RNA POLYMERASE IN THE CENTRAL NERVOUS SYSTEM

S. C. Bondy and H. Waelch

N. Y. Psychiatric Institute and College of Physicians and Surgeons,
Columbia University, New York, N. Y.

(Received 18 May 1964)

The role of RNA in protein synthesis, the high rate of protein turnover in the brain (1,2) and the possible involvement of nucleic acids (3) and proteins (2) in the higher functions of this organ, make a determination of cerebral RNA (ribonucleic acid) polymerase of interest. Mammalian RNA polymerase has not been purified but its localization in the nucleus of the cell, as well as its dependence on the presence of the four constituent nucleotides, has been demonstrated (4). We wish to present data on the activity of the enzyme in the whole, mature and immature brain and liver, and in various regions of the brain. The experiments were carried out on rabbits.

Methods

Cerebral and hepatic nuclei were prepared by the method of Siekevitz (5). The tissue was homogenized in 0.88M sucrose, the homogenate being layered over 2.2M sucrose, with subsequent centrifugation at 60,000 x g for 90 minutes. Examination of the resulting pellet under the phase contrast microscope showed a high proportion of intact nuclei with little contamination by other morphological components. The nuclei were suspended in isotonic saline, centrifuged at 1,000 x g for ten minutes, and the precipitate was resuspended in saline for the enzyme assay.

The incubation of the nuclei was carried out for 3 minutes at 37° during which time the RNA polymerase activity was found to be linear. The reaction mixture was similar to that of Weiss (4) the trinucleotide dependent incorporation of C14 labelled ATP into RNA being determined.
reaction was stopped by the addition of 100 mg unlabelled ATP (6) followed by 1 mg serum albumin and 8 ml of ice cold 5% TCA to each tube. The precipitate thus formed was separated by centrifugation and washed in cold 5% TCA 3 times, after which the precipitate was dissolved in 1 ml 70% formic acid, the solution evaporated to dryness on planchets, and counted in a Nuclear Chicago Low Background Counter.

The results were expressed on a DNA basis in order to relate enzyme activity to the number of nuclei present. The DNA was estimated on an aliquot of the nuclear suspension by Burton's (7) modification of the original method of Dische.

TABLE I

<table>
<thead>
<tr>
<th>Properties of RNA Polymerase from Nuclei of Whole Rabbit Brain.</th>
<th>RNA polymerase (μmoles adenine incorporated into RNA per mg. DNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Complete assay system</td>
<td>605</td>
</tr>
<tr>
<td>2. 1 - MnCl₂</td>
<td>47</td>
</tr>
<tr>
<td>3. 1 - (NH₄)₂SO₄</td>
<td>85</td>
</tr>
<tr>
<td>4. 1 - CTP</td>
<td>116</td>
</tr>
<tr>
<td>5. 1 - GTP</td>
<td>93</td>
</tr>
<tr>
<td>6. 1 - UTP</td>
<td>85</td>
</tr>
<tr>
<td>7. 1 preincubated 15 min. at 37° with 1µgDNA, 4µmoles MgCl₂</td>
<td>23</td>
</tr>
</tbody>
</table>

1.15 ml incubation mixture contained 0.2 ml nuclear suspension, 10µmoles Mn Cl₂, 80µmoles tris - HCl pH 8.1, 10µmoles mercaptoethanol, 20µmoles NaF, 10µmoles phosphoenolpyruvate, 20µmoles (NH₄)₂SO₄, 2µmoles CTP, GTP and UTP, 100γ pyruvate kinase, 20γ calf thymus DNA and 0.45 μC S-C¹⁴ ATP (9.1 mc/mM).

Results and Discussion

The enzyme from rabbit brain closely resembled the liver enzyme in its requirements for all four nucleotides, for a divalent metal ion, and high ionic strength (4,8). The enzyme was inactivated by a 15 minute preincubation with 1γ of DNAase in the presence of magnesium chloride.

Although the in vitro measurements of an enzyme may not reflect its in vivo activity, the data presented here are of interest for a variety of reasons (for representative results see Table II).

Polymerase activity of the nuclei from whole brain is considerably
TABLE II

RNA Polymerase of Brain and Liver (Adult and Newborn).

<table>
<thead>
<tr>
<th>Brain</th>
<th>Adult</th>
<th>Newborn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex (cerebral)</td>
<td>1010</td>
<td>520</td>
</tr>
<tr>
<td>Corpus callosum</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>Thalamus, hypothalamus</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>240</td>
<td>150</td>
</tr>
</tbody>
</table>

Incubation conditions as in Table I. Values corrected for blank obtained after incubation in the absence of CTP, UTP, GTP.

RNA polymerase in cerebral cortex is higher than in other regions of the rabbit brain. The average activity of the brain nuclei is higher than that from liver. This may be a reflection of a rate of protein turnover in the neurons at least as high as that in liver cells, a possibility suggested also by results on the incorporation of amino acids into ribosome preparations (9). Nuclei prepared from the cerebral cortex were much more active than those from other areas of the brain. If the assumption is made that glial nuclei, irrespective of their regional origin, have the same enzymatic activity, the polymerase activity of the cortical neurons would be considerably higher than the values obtained in the mixed populations of nuclei. The low polymerase activity of the regions of the brain other than the cortex are of interest since some of these regions also contain a considerable number of neurons. It appears that the correlation between high polymerase activity is not with neurons in general but rather with the cortical neurons. It should be noted that in the immature brain, polymerase activity is lower than that in the mature brain, a property which this enzyme shares with many other enzymes which increase in their concentration and activity during the maturation of the brain (10). Experiments in which C14 UTP was used in place of C14 ATP gave essentially the same results.

Summary

RNA polymerase in cerebral cortex is higher than in other regions of the rabbit brain. The average activity of the brain nuclei is higher...
than that of the liver nuclei. During development, the activity of RNA polymerase increases with maturation.

Acknowledgements

We are grateful to Dr. A. Neidle for his advice and suggestions during the course of this work.

This work was supported in part by grants from the National Institute of Neurological Diseases and Blindness (B-557), National Institutes of Health, and the Supreme Council, 33° Scottish Rite Masons of the Northern Jurisdiction, United States of America, and by a contract between the Office of Naval Research and the Research Foundation for Mental Hygiene, Inc. (N.Y. Psychiatric Institute Branch).

References

6. M. B. SPORN, Personal communication.