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Synchrotron Radiation from Electron Beams in Plasma Focusing

Channels

E. Esarey, B.A. Shadwick, P. Catravas, and W.P. Leemans

Center for Beam Physics, Ernest Orlando Lawrence Berkeley National Laboratory, University of

California, Berkeley CA 94720

(December 6, 2001)

Abstract

Spontaneous radiation emitted from relativistic electrons undergoing beta-

tron motion in a plasma focusing channel is analyzed and applications to

plasma wakefield accelerator experiments and to the ion channel laser (ICL)

are discussed. Important similarities and differences between a free electron

laser (FEL) and an ICL are delineated. It is shown that the frequency of

spontaneous radiation is a strong function of the betatron strength parame-

ter aβ , which plays a similar role to that of the wiggler strength parameter in

a conventional FEL. For aβ >∼ 1, radiation is emitted in numerous harmonics.

Furthermore, aβ is proportional to the amplitude of the betatron orbit, which

varies for every electron in the beam. The radiation spectrum emitted from

an electron beam is calculated by averaging the single electron spectrum over

the electron distribution. This leads to a frequency broadening of the radi-

ation spectrum, which places serious limits on the possibility of realizing an

ICL.

03.65.-w, 02.60.Cb, 32.80.-t, 02.70.-c
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I. INTRODUCTION

The propagation of electrons beams through plasmas is relevant to a variety of advanced

accelerators [1] - [5] and novel radiation sources, such as the plasma-focused free electron

laser (FEL) [6] - [10], the plasma-wiggler FEL [11], [12], the ion-ripple laser [13], and the

ion-channel laser [14]. Recent experiments that explore the interaction of an intense elec-

tron bunch with a plasma include the plasma wakefield accelerator (PWFA) experiment

at Argonne National Laboratory [3], the E-150 plasma lens experiment at Stanford Linear

Accelerator Center (SLAC) [4], and the E-157 PWFA experiment at SLAC [5]. In the E-157

experiments, a 30 GeV electron beam of 2 × 1010 electrons in a 0.65 mm long bunch is

propagated through a 1.4 m long lithium plasma with an electron density up to 2 × 1014

cm−3. The electron bunch propagates through the plasma in the so-called blowout regime

[15], i.e., the initial beam density is greater than the plasma density. In this regime, the head

of the bunch expels the plasma electrons and leaves behind a nearly uniform ion channel.

The bunch length and plasma density are chosen such that the blown-out plasma electrons

come crashing back to the axis near the tail of the bunch, thus driving a very large axial

electric field, on the order of several hundred MV/m, that can accelerate the electrons in

the tail of the bunch. The blow-out regime of the PWFA can be viewed as a short-bunch

version of the ion-focused regime of electron beam propagation [16] - [19]. The “ion-focused

regime” is a phrase traditionally applied to describe the propagation of long (compared to

the plasma wavelength) electron beams in a plasma and, hence, these beams are subject to

the electron-hose instability [20] - [23].

One consequence of operating in the blowout regime of the PWFA is that the main body

of the electron bunch resides in the nearly uniform ion channel, since the plasma electrons

are blown out to approximately the plasma skin depth, k−1
p = c/ωp, which is typically much

greater than the bunch radius, where ωp = (4πnee
2/me)

1/2 is the plasma frequency and ne

is the electron plasma density. Associated with the ion channel are very strong transverse

fields, on the order of several thousand Tesla per meter, that subsequently focus the body
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of the electron bunch. Since the initial beam radius (50 − 100 µm) is much greater than

the matched beam radius (∼ 5 µm), the beam radius will undergo betatron oscillations as

it propagates through the plasma [5], [14]. In the blowout regime, the radial space charge

electric field [5] is Er = (eme/c
2)k2

pr/2. At the edge of the beam, r = rb, this can be written

in convenient units as

Er [MV/m] = 9.06× 10−15ne[cm
−3]rb[µm]. (1)

Likewise, in the blowout regime, the betatron wavelength is λβ = (2γ)
1/2λp, where γ is the

relativistic factor of the electron and λp = 2π/kp is the plasma wavelength, which can be

written as

λp[cm] = 3.34× 106(ne[cm
−3])−1/2. (2)

Time-integrated optical transition radiation has been used to study the transverse beam

profile dynamics in the E-157 experiments [24], [25], where up to three betatron oscillations

of the beam radius have been observed [25], [26].

In addition to the blowout regime of the PWFA, an accelerated electron bunch will expe-

rience transverse focusing forces in typical plasma-based accelerators, such as the laser wake-

field accelerator (LWFA) [1]. For example, in the linear regime of the LWFA, the wakefield

is often described by an electrostatic potential of the form Φ = Φ0 exp(−r2/r2
p) cos kp(z−ct),

where rp is the radius of the wake and is proportional to radius of the drive beam. Notice

that the axial electric field Ez = −∂Φ/∂z and the radial electric field Er = −∂Φ/∂r are

phased such that there exists a π/2 region of axial phase kp(z − ct) that is both acceler-

ating and focusing. An electron residing off-axis will undergo radial betatron oscillations

about the axis due to the transverse focusing force of the wakefield. The magnitude of

the focusing field near the axis is |Er| � 2rΦ0/r
2
p , assuming cos kp(z − ct) � 1, and the

betatron wavelength is λβ = πrp(2γ/Φ̂0)
1/2, where Φ̂0 = eΦ0/mec

2 is the normalized ampli-

tude of the wakefield. The density perturbation on axis associated with the wake is given

by δne/ne = −Φ̂0(1 + 4/k
2
pr

2
p) cos kp(z − ct). Electron blowout near the axis occurs when

Φ̂0 � k2
pr

2
p/4, assuming kprp/2 < 1.
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FIG. 1. Schematic of an electron undergoing betatron oscillations in a plasma focusing channel

and emitting synchrotron radiation.

As an electron undergoes betatron oscillations in a plasma focusing channel, it will emit

synchrotron radiation [14], [27], [28] (see Fig. 1). In the limit of a small amplitude betatron

orbit, i.e., an electron displaced slightly from the axis, the wavelength of the synchrotron

radiation is λ = λβ/2γ
2. For plasma-based accelerators, this can easily be in the hard X-ray

range, e.g., in the E-157 experiment, λβ ∼ 0.8 m and γ = 6 × 104, such that λ ∼ 0.1

nm. Preliminary observations of X-rays generated by this mechanism at 6.4 keV have been

reported in the E-157 experiments [29].

The betatron motion in a focusing channel also forms the basis of the ion channel laser

(ICL) [14]. In the ICL, radiation at the resonant wavelength λ = λβ/2γ
2 can feed back

on the electron beam, leading to axial bunching of the beam, and coherent amplification of

the radiation. The amplification process is analogous to that in a free electron laser (FEL),

with the betatron motion analogous to the electron motion in an FEL wiggler [30]. It has

been suggested that the ICL mechanism can further enhance the spontaneous synchrotron

radiation in the E-157 experiments [31], thus leading to partially coherent radiation near 0.1

nm. It is necessary that the details of the single particle synchrotron radiation in a plasma

focusing channel be well understood, in order to assess the prospects for the generation of

self-amplified spontaneous emission (SASE) in an ICL.

The ICL differs from other FEL concepts in that no external magnets, cavities, or slow

wave structures are required for amplification. In particular, the ICL differs fundamentally
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from the plasma-focused FEL [6] - [10], in which the FEL interaction is based on the wiggler

magnet (with period λw) and radiation is emitted at the resonant wavelength λ = λw/2γ
2.

In the conventional plasma-focused FEL, the plasma acts primarily to provide transverse

focusing of the electron beam and the plasma density is sufficiently low such that λβ � λw.

The advantage of the ICL is that a wiggler magnet is no longer required, since the plasma

serves to both focus the electron beam and to provide a resonant interaction for radiation

of wavelength λ = λβ/2γ
2.

Experiments on the ICL have been carried out by Whittum et al. [32] in the microwave

regime. These experiments used a 0.75 MeV, 100 ns, 3.4 kA electron beam propagating

through a plasma of density 4×1010 cm−3 (λβ � 40 cm) at a channeled radius of 1 cm. Input

radiation at 9.4 GHz was amplified from 20 kW to several hundred kW after propagating 2.8

m through the plasma. In these experiments, the betatron strength parameter (discussed

below) was aβ < 0.5.

In this article, spontaneous radiation emitted from an electron undergoing betatron mo-

tion in a plasma focusing channel is analyzed starting from basic principles. Application

of these results to the E-157 experiment and to the ICL are examined. Important similar-

ities and differences between SASE in an FEL and in an ICL are delineated. It is shown

that the spontaneous radiation emitted along the axis of a plasma focusing channel from a

single electron occurs near the resonant frequency ωn = 2γ2
z0nωβ/(1 + a2

β/2)
1/2, where γz0

is the relativstic factor for the electron entering the channel, n is the harmonic number,

ωβ = ckβ = 2πc/λβ is the betatron frequency, aβ = γz0kβrβ is the betatron strength pa-

rameter, and rβ is the amplitude of the betatron orbit. The role of the betatron strength

parameter aβ is analogous to that of the wiggler strength parameter aw (or Kw) in FEL

physics. In Ref. [14], the ICL was considered only in the limit a2
β � 1. When a2

β � 1,

radiation is emitted primarily at the fundamental frequency ω = 2γ2
z0ωβ and is independent

of aβ. For aβ >∼ 1, however, radiation is emitted in numerous harmonics and the resonant

frequency is a strong function of aβ. This is the case in the E-157 experiments, where

aβ ∼ 2− 50. In an ideal FEL, the wiggler strength parameter aw is a constant (a function
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of only the magnetic field of the wiggler) for all of the beam electrons. However, in an ICL,

aβ = γz0kβrβ depends on both the electron energy γz0 and the betatron amplitude rβ . Since

rβ , and hence aβ, is different for every electron in a typical beam, this places serious limits

on the possibility of realizing a SASE ICL.

The remainder of this article is organized as follows. Section II discusses the motion

of a single electron, as well as of the radius of an electron beam, in a plasma focusing

channel. In Sec. III, the synchrotron radiation from a single electron in a plasma focusing

channel is analyzed, including derivations of the general radiation spectrum for arbitrary

aβ, as well as asymptotic expressions valid in the a
2
β � 1 limit. Section IV discusses the

total power radiated and the electron energy loss. In Sec. V, the radiation spectrum from a

round (axisymmetric) electron beam is analyzed, as obtained by averaging the single electron

spectrum over a Gaussian radial beam profile. Section VI discusses applications to the ion

channel laser. A summary discussion is presented in Sec. VII.

II. ELECTRON MOTION IN PLASMA FOCUSING CHANNELS

A. Single Particle Orbits

The electron motion in a plasma focusing channel is governed by the relativistic Lorentz

equation, which may be written in the form

du/dct = ∇Φ̂ (3)

where Φ̂ = eΦ/mec
2 is the normalized electrostatic potential of the focusing channel, u =

p/mec = γβ is the normalized electron momentum, and γ = (1 + u2)1/2 = (1 − β2)−1/2 is

the relativistic factor. Here only the transverse focusing force of the plasma is considered.

Near the axis, r2 � r2
0, the space charge potential is assumed to have the form

Φ̂ = Φ̂0(1− r2/r2
0), (4)

such that the normalized radial electric field is Êr = −∂Φ̂/∂r = 2Φ̂0r/r
2
0, where Φ̂0 and

r0 are constants. The electrostatic potential is related to the electron plasma density by
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∇2Φ̂ = k2
p(ne/n0 − 1), where a uniform background of plasma ions of density n0 is assumed.

The maximum focusing field occurs when the plasma electrons are completely expelled

(blown out) from the channel, ne = 0. Notice that in the blowout regime, Êr = k2
pr/2,

hence, Φ̂0/r
2
0 ≤ k2

p/4.

Equation (4) implies the existence of two constants of the motion, duz/dt = 0 and

d(γ − Φ̂)/dt = 0. Inside the focusing channel, the electron orbits are given by

uz = uz0, (5)

γ = γz0 +∆Φ̂, (6)

u2
⊥ = 2γz0∆Φ̂ +∆Φ̂

2, (7)

where γz0 = (1 + u2
z0)

1/2, ∆Φ̂ = Φ̂(r) − Φ̂(rβ), and rβ is the amplitude (assumed constant)

of the betatron orbit. Note that at the maximum excursion of the betatron orbit, u⊥(r =

rβ) = 0. Assuming the electron orbit lies in the (x, z) plane, the orbit is given by

β̃x � kβrβ cos(kβct), (8)

x̃ � rβ sin(kβct), (9)

β̃z � βz0
(
1− k2

βr
2
β/4
)
− βz0(k

2
βr

2
β/4) cos(2kβct), (10)

z̃ � z0 + βz0
(
1− k2

βr
2
β/4
)
ct− βz0(k

2
βr

2
β/8) sin(2kβct), (11)

where

kβ = (2Φ̂0/γz0r
2
0)

1/2 (12)

is the betatron wavenumber, βz0 = uz0/γz0 and z0 is a constant. Equations (8)-(11) are the

leading order contributions to the orbits, assuming k2
βr

2
β/2� 1. Notice that in the blowout

regime Φ̂0 = k2
pr

2
0/4, which gives kβ = kp/(2γz0)

1/2.
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B. Electron Beam Envelope

For an ensemble of particles comprising an electron beam, the RMS beam radius rb

evolves via the envelope equation [33]

d2rb/dct
2 = ε2nγ

−2r−3
b − k2

βrb, (13)

where εn � γrbθb is the normalized beam emittance and θb is the RMS beam angle, where

the effects of finite energy spread and space charge have been neglected. The solution to

Eq. (13) for rb(ct) with rb = ri (injected beam radius) and drb/dct = 0 at ct = 0 is given by

2
r2
b

r2
i

=

(
1 +

ε2n
γ2k2

βr
4
i

)
+

(
1− ε2n

γ2k2
βr

4
i

)
cos(2kβct). (14)

The matched beam radius rb = ri = rbm for which d2rb/dct
2 = 0 is rbm = (εn/γkβ)

1/2, at

which point the expansion of the beam due to finite emittance is balanced by the focusing

forces of the plasma channel. For parameters typical of the E-157 experiment (εn = 10

mm-mrad, γ = 6×104, and λβ = 0.82 m), rbm = 4.7 µm. If the beam is not matched within

the channel, the beam radius oscillates between r2
b = r2

i and r
2
b = ε2n/(γ

2k2
βr

2
i ) = r4

bm/r
2
i with

period λosc = π/kβ = λβ/2 and having an average value 〈r2
b 〉 = (r2

i /2)(1 + r4
bm/r

4
i ).

III. SYNCHROTRON RADIATION

The energy spectrum of the radiation emitted by a single electron on an arbitrary orbit

r̃(t) and β̃(t) can be calculated from the Lienard-Wiechert potentials [34],

d2I

dωdΩ
=
e2ω2

4π2c

∣∣∣ ∫ T/2

−T/2
dt
[
n× (n× β̃)

]
exp [iω(t− n · r̃/c)]

∣∣∣2, (15)

where d2I/dωdΩ is the energy radiated per frequency, ω, per solid angle, Ω, during the

interaction time, T , and n is a unit vector pointing in the direction of observation. Using

the betatron orbits given above, the radiation spectrum can be calculated with conventional

techniques [36] - [38]. It is convenient to introduce spherical coordinates (r, θ, φ) and unit

vectors (er, eθ, eφ), where x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ, and

er = sin θ cos φ ex + sin θ sinφ ey + cos θ ez, (16)
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eθ = cos θ cosφ ex + cos θ sinφ ey − sin θ ez, (17)

eφ = − sinφ ex + cos φ ey. (18)

Identifying er = n, gives

n× (n× β̃) = −(β̃x cos θ cos φ+ β̃y cos θ sin φ− β̃z sin θ) eθ

+(β̃x sinφ− β̃y cos φ) eφ, (19)

n · r̃ = x̃ sin θ cos φ+ ỹ sin θ sinφ+ z̃ cos θ. (20)

The scattered radiation will be polarized in the direction of n× (n× β̃). Hence, I = Iθ+ Iφ,

where Iθ and Iφ are the energies radiated with polarizations in the eθ and eφ directions,

respectively, i.e.,

d2Iθ
dωdΩ

=
e2ω2

4π2c3

∣∣∣ ∫ T/2

−T/2
dt

(
dx̃

dt
cos θ cosφ+

dỹ

dt
cos θ sin φ− dz̃

dt
sin θ

)
exp(iψ)

∣∣∣2, (21)

d2Iφ
dωdΩ

=
e2ω2

4π2c3

∣∣∣ ∫ T/2

−T/2
dt

(
dx̃

dt
sin φ− dỹ

dt
cosφ

)
exp(iψ)

∣∣∣2, (22)

where

ψ = (ω/c) (ct− z̃ cos θ − x̃ sin θ cos φ− ỹ sin θ sinφ) . (23)

In the following, the electron orbit is assumed to reside in the (x, z) plane, and is given by

Eqs. (8)-(11). Hence,

ψ = ψ0 + α0kct− αx sin kβct+ αz sin 2kβct, (24)

α0 = 1− βz0(1− k2
βr

2
β/4) cos θ, (25)

αx = krβ sin θ cos φ, (26)

αz = βz0(kkβr
2
β/8) cos θ, (27)

where k = ω/c and ψ0 = −kz0 cos θ. Using the identity

exp(ib sinσ) =

∞∑
n=−∞

Jn(b) exp(inσ), (28)

9



where Jn are Bessel functions, allows the phase factor exp [i(ψ + (kβct)] to be written as

exp [i(ψ + (kβct)] =

∞∑
m,n=−∞

Jm(αz)Jn+2m+�(αx) exp
[
i(ψ0 + k̄ct)

]
, (29)

where

k̄ = α0k − nk0. (30)

In order to evaluate Eqs. (21) and (22), it is necessary to evaluate the integrals

Î(x,z) =

∫ T/2

−T/2
dt
d(x̃, z̃)

dt
exp(iψ). (31)

Using the orbits, Eqs. (8)-(11), along with the identities in Eqs. (28) and (29), gives

Îx = kβrβe
iψ0

∞∑
m,n=−∞

(
sin k̄L/2

k̄

)
Jm(αz) [Jn+2m−1(αx) + Jn+2m+1(αx)] , (32)

Îz = βz0e
iψ0

∞∑
m,n=−∞

(
sin k̄L/2

k̄

)
Jm(αz)

×
{
2

(
1− k2

b r
2
b

4

)
Jn+2m(αz)−

k2
βr

2
β

4
[Jn+2m−2(αx) + Jn+2m+2(αx)]

}
, (33)

where L = cT and

d2Iθ
dωdΩ

=
e2ω2

4π2c3

∣∣∣Îx cos θ cosφ− Îz sin θ
∣∣∣2, (34)

d2Iφ
dωdΩ

=
e2ω2

4π2c3

∣∣∣Îx sinφ∣∣∣2. (35)

Assuming that the frequency spectra for two different harmonics, n and n′, are sufficiently

well separated, the summations in Eqs. (34) and (35) may be simplified to yield

d2I

dωdΩ
=

∞∑
n=1

e2k2

4π2c

(
sin k̄L/2

k̄

)2

×
[
C2
x(1− sin2 θ cos2 φ) + C2

z sin
2 θ − CxCz sin 2θ cos φ

]
, (36)

where

Cx = kβrβ

∞∑
m=−∞

Jm(αz) [Jn+2m−1(αx) + Jn+2m+1(αx)] , (37)

Cz = βz0

∞∑
m=−∞

Jm(αz){2(1 + k2
βr

2
β/4)Jn+2m(αx)
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− (k2
βr

2
β/4) [Jn+2m−2(αx) + Jn+2m+2(αx)]}, (38)

αz =
n(k/kn)(a

2
β/4) cos θ[

(1 + a2
β/2) cos θ + 2γ

2
z0(1− cos θ)

] , (39)

αx =
n(k/kn)2γz0aβ sin θ cos φ[

(1 + a2
β/2) cos θ + 2γ

2
z0(1− cos θ)

] , (40)

and

aβ = γz0kβrβ (41)

is the betatron strength parameter. Here, L = cT is the interaction length, k = ω/c is

the radiation wavenumber, n is the harmonic number, and Jm are Bessel functions. For

parameters typical of the E-157 experiment (γ = 6 × 104 and λβ = 0.82 m), aβ = 45 for

rβ = rb = 100 µm (typical unmatched beam radius) and aβ = 2.1 for rβ = rbm = 4.7 µm

(typical matched beam radius).

In the limits γ2
z0 � 1, θ2 � 1, and a2

β/γ
2
z0 � 1, the radiation spectrum can be written as

d2I

d�ωdΩ
=

∞∑
n=1

αfγ
2
z0k̂

2N2
βRn

[
γ2
z0C

2
x + C2

z θ̂
2 − 2γz0CxCz θ̂ cos φ

]
, (42)

where

γz0Cx = aβ

∞∑
m=−∞

Jm(αz) [Jn+2m−1(αx) + Jn+2m+1(αx)] , (43)

Cz =
∞∑

m=−∞
2Jm(αz)Jn+2m(αx), (44)

αz =
n(k̂/k̂n)(a

2
β/4)

(1 + a2
β/2 + θ̂2)

, (45)

αx =
n(k̂/k̂n)(2aβ)θ̂ cos φ

(1 + a2
β/2 + θ̂2)

, (46)

and

Rn =
sin2

[
πnNβ(k̂/k̂n − 1)

]
[
πnNβ(k̂/k̂n − 1)

]2 (47)

is the resonance function, with Nβ = L/λβ the number of betatron periods that the electron

undergoes and αf = e2/�c � 1/137 the fine structure constant. Here θ̂ = γz0θ and the

normalized frequencies are k̂ = k/2γ2
z0kβ and k̂n = kn/2γ

2
z0kβ = n/(1 + a2

β/2 + θ̂2).
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Plots of the normalized intensity distributions d2I/d�ωdΩ for the first four harmonics

(n = 1, 2, 3 and 4) from a single electron is shown in Fig. 2 for aβ = 2 in the limit Nβ � 1

such that k = kn in Eqs. (42)-(47). The intensity distribution is plotted in the transverse

plane (x, y) of a detector located along the z-axis some large distance z (x/z ∼ y/z ∼ 1/γz0)

from the interaction, where x̂ = γz0x/z, ŷ = γz0y/z, θ̂ = (x̂
2 + ŷ2)1/2, and cos φ = x̂/θ̂. The

color coding shows the resonant frequency of the scattered radiation k̂n = n/(1 + a2
β/2 + θ̂2).

A. Resonance Function

Provided the number of betatron periods is large, Nβ � 1, radiation is emitted in a

series of harmonics and is confined in a narrow bandwidth about the resonant frequency

of each harmonic. The frequency width of the radiation spectrum for a given harmonic is

determined by the resonance function Rn(k), where

Rn(k) =

(
sin k̄L/2

k̄L/2

)2

. (48)

This function is sharply peaked about the resonant frequency, ωn = ckn, given by k̄ = 0,

kn =
nkβ
α0

� 2γ2
z0nkβ[

(1 + a2
β/2) cos θ + 2γ

2
z0(1− cos θ)

] , (49)

where γ2
z0 � 1 was assumed. Typically, for frequencies of interest, the synchrotron radiation

is confined to a cone angle θ2 � 1 and the resonant frequency can be approximated by

ωn � nM0ckβ/(1 +M0θ
2/2), (50)

whereM0 = 2γ
2
z0/(1+a

2
β/2) is the relativistic Doppler upshift factor. The intrinsic frequency

width ∆ωn of the spectrum Rn about ωn is given by ∆ωn/ωn = 1/nNβ . Furthermore,

Rn(k)→ ∆ωnδ(ω−ωn) as Nβ → ∞. For a single harmonic n, the angular width ∆θI about

the axis of a cone containing radiation with frequencies in a small bandwidth ∆ω about ωn

is given by

∆θ2
I �

(
2

M0

)
×
{
∆ωn/ωn for ∆ω ≤ ∆ωn,

∆ω/ωn for ∆ω ≥ ∆ωn.
(51)
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FIG. 2. Intensity distributions (arbitrary units) in the x̂ = γz0x/z and ŷ = γz0y/z plane for the

first four harmonics n = 1 (upper left), 2, 3, and 4 (lower right) for aβ = 2. The distributions are

evaluated at the normalized resonant frequency k̂ = k̂n = n/(1 + a2
β/2 + θ̂2), the value of which is

indicated by the color scale.
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B. On-Axis Radiation

Of particular interest is the radiation emitted along the axis, θ = 0, where only the odd

harmonics are finite, i.e., the even harmonics vanish. Setting θ = 0 in the above expressions

gives, for the nth odd harmonic, αx = 0, αz = αn, and

d2In(0)

dωdΩ
= 2e2 ω

ωn
kβNβM

2
0GnFn =

4e2

c

ω

ωn

γ2
z0N

2
βRnFn

(1 + a2
β/2)

, (52)

where

Fn(aβ) = nαn
[
J(n−1)/2(αn)− J(n+1)/2(αn)

]2
(53)

is the harmonic amplitude function,

αn =
n(ω/ωn)a

2
β/4

(1 + a2
β/2)

, (54)

and

Gn(ω) =
Rn(k)

∆ωn
=

1

∆ωn

sin2[πnNβ(ω/ωn − 1)]
[πnNβ(ω/ωn − 1)]2

(55)

is the frequency spectrum function with the resonant frequency ωn = nM0ckβ .

An expression for the number of photons (Nn) radiated along the axis per solid angle,

dNn/dΩ, per electron for photons in a narrow bandwidth ∆ω about the resonant frequency

ωn is obtained by integrating Eq. (52) over ∆ω and by dividing for the energy per photon

(�ωn),

dNn
dΩ

� 4αf
∆ωI
ωn

γ2
z0N

2
βFn

(1 + a2
β/2)

, (56)

where ∆ωI = ∆ω for ∆ω ≤ ∆ωn and ∆ωI = ∆ωn for ∆ω ≥ ∆ωn, with ∆ωn = ωn/nNβ

the intrinsic bandwidth and αf the fine structure constant. The total number of photons

radiated per electron in the bandwidth ∆ω about ωn is given by multiplying dNn/∆Ω by

the solid angle 2π(∆θ2
I/2)

1/2, where ∆θI is given by Eq. (51). This yields

Nn � 4παf(∆ω/ωn)(Nβ/n)Fn(aβ), (57)

for all values of ∆ω2 � ω2
n.
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The photon angular density dNn/dΩ and the spectral energy density d
2I(0)/dωdΩ of the

nth harmonic emitted along the axis are both proportional to the function Fn/(1+ a2
β/2)

1/2.

The number of photons radiated in the nth harmonic along the axis depends on the function

Fn/n. For high harmonics, n � 1, Fn becomes significant when a
2
β � 1. For a2

β � 1, only

the fundamental, n = 1, is significant. A plot of Fn/(1 + a2
β/2) (top) and Fn/n (bottom)

versus αn/n = (a
2
β/4)/(1 + a2

β/2) is shown in Fig. 3 for the first eight odd harmonics, where

n = 1 is the uppermost curve and n = 15 is the lowermost curve.

C. Ultra-Intense Behavior

For values of a2
β � 1, the scattered radiation will be narrowly peaked about the fun-

damental resonant frequency, ω1, given by Eq. (50) with n = 1. As aβ approaches unity,

scattered radiation will appear at harmonics of the resonant frequency as well, ωn = nω1.

When aβ � 1, high harmonic (n � 1) radiation is generated and the resulting synchrotron

radiation spectrum consists of many closely spaced harmonics. Finite variations in the pa-

rameter aβ = γz0kβrβ within an electron beam can broaden the linewidth and cause the

spectrum to overlap. Hence, in the ultra-intense limit, i.e., aβ � 1, the gross spectrum

appears broadband, and a continuum of radiation is generated which extends out to a crit-

ical frequency, ωc, beyond which the radiation intensity diminishes. The critical frequency

can be written as ωc = ncM0ωβ , where nc is the critical harmonic number. It is possible

to calculate nc by examining the radiation spectrum, Eq. (36), in the ultra-intense limit,

aβ � 1.

Furthermore, when aβ � 1, radiation is generated in a narrow cone about the backscatter

direction, Ω � 2πθ2
c , where θc ∼ 1/γz0. However, when aβ � 1, the emission cone about

backscatter direction widens. In particular, in the vertical direction, φ = π/2 (the direction

normal to the x-z plane which contains the electron orbit), emission is confined to the vertical

angle θv ∼ 1/γz0 . In the horizontal direction, φ = 0 (in the plane of the electron orbit), the

emission angle widens and is confined the horizontal angle θh ∼ a0/γz0, which is determined
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FIG. 3. The functions Fn/(1+a2
β/2) (top) and Fn/n (bottom) versus αn/n = (a2

β/4)/(1+a2
β/2)

for the first eight odd harmonics, where n = 1 is the leftmost curve and n = 15 is the rightmost

curve.
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by the deflection angle of the electron in the x-z plane.

Asymptotic properties of the radiation spectrum for large harmonic numbers, n � 1,

can be analyzed using the relationships [39]

Jn(nẑ) �
x̂1/2

π
(1− ẑ2)−1/4K1/3(nx̂), (58)

J ′
n(nẑ) � − x̂1/2

πẑ
(1− ẑ2)1/4K2/3(nx̂), (59)

where |ẑ| < 1 and is a function of aβ and θ,

x̂ = ln
[
1 + (1− ẑ2)1/2

]
− ln ẑ − (1− ẑ2)1/2, (60)

and K1/3, K2/3 are modified Bessel functions. In particular, for nx̂� 1,

K1/3 � K2/3 � (π/2nx̂) exp(−nx̂), (61)

and, hence, only harmonic radiation with nx̂ <∼ 1 will contribute significantly to the spec-

trum. The critical harmonic number is defined as ncx̂min = 1, i.e., nc = 1/x̂min, where x̂min

is the minimum value of Eq. (60). Furthermore, dx̂/dẑ < 0 and the minimum of x̂ occurs at

ẑmax. Typically, for a
2
β � 1, 1− ẑ2

max � 1 and Eq. (60) can be expanded to yield, to leading

order, x̂min � (1/3) (1− ẑ2
max)

3/2
. The critical harmonic number is given by the inverse of

this expression.

Letting θ represent the observation angle in the vertical direction (i.e., φ = π/2), then

in the limits aβ � 1, n � 1, and θ2 � 1, the coefficients Cx and Cz occurring in Eq. (36)

are given by C2
z � 4J2

� ((ẑ) and C
2
x � k2

βr
2
βJ

′
�
2((ẑ), where additional terms of order 1/aβ have

been neglected and n = 2( + 1� 1. Here,

ẑ =
αz
(

�
a2
β/2

1 + a2
β/2 + γ2

z0θ
2
. (62)

Note that 1− ẑ2 � (4/a2
β)(1 + γ2

z0θ
2), assuming a2

β � 1 + γ2
z0θ

2. Hence, for θ = 0, x̂max =

1/(c � 8/3a3
β , and the critical harmonic number, nc � 2(c is

nc � 3a3
β/4. (63)
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Using Eqs. (36), (58) and (59), the asymptotic spectrum in the vertical direction is

d2I

dωdΩ
� Nβ

6e2

π2c

γ2
z0ζ

2

(1 + γ2
z0θ

2)

[
γ2
z0θ

2

(1 + γ2
z0θ

2)
K2

1/3(ζ) +K2
2/3(ζ)

]
, (64)

where

ζ =
ω

ωc
(1 + γ2

z0θ
2)3/2, (65)

ωc = ncM0ωβ � 3aβγ
2
z0ωβ , (66)

is the critical frequency, and M0 � 4γ2
z0/a

2
β . In deriving Eq. (64), (x̂ → ζ and∑

nR(k, nk0) → 1/2Nβ , where the factor of 1/2 is due to the fact that in the asymp-

totic limit, n � 2(. For E-157-like parameters (γ = 6 × 104, λβ = 0.82 m, and aβ = 45),

nc � 6.8× 104 and λc = 2πc/ωc � 1.7× 10−12 m. Hence, for these parameters, the radiation

spectrum can be accurately described by the asymptotic expressions, Eqs. (64)-(66).

Along the axis θ = 0, d2I(0)/dωdΩ ∼ ξ2K2
2/3(ξ), where ξ = ω/ωc. The function Y (ξ) =

ξ2K2
2/3(ξ) is maximum at ξ = 1/2 and decreases rapidly for ξ > 1. A plot of the function

Y (ξ) versus ω/2γ2
z0ωβ is shown in Fig. 4 (top plot - linear scale; bottom plot - log scale).

The solid curve shows the radiation from a single electron with aβ = γz0kβrβ = 10. The

dashed curve shows the Y (ξ) spectrum integrated over a Gaussian distribution of betatron

amplitudes rβ (i.e., an electron beam with a Gaussian radial profile, as is discussed in the

following section) with a rms value satisfying aβ,rms = γz0kβrβ,rms = 10. To calculate these

averages, the quantity ξ = ω/ωc has been approximated by ξ � (ω/2γ2
z0ωβ)(1 + 3aβ/2)

−1,

since the asymptotic form for the spectrum is not accurate when aβ < 1, i.e., the dashed

curve in Fig. 4 is inaccurate in the region ω/2γ2
z0ωβ

<∼ 1.

Equation (64) is analogous with 2Nβ [34] for the synchrotron radiation spectrum emitted

from an electron moving in an instantaneously circular orbit in the ultra-relativistic limit

with a radius of curvature ρ = 3γ3
z0c/ωc. Several well-known properties [34] follow from Eq.

(64), for example

dI

dΩ
� 7e2

24c

Nβωcγ
2
z0

(1 + γ2
z0θ

2)5/2

[
1 +

5

7

γ2
z0θ

2

(1 + γ2
z0θ

2)

]
, (67)

dI

dω
� 4

√
3
e2

c
Nβγz0

ω

ωc

∫ ∞

2ω/ωc

dξK5/3(ξ). (68)
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FIG. 4. The function Y (ξ) = ξ2K2
2/3(ξ) versus ω/2γ2

z0ωβ plotted on a linear (top) and log (bot-

tom) scale. The solid curve shows the radiation from a single electron with aβ = γz0kβrβ = 10. The

dashed curve shows the spectrum integrated over a Gaussian distribution of betatron amplitudes

rβ with aβ,rms = γz0kβrβ,rms = 10.
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The peak intensity is of the order 2Nβe
2γz0/c and the total radiated energy is of the order

2Nβe
2γz0ωc/c. The peak intensity occurs at along the axis θ = 0, at approximately the

critical frequency, ω � ωc, i.e., n � nc = 3a3
β/4. Half the total power is radiated at

frequencies ω < ωc/2 and half at ω > ωc/2. For harmonics below nc (ω � ωc), the radiation

intensity increases as (ω/ω0)
2/3, and above nc (ω � ωc), the radiation intensity decreases

exponentially as exp(−2ω/ωc), i.e.,

d2I

dωδΩ

∣∣∣
θ=0

� Nβ
6e2

π2c
[Γ(2/3)]2 γ2

z0

(
ω

2ωc

)2/3

, ω � ωc, (69)

d2I

dωδΩ

∣∣∣
θ=0

� Nβ
3e2

πc
γ2
z0

(
ω

ωc

)
exp

(
−2ω
ωc

)
, ω � ωc. (70)

Furthermore, for ω � ωc, the scattered radiation at a fixed frequency is confined to an

angular spread ∆θ = (ωc/ω)
1/3/γz0 about θ = 0, whereas for ω > ωc, ∆θ = (ωc/3ω)

1/2/γz0.

The average angular spread for the frequency integrated spectrum in the vertical direction

(φ = π/2) is θv = 〈θ2〉1/2 ∼ 1/γz0 . In the horizontal direction (φ = 0), emission is confined

to the angle θh ∼ aβ/γz0

IV. RADIATED POWER AND ELECTRON ENERGY LOSS

The power radiated by a single electron, Ps, undergoing relativistic motion in an arbitrary

orbit can be calculated from the relativistic Larmor formula [34]

Ps = (2e
2/3c)γ2

[
(du/dt)2 − (dγ/dt)2

]
. (71)

Using the orbits described in Sec. II, the power radiated by a single electron undergoing

betatron motion in a plasma focusing channel is

Ps � (2/3)remec
3(1 + u2

z0)γ
2
z0k

4
β x̃

2, (72)

where x̃ is given by Eq. (9) and re = e2/mec
2 is the classical electron radius. Averaging the

above expression over a betatron period gives

P̄s � remec
3γ2
z0k

2
βa

2
β/3, (73)
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where γ2
z0 � 1 was assumed.

The total energy radiated by a single electronWs is given by the product of P̄s with the

interaction time Nβλβ/c, i.e.,

Ws = (2π/3)remec
2γ2
z0kβa

2
βNβ . (74)

The average number of photons radiated by a single electron 〈Ns〉 is given by dividing Ws

by the average photon energy, �〈ω〉 = 2γ2
z0�ωβ〈n〉/(1 + a2

β/2), i.e.,

〈Ns〉 = (π/3)αf (1 + a2
β/2)a

2
βNβ/〈n〉, (75)

where 〈n〉 is the average harmonic number and αf = e2/c�. In the limit a2
β � 1, Ns �

αfNβa
2
β .

The rate at which a single electron loses energy due to radiating is W ′
loss = P̄s/c, i.e.,

W ′
loss � remec

2γ2
z0k

2
βa

2
β/3. (76)

In the blowout regime, kβ ∼ n
1/2
0 γ

−1/2
0z , and the rate of energy loss scales as W ′

loss ∼ n2
0γ

2
z0r

2
β.

In addition, if the betatron amplitude is equal to the matched beam radius rb = (εn/γz0kβ)
1/2,

the energy loss scales as W ′
loss ∼ εnγ

3
z0k

3
β ∼ εnn

3/2
0 γ

3/2
z0 . For the parameters of the E-157

experiment in the blowout regime, i.e., a density n0 = 2 × 1014 cm−3 (λp = 0.24 cm) and

a beam energy of γz0 = 6 × 104, an electron with a betatron amplitude of rβ = 100 µm

(aβ = 45) would lose energy at a rate of W ′
loss = 0.2 MeV/m. This is small compared to

the accelerating gradient in the E-157 experiment, which is several 100 MeV/m. This is a

source of energy spread for the accelerated electrons, however, since an electron along the

axis with rβ = aβ = 0 would not lose energy by this mechanism, i.e, the effective energy

spread increases at a rate on the order of ∆W ′ ∼W ′
loss.

This radiative energy loss and the associated effective energy spread becomes more pro-

nounced at higher density and energy, since W ′
loss ∼ n2

0γ
2
z0r

2
β, whereas the accelerating field

of the wake typically scales as W ′
acc ∼ n

1/2
0 . For example, consider parameters relevant to

experiments being planned at SLAC on the so-called “plasma afterburner” concept [35]. In
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the plasma afterburner experiments, the energy of an initially 50 GeV electron bunch is

increased by 56 GeV by passing the 63 µm long bunch through a 7 m long plasma of density

2× 1016 cm−3 (100 times high density than the E-157 experiments). An electron of energy

100 GeV at the beam radius of rβ = 25 µm would have a betatron wavelength λβ � 15

m and a strength parameter of aβ � 210. This gives an energy loss rate of W ′
loss � 1.5

GeV/m, which is a significant fraction (� 18%) of the predicted wakefield acceleration rate

of 8 GeV/m.

V. RADIATION FROM A BEAM

For a single electron undergoing betatron motion in a plasma focusing channel, the

resonant frequency of the radiation emitted along the axis is ω = 2γ2
z0nωβ/(1 + a2

β/2), as

indicated by Eq. (50). Here, aβ = γz0kβrβ is a function of both the electron energy γz0

and the radial position of the electrons via the betatron amplitude rβ . If a monoenergetic

beam of finite radius is injected into a focusing channel (without any special tapering),

electrons at different radii will have different betatron amplitudes rβ , different values of

aβ, and hence different resonant frequencies. In general, the spectral energy density of the

radiation emitted by a finite radius beam will be significantly different from that of a single

electron, especially in the limit aβ >∼ 1.

Consider the case of a monoenergetic, axisymmetric (round) beam in cylindrical geom-

etry in the limit of zero emittance. In this case, aβ = γz0kβrβ represents the normalized

radial position of the electron, since the initial radial position of the electron at the channel

entrance is assumed to be equal to rβ . Let d
2I/dωdΩ = SS(k, aβ, θ, φ) be the single-electron

spectrum, as given by Eq. (42). The radiation spectrum from a beam, SB(k, θ), can be

approximately calculated from SS by multiplying by the electron distribution function, fe,

and integrating over both radius (aβ) and over φ (from 0 to 2π for an axisymmetric beam).

For an axisymmetric beam,

SB(k, θ) =

∫ 2π

0

dφ

2π

∫ ∞

0

daβaβfe(aβ)SS(k, aβ, θ, φ). (77)
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For simplicity, a Gaussian radial beam distribution fe(aβ) is assumed

fe(rβ) = fe(aβ) = (2/a
2
rms) exp(−a2

β/a
2
rms), (78)

such that
∫∞
0
daβaβfe = 1 and

∫∞
0
daβa

3
βfe = a2

rms, where arms is the normalized RMS beam

radius, arms = γz0kβrb.

For a large number of betatron periods, the radial integration can be approximated

analytically. Let

SR =

∫ ∞

0

daβaβfeSS =

∫ ∞

0

daβaβfeŜSRn(k, aβ, θ), (79)

where Rn is the resonance function given by Eq. (48). At resonance k = kn(aβ) or, alterna-

tively, aβ = ar(k), where

a2
r = 2

[
n2γ2

z0kβ/k − (1 + γ2
z0θ

2)
]
. (80)

Furthermore, in the limit Nβ → ∞, Rn → ∆aβδ(aβ − ar), where ∆aβ = 2γ2
z0kβ/Nβaβkβ .

Hence, for Nβ → ∞, SS � ŜS∆aβδ(aβ − ar) and

SR � 2γ2
z0kβ
Nβk

fe(aβ = ar)ŜS(aβ = ar). (81)

In this limit, the spectrum of the radiation emitted along the axis (θ = 0) from a Gaussian

beam profile is

SB(θ = 0) =
∑
n

(4e2/c)γ2
z0Nβfe(ar)Fn(ar)/n, (82)

where sum is over odd harmonics n and Fn(ar) is given by Eq. (53) evaluated at a
2
β = a2

r =

2(n/k̂−1), i.e., the argument of the Bessel functions is αn = (n− k̂)/2, where k̂ = k/2γ2
z0kβ .

This is to be compared with Eq. (52), which gives the on-axis spectrum for a single electron.

Figure 5 shows a plot of d2I(0)/dωδΩ versus ω/2γ2
z0ωβ for the first several odd harmonics

with Nβ = 4. The solid curve shows the radiation from a single electron with aβ = 2,

as obtained from Eq. (52), indicating that radiation is emitted in well-defined harmonics.

The dashed curve shows the spectrum for a beam with a Gaussian radial distribution with

arms = 2, as obtained from Eq. (82). The effect of averaging over a distribution of electron
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FIG. 5. Normalized spectrum d2I(0)/dωδΩ (arbitrary units) versus ω/2γ2
z0ωβ from a single

electron with aβ = 2 (solid curve), Eq. (52), and from the analytic theory of a Gaussian beam with

arms = 2 (dashed curve), Eq. (82), for the first several odd harmonics with Nβ = 4. The bottom

plot is a blow-up of the top plot.
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orbits is clearly to smooth out the spectrum, since the frequency of the radiation emitted

by a single electron is a strong function of aβ.

In general, the integration over the beam distribution in Eq. (77) must be performed

numerically. The results of such a numerical integration of Eq. (77) are shown in Figs. 6-8

for the case of an axisymmetric beam with a Gaussian radial distribution with arms = 2.

The result for a single electron, as obtained from Eq. (42) with Nβ = 4 and aβ = 2, is

shown in Fig. 6, which shows the spectral density d2I/d�ωdΩ (normalized to αfγ
2
z0) versus

normalized frequency k̂ = k/2γ2
z0kβ and angle θ̂ = γz0θ, for (a) φ = 0 and (b) φ = π/2. The

results of averaging only over aβ (for fixed φ) are shown in Fig. 7, for (a) φ = 0 and (b)

φ = π/2. The results of averaging over only φ for aβ = 2 is shown in Fig. 8(a), whereas the

results of averaging over both φ and aβ are shown in Fig. 8(b). The effects of averaging over

aβ leads to a dramatic smoothing of the radiation spectrum.

VI. ION CHANNEL LASER

Under special conditions, e.g., sufficiently high electron beam quality, self-amplified spon-

taneous emission (SASE) can occur whereby the incoherent synchrotron radiation emitted

by the electrons is amplified via the ion channel laser (ICL) mechanism [14]. In the ICL

instability, the radiation beats with the betatron motion to create an axial v×B (i.e., pon-

deromotive) force that leads to bunching of the electron beam and growth of the radiation

field. This can lead to large levels of semi-coherent or coherent radiation. In SASE, the

incoherent, spontaneous radiation acts as a seed for the instability, in a manner analogous

to the SASE mode of operation in a free electron laser (FEL) [30].

There are important differences between the ICL and FEL mechanisms, however,

that limit the SASE mode of operation. For electrons undergoing betatron motion in a

plasma focusing channel, the resonant frequency of the radiation emitted along the axis is

ω = 2γ2
z0nωβ/(1 + a2

β/2), as indicated by Eq. (50). For an FEL, the resonant frequency

is ω = 2γ2
z0nωw/(1 + a2

w/2), where ωw = ckw = 2πc/λw, λw is the wiggler wavelength,
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FIG. 6. Normalized spectrum d2I/dωδΩ (arbitrary units) versus normalized frequency k̂ and

angle θ̂ from a single electron with aβ = 2 and Nβ = 4 for (a) φ = 0 and (b) φ = π/2.
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FIG. 7. Normalized spectrum d2I/dωδΩ (arbitrary units) versus normalized frequency k̂ and

angle θ̂ after averaging over a Gaussian aβ distribution with arms = 2 and Nβ = 4 for (a) φ = 0

and (b) φ = π/2.
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FIG. 8. Normalized spectrum d2I/dωδΩ (arbitrary units) versus normalized frequency k̂ and

angle θ̂ after (a) averaging over φ with aβ = 2 and (b) averaging over both φ and aβ with arms = 2

and Nβ = 4.
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aw = eBw/kwmec
2 is the wiggler strength, and Bw is the field amplitude of the wiggler

magnet. In an ideal FEL, aw is a constant since all the electrons experience the same value

of Bw. This is contrast to the focusing channel, in which aβ = γz0kβrβ is a function of both

the electron energy γz0 and the radial position of the electrons via the betatron amplitude

rβ . If a mono-energetic beam of finite radius is injected into a focusing channel (without

any special tapering), electrons at different radii will have different betatron amplitudes rβ,

different values of aβ, and hence different resonant frequencies.

Furthermore, for an ideal FEL with a planar wiggler of the form B = Bw cos(kwz)ex,

all of the beam electrons wiggle in the same plane with the same amplitude, i.e., u⊥ =

aw cos(kwz)ex. Consequently, radiation emitted by all the electrons will have similar polar-

ization. This is in contrast to the focusing channel, in which the betatron motion, and hence

the synchrotron radiation, will have a variety of polarizations in the x-y plane, depending on

the position and angle of the electron as it enters the channel. Hence, to amplify radiation of

a given frequency and polarization in a focusing channel, only those beam electrons with the

proper values of γz0 and rβ will be resonant with the radiation, and only a subset of these

will have the proper polarization. This is contrast to an ideal FEL, in which all the electrons

in a mono-energetic beam are resonant with the radiation field with the proper polarization.

This effect may be mitigated somewhat by using a drive beam with a highly elliptical cross

section, such that the resulting wakefield (or blowout channel) will be highly elliptical. This

could result in transverse focusing forces that are more planar and, consequently, betatron

oscillations and synchrotron radiation with nearly the same polarization.

It is straightforward to quantify some of the conditions necessary for SASE to occur in a

plasma focusing channel. In the following discussion, it is assumed that k2
βr

2
β � 1. Consider

an ideal mono-energetic electron beam of radius rb injected into a focusing channel such

that the beam centroid is along the z axis. A electron moving along the axis would have a

betatron amplitude of rβ = 0, whereas an electron residing at the edge of the beam would

have a betatron amplitude of rβ = rb. For the beam to emit radiation along the axis with a
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narrow bandwidth ∆ω/ω � 1, it is necessary that a2
β � 1 for all the electrons. This implies

that the radiation wavelength satisfy λ > πrb/γ. For a matched beam with a normalized

emittance εn, the matched-beam radius is rbm = (εn/γkβ)
1/2, and the condition a2

β � 1

implies

λ � πεn/γ. (83)

It is interesting to note the similarity of this condition with that usually required of a SASE

FEL [30], λ > 4πεn/γ.

The condition ∆ω/ω � 1, however, is not sufficient for the SASE process to occur.

A more stringent condition is that the normalized axial energy spread ∆γz/γz be small

compared to the so-called Pierce or gain parameter ρ, i.e., ∆γz/γz � ρ, where by analogy

with an FEL,

ρ =

[
aβkpb
4γ3/2kβ

F 2
∆(aβ)

]2/3

, (84)

where kpb = 4πnbe
2/mec

2, nb is the beam density, and

F∆(aβ) = J0

(
a2
β/4

1 + a2
β/2

)
− J1

(
a2
β/4

1 + a2
β/2

)
. (85)

In terms of the beam current Ib = ecπnbr
2
b , and evaluating the expression for ρ at rβ = rb,

gives

ρ =
(
IbF

4
∆/4γIA

)1/3
, (86)

where IA = mec
3/e = 17 kA. Using the equations of motion for an electron in a focusing

channel, Eqs. (8)-(11), the normalized energy spread is ∆γz/γz � a2
β/4, for a beam with a

centroid along the axis. Hence, ∆γz/γz < ρ implies a2
β < 4ρ or λ > πrb/(2γρ

1/2). For a

matched beam, this gives

λ >
πεn
4γρ

. (87)

This is considerably more stringent that the usual FEL constraint λ > 4πεn/γ, since typically

ρ � 1. For the parameters of the E-157 experiment, ρ � 5× 10−3.

In principle, it may be possible to tailor the energy distribution and radial profile of the

beam such that a greater fraction of the beam electrons are in resonance with the radiation
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field. For example, consider a mono-energetic, very narrow beam of width ∆rb injected

off-axis such that the centroid of the beam executes betatron oscillations of amplitude rβ =

rb0 with rb0 � ∆rb [40]. In this case, all of the electrons in the beam would undergo

approximately the same betatron orbit and would have approximately the same value for

aβ, i.e., the spread in aβ is given by ∆aβ/aβ � ∆rb/rb0. In this case the condition ∆ω/ω � 1

implies ∆rb/rb0 � (1 + a2
β/2)/a

2
β , which in principle, could be easily satisfied. The more

stringent condition, ∆γz/γz < ρ, implies ∆rb/rb0 < 2ρ/a2
β , which could be satisfied for

sufficiently small values of aβ.

Even if the condition ∆γz/γz < ρ is satisfied, it is not clear that the SASE process would

occur. In a conventional FEL, SASE requires that a number of conditions be satisfied (in

addition to ∆γz/γz < ρ) [30], i.e., εn < γλ/4π, Nβλβ � LG, LG < LR, and Nβλ < Le, where

Nβ is the number of betatron oscillations, LG � 0.046λβ/ρ is the gain length, LR = πw2
0/λ is

the Rayleigh length of the radiation with spot size w0, and Le is the electron bunch length.

Furthermore, for the case of an ICL driven by a narrow beam with a centroid undergoing

betatron oscillations, it is likely that the gain (i.e., ρ) is reduced since the geometric overlap

between the electron beam and the radiation is reduced, due to the betatron motion of the

centroid. Such novel ICL configurations require a detailed analysis.

VII. SUMMARY

Spontaneous radiation emitted from an electron undergoing betatron motion in a plasma

focusing channel was analyzed starting from basic principles. Application of these results to

the E-157 experiment and to the ICL were examined. Important similarities and differences

between SASE in an FEL and in an ICL were delineated. In particular, the spontaneous

radiation emitted along the axis of a plasma focusing channel from a single electron occurs

near the resonant frequency ωn = 2γ
2
z0nωβ/(1 + a2

β/2)
1/2. The role of the betatron strength

parameter aβ is analogous to that of the wiggler strength parameter aw (or Kw) in FEL

physics. In Ref. [14], the ICL was considered only in the limit a2
β � 1. When a2

β � 1,
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radiation is emitted primarily at the fundamental frequency ω = 2γ2
z0ωβ and is independent

of aβ. For aβ >∼ 1, however, the resonant frequency is a strong function of aβ and radiation is

emitted in numerous harmonics extending out to the critical harmonic number nc = 3a
3
β/4.

This is the case in the E-157 experiments, in which aβ ∼ 2− 50.

In an ideal FEL, the wiggler strength parameter aw is a constant (a function of only the

magnetic field of the wiggler) for all of the beam electrons. However, in an ICL, aβ = γz0kβrβ

depends on both the electron energy γz0 and the betatron amplitude rβ. Since rβ , and hence

aβ, is different for every electron in a typical beam, this places serious limits on the possibility

of realizing a SASE ICL. For an electron beam with a centroid along the z-axis, a radius rb

and aβ(rb) > 1, the radiation from the beam is no longer emitted at discrete harmonics as it

would be from a single electron with rβ = rb. Rather, since 0 < aβ <∼ aβ(rb) for the electrons

in the beam, the resulting radiation is in the form of a broad continuum as indicated by Figs.

5 - 8, even for the case of an initially mono-energetic beam. In the limit a2
β � 1, the radiation

from the beam could be nearly monochromatic at the fundamental frequency. The condition

a2
β � 1 implies λ � πεn/γ for a matched beam, which is similar to the criterion λ > 4πεn/γ

often quoted for a SASE FEL. The condition a2
β � 1, however, is not sufficient to insure that

the SASE ICL process will occur. A more stringent condition for the occurrence of SASE

is on the axial energy spread of the beam within the focusing channel, i.e., ∆γz/γz � ρ,

where ρ is the effective Pierce (or gain) parameter. Again, since rβ varies across the beam,

there exists a large energy spread ∆γz/γz � a2
β/4. The condition ∆γz/γz � ρ implies

λ > πεn/(4γρ) for a matched beam. Since typically ρ � 1, this restriction on the radiated

wavelength λ > πεn/(4γρ) is much more stringent than that in a conventional SASE FEL.

Furthermore, the betatron orbits in a typical beam in a focusing channel are not polarized

in the same plane as they are in a conventional FEL. This also can reduce the gain in a

SASE ICL. These arguments, however, assumed an untailored electron beam centered about

the channel axis. It may be possible to relax this constraint on the radiated wavelength in a

SASE ICL by appropriately tailoring the electron beam, for example, a narrow electron beam

injected off-axis such that all of the beam electrons execute approximately the same betatron
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orbit. Such novel ICL configurations require further analysis to assess their viability.
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