fitted to a three-parameter single exponential equation, yielding the voxel 

R1. 
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Figure 2.16: In vitro calibration curve of R1 versus pO2 at 11.7 T and 37 °C. Individual 

points represent triplicate R1 measurements of emulsions with different partial oxygen 

pressures. The solid line represents the resulting linear fit (R2 = 0.98). 

 

2.4.6. Quantification of fluorine atoms from MRI images 

 Quantification of cell numbers or total fluorine atoms from MRI images follows the 

same principle as emulsion concentration determination or cell number determination by 

NMR. In this case, any perfluorocarbon mixture with a known 19F spin concentration can be 

placed in a reference tube beside the animal. To limit scanning time, PCE or PFPE dilutions 

are preferred to match the cell labeling agent. 

Raw MRI images are loaded in the VoxelTrackerTM (Celsense Inc., Pittsburgh, PA) 

software (Fig. 2.17). Structures including “Reference”, “Noise”, and “Signal” (Fig. 2.17, 

colored structures) are defined manually by covering the region of interest (ROI). The 

software algorithm corrects for the Rician-distributed noise present in low-SNR datasets and 

provides accurate quantification of fluorine atoms in the Signal ROIs33.  The apparent cell 

count can be determined from the initial cell loading experiment. 
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Figure 2.17: Quantification of apparent cell numbers from MRI images. Raw MRI 

images are loaded in the VoxelTracker software (left panel). Structures including 

“Reference”, “Noise”, and “Signal” are defined manually by covering the region of interest 

(ROI). The blue ROI corresponds to the Reference tube (REF) used for fluorine atoms 

quantification. The green ROI corresponds to the Noise (#), devoid of signal. The purple and 

yellow ROIs correspond to two areas with signal to be quantitated (*). 
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Chapter 3: Fluorine-19 nuclear magnetic resonance of chimeric antigen receptor T 

cell biodistribution in murine cancer model 

 

3.1. Introduction 

 Immunotherapy, using engineered T cells harboring receptors targeting specific 

tumor antigens, has opened the path to new treatments for incurable cancers1. Cancer cells 

secrete cytokines that render the host’s innate and adaptive immune system ‘tolerant’ to the 

tumor, which weakens the intrinsic immunity2. In an emerging approach, autologous T cells 

are genetically modified ex vivo to constitutively express a chimeric antigen receptor (CAR) 

that can help bind T cells to a specific tumor target and overcome tolerance. By delivering 

high numbers of CAR T cells and stimulating their clonal expansion in situ, specific and 

durable cytotoxicity toward cancer cells has been observed3. This strategy has been 

translated to many types of cancers including leukemia, lymphomas and sarcomas, with 

custom made receptors for each application4-6.   

Adoptive cell cancer therapy is currently being used in at least 270 active clinical 

trials worldwide7. However, variability in clinical outcomes and the incidence of harmful 

side effects has challenged researchers to implement methods to validate cell biodistribution 

and pharmacokinetics in the body3. In fact, the United States Food and Drug Administration 

(FDA) published guidelines8 specifying that investigational cell therapy should incorporate 

some means of cell tracking to determine in vivo cell survival, anatomic engraftment and 

biologic activity throughout the product development cycle, preferably starting at the 

preclinical stage. Indeed, the current gold standard to assess cell biodistribution preclinically 

involves time-consuming necropsy and histopathological staining of numerous tissue slices, 
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which, in addition to being tissue-disruptive, only provides quantitative cell information on 

small tissue ‘bites’ which is prone to sampling error. Developing a rapid and quantitative 

preclinical technique for screening new therapeutic cell subtype candidates by assessing cell 

biodistribution and survival would be highly useful.  

Here, we describe the use of nuclear magnetic resonance (NMR) ‘cytometry’9 to 

assay immunotherapeutic cell biodistribution. This technology employs a perfluorocarbon 

(PFC) nanoemulsion tracer that labels cells via simple co-incubation in culture prior to in 

vivo delivery. Liquid-state 19F NMR spectroscopy of intact, excised organ and tissue panels 

is used to measure the effective number of transferred cells within each sample10-12. 

Consequently, the cell biodistribution and survival can be rapidly measured, and specific T 

cells homing to the tumor and lymphoid organs can be measured, which is presumably 

predictive of a positive clinical response. We employ a murine model of subcutaneous 

human glioblastoma treated with CAR T cells expressing Epidermal Growth Factor 

Receptor variant III (EGFRvIII) transgene13, 14. In solid tumors, EGFRvIII is a common 

tumor-specific variant associated with poor long-term survival15. EGFRvIII is present in 

~20% of glioblastoma multiforme (GBM) patients; GBM is the most common and 

aggressive brain cancer16, 17. Prior to CAR T cell infusion, the cells are intracellularly tagged 

with PFC emulsion in vitro, and the 19F labeling efficiency, cellular function, and phenotype 

is verified post-labeling. Following infusion, CAR T cell efficacy is monitored by 

bioluminescence imaging (BLI) in vivo, and CAR T cell biodistribution and 

pharmacokinetics are quantitated using ex vivo 19F NMR. Overall, NMR cytometry may 

accelerate the timeline to evaluate and screen new engineered cell therapeutic candidates.  
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3.2. Methods 

3.2.1. Chimeric antigen receptor (CAR) lentiviral vector 

 We employed a vector for CAR consisting of a side chain fragment variable (scFv) 

specific to EGFR-vIII fused to a CD8 hinge with 4-1BB, CD28 and CD3z intracellular 

domains as described by Ohno et al.18. With this construct, lentivirus was produced using 

ten million human embryonic kidney (HEK) 293T cells (ATCC, Manassas, VA) that were 

plated in a 175 cm2 flask with 9 ml of OptiMEM (Gibco) media. The psPAX2, pMD2.G and 

pELNS-3C10CD28-41BBz plasmids were added to the flask with 120 μl of Lipofectamine 

(Invitrogen, Carlsbad, CA) as described elsewhere18. After 24 hours, the supernatant was 

harvested and centrifuged at 16,000 rpm for 2 hours at 4 °C. The viral pellet was resuspended 

in 100 μl of phosphate buffered saline (PBS) and used immediately to transduce human T 

cells (described below). 

 

3.2.2. Human T cell isolation 

 Peripheral blood mononuclear cells (PBMCs) were isolated from anonymous donor 

human blood (San Diego Blood Bank, San Diego, CA) by Ficoll (Histopaque 1077, Sigma 

Aldrich, St Louis, MO) gradient density centrifugation. T cell enrichment from PBMCs was 

performed by Pan T cell magnetic cell sorting (Miltenyi Biotech Inc., Auburn, CA). Cell 

phenotype was confirmed by flow cytometry (LSR Fortessa, BD Biosciences, San Diego, 

CA) using FITC anti-human CD3 antibody (Biolegend, San Diego, CA). T cells were 

expanded for two days in Roswell Park Memorial Institute (RPMI) media (Gibco) 

supplemented with 10% Fetal Bovine Serum (FBS) and 100 units/ml of recombinant human 
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Intereukin 2 (IL-2, Peprotech, Rocky Hill, NJ) while being activated with dynabeads 

harboring human T cell CD3/CD28 (Gibco).  

 

3.2.3. CAR transduction and PFC labeling 

 The T cells were added to 6-well plates at a density of 1×106 cells per well and 

transduced with CAR lentivirus; 30 μl of virus in PBS was added to each well along with 6 

μg/ml Polybrene transfection agent (EMD Millipore, Billerica, MA). The T cell transduction 

efficacy was determined by flow cytometry at 5 and 14 days after virus addition using a 

primary biotin-SP-AffiniPure F(ab')2 fragment-specific goat anti-mouse antibody (Jackson 

Immuno Research Laboratories, West Grove, PA) and streptavidin-PE served as the 

secondary antibody (BD Pharmingen, San Diego, CA).  

To label T cells for NMR cytometry, CAR T cells and untransduced T cells (control) 

were plated at a density of 10 million cells in 5 ml of RPMI in 6-well plates and incubated 

for 12 h with 10 mg/ml of PFC nanoemulsion (CS-1000 or CS-ATM DM Red, Celsense, 

Inc., Pittsburgh, PA). Subsequently, labeled cell aliquots were assayed for viability via the 

Trypan blue assay, as well as CD4/CD8 phenotype by flow cytometry using PE/Cy5 anti-

human CD4 clone OKT4 and Alexa 488 anti-human CD8 clone SK1 (Biolegend). In these 

assays, T cells minus PFC label, with and without CAR transgene, were evaluated alongside 

as controls.  

To quantitatively assay PFC cell uptake, triplicates of 1.5 million cells were 

resuspended in 150 l PBS with 0.5% Triton X-100 (Sigma Aldrich) and transferred to a 5 

mm NMR tube. Also, a 50 l solution of 0.1% sodium trifluoroacetate (TFA, Sigma Aldrich) 
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in D2O (Acros Organics, Geel, Belgium) was added to each tube and vortexed. 19F NMR 

spectra were acquired for each sample using a 400 MHz (9.4 Tesla) Bruker AVANCE III 

HD-NanoBay spectrometer (Bruker, Inc., Billerica, MA) with: 17 s pulse, 32,000 FID 

points, 100 ppm spectral width, 32 averages, and a recycle delay of 5 s. Two peaks were 

observed, with the TFA reference and PFC peaks at -76 ppm and -91.58 ppm, respectively. 

The 19F content of each sample was determined by calculating the ratio of the PFC peak 

integrated area to the reference integral multiplied by the number of fluorine atoms in the 

TFA aliquot. The mean 19F/cell was calculated from the 19F content divided by the cell count 

in the sample. 

 

3.2.4. Flow cytometry assays 

 CD4/CD8 phenotype and viability was also validated by flow cytometry using 

PE/Cy5 anti-human CD4 clone OKT4, Alexa 488 anti-human CD8 clone SK1 and 7-AAD 

viability marker (Biolegend). In these assays, T cells minus PFC label, with and without 

CAR transgene, were evaluated alongside as controls. Persistence of dual-mode PFC (CS-

ATM-DM-Red) label in CAR T cells was assessed by flow cytometry over 14 days after 

wash. 

 

3.2.5. Confocal microscopy 

 Aliquots of CAR T cells (N=6, 1 million cells) labeled with dual-mode PFC emulsion 

or unlabeled were harvested one day post-labeling, fixed with 4% paraformaldehyde 

(Affimetrix Inc., Cleveland, OH) for 10 min and stained with CD3-FITC as above and 
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Hoechst dye nuclear stain (#33342, 1:500 dilution, Thermo Fisher Scientific). Cells were 

mounted in media (Lerner Laboratories, Cheshire, WA) and slides were imaged using a 

confocal Leica DM 6000 CFS microscope with a ×63 immersion objective 

To quantitatively assay PFC cell uptake, triplicates of 1.5 million cells were 

resuspended in 150 l PBS with 0.5% Triton X-100 (Sigma Aldrich) and transferred to a 5 

mm NMR tube. Also, a 50 l solution of 0.1% sodium trifluoroacetate (TFA, Sigma Aldrich) 

in D2O (Acros Organics, Geel, Belgium) was added to each tube and vortexed. 19F NMR 

spectra were acquired for each sample using a 400 MHz (9.4 Tesla) Bruker AVANCE III 

HD-NanoBay spectrometer (Bruker, Inc., Billerica, MA) with: 17 s pulse, 32,000 FID 

points, 100 ppm spectral width, 32 averages, and a recycle delay of 5 s. Two peaks were 

observed, with the TFA reference and PFC peaks at -76 ppm and -91.58 ppm, respectively. 

The 19F content of each sample was determined by calculating the ratio of the PFC peak 

integrated area to the reference integral multiplied by the number of fluorine atoms in the 

TFA aliquot. The mean 19F/cell was calculated from the 19F content divided by the cell count 

in the sample. 

 

3.2.6. Electron microscopy 

 We examined CAR T cells labeled with PFC nanoemulsion by electron microscopy. 

Pelleted cells were fixed in PBS containing 2% glutaraldehyde in 0.1M sodium cacodylate 

(SC) buffer at room temperature for 30 min and held overnight at 4C. The cells were washed 

five times in 0.1M SC buffer on ice and treated with 1% OsO4 in 0.1M SC buffer for 1 hour. 

All of the samples were washed in dH2O and treated with 2% uranyl acetate for 1 hour on 
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ice. Pellets were then dehydrated in an ascending series of ethanol and finally 2 dry acetone 

at room temperature. The cells were infiltrated overnight in a solution containing a 1:1 

mixture of dry acetone and Durcupan for 2 hours on a rotator and in 100% Durcupan 

overnight. The next day, the mixture was replaced with 100% Durpucan twice, and pellets 

were embedded in Durpucan and incubated in an oven for 36-48 hours. Ultra-thin (60 nm) 

sections were cut using a diamond knife and collected on mesh Cu grids. The samples were 

stained with 1% aqueous uranyl acetate and Reynolds lead citrate. Sections were imaged 

using a Tecnai Spirit electron microscope at 80KV (FEI company). 

 

3.2.7. Glioblastoma cells 

 Frozen U87-EGFRvIII-Luc glioblastoma cells18 overexpressing EGFRvIII, as well 

as the luciferase gene, were thawed and maintained in RPMI media containing 10% FBS 

and 1% penicillin/streptomycin (Gibco) in T75 flasks (Sigma). 

 

3.2.8. In vitro T cell cytotoxicity assay 

 U87-EGFRvIII-Luc cells were plated at a density of 30,000 cells per well (18 wells 

total) in clear bottom 96-well plates (Corning, Inc., Corning, NY) and were allowed to 

adhere. Wells (n=6, per condition) received: (i) 5:1 ratio of CAR T cells to cancer cells, (ii) 

5:1 ratio of untransduced T cells to cancer cells, or (iii) cancer cells alone to calculate 

baseline viability. After adding D-luciferin (300 μg/ml) to each well, bioluminescence 

signals were measured with a Tecan plate reader (Infinite M200PRO, Morrisville, NC) at 6, 

12, and 24 hours post T cell addition. The relative glioma cell cytotoxicity was obtained 
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from the mean photon count for groups (i-iii), and the ratio of treated versus untreated means 

are displayed as percentages. 

 

3.2.9. Murine model of subcutaneous glioblastoma 

 Animal protocols were approved by the University of California San Diego 

Institutional Animal Care and Use Committee (IACUC). In vivo studies were performed to 

confirm anti-cancer efficacy of PFC-labeled CAR T cells. Female (n=45) SCID mice 6-8 

weeks of age (Jackson Laboratories, Bar Harbor, ME) received bilateral sub-cutaneous flank 

injections, each containing 5×106 U87-EGFRvIII-Luc cells in buffered 50% Matrigel 

(Corning, Tewksbury, MA). Once tumors were established (~4 mm size), mice were divided 

into 3 groups (n=15 per group), with Group 1 receiving 20×106 PFC labeled CAR T cells 

intravenously (IV) via tail vein, Group 2 receiving the same number of PFC-labeled 

untransduced T cells IV, and Group 3 was untreated. For histology purposes, one additional 

animal in Groups 1-2 received T cells labeled with a fluorescent dye-conjugated PFC 

nanoemulsion (CS-ATM DM Red, ex/em 596/615, Celsense Inc.), to enable histological 

validation of colocalization of imaging agent and transferred labeled T cells. 

 

3.2.10. In vivo bioluminescence imaging (BLI) 

 All mice underwent serial BLI using an IVIS Spectrum (Perkin Elmer, Waltham, 

MA) at day 0, 3, 7, 10 and 14 after receiving T cells. Prior to BLI, mice received 150 mg/kg 

of D-Luciferin (Intrace Medical, Lauzanne, Switzerland) intraperitoneally, and images were 

acquired 10 to 15 min after injection to measure total flux. A white-light body surface image 
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was collected with a field of view to fit five mice, followed by an image of the spatial 

distribution of photon counts rendered in pseudo-color, which was overlaid onto the surface 

image. Quantitative analysis of the radiance flux (photons/s) was performed with the Living 

Image Software (Perkin Elmer, Waltham, MA) by defining identical regions of interest 

covering the tumor area. Following BLI, tumor sizes were measured using a caliper. 

 

3.2.11. Ex vivo 19F NMR  

 In each animal group, five mice were euthanized at days 2, 7 or 14 after treatment 

infusion to evaluate cell biodistribution. Mice were sacrificed by CO2 inhalation, and intact 

tissues of interest (brain, thymus, heart, lungs, liver, spleen, tumors, lymph nodes, kidneys, 

small intestine, spinal cord, femur, tail and blood) were harvested. All organs were fixed in 

4% paraformaldehyde (Affimetrix Inc., Cleveland, OH) overnight, rinsed in PBS and 

weighed before transfer to either 5 or 10 mm glass NMR tubes (Wilman Labglass, Vineland, 

NJ), depending on organ size. Importantly, the specimen size fit entirely within the 

manufacturer-specified receptive field of the NMR detector coil, which spanned ~2 cm 

length from the bottom of the NMR tube, thereby ensuring that all 19F nuclei in the sample 

are detected. Also, a sealed glass reference capillary (Kimble Kontes, Vineland, NJ) 

containing a mixture of 0.1% (w/v) TFA, as well as 0.325 mM MnCl2 to shorten the TFA’s 

19F T1 relaxation to match that of the PFC nanoemulsion (T1~470 ms at 9.4 Tesla)19, was 

placed inside the NMR tube with the sample. All samples were first measured individually, 

and for organs/tissues with very low 19F signal, multiple specimens were pooled into a single 

NMR tube to boost sensitivity. After shimming, the 19F NMR spectra were acquired using a 

400 MHz spectrometer with: 17 s pulse, 32,000 FID points, 100 ppm spectral width, 32 to 
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1024 averages (depending on SNR), and a recycle delay of 1.5 s. Phase and baseline 

corrections were performed to improve measurement accuracy. The 19F content of each 

tissue sample was determined by calculating the ratio of the PFC peak (-91.58 ppm) 

integrated area to the TFA reference (-76 ppm) integral, multiplied by the number of fluorine 

atoms in the reference. The apparent cell number per tissue sample was calculated by 

dividing the 19F content of each tissue sample by the mean 19F/cell of T cells measured after 

labeling (above). 

 

3.2.12. Histological analyses 

 In the one animal per experimental group receiving fluorescent PFC nanoemulsion 

(CS-ATM DM Red, Celsense) spleens, tumors and livers were embedded in optimal cutting 

temperature (OCT) compound (Sakura Finetek USA, Inc., Torrance, CA) and stored at -80 

°C. All tissues were cryosectioned (CM1950, Leica Microsystems Inc., Buffalo Grove, IL) 

at 10 μm thickness. Sections were fixed with 4% paraformaldehyde, stained for T cells using 

FITC anti-human CD3 (UCHT1, 1:500 dilution, Biolegend) and for nuclei using Hoechst 

dye (#33342, 1:500 dilution, Thermo Fisher Scientific) and then mounted. Liver sections 

were stained for macrophages with an Alexa 488 anti-mouse F4/80 antibody (BM8, 1:200 

dilution, Biolegend)20. Fluorescence images were acquired on an Axiovert 40 CFL 

microscope (Zeiss, Thornwood, NY) using a ×5 objective. Confocal images were acquired 

on a Leica SP5 2 confocal system with a Leica DM 6000 CFS microscope and a ×63 

immersion objective. For direct cell counts in tumor, we used sections (two per tumor) 

stained against CD3 from five tumors total, three from day 2 and one each from days 7 and 
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14. We counted T cells in six high power fields per slice (×20 magnification, 120 high power 

fields total). 

 

3.2.13. Statistical analyses 

 Generally, measurements are presented as mean ± standard error. A one-way 

ANOVA along with unpaired T-tests with unequal variances were performed to compare 

groups as a whole and by pairs, respectively, for bioluminescence and tumor volume 

measurements. For ANOVAs, we used the Bonferroni correction for multiple comparisons, 

thereby controlling the family-wise error rate at 5%. Unpaired T-tests were used to compare 

the apparent cell numbers between groups. P-values <0.05 are considered statistically 

significant. ANOVA results are expressed as an F-statistic and its associated degrees of 

freedom and P-value. For pooled samples (thymus and lymph nodes), an estimate of the 

NMR measurement error is displayed, which was calculated from the standard error of the 

baseline noise signal over the same integral interval width used to measure the 19F tissue 

peak. Average 19F NMR signal in tumors was correlated with the number of CAR or 

untransduced T cells count by histopathology using a Pearson’s correlation coefficient test.  

 

3.3. Results  

3.3.1. In vitro characterization of CAR-expressing T cells 

 Initially, we assessed the phenotype and PFC labeling levels in T cells. The 

lymphocyte isolation from PBMC yields a pure population of CD3+ T cells with an 

approximate 2/3 CD4+ and 1/3 CD8+ phenotype distribution (Fig. 3.1a and b). In T cells 

transduced with lentivirus harboring EGFRvIII antibody, transgene expression levels persist, 
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with >70% of the human T cells expressing the CAR receptor after two weeks in vitro (Fig. 

3.1c). For in vivo animal studies (below), infused T cells were 85±10% CAR-positive. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: CAR T cell transduction and characterization. (a)  Scatter plot showing the 

pure population of human T cells (CD3) after magnetic assisted cell sorting of blood 

samples. (b) Isolated T cell flow analysis for expression of CD4/CD8 shows that 2/3 of T 

cells are CD4+ and 1/3 are CD8+. (c) CAR T cell population 2 weeks after transduction 

shows 85% CAR-expressing T cells. (d) 19F NMR spectrum showing PFC uptake of CAR 

T cells (peak at -91 ppm, 2×1011 atoms/cells) normalized to the TFA reference (peak at -76 

ppm). (e) Flow cytometry histogram showing similar repartition of CD4+ and CD8+ CAR 

T cells after transduction compared to untransduced T cells (b). (f) CAR T cells labeled with 

PFC ex vivo exhibit comparable phenotype to unlabeled cells.  

 

Labeling experiments with PFC nanoemulsions at 10 mg/ml over a period of 12 hours 

co-incubation display minimal viability impairment as assessed by Trypan blue exclusion 

test (Average 95±1%, N=3 replicates) and flow cytometry viability measurements (p>0.05). 

These conditions yield an average labeling efficiency of 2±0.5×1011 atoms of fluorine per 

cell (N=3 replicates, Fig. 3.1d), as determined by 19F NMR. Moreover, PFC labeling does 
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not appear to alter T cell phenotype as defined by CD4+ and CD8+ expression (Fig. 3.1e 

and f, p>0.05). 

Intracellular and perinuclear localization of PFC label in CAR T cells was confirmed 

by confocal microscopy (Fig.3.2a-b) using a dual-mode MRI-fluorescent PFC 

nanoemulsion. This result was corroborated by electron microscopy (Fig. 3.2c-d). Bright 

spheroids corresponding to electron-sparse scattering perfluorocarbon droplets were found 

in most labeled cells (Fig.3.2c, see inset, 11,000) but not in control unlabeled cells (Fig 

3.2d). Flow cytometry (Fig. 3.2e-f) measurement of CAR T cells labeled with the dual mode 

agent revealed a shift in red fluorescence compared to control unlabeled cells indicating that 

essentially 100% of CAR T cells are labeled with PFC one day after labeling (Fig. 3.2e). 

The fluorescence shift remains discernable for several days after labeling but returns to 

unlabeled baseline by day 14 due to cell division and agent dilution; the degree rate of label 

dilution is consistent with the CAR T cell division rate in vitro.  
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Figure 3.2. Confirmation of intracellular localization of PFC. (a) Confocal image (×63) 

showing perinuclear localization of dual-mode PFC nanoemulsion (in red) in CAR T cells. 

Nucleus is stained in blue and cell membrane in green via CD3-FITC (b) Control unlabeled 

CAR T cells do not exhibit red fluorescence. (c) Electron microscopy (EM) micrograph of 

ultra-thin PFC-labeled CAR T cells reveals the presence of bright vesicles (inset = ×11,000) 

corresponding to internalized PFC droplets. (d) In control unlabeled cells, no PFC vesicles 

are found ( 4800, scale bars = 1 m). (e) Flow cytometry scatter plot showing the resulting 

shift in red fluorescence of CAR T cells after labeling. All cells are labeled after overnight 

incubation as evidenced by fluorescence gap between labeled (e) and unlabeled (f) CAR T 

cells. (g) Longitudinal red fluorescence measurement after labeling shows persistent signal 

and consistent decrease of fluorescence intensity due to cell division. 
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3.3.2. CAR T cells exhibit cytotoxicity against U87-EGFRvIII glioma cells 

 CAR T cells exhibit significant, antigen specific, cytotoxic activity against U87-

EGFRvIII-Luc cells in vitro (Fig. 3.3). Ultraviolet-visible (UV-Vis) spectroscopy 

measurements show that CAR T cells induce 93% tumor cell death compared to 53% for 

untransduced T cells at 24 h (Fig. 3.3). These results are statistically significant at all time 

points (p<0.0001). Untransduced T cells generated notable non-specific tumor cell death, 

but apoptosis induction plateaued rapidly to 50%. Pro-inflammatory cytokines present in the 

media, including IL-2 and CD3/CD28 beads, may have contributed to untransduced T cell 

activation, leading to granzyme and perforin release and detectable cancer cell death21. 

Nonetheless, these in vitro results confirmed the targeted cytotoxic activity of CAR T cells 

against EGFRvIII+ glioma cells. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Human CAR T cell cytotoxicity assay in vitro. Co-incubation of CAR T cells 

or untransduced T cells with human U87-EGFRvIII-Luc glioma cells resulted in significant 

cell death at 6, 12 and 24 h. The CAR T cells exhibit significant tumor killing ability (93%) 

compared to untransduced T cells (53%, p<0.0001 indicated by *). The relative glioma cell 

cytotoxicity was obtained from the mean photon count, and the ratio of treated versus 

untreated means are displayed as percentages. 
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3.3.3. CAR T cells inhibit tumor growth  

 The anti-tumor efficacy of PFC-labeled CAR T cells was verified using 

immunocompromised SCID mice bearing bilateral subcutaneous U87-EGFRvIII tumors. 

Engraftment of tumors was confirmed by BLI and caliper measurements just prior to T cell 

infusion (day 0). Longitudinal BLI and tumor measurements show considerably reduced 

tumor growth as early as 7 days after CAR treatment (Fig. 3.4a) compared to controls. The 

radiance of CAR-treated tumors average 2.9±0.4×1010 photons/s, which was three times 

lower than the luminescence for both the T cell treated (1.06±0.1×1011 photons/s) and 

untreated (1.01±0.1×1011 photons/s) groups (Fig. 3.4b, F-statistic F(2,29)=18.06, p<0.0003). 

Similarly, the mean tumor volume at day 7 in the CAR-treated group is 226±28 mm3, 

compared to 497±50 mm3 and 502±41 mm3 for untransduced T cells and untreated groups, 

respectively (Fig. 3.4c, p<0.003). The disparity among groups grew until the last 

measurement on day 14, where the mean luminescence in the CAR-treated group is 

2.33±0.3×1011 photons/s, and the untransduced T cell and untreated groups is 9.08±0.6×1011 

and 8.21±0.8×1011 photons/s, respectively. The T-test p-value between CAR treated and 

untransduced T cell treated or untreated is ≤0.0001; the corresponding ANOVA test of the 

three groups F(2,29)=18.06-37.29, p<0.0003 is extremely significant at 7, 10 and 14 days 

post-treatment, using a Bonferroni correction.  

The cancer cells in a solid tumor, in particular in the necrotic center, are much less 

accessible to the T cell pool compared to the in vitro case where the cancer cells are directly 

in contact with T cells. In fact, cell quantitation shows that the number of cells reaching the 

tumor in vivo is fairly low, and this is one of the plausible explanations as to why the CAR 

T cells fail to completely ‘reverse’ tumor growth (Fig. 3.4). 
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Figure 3.4: Impact of cell therapy on tumor growth in vivo. (a) Representative 

bioluminescence images at day 0, 3, 7, 10 and 14 after cell therapy for all three groups show 

tumor growth reduction for the CAR T cell treated mice compared to untransduced T cell 

treated or untreated mice. (b) Bioluminescence signal is significantly lower in the CAR T 

cell treated group starting at day 7 compared to controls. CAR T cell treated animals display 

a radiance four times lower than untransduced T cell treated animals or untreated animals at 

day 14 (* indicates p<0.0003 at day 7,10 and 14). (c) Corresponding tumor volume 

measurements show 50% reduction in tumor growth for the CAR T cell treated group at day 

7, 10 and 14 (* indicates p<0.0003) and no significant difference between untransduced T 

cell treated and untreated groups (p=0.38). 19F NMR cytometry of T cell biodistribution 

 

NMR measurements on intact tissue samples enable quantification of the total 19F 

content and the apparent number of labeled T cells infiltrating the tissue (Fig. 3.5). The 

results at day 2 post-treatment show greater CAR T cell homing to the tumors and spleen 

compared to untransduced T cells (p=0.01 and 0.04, respectively). Approximately 

85,000±14,000 CAR-T cells are found in the tumors at day 2. The number of apparent CAR 

T cells in the tumor is stable until day 7, whereas untransduced T cells are below the LOD, 
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which is estimated to be on the order of ~7103 cells per sample for the 5 mm probe and 

~4104 for the 10 mm probe (see Fig. 2.10). On average, 5±0.7×105 CAR T cells (i.e., the 

equivalent amount of 19F signal) is found in the spleen at day 2 and 14, whereas only half 

this amount is observed in untransduced T cell treated animals. These NMR cytometry 

measurements do not account for possible T cell division in vivo; cell division can diminish 

the accuracy of the apparent total cell count per tissue, particularly at later time points.  

Figure 3.5: Biodistribution of tissue samples by 19F NMR at 2, 7 and 14 days post-

treatment. 19F NMR measurements of organ biodistribution of the PFC-labeled cells show 

greater CAR T cell homing to the spleen and tumors compared to untransduced T cells at 

day 2. The liver signal likely represents the dead T cell fraction. These measurements do not 

account for cell division, thus referred to as ‘apparent’ cell number. LN indicates lymph 

nodes, (*) indicate significance, and (♦) indicate pooled samples.  

 

The average 19F signal in the liver is approximately 15% of the injected dose at day 2 

in both groups. At day 14, 33% of the fluorine signal is found in the liver. The liver 19F signal 

(Fig. 3.5) presumably represents the dead T cell fraction, as PFC droplets from dead cells 
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are taken up predominantly by Kupffer cells of the liver22. No significant differences are 

found in the lymph node signals between groups (Fig. 3.5). The tail 19F signal (Fig. 3.5) 

represents the fraction of cells that are ‘mis-injected’ during tail vein delivery and 

presumably resides in local subcutaneous tissue; using this measured value one can in 

principle calculate the actual T cell dose delivered intravenously in each subject by 

subtracting out this missed cell fraction. All measurements presented are above our LOD of 

~7103 to ~4104 cells per sample (for 5 mm and 10 mm probes, respectively) for a 20 min 

acquisition time (see  Fig. 2.10). Organs with undetectable fluorine levels in all animals are 

not displayed (brain, heart, small intestine, spinal cord, femur, blood). In the recovered blood 

samples, the 19F NMR displayed signal below the LOD, thus residual blood in tissue samples 

would not be a significant source of false-positive signal. 

 

3.3.4. Histopathology  

 Histopathological staining confirms the presence of numerous CAR T cell infiltrates 

in the tumors as evident by the fluorescent green signal targeting human CD3 (Fig. 3.6a). In 

comparison, untransduced T cell infiltrates are sparser in these tissues (Fig. 3.6b). At day 2, 

both CAR-T cells and untransduced T cells show persisting red fluorescent signal 

corresponding to the dual-mode (CS-ATM DM Red) PFC nanoemulsion (Fig. 3.6c-d). No 

endogenous T cells are present in untreated SCID mice (Fig. 3.6e). Quantitative analysis of 

the number of CAR or untransduced T cells per high power field show significantly higher 

CAR T cell numbers in the tumor tissue than untransduced T cells at all time points (Fig. 

3.6f). In addition, histology counts strongly correlate to the average NMR fluorine signal 

measured in tumors (Pearson’s r = 0.89, Fig 3.6g).  
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Figure 3.6. Histological correlation of tumor tissue of T cell treated SCID mice. (a) Low 

magnification (×5) fluorescent image of the tumor tissue displays prominent CD3+ CAR T 

cell infiltrates (green). (b) Conversely, sparse untransduced T cells localize to the tumor 

(scale bars = 100 μm). (c). Confocal images (×63) show that dual-mode PFC nanoemulsion 

(red) remains colocalized within CAR T cells (green, c) and untransduced T cells (d) at day 

2 after infusion. (e) Untreated mice do not exhibit green or red fluorescence due to absence 

of treatment and endogenous T cells in SCID mice (scale bars = 25 μm). (f) Histological T 

cell count in high power fields of tumor sections shows greater CAR T cell numbers at all 

time points compared to sections from untransduced T cell-treated animals (* indicates p 

<0.001). (g) Plot showing strong positive correlation (r = 0.89) between average 19F atoms 

in tumors as measured by NMR and T cell count (N=120, HPF = high power fields) 
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 CAR T cells and untransduced T cells are also present in large numbers in the spleen 

(Fig. 3.7a-b). Red fluorescence does not colocalize to phagocytic cells in the tumor and 

spleen (Fig. 3.7c-d), which indicates minimal contamination of dead T cell signal in these 

tissues, contrary to phagocytic Kupffer cells in the liver (Fig. 3.7e), which contain red 

fluorescence signal from dead T cells. 

 

Figure 3.7. Histology in spleen and liver tissue of T cell treated SCID mice. (a) Low 

magnification (×5) fluorescent image of the spleen tissue displays prominent CD3+ CAR T 

cell infiltrates (green). (b) Untransduced T cells also localize to the spleen (scale bars = 50 

μm). (c). Confocal images (×63) show that dual-mode PFC nanoemulsion (red) does not 

colocalize within phagocytic cells (F4/80 staining, green) in the tumor (c) and spleen (d) at 

day 2 after infusion. (e) Conversely, F4/80 staining in the liver tissue displays dual-mode 

PFC (red) colocalizing with Kupffer cells or liver macrophages (scale bars = 25 μm). 
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3.4. Discussion 

 We describe the use of NMR cytometry for quantifying the apparent biodistribution 

of human CAR T cell therapy in a murine xenograft model of glioma. We compared CAR 

T cell biodistribution and efficacy to untransduced T cells. Tumor growth and volume was 

assessed by bioluminescence imaging and caliper measurements. NMR measurements in 

whole organs demonstrated significantly higher CAR T cell homing to tumors and spleen 

compared to untransduced T cells, consistent with conventional histopathology staining. Our 

results corroborate the importance of the EGFRvIII receptor as a target for immunotherapy 

and the efficacy of CAR T cells against these tumors. Injection of untransduced lymphocytes 

did not result in enhanced tumor inhibition over untreated mice and appeared to have a lower 

and more transient accumulation at tumor sites compared to CAR T cells.  

Our view is that NMR cytometry is an option for discovery and preclinical evaluation 

of emerging immunotherapeutic cell candidates by helping to streamline the evaluation of 

cell biodistribution and survival. One of the key advantages is that the analysis is in intact 

tissues, with the only treatment being an optional fixation step. PFC nanoemulsion 

internalized in cells does not alter the PFC chemical shift of the NMR spectrum which is 

defined by their molecular structure23-25. Moreover, The PFC label in tissue T cells is stable 

and can be stored or frozen indefinitely without signal loss26-28. Measurement of 19F content 

of a sample can be accomplished using conventional NMR spectroscopy in tens of minutes 

or less, and data acquisition can be automated with robotic sample changers and auto-

shimming. Programing automated data analyses routines to extract the PFC 19F peak 

integrals and apparent cell counts is straightforward. Generally, NMR instrumentation is a 

routine analytic tool for molecule structure elucidation and is commonplace in virtually 
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every major chemistry lab, with tens of thousands of such instruments sited worldwide. Use 

of in vitro NMR cytometry as described herein has the advantage of higher sensitivity to 

sparser cell numbers compared to MRI by an order magnitude9. We note that the use of 

preclinical 19F MRI in murine models of CAR T cell therapy remains a topic of future study. 

If cell division occurs, the accuracy of the absolute T cell counts for NMR cytometry 

may diminish, particularly at later time points, thus we describe these as ‘apparent’ cell 

counts. The impact of cell division on PFC labeled T cell quantification during longitudinal 

studies in mouse is described in detail elsewhere29. Potentially a carboxyfluorescein 

succinimidyl ester (CFSE) assay can be used to determine mitosis rates in vivo30. However, 

considering the heterogeneity of cell phenotypes used in CAR T cell therapies, as well as 

differential division rates in different tissues, estimation of whole-body CAR T cell division 

rates in vivo remains challenging.  

Labeling of T cells, which have weak phagocytic properties and a small cytoplasm, 

will always be a challenge, in contrast to phagocytic cells such as DCs. Nonetheless, authors 

have successfully labeled T cells in vitro using iron-based nanoparticles31 or fluorinated 

nanoemulsions32 and later tracked them in vivo by MRI. Similarly, natural killer (NK) cells 

have also been labeled with PFC and imaged longitudinally after intratumoral injection in 

mice33. The PFC nanoemulsion used in this study (CS-1000) has previously been used for 

numerous preclinical 19F magnetic resonance imaging (MRI) studies of immune and stem 

cells in various disease models26, 32-40. By means of fluorescence and electron microscopy 

and flow cytometry, the dual-mode PFC nanoemulsion agent has been shown to be 

internalized by immune cells in multiple studies12, 23, 32, 38, 41, 42.  Immune cell labeling with 

the nanoemulsion used (CS-1000) does not alter cell viability, phenotype or cytokine 
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production26, 32, 33, 38. In addition, the same imaging agent has been used in a clinical trial 

monitoring a PFC-labeled dendritic cell immunotherapy in colorectal cancer patients7. 

Moreover, CS-1000 is the subject of an FDA Drug Master File (DMF), as well as a similar 

DMF at Health Canada. Thus, the safety of this PFC nanoemulsion to cells and organisms 

at appropriate doses used in cell therapy has been extensively investigated. Utmost care and 

caution should nonetheless be applied before proceeding with any in vivo application of 19F-

labeled CAR T cells in human subjects. 

Alternative methods for assessing cell distribution in preclinical studies often involve 

laborious and tissue-destructive histopathology, or flow cytometry measurements in blood 

and tissue samples prepared as single cell suspensions3, 43, 44. Analyses of tissues requires 

multiple manual processing and chemical treatment steps, as well as human input in the data 

collection and computer analysis, all of which are time-intensive. Histopathology remains 

semi-quantitative for analysis of multi-organ tissue panels, and is often limited by a finite 

number of tissue slices leading to potential sampling error, as well as confounding factors 

such as tissue autofluorescence45. Flow cytometry is most often used to measure remaining 

circulating T cells in blood. Others have reported that the average LOD for circulating T 

cells by flow cytometry is on the order of 3-10 CAR T cells per microliter of blood44, 46, 47. 

Thus, flow cytometry, as well as histology, may enable the detection of ‘rare’ cells in tissues.  

To conclude, 19F NMR cytometry is a rapid and quantitative technique to evaluate 

adoptive cell transfer biodistribution in intact tissues. This technique provides unbiased 

quantification in samples. Overall, 19F NMR cytometry may accelerate the timeline to 

evaluate new immunotherapeutic cell candidates by providing a straightforward method to 

evaluate cell therapy biodistribution and cell fate.  
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 Chapter 4: Cell penetrating peptide functionalized perfluorocarbon nanoemulsions 

for targeted cell labeling and enhanced fluorine-19 MRI detection 

 

 

 
4.1. Introduction 

 
Noninvasive methods for tracking cell therapy grafts are an urgent unmet clinical 

need1, 2. With the development of adoptive immunotherapy against cancer, such as using 

chimeric antigen receptor (CAR) T cell therapy3, 4, there is a need to determine the initial 

biodistribution and survival of the therapeutic cells5. Visualizing cell populations in vivo can 

also provide insights into off-site toxicities and  help refine dosing regimens to enhance 

therapeutic efficacy6, 7.  

Noninvasive imaging techniques for cell detection post-transfer often employ 

radioisotopes8, 9, bioluminescence reporters10, and fluorescence probes11, 12. Magnetic 

resonance imaging (MRI) is also being adapted to visualize cells13. MRI has no depth 

penetration limitations, displays anatomy with clarity, and can be used with in conjunction 

with imaging agents clinically1, 14. 

Fluorine-19 based MRI nanoemulsion probes are an option for non-invasively 

imaging of cell populations15-21. The 19F nuclei have high intrinsic sensitivity, with 89% 

relative sensitivity compared to 1H. De minimis endogenous 19F in the body ensures that any 

MRI signals collected are from the introduced tracer probe. F-dense perfluorocarbon (PFC) 

molecules are often used to form nanoemulsion imaging probes that can be endocytosed by 

cells. As PFCs are mostly chemically inert, lipophobic, hydrophobic, and nanemulsions do 

not osmotically diffuse out of viable cells thereby ensuring lasting labeling. Detailed reviews 

of the biomedical applications of 19F cell detection and tracking are found elsewhere22-24. 
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Engineered lymphocytes commonly used in immunotherapy25 have an intrinsically 

small cytoplasmic volume and are weakly phagocytic, thereby restricting uptake of 

intracellular PFC label. The limits of cell detection in spin-density weighted 19F MRI is 

linearly proportional to the cell labeling levels. Thus, to boost cell labeling, we designed 

PFC nanoemulsion imaging probes displaying a cell penetrating peptide (CPP) from the 

transactivator of transcription (TAT) component of the human immunodeficiency virus type-

126. TAT is an 86 amino acid protein, and residues 49-58 [Arg-Lys-Lys-Arg-Arg-Gln-Arg-

Arg-Arg] are positively charged and carry a nuclear localization signal sequence facilitating 

endocytosis27. We report the synthesis schemes and physical characterizations of three novel 

TAT co-surfactants for PFC nanoemulsion formulation. For PFC, we employ 

perfluoropolyether (PFPE, a perfluorinated polyethylene glycol) or perfluoro-15-crown-5-

ether (PFCE); both molecules are used for 19F MRI due to unitary major fluorine peaks and 

high sensitivity28, 29. The efficacy of TAT co-surfactants was tested by measuring cell uptake 

in Jurkat cells and in human primary CAR T cells. In vitro functional cell (glioma) killing 

assays were performed using TAT-PFC labeled CAR T cells. The intracellular localization 

of PFC oil droplets in labeled CAR T cells was investigated by fluorescence and electron 

microscopy. Additionally, we conducted proof-of-concept in vivo 19F MRI sensitivity studies 

in CAR T cells labeled with TAT-PFC injected into flank gliomas.  

 

4.2. Materials and Methods 

4.2.1. Synthesis of F68-TAT  

3.78 g of polyethylene-polypropylene (F68, 1 equiv, 0.0453 mmol, mol wt = 8350 

g/mol, Spectrum Chemicals, Gardena, CA), purchased as a solid, was further dried under 
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high vacuum for 1 hour prior to use. To this dried white powder, 25 mL of anhydrous 

dichloromethane was added and stirred until dissolution, yielding a clear solution. Reaction 

was maintained under dry conditions using a steady stream of N2 gas. 172 mg of 6-

maleimidohexanoic acid (1.8 equiv, 0.815 mmol) was added in one portion yielding a pale 

yellow solution. 0.906 mL of N, N'-Dicyclohexylcarbodiimide (DCC) was added dropwise; 

solution cloudiness and formation of precipitate was observed almost immediately. The 

reaction was stirred overnight at room temperature under inert gas. Reaction was monitored 

by thin layer chromatography (TLC) with product retention factor (Rf) = 0.1 in 20:80:0.5 

mix of MeOH:CHCl3:AcOH. Reaction byproduct was removed by filtration. To the filtrate, 

an excess of hexanes was added causing the product to crash out which is collected by 

filtration. Product is a pale pink solid, 10 (yield = 2.183 g, mol wt = 8493 g/mol). To 2.5 mg 

of 10 (1 equiv, 0.00029 mmol) prepared as a 5 mg/mL solution in distilled water, 0.3 mg of 

Cys-TAT (0.68 equiv, 0.00020 mmol) prepared as a 2 mg/mL solution in HEPES buffer was 

added and allowed to stir overnight. Thereafter, 10 equiv of cysteine was added to cap any 

remaining maleimide groups. The contents of the reaction vessel were dialyzed (Slide-A-

Lyzer Dialysis Cassettes, 3.5K MWCO, 3 mL, Thermo Scientific, Rockford, IL) to remove 

residual Cys-Tat (mol wt = 1661.99 g/mol) and cysteine (mol wt = 121 g/mol).  

 

4.2.2. Synthesis of Perfluorocarbon (PFC) Nanoemulsions with Cell-Penetrating Peptide 

(CPP) and Poloxamer Surfactants 

To prepare CPP surfactant, 1 mmol of 1H,1H-perfluoro-1-heptanol (0.350 g, 1 mmol, 

mol wt = 350 g/mol) or 1H,1H-perfluoro-3,6,9-trioxadecan-1-ol (0.398 g, 1 mmol, mol wt 

= 398 g/mol, Exfluor Research Corporation, Round Rock, TX) was added to a 25 mL round 
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bottom flask along with 232 mg 6-maleimidohexanoic acid (232 mg, 1.1 equiv, 1.1 mmol, 

mol wt = 211.32 g/mol, TCI America, Portland, OR). Anhydrous dichloromethane (5 mL) 

was added, and the flask was maintained under a constant stream of N2 gas while stirring. 

Once the reactants dissolved, 572.4 mg benzotriazol-1-yl-oxytripyrrolidinophosphonium 

hexafluorophosphate (PyBOP, 572.4 mg, 1.1 equiv, 1.1 mmol, mol wt = 520.39 g/mol, 

Bachem, Torrance, CA) was added in one portion. After 2 min for the coupling reagent to 

dissolve, 350 µL of diisopropylethylamine (DIEA, 2 equiv, 2 mmol, Sigma Aldrich, St 

Louis, MO) was added to start the reaction. The flask was left under a slow N2 stream with 

constant stirring at room temperature for 16 h. The reaction completion was monitored by 

TLC (Rf = 0.4, 3:7 EtOAc: hexanes). Purification and solvent removal were accomplished 

using a Combiflash Rf Lumen (Teledyne Isco, Lincoln, NE) silica gel column (12 g, silica 

Redisep column) using a hexane and ethyl acetate gradient with 1:0 hexane:EtOAc for 3 

min, followed by an increase in polarity to 1:1 hexane:EtOAc from 3 min to 14 min, followed 

by a 0:1 hexane:EtOAc wash for 1 min. An evaporative light scattering (ELS) detector was 

used for monitoring product peaks, at 250 nm and 280 nm wavelengths, which elute at 

retention times (tR) = 9 min (1) and tR = 10.5 min (2), respectively. The collected fractions 

were concentrated with a rotary evaporator followed by drying on high vacuum overnight. 

The products are a clear oil with mol wt = 591.28 g/mol (1) (yield = 325 mg) and mol wt = 

543.28 g/mol (2) (yield = 380.1 mg).  

Cys-TAT.9TFA (30 mg, 0.016 mmol, 1 equiv, mol wt = 2688.16 g/mol, Biomatik, 

Wilmington, DL) and dissolved in 464 µL of 0.05% TFA-water. A solution of 1 or 2 (0.014 

mmol) in trifluoroethanol (556 µL) was then added to the solution of Cys-TAT, followed by 

the addition of 116 µL of 1 M 3-(N-morpholino)propanesulfonic acid (MOPS) buffer at pH 
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= 7.4. Reaction completion was assessed by liquid chromatography mass spectroscopy (LC-

MS, Model 1100 with LC/MSD Trap, Agilent, Santa Clara, CA) using a 95:5 gradient of 

water + 0.05% TFA: acetonitrile + 0.05% TFA for 5 min, then 95:5 to 10:90 in 20 min, 

followed by 10:90 to 0:100 in 10 min, tR = 18.5 min (1) and tR = 18.6 min (2)] and stopped 

after 30 min by addition of 100 µL of glacial acetic acid. Following filtration (0.22 µm nylon 

filter), the crude mixture was purified by semi-prep high pressure liquid chromatography 

[HPLC, gradients used: 90:10 descending to 10:90 water + 0.05% TFA, acetonitrile + 0.05% 

TFA in 20 min, tR = 12.5 min, m/z = 1127.4, mol wt = 2254.28 g/mol (1a, TATP) and tR = 

13.7, m/z = 1103.5, mol wt = 2206.28 g/mol (2a, TATA)]. 

 To prepare nanoemulsions, a 5% w/w ratio of total surfactant to PFC was used. For 

4 mL of nanoemulsion product, 40 mg of F68 in 400 µL of water was added to a glass vial 

containing 465 µL perfluo-15-crown-5-ether (PFCE, Exfluor Research, Round Rock, TX). 

To this solution, 4 mg (1.21 µmol) of TATP (1a) or TATA (2a) (1.23 µmol) was added 

followed by 3.135 mL of purified water. The solution was ultrasonicated (30% power, 1 

min, Omni Ruptor 250W, Kennesaw, GA) and then passed through a microfluidizer (LV1, 

Microfluidics, Westwood, MA) at 10,000 psi pressure four times. The TATA- and TATP-

F68-PFC (3) nanoemulsions were sterile filtered using a 0.22 µm syringe filter (Acrodisc 

PF, Pall, Port Washington, NY) and bottled in autoclaved glass vials. The capped vials were 

stored at 4 °C until use. 

 

4.2.3. Synthesis of PFC Nanoemulsions with CPP-Phospholipid Surfactants 

For CPP-phospholipid surfactant, 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[maleimide(polyethyleneglycol)-2000] (DSPE-PEG2000-
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maleimide, 1.8 equiv., 0.00217 mmol, 6.5 mg, Avanti Polar Lipids, Alabaster, AL) was 

suspended in HEPES buffer (0.05 M, 500 µL, pH  =  7.5) by sonication. A fresh solution of 

Cys-TAT (1 equiv, 0.0012 mmol, 2.0 mg) in HEPES buffer (0.05 M, 300 μL, pH = 7.5) was 

added in one portion, and the mixture was agitated on a shaker at 37 °C for 6 hours. 2-

Mercaptoethanol (0.8 μL, 10 equiv, 0.012 mmol, Sigma Aldrich) was added to react with 

any remaining maleimide groups, and the solution was agitated further for 30 min.  

The conjugate was de-salted and purified in deionized water using a dialysis cassette 

(Slide-A-Lyzer #2K MWCO, cassette size = 3 mL, Thermo Scientific) at room temperature. 

Water was replaced at 2, 4 and 22 hours (volume 300:1 compared to cassette size). The 

sample was recovered from cassette and analyzed  by matrix assisted laser 

desorption/ionization  (MALDI) mass spectrometry (Biflex IV MALDI-TOFMS, Bruker, 

Billerica, MA) and identified as a mixture of the desired product, DSPE-PEG(2000)-Cys-

TAT (mol wt= 4660 g/mol) 4 and DSPE-PEG(2000)-mercaptoethanol (mol wt= 3020 

g/mol). The solution was lyophilized to a dry powder to give a near-quantitative yield of the 

desired product, 4. 

 The phospholipid-PEG-TAT conjugate was incorporated into egg yolk phospholipid 

(EYP) by the two methods described below. For both methods, compound 1 (2.8 mg, 0.6 

mol) and EYP (304 mg, 0.4 mmol, Sigma Aldrich) were mixed resulting in a TAT to lipid 

surfactant ratio of 0.15 mol %. Thereafter, perfluoropolyether (PFPE) oil (1.18 g, 0.87 mmol, 

mol wt = 1300-1400 g/mol, Exfluor) was added to obtain a 26% w/w ratio of phospholipid 

to PFC. Sterile water was added to obtain a 120-150 mg/mL concentration of PFC. The 

nanoemulsions were then sterile-filtered through (0.2 μm, Pall) into glass vials, capped, and 
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stored at 4 °C until use. Following formulation and filtration, each nanoemulsion was 

characterized by dynamic light scattering (DLS) particle analysis and 19F NMR.  

 

Method 1: Direct Insertion of Peptide Conjugate  

Compound 4 was added to a solution of EYP in chloroform (5 mL), vortexed on 

medium for 1 min, and the resulting solution evaporated with a stream of nitrogen while 

manually rotating the vial to evenly coat the vessel. The vial was then placed under high 

vacuum overnight to give a dry lipid film. Sterile water was added to hydrate the lipid film 

for 5 min followed by vortexing on medium for 2 min and then ultrasonication (30% power, 

4 min). PFPE was added to the vial in one portion, vortexed briefly, and then ultrasonicated 

(30% power, 2 min). The crude emulsion (5) was passed four times through a microfluidizer 

at 20,000 psi with the reaction chamber cooled on ice. 

 

Method 2: Post-Insertion of Peptide Conjugate  

A suspension of EYP in sterile water was formed by ultrasonication (30% power, 4 

min), and PFPE oil was added to the vial in one portion, vortexed briefly, and then 

ultrasonicated (30% power, 2 min). The crude emulsion was passed four times through a 

microfluidizer as in Method 1. To add TAT, solutions of 1 based on mol% of total EYP 

surfactant were prepared in sterile water. The solution of 1 is added to the preformed 

nanoemulsion and agitated on a bioshaker at 37 ºC for 5 h to obtain (5) nanoemulsion.   
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4.2.4. Nanoemulsion Size and Homogeneity 

DLS instrumentation (Zetasizer ZS, Malvern Panalytical, Malvern, UK) was used to 

determine the particle size, polydispersity index (PDI) and zeta potential for the samples. 

Nanoemulsions were diluted to 0.5% v/v in water and transferred to low volume (1.5 mL) 

disposable cuvettes. Measurements were performed in triplicate samples for each 

nanoemulsion.  

 

4.2.5. 19F NMR Measurement of Nanoemulsion Fluorine Concentration 

The 19F NMR spectral data were acquired using a 400 MHz Bruker NanoBay 

Spectrometer (Bruker BioSpin, Billerica, MA) with a single 17 μs pulse, 32,000 free 

induction decay points, 100 ppm spectral width, 32 averages and 15 s repetition time. NMR 

samples were prepared by adding 0.1% (w/v) sodium TFA in D2O to nanoemulsion (10% 

v/v). The concentration of PFC in nanoemulsion (CF) was calculated from the integrals of 

the TFA signal (normalized to 1) and the major PFC peak (IPFC) using the relation CF  = a 

IPFCCTFAVTFA(bVPFC)-1, where CTFA  is the concentration of TFA in mg/mL, VTFA and VPFC 

respective volumes of nanoemulsion and 0.1% TFA solution in mL in the NMR sample, and 

a and b are constants representing the 19F mass fraction of TFA (0.42) and PFC (e.g., 0.655 

for PFCE and 0.58 for PFPE), respectively. 

 

4.2.6. T Cell Preparation 

The Jurkat T cell line was obtained commercially (#TIB-152, ATCC, Manassas, VA) 

for initial nanoemulsion cell labeling characterizations. Jurkat cells were grown in RPMI-

1640 media (Gibco, Waltham, MA) plus 10% fetal bovine serum (FBS), 10 mM HEPES 
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buffer (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 1 mM sodium pyruvate and 

1.5 mg/mL sodium bicarbonate media. 

 Primary human T cells were obtained from blood samples sourced from the San 

Diego Blood Bank and enriched for T cells by Ficoll (Histopaque 1077, Sigma Aldrich) 

gradient density centrifugation and magnetic assisted cell sorting (Dynabeads, Thermo 

Fisher). T-cells were then activated with human T-activator CD3/CD28 Dynabeads and 

allowed to expand for two days in RPMI-1640 supplemented with 10% FBS and 100 

units/mL of recombinant human interleukin 2 (IL-2, Peprotech, Rocky Hill, NJ). For 

transduction, we employed a vector specific to epidermal growth factor receptor variant III 

(EGFR-vIII) as described by Johnson et al30. A detailed protocol for chimeric antigen 

receptor (CAR) virus production and human T cell transduction is available elsewhere31. 

CAR receptor expression was confirmed by flow cytometry. We used T cell populations 

with >70% CAR+ expression.  

 

4.2.7. Glioma Cell Line 

A human glioblastoma multiform (U87-EGFRvIII-Luc) cell line overexpressing 

EGFR-vIII32 and the luciferase reporter gene (Luc) were used. Cells were incubated (37 ºC, 

5% CO2) and cultured in T-75 flasks (Thermo Fisher) in RPMI-1640 medium supplemented 

with 10% FBS.  

 

4.2.8. In Vitro T Cell Labeling 

For initial uptake experiments, 1 million Jurkat or CAR T cells were plated in 1 mL 

full media in 24 well plates (n = 3 wells per condition). PFC nanoemulsion was added to 
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each well and incubated overnight (16 h) at 37 oC and 5% CO2. The cells were then washed 

three times with phosphate buffered saline (PBS) to rinse free nanoemulsion. Cells were 

counted and viability was assessed by Trypan blue staining. Thereafter, the cells were spun 

down, resuspended in 150 μL lysis buffer (1% Triton X in PBS) and transferred to a 5 mm 

NMR tube. 50 μL 0.1% TFA was added to each NMR tube, and spectra were acquired as 

described above. Total fluorine atom count was divided by the sample cell number to yield 

the average number of fluorine atoms per cell. 

 For in vivo experiments, CAR T cells were plated at a density of 10 million cells in 

5 mL of media per well of a 6-well plate and incubated overnight with 15 mg/mL of 

nanoemulsion. Cells were washed as described above and an aliquot of 1 million cells was 

set aside to measure cell uptake by 19F NMR. 

 

4.2.9. Synthesis of Cyanine-5 (Cy5) Fluorescence Nanoemulsions 

TAT-PFC nanoemulsions were prepared with Cy5 dye attached. To 0.5 mmol of 

1H,1H-Perfluoro-1-heptanol (mol wt = 350.08 g/mol) or 1H,1H-Perfluoro-3,6,9-

trioxadecan-1-ol (mol wt = 398.08 g/mol), we added 0.55 mmol of 6-(Boc-amino)caproic 

acid (mol wt = 231.29 g/mol, Sigma Aldrich); this mixture was dissolved in a minimum 

amount of dry dichloromethane (DCM), and the reaction mix was stirred under N2 gas. 0.55 

mmol pyBOB (benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate) was 

added, followed by 0.74 mmol of diisopropylethylamine (DIEA), and mixture was stirred 

under inert gas overnight at room temperature. Reaction completion was monitored by TLC. 

The solvent was removed with a rotary evaporator, and sample was dissolved in minimum 

amount of DCM. Wet crude sample was loaded on a 4 gm silica gel Redisep column for 

purification using the Combiflash Rf Lumen. We eluted with 100% hexane for 2 min, then 
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70%:30% EtOAc:hexane over 10 min. The desired product 6 or 7 was eluted between 30-

40% EtOAc and tR = 6-7.5 min, as monitored by ELS detector.  

Boc protecting group in compound 6 or 7 was removed by adding 1 mL of TFA and 

3 mL of DCM while stirring at room temperature for 1 h. The TFA was removed by forming 

an azeotrope with toluene, and the sample was dried under a rotary evaporator followed by 

high vacuum to extract all solvents. LC-MS used 10:90 to 90:10 Acetonitrile + 0.05% 

TFA:H2O in 20 min. The purified compound eluted at tR = 15.3 min, m/z = 515.3 (6a) and 

tR = 16.6 min, m/z = 564.0 (7a) using the 215 nm detector.  

A 25 mM stock solution of 6a or 7a was prepared by dissolving weighed oil in 

calculated amount of trifluoroethanol. We used 8 µL of 6 mM Cy5-N-hydroxysuccinimide 

(Cy5-NHS, 48 nmol, GE Healthcare, Chicago, IL) and an excess of 6a or 7a (approximately 

20 equiv, 960 nmol or 38.5 µl of 25 mM stock prepared above) was added. The molar 

equivalent amount of N-methyl morpholine was added, prepared as a 50 mM solution in 

DMSO. The reaction was stirred at room temperature overnight. Thereafter, 2 µl of acetic 

acid was added, and the reaction mix was purified by HPLC (gradient 10:90 to 90:10 water 

+ 0.05% TFA:Acetonitrile + 0.05% in 20 min and retain at 90:10 for an additional 10 min 

on a Phenomenex Luna 5 µm C18(2) 100 Å, 250 x 10 mm column). The desired product 

was eluted at tR = 21.6 min, m/z = 1150.3 (8) and tR = 20.3 min, m/z = 1102.3 min (9), as 

monitored by UV absorbance at 650 nm. 

To prepare nanoemulsions, we used the procedure as described above. Prior to 

sonication, 0.3 µM of 8 is added to cocktail where TATP is used as the chosen anchor. 

Similarly, 0.3 µM of 9 is added to cocktail using TATA. Following sonication and 

microfluidization a faint blue nanoemulsion is obtained. 
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4.2.10. Fluorescence Microscopy 

Aliquots of CAR T cells (1×106 cells, N = 3) were labeled with Cy5-TATP-F68-PFC 

nanoemulsion or mock-labeled for a 24 h period and then fixed with 4% paraformaldehyde 

for 20 min. Cells were stained with CD3-Alexa488 (1:200 dilution, Biolegend, San Diego, 

CA) and Hoechst dye nuclear stain (#33342, 1:500 dilution, Thermo Fisher). Cells were then 

mounted in Aqua-Mount media (Lerner Laboratories, Cheshire, WA), and slides were 

imaged using a confocal microscope (Model A1, Nikon Instruments, Melville, NY) with a 

40× water immersion objective and 405 nm, 488 nm and 640 nm lasers for excitation. 

 

4.2.11. Tumor Cell Killing Assay 

U87-EGFRvIII-Luc cells were plated at a density of 30,000 cells per well in clear 

bottom 96-well plates (Corning, Inc., Corning, NY) and were allowed to adhere overnight 

(60 wells total for two time points). Wells (n = 6, per condition) received: (i) 5:1 ratio of 

CAR T cells to cancer cells, (ii) 5:1 ratio of TATP-F68-PFC-labeled CAR T cells to cancer 

cells, (iii) 5:1 ratio of untransduced T cells to cancer cells, (iv) 5:1 ratio of TATP-F68-PFC-

labeled untransduced T cells to cancer cells or (v) untreated cancer cells for baseline signal. 

At 12 and 24 hours post T cell treatment, D-luciferin (300 μg/mL, Biosynth International, 

Itasca, IL) was added to wells and bioluminescence signals were immediately measured with 

a plate reader (Infinite M200PRO, Tecan, Morrisville, NC). The relative U87-EGFRvIII-

Luc cell killing efficacy was obtained from the mean photon count for groups (i-iv); the 

numerical differences between treated versus untreated (v) means are displayed as 

percentages. 
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4.2.12. Electron Microscopy 

To confirm intracellular PFC localization, we examined CAR T cells labeled with 

TATP-F68-PFC or TATA-F68-PFC alongside unlabeled CAR T cells using electron 

microscopy. Cells were labeled as above. CAR T cell pellets were fixed in PBS containing 

2% glutaraldehyde in 0.1 M sodium cacodylate (SC) buffer at room temperature for 30 min 

and stored overnight at 4 °C. The cells were washed five times in 0.1 M SC buffer on ice 

and treated with 1% OsO4 in 0.1 M SC buffer for 1 hour. All samples were washed in 

deionized water and treated with 2% uranyl acetate for 1 hour on ice. Pellets were dehydrated 

in ethanol and then anhydrous acetone. The cells were embedded in a solution containing a 

1:1 mixture of acetone and Durcupan resin (Sigma-Aldrich) for 2 h on a tube rotator and 

then in 100% Durcupan overnight. The next day, cell pellets were embedded in Durcupan 

resin and polymerized over 36 h at 60 oC. Ultra-thin (60 nm) sections were cut using a 

diamond knife and collected on Cu mesh grids. The samples were stained with 1% aqueous 

uranyl acetate and Reynolds lead citrate. Sections were imaged using a Tecnai Spirit electron 

microscope (FEI, Hillsboro, OR) at 80 kV. 

 

4.2.13. Flow Cytometry 

Potential impact of TATP-F68-PFC on CAR T cell phenotype and viability was 

evaluated by measuring surface expression levels of CD3, CD4, CD8, and 7-AAD (viability 

marker) by flow cytometry (LSR Fortessa, BD Biosciences, San Jose, CA). We used 

Alexa488 anti-human CD3 clone HIT3a, Phycoerythrin-cyanine 5 (PE-Cy5) anti-human 

CD4 clone OKT4, Fluorescein isothiocyanate (FITC) anti-human CD8 clone SK1, and 7-
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Aminoactinomycin D (7-AAD) viability marker (all purchased from Biolegend, San Diego, 

CA). In these assays, we evaluated CAR T cells without PFC label as controls. Flow 

cytometry data processing used FlowJo software (FlowJo, Ashland, OR). 

 

4.2.14. In Vivo MRI 

All animal protocols were approved by the University of California, San Diego, 

Institutional Animal Care and Use Committee (IACUC). Bilateral subcutaneous flank 

tumors were implanted in N = 4 female NOD/SCID 4-6 week old mice (Jackson 

Laboratories, Bar Harbor, ME). Tumor inoculant consisted of 5×106 U87-EGFRvIII-Luc 

tumor cells in 100 μL matrigel (Corning, Tweksbury, MA) in PBS (1:1). Five days later, 

mice received intra-tumoral injection of 1×107 labeled CAR T cells labeled with either 

TATP-F68-PFC or PFC-F68 nanoemulsion. Two hours after intratumoral injection, mice 

were anesthetized with 1-2% isoflurane in O2 and positioned an 11.7 T Bruker BioSpec 

preclinical scanner with a dual-tuned 1H/19F birdcage volume coil. Animal temperature was 

regulated, and respiration was monitored during scans. A reference capillary with dilute PFC 

nanoemulsion was positioned along the animal in the image field of view (FOV). The 1H 

anatomical images were acquired using the RARE (rapid acquisition with relaxation 

enhancement) sequence with TR/TE = 2000/13 ms, RARE factor 4, matrix 256×184, FOV 

38×30 mm2, slice thickness 1 mm, 18 slices, and 4 averages. The 19F images were also 

acquired using a RARE sequence with parameters TR/TE = 1500/4.7 ms, RARE factor 8, 

matrix 64×46, FOV 38×30 mm2, slice thickness 1 mm, 18 slices, and 400 averages. The total 

number of fluorine atoms per voxel in tumor regions were estimated directly from the vivo 

19F image hot-spots using the software program Voxel Tracker (Celsense, Pittsburgh, PA), 
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which also employs image measurements of the external 19F reference capillary signal and 

noise as inputs, and yields a statistical uncertainty of 19F-count; additional details about this 

analysis are published elsewhere33. For display, 19F images were manually thresholded to 

remove background noise, and 1H/19F renderings were performed in ImageJ by overlaying 

1H (grayscale) and 19F (hot-iron, pseudo-color scale) slices. The fluorine images were also 

resampled in ImageJ to obtain a matrix size of 2048×2048 and converted to 32 bit images to 

keep the number of pixels constant. Regions of interest (ROI) were segmented around 

relevant 19F signals (right tumor, left tumor and noise) on slices, and ROI voxel intensities 

were displayed as histograms. 

 

4.2.15. Ex Vivo Microimaging of Tumors  

Two days after intratumoral injection, animals were sacrificed by CO2 inhalation and 

tumors were excised with the surrounding skin tissue. Tumors were fixed in 4% 

paraformaldehyde overnight, rinsed in PBS, and transferred to a 10 mm NMR tube (Wilman 

Labglass, Vineland, NJ) containing a 2% agarose solution (Fisher Scientific, Hampton, NH). 

Images of the tumors were acquired on a Bruker 400 MHz NanoBay NMR spectrometer 

equipped with microimaging accessories and a 10 mm 19F/1H microimaging coil. Proton 

anatomical images were acquired with a three-dimensional (3D) spin-echo sequence using 

TR/TE = 800/25 ms, matrix 256×128×128, FOV 9.5×9.5×12 mm3 and 1 average. Fluorine 

images were acquired with a 3D RARE sequence using TR/TE = 2000/9.7 ms, RARE factor 

4, matrix 128×64×64, FOV 9.5×9.5×12 mm3 and 35 averages. The 1H/19F image overlays 

were performed in ImageJ.  
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4.2.16. Statistical Analyses 

Measurements are presented as mean ± standard deviation. We performed unpaired 

T-tests with unequal variances to compare in vivo groups. Two tailed P-values < 0.05 were 

considered statistically significant.  

 

 

4.3. Results 

To increase the cellular uptake of PFC nanoemulsion, we chemically modified and 

attached the TAT peptide to the surfactant to display the hydrophilic and positively charged 

cell penetrating moiety on the nanoemulsion surface. We tested two general methods (Fig. 

4.1) for peptide incorporation into PFC nanoemulsions; these were formed with either 

polyethylene polypropylene glycol block polymer (Pluronic F68) or phospholipid. For the 

poloxamer surfactant, we first conjugated TAT with a terminal cysteine (TAT-cys) directly 

to F68 functionalized with a maleimide group (F68-TAT) (Fig. 4.S1)34. However, PFC 

nanoemulsions formed with F68-TAT incorporated at ≥2% w/w of the F68 surfactant lacked 

long term stability and emulsions that had <1% F68-TAT resulted in negligible cell uptake 

(data not shown). A successful approach involved conjugation of Cys-TAT to one of two 

small fluorous molecule anchors via a short hydrocarbon linker (Fig. 4.1a) bearing a 

maleimide group that was synthesized from the corresponding alcohols and 6-

maleimidocaproic acid using benzotriazol-1-yl-oxytripyrrolidinophosphonium 

hexafluorophosphate (PyBOP) as a condensation agent. The two anchors consisted of either 

a perfluoroheptyl (TATA) or a short perfluoroPEG (seven atom backbone) group (TATP), 
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designated TATA-F68-PFC and TATP-F68-PFC, respectively, with variable percentages by 

weight (% w/w). Following emulsification of PFC and surfactants, both nanoemulsion 

formulations yielded an average size particle of 180 nm (Figs. 4.S2a, b) with a polydispersity 

index (PDI) of ~0.0795-0.095, measured by light scattering methods, and particle size 

slightly increased by an average of 9% by day 45 post synthesis, but stabilized, and did not 

separate into fluorous and aqueous phases over three months (Figs. 4.S2c, d). 

 

 

Figure 4.1. Synthesis of TAT functionalized perflurocarbon nanoemulsions. Panel (a) 

displays synthesis of TAT conjugates with fluorous anchors, TATP and TATA and 

poloxamer surfactant formulated PLC nanoemulsions. Panel (b) shows scheme for TAT-

phospholipid anchor conjugation for EYP surfactant formulated PFC nanoemulsion. 
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Incorporation of the TAT anchored co-surfactants into F68 formulated PFC 

nanoemulsions resulted in significantly enhanced uptake by Jurkat cells following an 18 hour 

incubation (Fig. 4.2). At low CPP stoichiometry in nanoemulsion (2.5% w/w TAT), 5.33 

(±0.71) ×1011 19F/cell for TATP-F68-PFC and 4.67 (±0.59) ×1011 19F/cell for TATA-F68-

PFC (dose 10 mg/ml in media, Fig. 4.2A) was measured using 19F NMR of cell pellets. For 

higher nanoemulsion CPP content (10% w/w TATP), cell uptake was increased to 6.82 

(±1.92) ×1011 F/cell compared to 2.25 (±0.15) ×1011 19F/cell for control F68-PFC 

nanoemulsion; similarly, TATA-F68-PFC nanoemulsion yielded uptake values of 5.26 

(±0.86) ×1011 19F/cell (Fig. 4.2A). Addition of either TATP or TATA did not impair cell 

viability (Fig. 4.2B) as measured by permeability to Trypan blue. Incubation of Jurkat cells 

with TATP-F68-PFC or TATA-F68-PFC with increasing concentrations of nanoemulsion in 

culture displays a canonical sigmoidal uptake pattern (Fig. 4.2C). CAR T cells labeled with 

TATP-F68-PFC at 15 mg/ml exhibit an average 8.2-fold uptake improvement compared to 

control F68-PFC-labeled cells (Fig. 4.2E). TATA-harboring nanoemulsions exhibited mild 

toxicity to cells with a decrease in cell viability to 85.3% at 10 mg/mL and 83% at 20 mg/mL 

compared to 97.7% for untreated cells (Fig. 4.2D). At the same doses, TATP containing 

nanoemulsions remained non-toxic to the cells with viability of 92% for 10 mg/mL dose and 

91.7% for 20 mg/mL dose (Fig. 4.2D). 
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Figure 4.2. Jurkat cell labeling with TATA-F68-PFC and TATP-F68-PFC 

nanoemulsions. The TAT anchor stoichiometry is optimized by measuring uptake (a) and 

viability (b) in Jurkat cells while varying the percent by weight of TAT in pluronic surfactant 

PFC nanoemulsion, namely TATP-F68-PFC (black bars) and TATA-F68-PFC (grey bars). 

Cell uptake (c) and viability (d) for varying dosages (in mg/mL) of 10% w/w TATP-F68-

PFC and TATA-F68-PFC after 18 hour incubation are shown. CAR T cells labeled in the 

same conditions exhibit an average 8.2-fold uptake improvement compared to control F68-

PFC-labeled cells at a dose of 15 mg/ml (dashed bars, e). Average viability of labeled CAR 

T cells is displayed above the bar graph. Uptake was measured from 19F NMR spectra of cell 

pellets, and viability was measured by trypan blue assay and direct cell counts. 

 

 Alternative PFC nanoemulsions were also formed with the egg yolk phospholipid 

(EYP) surfactant, where cys-TAT was conjugated to commercially available 1,2-Distearoyl-

sn-glycero-3-phosphoethanolamine-peg2000-maleimide35 (Fig. 4.1B), and the product 4 

was confirmed by Matrix Assisted Laser Desorption/Ionization mass spectrometry. 

Conjugate 4 was inserted into nanoemulsion either into the crude mix prior to emulsification 

(“direct insertion”) or after emulsification (“post-insertion”). Formed nanoemulsions 

containing the adduct up to 0.15 mol % (of EYP) averaged 160 nm in size with a PDI~0.2 

immediately after emulsification; particle size did not change significantly over >10 weeks 



  
108 

post-production. No differences in size or zeta potential were observed for lipid-based 

nanoemulsions prepared with or without anchored TAT.  

Cell labeling using TAT-modified pegylated phospholipid incorporated into EYP-

surfactant nanoemulsions also resulted in greater uptake in Jurkat cells (Fig. 4.3A). Uptake 

was comparable for nanoemulsions irrespective of the method of incorporation (i.e., direct 

insertion or post-insertion, Fig. 4.3A). The ‘optimal’ incubation time was approximately 18 

hours for 0.15 mol% phospholipid-TAT-PFC resulting in 1.23 (±0.85) ×1012 19F/cell. Shorter 

incubation times of 2 and 4 hours displayed lower uptake of 6.32 (±0.86) ×1011 19F/cell and 

5.15 (±1.06) ×1011 19F/cell, respectively (Fig. 4.S3A). Following 18 hours of incubation, a 

modest reduction in cell viability was noticed and measured to be 79 (±5.65) % for 

phospholipid-TAT-PFC compared to 93.5 (±0.71) % for control nanoemulsion (Fig. 4.S3B). 

To test dose-dependent uptake, phospholipid-TAT-PFC (0.15 mol % of EYP) nanoemulsion 

were incubated with Jurkat cells for 18 hours at varying doses of 2.5, 5, 10 and 20 mg/mL. 

Uptake values followed a sigmoidal increase where cell uptake saturated at a dose of 10-15 

mg/mL (Fig. 4.3B), with minimal loss in cell viability even at high doses (Fig. 4.3C).  

Figure 4.3. Jurkat cell labeling with lipid-TAT-PFC emulsion. The TAT anchor 

stoichiometry is optimized by measuring uptake (a) in cells while varying the percent by 

molarity of TAT in phospholipid surfactant PFC nanoemulsions using two different methods 

of preparation including post-insertion (dark grey) and  direct insertion (light grey) of TAT 

conjugate. The cell uptake (b) and viability (c) with varying dosage of 0.1 mol% lipid-TAT-

PFC after 18 hour incubation are presented. 
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 We next investigated cellular localization of TATP- and TATA-F68-PFC 

nanoemulsions in primary T cells using high-resolution fluorescence and electron 

microscopy.  We synthesized fluorescently labeled co-surfactants 8 and 9 consisting of Cy5 

dye attached to the respective fluorous anchors (Fig. 4.S4) for incorporation into TATP-F68-

PFC and TATA-F68-PFC nanoemulsions, respectively. Confocal microscopy of CAR T 

cells incubated with fluorescent nanoemulsions reveal intracellular and partial cell 

membrane localization of nanoemulsion (Fig. 4.4B) compared to untreated control cells (Fig. 

4.4A); cells were co-stained with Hoechst nuclei stain and anti-CD3 fluorescent antibody 

for cell surface. As a further control, we tested whether the introduction of a surface dye on 

nanoemulsions enhanced cell uptake or causes overt cytotoxicity (Fig. 4.S5). The uptake of 

nanoemulsions formulated with dye co-surfactant are comparable to TATP-F68-PFC 

(p>0.05, Fig. 4.S5A), retains cell viability (Fig. 4.S5B), and compounds 8 and 9 do not 

appear to enhance internalization into live cells (Fig. 4.S6).   

To substantiate the intracellular localization of TAT nanoemulsion in CAR T cells, 

electron microscopy was performed. The TATP-F68-PFC nanoemulsion droplets are present 

intracellularly and appear as clusters of small (~100-200 nm) punctate regions of 

hyperintensity in micrographs (Figs. 4.4E, F), along with a few larger PFC deposits (~1 m)  

(Figs. 4.4G, H), presumably coalesced droplets, consistent with previous studies29, 36. 

Untreated control cells did not contain these hyperintense features in micrographs (Figs. 

4.4C, D). Similar findings were observed for CAR T cells labeled with TATA-F68-naPFC 

nanoemulsion (Figs. 4.4I-L). Normal cellular, mitochondrial and Golgi body morphologies 

are observed, consistent with minimal toxicity to labeled CAR T cells (Figs. 4.4E, L)37.   
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Figure 4.4. Microscopy of CAR T cells labeled with TAT-F68-PFC nanoemulsions. 
Confocal microscopy images of untreated CAR T cells are displayed in (a), and CAR T cells 

labeled with (15 mg/mL) of Cy5-TATP-F68-PFC nanoemulsions (red) are shown in (b). 

Data show intracellular localization of Cy5-TATP-F68-PFC emulsion, where Hoescht dye 

(blue) stains nuclei and Alexa488 anti-human CD3 antibody (green) delineates cell 

membrane. Electron microscopy of untreated CAR T cells is shown in (c), magnified in (d). 

CAR T labeled with TATP-F68-PFC (e-h) show numerous bright ~100 nm nanoemulsion 

droplets (e, magnified in f, arrows) and occasional ~1 μm coalesced droplets (g, magnified 

in h, arrows). CAR T cells labeled with TATA-F68-PFC (i-l) shows similar emulsion 

droplets as with TATP-F68-PFC emulsion. Large coalesced droplets (i, inset j) as well as 

numerous smaller droplets (k, inset l) are found in the cytoplasm.  
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Expression of CD3, CD4 and CD8 CAR T cell surface markers is not altered by 

uptake of TATA-F68-PFC and TATP-F68-PFC nanoemulsions via flow cytometry (Fig. 

4.5). Furthermore, CAR T cell killing function against glioma cells remains intact following 

labeling with TATP-F68-PFC nanoemulsion (Fig. 4.S7).  

 

 
Figure 4.5. Phenotype of CAR T cells labeled with TAT-F68-PFC nanoemulsions. 
Scatter plots confirm pure population of CAR T cells (CD3) (a-c). CD3 expression is 

unaltered after labeling with TATP-F68-PFC (a) or TATA-F68-PFC (b) nanoemulsions 

compared to unlabeled cells (c). Flow analysis for expression of CD4/CD8 shows a ~ 90/10 

ratio of CD4+ to CD8+ positive cells (d-f). CAR T cells labeled with TATP-F68-PFC (d) or 

TATA-F68-PFC (e) ex vivo exhibit comparable phenotype to unlabeled cells (f). FSC-A 

indicates forward scatter, FITC stands for fluorescein isothiocyanate, and PE/Cy5 stands for 

phycoerythrin-cyanine 5. 

 

To demonstrate the utility of TAT PFC nanoemulsion for in vivo MRI, we 

investigated 19F signal detection from CAR T cells implanted into a rodent model. Mice 

bearing bilateral flank glioma tumors were injected intra-tumorally with CAR T cells (1×107 

cells) labeled with either TATP-F68-PFC or F68-PFC (control) nanoemulsion. Figures 4.6A, 
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B display spin-density weighted 19F images (pseudo-color) of injected cells, along with T2-

weighted 1H images (grayscale) showing tumors in flanks. Qualitative analysis of MRI slices 

revealed greater number of high intensity pixels for TAT-F68-PFC-labeled CAR T cells 

compared to F68-PFC-labeled CAR T cells and noise (Fig. 4.6C). With aid of the calibrated 

19F reference in the image field of view, quantification of the three-dimensional 19F images 

was performed (Fig. 4.6D); the right and left tumors display 17.9 (±2.1) ×1018 and 2.1 (±0.2) 

×1018 19F atoms per tumor, respectively, revealing a significant (p<0.01) 8.5-fold sensitivity 

improvement in detection of CAR T cells labeled with TAT PFC nanoemulsion. This 

sensitivity increase is predicted, based on uptake analysis by 19F NMR of pelleted cells prior 

to injection, showing ~8.2-fold increase in average fluorine content per cell for TATP-F68-

PFC versus control nanoemulsion. Of note, the 19F/cell measured after labeling was observed 

to be greater for CAR T cells compared to the Jurkat cell line, ~8.2-fold and ~5-fold (Fig. 

4.2C, E), respectively, when both are labeled with TATP-F68-PFC nanoemulsion. Tumors 

were resected after imaging to verify intratumoral delivery of CAR T cells via extremely 

high-resolution ex vivo MRI (Figs. 4.6E, F, 4.S8). 
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Figure 4.6. In vivo 19F MRI signal enhancement in TATP-F68-PFC labeled human 

CAR T cells. Panel (a) displays composite 19F (hot-iron pseudo-color) and 1H (grayscale) 

contiguous slices of a mouse with bilateral gliomas in the flanks, where the left and right 

tumor (LT, RT) each received 1×107 CAR T cells labeled with either F68-PFC (control) or 

TATP-F68-PFC nanoemulsions, respectively. An external capillary reference (REF) is also 

shown in the field of view consisting of 1:20 dilution of F68-PFC in agarose. Panel (b) 

displays a three-dimensional rendering of the MRI data shown in (a). A histogram of the 19F 

signal-to-noise ratio for each image voxel in the tumors is displayed in (c) and shows 

sensitivity improvement of the TATP-containing nanoemulsion compared to control. 

Comparison of apparent 19F atoms per tumor, as measured in vivo for N = 4 mice, is 

displayed in (d) showing ~8 fold sensitivity enhancement (p<0.001) for TAT-F68-PFC 

nanoemulsions compared to control. To verify intratumoral delivery of CAR T cells, two 

days after CAR T cell injection, tumors were excised and fixed for extremely high-resolution 

MRI. Panels (e, f) show composite 19F/1H three-dimensional rendering of intratumoral CAR 

T cells labeled with control and TAT-F68-PFC nanoemulsions, respectively, and shows 

successful delivery.  

 



  
114 

4.4. Discussion  

 Fluorine-19 MRI methods have shown promise for the detection of cell therapy 

products post-transfer15-20, 38, 39, inflammatory infiltrates23, 40-42 and molecular targets43 in 

vivo in preclinical models. Moreover, first-generation 19F probes based on PFC 

nanoemulsions have been used in a pilot clinical trial14, with additional trials planned44. 

Overall, the utility of 19F MRI could be expanded by increasing the sensitivity of 19F probes 

via molecular design. Towards this goal, we aim to increase the cell adhesion and resulting 

endocytosis of PFC nanoemulsions by non-phagocytic cells, especially engineered 

lymphocytes with therapeutic potential. We synthesized three different surfactant-anchored 

cell penetrating TAT peptides using small molecules that either mimic the common 

surfactants used in emulsion formulations, namely phospholipids and poloxamers, or the 

fluorous environment of the nanoemulsion droplet. We compared the efficacy of poloxamer 

and phospholipid based surfactants doped with TAT-conjugates and investigated 

nanoemulsion formation, droplet size, stability, cell uptake and viability ex vivo. Overall, 

nanoemulsions harboring TAT peptides led to a 4- to 8-fold cell loading improvement in T 

cells compared to the corresponding unmodified nanoemulsions. The droplet size, charge 

and initial cell safety was generally unaffected by the presence of TAT, presumably due to 

the low TAT to surfactant ratio in the nanoemulsions.  

Phospholipid surfactants are often chosen to mimic the membranes of live cells and 

impart biocompatibility.45, 46 Nonetheless, phospholipid-formulated nanoemulsions are 

prone to instability under storage conditions due to oxidation-mediated changes to the 

lipid47, and lipid oxidation by-products may lead to cytotoxicity upon cell contact48. Indeed, 

a recent study has shown that formulations of lipid-surfactant paramagnetic nanoemulsions 
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that incorporate iron(III) bound to a fluorous diketonate (FDK) are prone to fatty acyl chain 

oxidative damage49, 50. Additionally, the formulation of phospholipid-based nanoemulsions 

requires a time consuming multi-step chemical process. For these reasons, we investigated 

the novel TAT conjugates for use with synthetic polymeric co-surfactants such as 

poloxamers (e.g., F68) in detail.  

Direct conjugation of TAT to the pluronic F68 (TAT-F68) as a co-surfactant resulted 

in nanoemulsion instability (data not shown), thus instead we conjugated TAT to short linear 

fluorous molecules via a short aliphatic hydrocarbon linker. The nanoemulsions prepared 

with TATP (1a) or TATA (2a) were stable for several months at 4 oC (Fig. S2).  

As anticipated, increasing the percentage of TAT on the surface of the nanoemulsions 

enhanced cell uptake. However, levels >20 % w/w of TAT to pluronic surfactant resulted in 

increased cell-cell adhesion with formation of large cell clumps during labeling in vitro, thus 

a lower percent of TAT was used for further studies. 

To validate internalization of the TAT nanoemulsions into CAR T cells, we prepared 

a comparable probe modified by the addition of a Cy5 fluorescent conjugate. The addition 

of this moiety did not alter the overall 19F uptake levels in T cells. Fluorescence microscopy 

of labeled cells shows that nanoemulsion droplets are present at the cell membrane and in 

the cytosol, perhaps in endosomal compartments and in various stages of internalization and 

cellular processing in early to late endosomes51. It has been noted that the TAT peptide can 

translocate nanoparticles to the nucleus52, 53, however, in our imaging studies we did not find 

nuclear localization of the TAT nanoemulsion probe. We note that TATP-F68-PFC-labeled 

cells can optionally be washed with a diluted trypsin solution to assist with removal of 

surface-adhered TAT emulsion. Nonetheless, presumably given sufficient time for 
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incubation, complete endocytosis of any membrane-bound TAT nanoemulsion should occur. 

Definitive evidence for internalized nanoemulsions in small (~100-200 nm) to large vesicles 

(~1 µm) was provided by electron microscopy. We speculate that small vesicles eventually 

coalesce into larger ones to minimize their hydrophobic surface area in contact with the 

aqueous cytosol, as cells have no mechanism for metabolizing PFCs54, 55.  

 While the exact mechanism of TAT- and other CPP-mediated internalization into 

cells remains unknown56, a substantial number of studies have been carried out to 

demonstrate its ability to drag a payload into the cytosol. CPPs’ ability to translocate 

molecules of various sizes from small molecules57, proteins58, nucleic acids and liposomes59, 

many of which have been studied in vivo60, makes their use for nanoemulsions attractive, 

with adjustments in the amount of TAT required based on the cargo to be delivered56. In 

addition to the pre-clinical successes with TAT peptides61-64, four compounds conjugated to 

TAT are currently being tested in the clinic65 for conditions such as myocardial infarction66, 

pain67, hearing loss68, and inflammation69; preliminary results of phase I clinical trials 

indicate that TAT peptides exhibit acceptable safety profiles.  

Our in vivo model shows that CAR T cells carrying TAT functionalized emulsions 

give increased 19F MRI signal when injected into a tumor. Intratumoral immune cell delivery 

has successfully shown anti-tumor effects in mice70-72 and has been considered as an 

approach for patients73 as it may minimize toxicity from cytokine release syndrome upon 

treatment with high doses of T cells. For example, Phase 1 trials are ongoing to test the 

efficacy of intratumoral delivery in humans with ErbB targeted T4+ T cells in recurrent head 

and neck cancer74. In another example, dendritic cells were isolated from patients and 
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injected intratumorally to induce an immune response75. Localized intrathecal delivery of 

natural killer cells to treat medulloblastoma in pediatric patients is also under investigation76.  

Overall, we have shown that incorporating the TAT cell penetrating peptide in PFC 

nanoemulsions significantly enhances cell uptake by lymphocytes and subsequently 

increased their detectability in vivo using 19F MRI. These same agents should be useful for 

tagging other weakly phagocytic cells such as stem and progenitor cells. Moreover, the 

peptide-PFC nanoemulsion synthesis scheme presented is generalizable for a multitude of 

ex vivo and in vivo targeted 19F MRI probes and offers new avenues for cellular-molecular 

imaging. 

 

 

Figure 4.S1. Synthesis scheme of F68-TAT co-surfactant. F68 is functionalized with a 

maleimide group to enable addition of the TAT peptide with a terminal cysteine (Cys-TAT). 
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Figure 4.S2. Size stability of TAT-F68-PFC nanoemulsions. The effect of % TAT 

incorporation on size (a) and polydispersity index (PDI, b) of nanoemulsions is shown. The 

nanoemulsion size (c) and PDI (d) of nanoemulsions over time while stored at 4 oC is 

displayed. 

 

 

 
Figure 4.S3. Optimization of lipid-TAT-PFC incubation time in Jurkat cells. Incubation 

times of 2, 4 and 18 hours are tested as shown in (a), and the highest uptake is observed at 

18 hours. Jurkat cell viability is not altered by labeling for different durations (b). 
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Figure 4.S4. Cy5-TATA,P-F68-PFC synthesis scheme. Scheme shows synthesis of 

fluorescently labeled co-surfactants 8 and 9 consisting of Cy5 dye attached to the respective 

fluorous anchors 6 and 7 for incorporation into TATP-F68-PFC and TATA-F68-PFC 

nanoemulsions, respectively. 
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Figure 4.S5. Localization impact of incorporation of fluorescent dye into surfactant 

layer during nanoemulsion preparation. Panel (a) displays 19F uptake for cells treated 

with nanoemulsions prepared with and without anchored Cy5 at 10 mg/mL and 20 mg/mL 

doses; no significant differences are observed. Additionally, CAR T cell viability is not 

affected as shown in (b). Panel (c) shows intracellular localization of the nanoemulsion (Cy5 

in red) in CAR T cells via confocal microscopy. Hoescht dye (nuclei, blue) and Alexa488 

dye (cell membrane, green) is used to delineate cell structures. 
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Figure 4.S6. Fluorescent dye conjugate nanoemulsions without TAT do not get 

internalized into CAR T cells. Panels show that dye compounds 8 and 9 do not induce non-

specific internalization into live cells. Hoescht dye (nuclei, blue) and Alexa488 dye (cell 

membrane, green) are used to delineate the cells. 
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Figure 4.S7. CAR T cell killing assay in vitro. Co-incubation of human U87-EGFRvIII-

Luc glioma cells with TATP-F68-PFC-labeled or unlabeled CAR T cells, or untransduced 

T cells results in significant cell death at 12 and 24 h. CAR T cells exhibit significant tumor 

killing ability (~ 98%) compared to untransduced T cells (~ 60%). Killing efficacy is 

unaltered by nanoemulsion labeling of the cells. 

 

 

 
Figure 4.S8. Ex vivo 3D microimaging of excised glioma tumors harboring PFC labeled 

CAR T cells. Contiguous images show overlays of 19F (pseudo-color) and 1H (grayscale) 

slices of right tumor receiving an intratumoral injection of 107 TATP-F68-PFC labeled CAR 

T cells (a), and the left tumor with the same number of F68-PFC labeled CAR T cells (b).  
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Chapter 5: Magnetic resonance imaging monitoring of in vivo intracellular oximetry 

response to chimeric antigen receptor T cell immunotherapy against glioma 

 

5.1. Introduction 

 Cancer is one of the leading causes of death worldwide. Despite unprecedented 

investments, cancer therapy research remains arduous and prevalent clinical benefit remains 

unfulfilled. Growing evidence suggests that the major obstacle for cancer therapy is the 

tumor microenvironment. Tumor mechanisms of immunosuppression generate chronic 

inflammation and hypoxia in its vicinity and results in increased tumor angiogenesis, 

recurrence, and malignant progression1, 2.  

In the recent years, cancer therapy efforts have been shared between efficient and 

targeted tumor cell killing and hypoxia reduction2, 3. Adoptive cell therapy has emerged as 

the fourth pillar of cancer therapy, offering specific eradication of hematological cancers. 

Therapeutic cell engineering is now tackling with solid tumors, proving more challenging. 

Roadblocks include tumor-induced immunosuppression, ineffective trafficking, poor tumor 

penetration and persistence. Importantly, these characteristics may be predictive of 

therapeutic outcome. Successful infiltration of therapeutic cells in tumors and subsequent 

specific cytotoxic activity in vivo is expected to induce tumor cell apoptosis. We hypothesize 

that cancer cell pO2 increase is an indirect consequence of apoptotic processes and that 

imaging could provide real time readout of the effectiveness of emerging immunotherapeutic 

strategies4. 

Perfluorocarbons (PFC) exhibit weak molecular cohesion, enabling gas dissolution5-

7. This intrinsic property was exploited in the 1990’s8-10 to emulsify PFC into biocompatible 

and injectable blood substitutes and breathing liquids11, 12. Gas dissolved in fluorinated 
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emulsions is not bound to the carrier but can be exchanged with the local environment13. 

Dissolution of paramagnetic oxygen in PFC lowers the 19F spin-lattice relaxation time (T1)
12, 

14. T1 varies linearly with the absolute partial pressure of oxygen15 (pO2) and can be 

calculated from a calibration curve.  

Perfluoro-15-crown-5-ether (PCE) is a macrocyclic structure resulting in only one 

resonance frequency at -92.5 ppm; conferring greater sensitivity and straightforward 

quantification over other perfluorocarbons with complex spectra. PCE oil can be emulsified 

into well-defined, stable nanoemulsions by means of emulsifiers11, specifically pluronic 

surfactants16, 17. Such nanoemulsions are effective in labeling adherent or suspended cells by 

simple addition to the culture media. Therefore, intracellular oxygen tension of PCE-labeled 

cells can be calculated after in vivo administration. 

In early studies, perfluorocarbon emulsion intravenous injection, followed by 

fluorine magnetic resonance imaging (MRI), enabled vasculature imaging18-20 and tissue 

oximetry measurement in vivo21-24. This method is nonetheless imperfect, since contrast 

distribution throughout tissues of interest remains uneven. Kadayakkara et al. labeled glioma 

cells with PCE emulsion prior to implantation and showed persistent tumor oxygenation 

increase after chemotherapy treatment25. Zhong et al. showed that as few as tens of 

thousands of cytotoxic T cells infiltrating CNS tumors could cause a significant spike in 

tumor pO2
26. However, correlation between increased tumor oxygenation and apoptotic 

processes has not been established to date. 

Noninvasive monitoring of tumor pO2 levels during treatment can provide a 

preclinical surrogate biomarker for the effectiveness of emerging immunotherapeutic 

strategies and can be used to optimize therapeutic course and dosage4. We tested the 
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hypothesis that a measurable increase in tumor pO2 is commensurate with CAR T cell 

apoptotic processes in a mouse model of sub-cutaneous glioblastoma (U87-EGFRvIII-Luc) 

treated with human CAR T cells. Using 19F MRI/MRS, we measured the pO2 time-course in 

flank glioma cells that were intracellularly labeled with PCE nanoemulsions and treated with 

intravenously-infused CAR T cells.  

 

5.2. Materials and methods 

5.2.1. PCE formulation 

 The perfluorocarbon emulsion was gravimetrically prepared from perfluoro-15-

crown-5 ether (PCE, Exfluor, Round Rock, TX) and pluronic F68 to obtain a 5 weight 

percent F68 emulsion. This ratio has been shown to yield optimal droplet size and 

polydispersity index (PdI)27. In short, 1.25 g of PCE was added to 625 μl of 100 mg/ml F68 

solution in a 10 ml glass vial (Wheaton, Millville, NJ) and vortexed 10 s. Water (5.45 ml) 

was added and the solution was subsequently vortexed (10 s) and ultrasonicated (Omni 

Ruptor 250 W, 30% power, 2 minutes, Omni International). The emulsion was then aspirated 

with a 10 ml syringe and underwent 4 passages on a microfluidizer (Microfluidics) equipped 

with a cooling coil and operating at 20K psi. The emulsion was immediately sterile filtered 

on a 0.2 μm polyethersulfone membrane (PES, Millex, Ireland) into a sterile glass vial. A 7 

μl aliquot was kept aside and diluted in water and transferred to a cuvette for dynamic light 

scattering (DLS, Zetasizer Nano Z, Malvern, UK) measurement. Droplet size and 

polydispersity index were acquired in triplicates. 

Emulsion concentration was determined by diluting 30 μl of emulsion in 270 μl of 

0.1 % sodium trifluoroacetate (TFA, Sigma Aldrich) in D2O (Acros Organics, Geel, 
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Belgium) into a 5 mm NMR tube (Wilman Labglass, Vineland, NJ). NMR quantification 

was performed on a 400 MHz (9.4 Tesla) Bruker AVANCE III HD-NanoBay spectrometer 

(Bruker, Inc., Billerica, MA) with: 17 s pulse, 32,000 FID points, 100 ppm spectral width, 

32 averages, and a recycle delay of 15 s. On the acquired 19F NMR spectra, the TFA 

reference peak registers at -76 ppm and PCE at -92.5 ppm. The 19F content of the 

nanoemulsion is determined by calculating the ratio of the PCE peak integrated area to the 

reference integral multiplied by the number of fluorine atoms in the TFA aliquot.  

 

5.2.2. Human T cells and CAR transduction 

 Primary human T cells were enriched by Ficoll (Histopaque 1077, Sigma Aldrich, St 

Louis, MO) gradient density centrifugation and Magnetic Assisted Cell Sorting (MACS, 

Miltenyi Biotech Inc., Auburn, CA) from anonymous donor human blood (San Diego Blood 

Bank, San Diego, CA). T cells were then activated with dynabeads human T-activator 

CD3/CD28 (Gibco, Waltham, MA) and allowed to expand for 2 days in Roswell Park 

Memorial Institute media (RPMI, Gibco) supplemented with 10% FBS and 100 units/ml of 

recombinant human interleukin 2 (IL-2, Peprotech, Rocky Hill, NJ). For transduction, we 

employed a vector for CAR specific to EGFR-vIII as described by Johnson et al.28. Detailed 

protocol for CAR virus production and human T cell transduction is available elsewhere29. 

Briefly, plasmids psPAX2, pMD2.G and pELNS-3C10CD28–41BBz were used for virus 

production and 30 μl of virus yield with 3 μg/ml of Polybrene transfection agent (EMD 

Millipore, Billerica, MA) was applied to T cells overnight. 
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5.2.3. Glioblastoma cells  

 A human glioblastoma multiform (U87-EGFRvIII-Luc) cell line overexpressing the 

epidermal growth receptor variant III and the luciferase gene was kindly provided by Dr. 

Okada (UCSF) and maintained in T75 flasks (Sigma) in RPMI medium (Gibco), 

supplemented with 10% FBS. 

 

5.2.4. Ex vivo cell labeling  

 For PCE labeling experiments, U87-EGFRvIII-Luc were plated at 90% confluence 

(triplicates of 1106 cells in 1 ml in 6 well plate) and incubated overnight with different 

concentrations ranging from 2.5 mg/ml to 20 mg/ml of PCE emulsion as described 

elsewhere25. The absence of viability impairment due to intracellular PCE was confirmed by 

Trypan Blue exclusion assay. The cells were washed 3 times in PBS before NMR 

measurement of uptake or inoculation into the animal. 

To measure the average PCE uptake, cells were counted, pelleted and resuspended 

in 150 l lysis buffer (0.5% triton X in PBS) and transferred to a 5 mm NMR tube. Also, 50 

l of 0.1% TFA in D2O was added to each tube and vortexed. NMR measurement and 

quantification was performed as described above. The mean 19F/cell was calculated from the 

19F content divided by the cell count in the sample. 

 

 

5.2.5. Flow cytometry assays 

 Transduction efficacy of the T cells was confirmed by flow cytometry with a biotin-

SP-AffiniPure F(ab')2 fragment-specific goat anti-mouse antibody (Jackson Immuno 
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Research Laboratories, West Grove, PA) and a streptavidin-PE secondary (BD Pharmingen, 

San Diego, CA). For in vivo experiments, a population of at least 70% CAR positive T cells 

was used.  

 

5.2.6. Murine model of subcutaneous glioblastoma 

 Animal protocols were approved by the University of California San Diego 

Institutional Animal Care and Use Committee (IACUC). For in vivo experiments, an optimal 

concentration of 20 mg/ml PCE was added overnight to U87-EGFRvIII-Luc or T cell media. 

Female (N=15) SCID 6-8 weeks old mice (Jackson Laboratories, Bar Harbor, ME) received 

subcutaneous unilateral flank tumor injection comprised of 5106 PCE-labeled glioma cells 

in buffered 50% matrigel (Corning, Tewksbury, MA). Five days post-tumor inoculation (day 

0 time point), mice were divided in three groups. Group 1 (N=5) received 2107 CAR T cells 

injected intravenously (IV) in PBS. Group 2 (N=5) mice received the same number of naïve 

T cells IV. A second control group (Group 3) remained untreated (N=5).  

 

5.2.7. In vivo Bioluminescence imaging (BLI) 

 Longitudinal BLI was performed at day 0, 1, 3, 7 and 10 using an IVIS Spectrum 

system (PerkinElmer, Waltham, MA). D-luciferin (Intrace Medical, Switzerland) was 

administered intraperitoneally, at a dose of 150 mg/kg 10 minutes prior to imaging. 

Anesthesia was induced with 2% isoflurane in an anesthesia box, and animals were then 

transferred to the IVIS chamber. Field of view was adjusted to allow imaging of five animals 

at once. Regions of interest (ROI) were defined as a circle encompassing the luminescent 
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signal from each tumor and the total flux (photons/s) was calculated using Living Image 

Software (PerkinElmer).  

 

5.2.8. MRI 

Animal preparation 

 MRI was performed on same days as BLI. Mice were anesthetized with 2% 

isoflurane in pure oxygen (1 L/min), transferred to the MRI bed and maintained on 1-1.5% 

isoflurane. Mice were positioned prone on an MRI bed with legs extended caudally. Animal 

vitals were monitored with an encoder receiver transmitter module (ERT Model 1030, SA 

Instruments, Inc., Stony Brook, NY) via a pneumatic pillow sensor for respiration and a 

rectal thermistor probe for temperature. Pulse oximetry was monitored with a MouseSTAT 

Jr. oximeter (Kent Scientific). An inbuilt warm water circuit in the MRI bed and a small 

animal heater (#770100, SA Instruments, Inc.) were used to maintain body temperature at 

37 C. A reference tube with PCE nanoemulsion (1:20) diluted in 2% agarose was taped 

beside the animal in the image field of view (FOV). MRI measurements were performed 

with an 11.7 T Bruker BioSpec preclinical scanner (Bruker, Billerica, MA) with a dual-tuned 

1H/19F birdcage volume coil (Bruker). 

 

Anatomical and spectroscopy sequences for tumor pO2 

 The 19F images were acquired using a RARE (Rapid Acquisition with Relaxation 

Enhancement) sequence with parameters TR/TE=400/23 ms, RARE factor 4, matrix 64×64, 

FOV 28×28 mm2, slice thickness 1 mm, and 6 slices. The 1H anatomical images were also 
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acquired using the RARE sequence with TR/TE=1400/7.8 ms, RARE factor 2, matrix 

256×256, FOV 30×30 mm2, slice thickness 1 mm, and 12 slices.  

 The 19F R1 values were measured using a point resolved spectroscopy (PRESS) 

sequence, by defining a voxel encompassing the entire tumor mass (8×8×8 mm3). Twelve 

TR values were used to measure the R1 relaxation rate, ranging between 0.1 and 6 s (total 

acquisition time ~30 min). 

 

Data analysis 

 19F images were manually thresholded for visualization purposes to remove 

background noise and rendered in pseudo-color using ImageJ software30. Anatomically-

corresponding 1H images remained unaltered and were super-imposed to the fluorine images 

with ImageJ. The tumor longitudinal fluorine signal was calculated based on the signal of a 

standard external reference using the Voxel Tracker software (Celsense, Pittsburgh, PA). 

The R1 of each individual tumor was calculated by integrating the 19F peak acquired at 

different TR values, and the resulting values were fit using a three-parameter single 

exponential equation in MNova 6.0.2 software (Mestrelab, Spain). The mean pO2 of the 

tumor cells was then calculated using an established calibration curve25, 26. 

 

5.2.9. Histological correlation 

 At the experimental endpoint, animals were euthanized by CO2 inhalation and tumors 

were excised, embedded in optimal cutting temperature (OCT) compound (Sakura Finetek 

USA, Inc., Torrance, CA) and stored at -80 °C. All tissues were cryosectioned (CM1950, 

Leica Microsystems Inc., Buffalo Grove, IL) at 10 μm thickness. Sections were fixed with 



  
139 

4% paraformaldehyde, stained for T cells using FITC anti-human CD3 (UCHT1, 1:500 

dilution, Biolegend), apoptotic cells using TMR red TUNEL (Roche) and nuclei using 

Hoechst dye (#33342, 1:500 dilution, Thermo Fisher Scientific) and then mounted. 

Fluorescence images were acquired on an Axiovert 40 CFL microscope (Zeiss, Thornwood, 

NY) using a ×5 objective. Confocal images were acquired on a Leica SP5 2 confocal system 

with a Leica DM 6000 CFS microscope and a ×63 immersion objective.  

For direct cell counts in tumor, we used sections (two per tumor) stained against CD3 

or TUNEL from three tumors of animals sacrificed at Day 3 post T cell infusion. We counted 

T cells and apoptotic cells in six high power fields per slice (×63 magnification, 72 high 

power fields total).  

 

5.2.10. Statistical Analyses 

All measurements are presented as mean  standard error. Acceptance criteria for R1 

measurement accuracy was defined as fit R2>0.995 and R1 standard error <0.05. A one-way 

ANOVA along with unpaired T-tests with unequal variances were performed to compare 

groups as a whole and by pairs respectively for bioluminescence, tumor volume and pO2 

measurements. For ANOVAs, we used the Bonferroni correction for multiple comparisons, 

thereby controlling the family-wise error rate at 5%. P-values less than 0.05 were considered 

statistically significant. ANOVA results are expressed as an F-statistic and its associated 

degrees of freedom and P-value. 

For tumor pO2 measurements, we also used linear mixed effects (LME) models to 

investigate differences in R1 between mice treated with CAR T cells and the two control 

groups, i.e., mice treated with untransduced T cells and untreated mice. A separate model 
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was fitted for the CAR T cells group versus the untransduced T cell group and for the CAR 

T cell group versus the untreated mice group, respectively. Fixed effects in the model 

included a treatment effect, a day effect (considering days as a categorical variable), and 

their interaction. Mouse identification was incorporated as a random effect, in order to model 

correlation among measurements on different days within the same mouse. For each LME 

model, we estimated the change from Day 0 for the treatment effect, with its corresponding 

95% Wald confidence interval for each of Day 1, Day 3, Day 7 and Day 10. Finally, we used 

a Bonferroni adjustment for the four multiple comparisons for each model. We used these 

adjusted 95% confidence intervals to explore statistical significance. 

Average 19F MRI signal in tumors was correlated with the bioluminescence signal 

using a Pearson’s correlation coefficient test. Apoptotic cell counts were correlated to T cell 

counts with the same test.  

 

5.3. Results 

5.3.1. Glioma cell labeling with PCE emulsion 

 Optimal PCE formulation comprised 5% F68, resulting in average droplet size of 

176±4 nm and PdI of 0.098±0.02. U87-EGFRvIII-Luc cell incubation with different 

concentrations of PCE emulsion showed maximal uptake for 20 mg/ml (Fig. 5.1a) without 

viability impairment (Fig. 5.1b). Prior to implantation, U87-EGFRvIII-Luc cells were 

labeled overnight ex vivo with PCE to ~7×1012 atoms/cell, as measured via 19F NMR. 
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Figure 5.1: Glioma cell labeling with PCE emulsion. U87-EGFRvIII-Luc glioma cells are 

labeled overnight in full media with different PCE emulsion concentrations and average 

uptake (a) is measured by 19F NMR. Within this range, negligible viability (b) impairment 

is observed. Data is presented as mean ± standard deviation of three independent replicates. 

U87-EGFRvIII-GFP glioma cells labeled overnight with a dual-mode fluorescent PFC 

exhibit punctate red fluorescent signal in their cytoplasm, as confirmed by brightfield (c) 

imaging. Scale bar represents 50 μm. 

 

 

5.3.2. In vivo MRI and MRS of glioma pO2 

 Five days after tumor implantation, baseline imaging (D0) was acquired prior to cell 

therapy infusion. 1H axial image shows the presence of a solid tumor in the right flank of 

mice (Fig 5.2, top left). 19F image reveals a single bright hotspot encompassing the whole 

tumor (Fig. 5.2, top right). Overlay of both images yields a 1H/19F composite that enables 

back-ground-free longitudinal imaging of tumor outline and clearance of PCE signal over 

time (Fig 5.2). Average SNR at Day 0 is ~10.  
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Figure 5.2: In vivo 19F/1H MRI of human glioma showing labeled tumor cells at 

different time points. Top left panel shows 1H axial image the mouse abdomen with flank 

tumor (*). PCE-labeled glioma cells appear as a bright hotspot on 19F images, delineating 

the tumor (top right panel, unthresholded). Both slices can be overlaid to yield a 1H/19F 

composite image (1H/19F CAR T Day 0). Representative longitudinal overlays of CAR T 

cell treated mouse show modestly growing tumor and decrease in 19F signal as a result of 

cytotoxic efficacy of CAR therapy (Day 7, 10 panels). In comparison, mice receiving 

untransduced T cells exhibit persistent fluorine signal at Day 10 and larger tumor volume. 

 

Localized, 19F spectroscopy using the PRESS pulse sequence and a single voxel 

encompassing a tumor was used to measure R1 values used to calculate pO2. The R1 

measurements for each group are displayed as boxplots in Fig. 5.3a. The LME statistical 

model demonstrates a significant difference in R1 between CAR T cell treated and 

untransduced T cell treated mice (treatment effect: 0.23, adjusted 95% CI: 0.01, 0.45) and 

untreated mice (treatment effect: 0.26, adjusted 95% CI: 0.05, 0.47) on Day 3 with respect 

to Day 0. This corresponds to a transient spike in tumor pO2 three days after CAR T cell 
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infusion (R1=0.990.12 s-1, pO2=13425 mmHg) compared to untransduced T cells 

(pO2=6120 mmHg) and control (pO2=409 mmHg, p = 0.026, Fig. 5.3a,b). There is no 

significant pO2 change in the control groups at Day 3 (p=0.35).  The average T1 (1/R1) 

recovery curve three days post-treatment (Fig. 5.3c) shows evident T1 shortening in the CAR 

T cell treated group compared to controls.  

 

 

Figure 5.3: In vivo R1 and pO2 changes of glioma tumor after CAR T cell therapy. 
Panel (a) shows boxplots of raw data for each experimental group on days 0, 1, 3, 7, and 10. 

The upper line, middle line and bottom line of each box indicates the 75th, 50th and 25th 

percentile, respectively. The ends of the lines outside of the box show the maximum and the 

minimum value of the data on that day, for that group. Panel (b) shows corresponding 

longitudinal tumor pO2 measurements following delivery of CAR T cells, untransduced T 

cells or untreated controls. A significant increase in tumor pO2 in CAR T cell-treated animals 

is observed at day 3 post-infusion (*, p = 0.022). Panel (c) depicts average T1 (1/R1) recovery 

for all groups at day 3 post-treatment. 
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These data suggest specific CAR T cell homing to the tumor tissue, presumably 

initiating a target killing cascade, and altering intracellular pO2. Histological analyses of 

tumor tissue at Day 3 confirms intracellular localization of PFC droplets and supports the 

assumption that pO2 value measured is that of cancer cells (Figure 5.4), consistent with prior 

observations25. By day 7, tumor oxygenation returned to baseline in the CAR T cell Group 

(Fig. 5.3b).  

 

 
 

Figure 5.4: Confirmation of intracellular localization of PCE nanoemulsion. Confocal 

microscopy of tumor sections three days after CAR T cell treatment confirms intracellular 

localization of PCE (red) emulsion in tumor cells expressing GFP (green). Nuclei are 

stained with Hoescht (blue). Representative images of the tumor periphery (a) and tumor 

center (b) are shown. Magnification is 63× and scale bar = 25 μm. 
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Figure 5.5: Tumor and fluorine atom reduction after CAR T cell therapy. 

Bioluminescence intensity (a) shows twice lower radiance in CAR-treated animals 

compared to controls at day 7 (*, p = 0.01). By day 10, the radiance gap widens, representing 

significant tumor growth reduction in the CAR-treated group (*, p= 0.01). Total fluorine 

content in the tumors was also evaluated longitudinally (b) in all three groups. Control 

groups did not exhibit significant 19F signal loss over ten days, whereas CAR T treated group 
19F signal decreased by ~60% in the same period (p=0.0012). Comparison of total fluorine 

atoms to bioluminescence signal in tumors (c) showed strong negative correlation (Pearson’s 

R: -0.85<R<-0.98) in all groups, suggesting that total fluorine signal is an indicator of 

therapeutic efficacy. 

 

Longitudinal bioluminescence measurements show significant tumor growth 

reduction 7 days post CAR treatment with an average radiance of 4*1010 photons/sec, which 

is half the amount measured for both naïve T-cell treated and untreated groups (p=0.012, 

Fig. 5.4a).  
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Absolute fluorine content in the two control groups does not change significantly 

over 10 days (p=0.1 and 0.2, Fig. 5.5b), whereas the CAR T cell treated tumors exhibit 

significant fluorine signal loss (~ 60% signal loss, p=0.0012, Fig. 5.5b). Signal loss between 

groups is significant as early as day 3 (p=0.03, Fig. 5.5b). There is a strong negative 

correlation between absolute fluorine content in tumor and tumor radiance in all groups 

(Pearson’s R: -0.85<R<-0.98, Fig. 5.5c). The PFC droplets are neither broken-down or 

exocytosed by the cell31. Signal loss is therefore attributable to cancer cell death and 

scavenging of cell contents by macrophages and subsequent uptake in the liver. A fluorine 

signal decrease is thus an additional indicator of therapy efficacy, inversely proportional to 

tumor growth.  

 

5.3.3. Histological correlation 

 Histopathological staining of tumors three days post-therapeutic cell infusion 

confirms the presence of numerous CAR T cells in the tumor, and to a lesser extent, 

untransduced T cells (Fig. 5.6a). TUNEL staining reveals numerous apoptotic cells in the 

vicinity of CAR T cells but few to no apoptotic cells are seen in untransduced T cell treated 

tumors. Quantitatively, more than twice the number of CAR T cells infiltrate the tumor 

compared to untransduced T cells (p=0.0002, Fig. 5.6b). CAR T cell treated tumor sections 

exhibit numerous apoptotic tumor cells whereas few apoptotic cells are found in 

untransduced T cell treated tumors, consistent with the magnetic resonance spectroscopy 

results (p=0.0001, Fig. 5.6c). The number of CAR T cells present correlates to the number 

of apoptotic cells per field (R=0.67) whereas untransduced T cells do not (R= -0.31, Fig. 

5.6d). This indicates that CAR T cells exhibit specific cytotoxic activity towards cancer cells 
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in vivo. Untransduced T cells, despite reaching the tumor site, do not induce detectable 

cancer cell apoptosis. 

 

 

Figure 5.6: Histological correlation of T cell infiltration in tumor and resulting cell 

death. Confocal microscopy (×64, a) of tumor tissues shows prominent CAR T cell 

infiltrates (green) at day 2 after infusion in the proximity of apoptotic cells (red) as evidenced 

by positive TUNEL stain. Untransduced T cell-treated tumor exhibit sparser T cells and 

apoptotic signals. High power field (HPF) quantitation of T cell numbers (b) showed twice 

as many CAR T cells per HPF on average compared to untransduced T cells (p=0.0002). 

Numerous apoptotic cells (c) are found in CAR T cell treated tumors, contrary to 

untransduced T cell treated tumors (p=0.0001) The number of CAR T cells present 

correlated (d) to the number of apoptotic cells per field (R=0.67) whereas untransduced T 

cells did not (R= -0.31). 

 

 

5.4. Discussion 

 In this study, we show that 19F MRI enables real time quantitative measurement of 

tumor cell death in response to CAR T cell therapy and associated intracellular tumor pO2 
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changes. Peak pO2 was observed three days post-infusion and suggests significant CAR T 

cell infiltration and targeted tumor cell killing, compared to untransduced T cells. Loss of 

fluorine signal in the tumor, indicative of cancer cell death, correlated to bioluminescence 

measurements. In addition, CAR T cell numbers in the tumor at day 3 correlated to cancer 

cell apoptosis, whereas untransduced T cells did not generate significant apoptosis. 

Established methods of oxygenation measurement, such as electrodes or fiber-optic 

sensors32, 33 require invasive insertion of probes in tumors, resulting in tissue and vascular 

damage, inflammation, and partial tumor volume readout. Application of non-invasive MRI 

methods for imaging of tumor oxygenation is desirable as it eliminates tissue injury and 

measurement errors34. In addition, MRI does not involve radioactive isotopes. One can 

indirectly measure blood oxygen level by measuring differences between hemoglobin and 

paramagnetic deoxyhemoglobin (shortens the spin-spin relaxation time T2 of surrounding 

protons). Blood oxygen level dependent (BOLD) MRI is qualitative with regards to pO2 

determination, since BOLD changes reflect vasculature oxygenation and not intracellular 

partial pressure. In addition, poorly vascularized tumors may not show a BOLD effect. 

Dynamic contrast-enhanced (DCE) MRI relies on tumor perfusion to gage hypoxic tumors. 

DCE MRI has been shown to correlate to Eppendorf probe measurements35 but not to 

hypoxia (pimonidazole) staining or PET probes in few cancer types36-38. 

Perfluorocarbon nanoemulsions dissolve oxygen resulting in a linear increase in the 

19F spin-lattice relaxation rate (R1) with increasing pO2. PFC-labeling of tumor cells prior 

injection enables uniform label distribution within the tumor and circumvents biases 

resulting from local or systemic injection of tracer agent. Accurate pO2 determination also 

entails control of the subject’s temperature and blood oxygenation level. In our experiments, 



  
149 

temperature of the animals was kept at 37 °C throughout the measurements. Both isoflurane 

and injectable anesthesia doses were adjusted to maintain blood oxygen saturation of ~99%.    

The pO2 measurements presented are in accordance with previously reported results 

of tumor oxygenation changes in response to chemotherapy25, 26 and cytotoxic T-cells26. 

Using similar methods, Kadayakkara et al.25 reported rat glioma cells basal pO2 of ~45 

mmHg. Treatment with chemotherapeutic agent resulted in sustained pO2 increase to ~165 

mmHg over 72 hours.  Zhong et al.26 used a mouse model of glioma treated with Pmel-1 

cytotoxic T cells and showed transient pO2 increase (~94 mmHg) two days post-infusion.  

Similarly to Zhong et al., pO2 increase in the CAR T cell treated group was short-

lived, suggesting insufficient therapeutic cell homing to the tumor and possible CAR T cell 

exhaustion or tumor immunosuppression39; all being perceived as important bottlenecks in  

successful adoptive cell therapy. The persistence of 19F signal in the core of CAR-treated 

tumors is also an indicator of low immune cell infiltration. Conversely, reduced 19F signal 

in the periphery of CAR-treated tumors suggests active cytotoxic activity of CAR T cells 

and PFC scavenging by local macrophages, followed by PFC clearance to liver tissue. 

Therefore, remaining PFC-containing tumor cells may predominantly be located in the 

hypoxic core and contribute to the decreased pO2 readout (Fig. 5.4). We also observed 

significant fluorine signal loss in CAR T cell-treated tumors, whereas control groups did not 

show significant reduction. These results correlated to bioluminescence measurements. 

Therefore, fluorine MRI, combined with MRS measurement is an effective method to image 

therapeutic efficacy. 

A notable limitation of this technique is that it is only applicable to preclinical models 

in its current form. Nonetheless, this method is not restricted to tumor models and could be 
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extended to more cell types, including immune cells and stem cells to monitor oxygen 

changes in tissue engineering and other disease models. In addition, this method yields bulk 

tumor pO2 number, although tumor aggressiveness and therapy efficacy assessments would 

benefit from discrete information. Improvements in MRI sensitivity and data sampling 

methods could enable pO2 map delineation. Considerable effort is underway to implement 

fast imaging methods40-42. 

 

Strategies to increase tumor penetration and oxygenation are paramount in 

contemporary cancer research. Overall, we show that 19F MRI enables temporal 

measurements of tumor cell oxygen tension in response to CAR T cell therapy. These data 

support the view that 19F pO2 MRI and MRS can serve as a biomarker for cell-mediated 

apoptosis in preclinical tumor models and provide insight into the modes of action of 

engineered T cell immunotherapy against cancer. 
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Chapter 6: Conclusions 

 

6.1.  Summary of research 

 19F MRI is a promising tool for imaging of cellular therapeutics and holds great 

potential for clinical applications. The work in this thesis aimed to further develop fluorine 

imaging platforms to aid in assessment of T cell therapy biodistribution, persistence and 

efficacy.  

 

6.1.1. 19F NMR of CAR T cell biodistribution in murine cancer model 

 As a first step, we used commercially available perfluorocarbon nanoemulsion to 

intracellularly label human T cells and CAR T cells. We confirmed that such label was 

internalized by means of fluorescence and electron microscopy. We also demonstrated that 

PFC label does not alter T cell viability, division rate and phenotype (defined by 

CD3/CD4/CD8 expression) for at least 14 days post-labeling. In vitro co-culture assays 

showed that cytotoxic activity of CAR T cells against glioma cells remained comparable in 

PFC-labeled cells compared to unlabeled cells.  

When infused into a murine cancer model, CAR T cell systemic infusion induced 

significant tumor growth decline compared to untransduced T cell and untreated controls. 

19F NMR measurement enabled T cell biodistribution quantification in intact tissues with 

sensitivity limits of detection of order 103 T cells per sample. Tissue panel spectra analysis 

demonstrated significantly higher CAR T cell homing to tumors and spleen compared to 

untransduced T cells. In addition, CAR T cell persistence surpassed that of naïve T cells. 
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Histology high power field counts strongly correlated to the average NMR fluorine signal 

measured in tumors. 

These findings implement 19F NMR cytometry as a rapid and quantitative technique 

to evaluate adoptive cell transfer biodistribution in intact tissues. This technique provides 

unbiased quantification in samples. Overall, 19F NMR cytometry may accelerate the timeline 

to evaluate new immunotherapeutic cell candidates by providing a straightforward method 

to evaluate cell therapy biodistribution and cell fate. 

 

6.1.2. TAT-functionalized PFC nanoemulsion for 19F cell tracking 

 For clinical relevance, T cell biodistribution needs to be monitored in vivo by 19F 

MRI cytometry. The persistent bottleneck that remains for tracking of transferred T cells is 

19F MRI sensitivity. T cells are inherently smaller and less phagocytic than most cell types, 

limiting the amount of PFC they can hold. To address this, we designed functionalized 

probes that carry a cell internalizing peptide (TAT) on their surface. We optimized the 

formulation for maximal MR sensitivity gain and optimal droplet size and stability. 

Biocompatibility was tested in T cells and labeling protocol was established to preserve cell 

viability and cytotoxic activity. Addition of TAT as a co-surfactant in PFC emulsions 

resulted in 8-fold increase in T cell labeling efficiency. 

Signal enhancement in vivo was obtained by delivering CAR T cells pre-labeled with 

TAT-conjugated PFC emulsions or control PFC emulsions intratumorally in mice bearing 

bilateral flank tumors. Signal detected from TAT-labeled CAR T cells two hours post-

injection was eight times higher than that of contralateral tumor injected with PFC-labeled 

CAR T cells, rendering MRI signal unambiguous. The correlation between fluorine atoms 
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measured in tumors and number of injected cells confirms accuracy of cell delivery and 

persistence of the CAR T cells at the tumor site for at least several hours post injection. 

This new probe may enable longitudinal imaging of the fate of T cells in vivo and 

enable treatment optimization from real-time readout. Additional incorporation of metal ions 

within the core of PFC emulsions may open up tremendous future opportunities for the MRI 

cell tracking field and enable accelerated MRI acquisitions and the detection of sparser cell 

populations in vivo. 

 

6.1.3. In vivo monitoring of tumor pO2 in response to CAR T cell immunotherapy  

 PFC nanoemulsions may assist in indirect detection of adoptive cell therapy 

cytotoxicity against cancer cells. Tumor cells can be labeled similarly to T cells with 

perfluoro-crown-ether (PCE) probes in vitro before injection into the animal model. The 

spin-lattice relaxation rate (R1) of PCE is linearly proportional to the oxygen concentration 

in its close proximity, allowing for tissue oxygenation sensing. We explored the temporal 

dynamics of tumor intracellular pO2 in our murine glioma model.  

We showed that 19F MRI enables real-time quantitative measurement of tumor cell 

death in response to CAR T cell therapy via a pO2 change. Peak pO2 was observed 3 days 

post-infusion and suggests significant CAR T cell infiltration and targeted tumor cell killing, 

compared to untransduced T cells. Loss of fluorine signal in the tumor, indicative of cancer 

cell death, correlated to bioluminescence measurements. In addition, CAR T cell numbers 

in the tumor at day 3 correlated to cancer cell apoptosis, whereas untransduced T cells did 

not generate significant apoptosis. This indicates that CAR T cells exhibit specific cytotoxic 
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activity towards cancer cells in vivo. Untransduced T cells, despite reaching the tumor site, 

do not induce detectable cancer cell apoptosis. 

Overall, we showed that 19F MRI enables temporal measurements of tumor cell 

oxygen tension in response to CAR T cell therapy.  These data support the view that 19F pO2 

MRI can serve as a surrogate biomarker for cell-mediated apoptosis and provide insights 

into the modes of action of engineered T cell immunotherapy against cancer. 

 

6.2. Limitations of infusing PFC labeled cells 

 Generally, with PFC labeled cells having a mitotic phenotype, cell division and 

subsequent dilution of the intracellular label can potentially limit long-term studies of 

itinerant cells and decrease the accuracy of cell quantification1. There is no evidence for 

active exocytosis or degradation of the PFC droplets once internalized by viable cells. Death 

of labeled cells can lead to dispersion of the reagent and thus a loss of 19F signal. Potentially, 

the PFC droplets can also be transferred to macrophages that have engulfed dead cells. If a 

large number of macrophages remain in a region of interest, quantification accuracy will 

suffer. Importantly, the 19F signal diminishes at cell injection sites over time if the cells are 

apoptotic, and this cell loss is accurately quantifiable in longitudinal scans2, 3, which is an 

advantage over prior-art iron-oxide nanoparticle based cell tracking approaches4, 5. 

Ultimately, clearance of PFC agents from the body occurs via uptake by cells of the RES, 

particularly Kupffer cells of the liver, followed by lung exhalation6. In fact, the 19F liver 

signal, and the effective number of cells represented by this value, can be used as a proxy to 

calculate the dead cell fraction of the infused cell product1. 
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6.3. Future perspectives  

 Since its introduction in clinical practice in the 1980s, MRI has experienced 

remarkable growth and development. But implementation of new clinical applications 

comes with challenges both technical and logistical in nature. Often a key limitation of 19F 

MRI probes is sensitivity. Unlike conventional 1H MRI, where the probe (water) 

concentration (>100 Molar 1H) and thus sensitivity is high, 19F MRI is limited by the total 

amount and distribution of fluorine atoms introduced into the subject’s tissue. The limits of 

detection using 19F-based imaging ranges from ~103 to ~105 cells per voxel7. For a given 

experiment, results depend on specific details, such as the PFC molecule and nanoemulsion 

used, the cell type labeled, viability of cell culture and commensurate label uptake, image 

acquisition methods, magnetic field strength, and the MRI detector configuration1, 2, 8, 9.  

Looking forward, there are multiple, technical avenues for improving cell detection 

sensitivity that are vigorously being investigated involving new probe design and data 

acquisition methods10-12. One approach that we explored in Chapter 4, is to formulate 

imaging probes with cell penetrating peptides (CPP) to increase cell delivery. Besides TAT, 

numerous CPPs with diverse chemical and biological properties are being investigated13 for 

drug or DNA delivery. Testing of alternate CPPs may reveal more efficient cell loading. 

Another scheme is to exploit the properties of metals to reduce the 19F spin-lattice 

relaxation time (T1) and increase 19F detection sensitivity by several folds. Our lab recently 

developed two distinct fluorous-soluble metal chelate formulations. The first one, referred 

to as FETRIS, (metallated with ferric tris-diketonate) enabled three-to fivefold sensitivity 
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enhancement compared to non metallated equivalent12. The second metallated 

nanoemulsion, featuring salicylidene-tris(aminomethyl)ethane chelating agent 

(SALTAME), achieved a sensitivity enhancement of four-fold on a 3 Tesla magnet. 

Moreover, pulse programming offers great opportunity to improve the signal to noise 

ratio per acquisition time. Techniques such as compressed sensing, involving both 

acquisition modification and more efficient hardware, have been investigated for the past 

decade, yielding accelerated scan times up to 8 folds14. Development of smarter quantitation 

algorithms could also reduce post-processing burden. Combination of the three strategies 

described above; cell penetrating peptides, metal chelates and compressed sensing sequences 

may improve the sensitivity limits of 19F MRI by an order of magnitude and enable detection 

of sparse cells in vivo.  

Another avenue that is heavily investigated is the development of PFCs with different 

chemical shifts to potentially generate multicolor fluorine MRI images by tagging different 

cell subtypes. This would allow to visualize different cell therapy interactions and migration 

in vivo. Such application has already been demonstrated for stem cell/progenitor cell tracking 

in vivo 15. One could imagine labeling macrophages or dendritic cells in situ by intravenous 

injection of a given PFC and transferring CAR T cells or TILs labeled ex vivo with a different 

PFC to visualize their interaction in the lymph nodes or their biodistribution to the tumor. 

This would enable further understanding of different meeting points and partner interactions 

and migration patterns in vivo. 

Finally, an exciting development of 19F MRI would be targeted in vivo labeling of 

cell populations of interest. Numerous PET tracers and a few SPIOs have been investigated 

to target specific cells or proteins. Only a couple targeted fluorine nanoemulsions have been 
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developed so far, likely due to the technical challenge it represents. Specific in vivo labeling 

would require specific blood circulation time, relative ‘invisibility’ towards monocytes and 

macrophages to avoid non-specific signals and sufficient targeting efficiency to visualize 

positive signal on MR images. Nonetheless, some effort is being spent on theranostic 

fluorine emulsions, to enable both imaging of the recipient cells and delivery of specific 

drugs16, 17.  

 

6.5. Clinical translation 

 19F MRI cell detection techniques are just beginning to be employed in clinical trials, 

and feasibility has been established in a first-in-human clinical study3. An autologous DC 

vaccine was labeled with a PFC nanoemulsion ex vivo and re-injected into colorectal cancer 

patients intradermally. 19F MRI enabled visualization of injected DCs and longitudinal 

persistence evaluation.  

There are numerous checkpoints before one can use 19F MRI cell tracking for cell 

therapies in the clinic. When engaging cell therapy regulatory agencies, such as the US Food 

and Drug Administration (FDA), safety is the primary concern. Within the FDA, 19F labeled 

combination cell products are regulated at the Center for Biologics Evaluation of Biologics 

Research (CBER). Usage of a nonradioactive PFC, like 19F, is appealing due to its safety 

profile and presence in several FDA-approved medicines18, as well as their approved use for 

contrast-enhanced ultrasound. For cellular therapies, the release criteria for PFC labeled cell 

batches, which is viewed as a combination product, should match the release criteria 
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expected for the unlabeled cell product3, such as total nucleated cell count, cell viability, 

Gram stain, bacterial contamination and endotoxin quantification.  

Post infusion, cell viability and anti-tumor efficacy of PFC labeled cells may also be 

examined in preclinical studies as part of the investigational new drug (IND) application for 

the cell therapy product. However, imaging results in rodent models of cellular 

immunotherapy can have significant limitations and may not well reflect how the cell 

product will behave in patients. Besides the obvious immunological dissimilarities, 

particularly with immunodeficient xenograft models, typical total cell number doses infused 

in ACT trials are vastly higher in human trials compared to mice (~1010 versus 106, 

respectively). Dosing on a cell number/kg basis can help predict translation to clinical 

dosing. However, because tumor size may be of similar order of magnitude in size in rodent 

and humans, scaling the absolute number of therapeutic cells homing to patients’ tumors 

may be difficult to predict. 

As experience with PFC labeling of cell therapy products grows, additional 

considerations may also be needed, for example, in the clinical batch scale-up of the labeling 

process19 in specialized facilities. Furthermore, one could imagine having a cell therapy 

product expanded at a third-party site with a PFC label incorporated, and then shipped as a 

refrigerated or cryopreserved pre-labeled cell product; similar workflows are already in 

place for unlabeled, FDA-approved DC and CAR T cell products for cancer patients. Routine 

labeling of large cell batches can be engineered into a well-controlled process that can be 

exportable to multi-site clinical trials. Additional logistical limitations to the development 

of routine fluorine imaging include the fact that clinical scanners are most often equipped 

for proton scans only. 19F MRI requires specialized detection coils and hardware 



  
163 

modifications for image acquisition, which are not currently available in most MRI centers, 

but can be sourced by third parties.  

 In conclusion, cell labeling with perfluorocarbons is a well-controlled and validated 

process that has been reproduced by numerous laboratories. The properties of labeled cells, 

such as labeling levels and intracellular localization of PFC, are predictable based on 

intrinsic phagocytic tendencies, physical cell size, high-level function in the body, and cell 

activation status and health during the labeling process. Fluorine MRI enables noninvasive 

monitoring of in vivo survival and behavior of therapeutic cells, as well as their indirect 

effect on cancer cells. Overall, the use of 19F-based MRI cell detection of cell therapy 

products in vivo is still in the early adaptor phase, but holds promise for overcoming 

regulatory barriers and advancing a wide range of cell therapy trials for cancer. 
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