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ABSTRACT OF THE THESIS

Better Cardiac Image Segmentation by Highly Recurrent Neural Networks

by

Jiaxin Li

Master of Science in Computer Science

University of California San Diego, 2020

Professor Garrison Cottrell, Chair

Cardiac magnetic resonance (CMR) image segmentation has been a crucial tool for

medical professionals to diagnose cardiovascular diseases (CVDs), which are the leading causes

of death throughout the world. Segmenting CMR images is very time consuming and increases

the cost of CVD diagnoses and treatment, making them inaccessible to many. Automated CMR

image segmentation models strive to lower the cost of CVD diagnosis, but such models must be

efficient and accurate in such failure-sensitive domains as human medicine. This thesis proposes

to apply γ-Net, a recurrent extension of the popular U-Net, to automatically perform high-quality

CMR image segmentation. γ-Net is a recent development by Linsley et al. of Brown University,

and has exhibited the ability to outperform U-Net on very small datasets, which is beneficial

ix



given the very limited amount of patient CMR data available to the scientific community. γ-Net

leverages biological principles backed by anatomical evidence as well as attention mechanisms

in order to achieve its high efficiency.

In this thesis, we examine the following topics: (a) γ-Net’s resilience to smaller training

set sizes, which is cruicial when little patient data is available; (b) resilience to variation in

training and validation data, which is shown to significantly degrade performance in state-of-the-

art models; and (c) the ability to transfer to new datasets with minimal fine tuning, which saves

training cost for practical applications. We have found that (a) γ-Net significantly outperforms

an equivalent U-Net in validation performance when trained using a reduced training set; (b)

γ-Net is much more resilient to input variations than U-Net; and (c) γ-Net generalizes to new

datasets better than comparable U-Nets.
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Chapter 1

Introduction

1.1 CMR Segmentation

In today’s age of advanced medical technologies, cardiovascular diseases (CVDs) still

remain the leading cause of death in the United States and around the world, beating cancer by a

wide margin in number of deaths, according to the World Health Organization [1]. Notably, the

worldwide deaths caused by CVD is almost double the number of that caused by cancer. With

on-time diagnosis and proper care, it is possible to reduce the fatality rate of CVDs [1, 33]. Thus,

improving the tools and techniques for identifying and analyzing CVD pathologies is paramount

for furthering human medicine.

For decades, cardiovascular magnetic resonance (CMR) imaging, also known as cardiac

MRI, has been one of the principle ways to diagnose CVDs, and to aid medical professionals

in providing healthcare and treatments [1, 33]. Crucially, CMR images are often used by

professionals to infer the Left Ventricle Ejection Fraction (LVEF), which is a measure of the

heart’s ability to circulate blood inside the body, and an important predictor of various major

CVDs, such as myocardial infarction and dilated cardiomyopathy [23]. LVEF is parameterized

by two values: the end diastole volume (EDV), which is the volume of the left ventricle (LV)

when fully expanded; and the end systole volume (ESV), when the LV is fully contracted.

However, inferring EDV and ESV usually requires medical professionals to manually segment

CMR images, which is a very laborious process. Manual segmentation of the CMR data for
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Figure 1.1. The CMR Segmentation Task And Inter-Observer Variability [32]

a single patient will take a professional around 30 minutes, making it infeasible to calculate

LVEF for large numbers of patients. Furthermore, previous work has found that, due to the large

variance in image quality and visibility of segmentation borders, manual segmentations of CMR

images exhibit low reliability and high inter-observer variability (see Figure 1.1) [23].

To address these problems, we propose a robust and lightweight recurrent neural network

(RNN) model to perform LV segmentation on horizontal (short-axis) CMR images. We will

compare our model with feed forward fully-convolutional networks, which are currently the state-

of-the-art for image segmentation tasks. We will also demonstrate our model’s interpretability

by examining its convergence on a “best-effort” output through several time steps.

1.2 Neural Networks

Artificial neural networks (ANNs) are a class of machine learning models inspired by

the brain, in which very large layers of specialized brain cells, called neurons, leverage the

weighted connections between them to represent and process complex signals. It has been shown

that artificial neural networks are capable to mathematically to approximate Borel-measureable

2



Figure 1.2. A Fully-Connected Neural Network [19]

functions to an arbitrary degree of accuracy, and optimize a wide range of traditionally difficult

machine learning problems without requiring manual parameter selection or feature engineering.

Like many other machine learning models, neural networks require training data to learn

the correct representations of the proposed problem, and make informed predictions. Unlike

many other models, the inference process of neural networks is fully differentiable, and learning

for the neural network can be simplified to backward error propagation through network layers

via linear operations. Not only does this simplify model development and allow an unprecedented

level of creativity for machine learning researchers, the learning process is also computationally

efficient and highly parallelizeable, which makes it possible to construct and run very complex

neural network models on limited hardware. This is ideal in both the scientific community, where

computation resources are also limited; and also production environments, where it is desired to

maximize computation efficiency for minimum cost.

1.2.1 Neural Network Basics

Neural networks achieve their impressive learning capacity by propagating input infor-

mation through multiple layers of individual processing units, or neurons, wherein each neuron

calculates a weighted sum from all its connections to neurons in the previous layer, then applies

3



Figure 1.3. Interaction At A Single Neuron In A Fully-Connected Neural Network

a non-linear function to the sum to produce an output. This process is known as the forward pass,

where the model accepts an input and returns its prediction.

The network’s output is then compared against the known ground truth the output that

we want the model to learn. The result of this comparison is used to obtain a loss metric,

which represents the current performance of the neural network, or rather, a measure of the

model’s error. To minimize the loss, we need to calculate the gradient of the loss value with

regard to every weight in every layer of the neural network. This is done via a process called

back-propagation, where the loss is propagated iteratively back through the network. Apart

from a few, relatively unpopular neural network models such as the Spiking Neural Network, all

modern neural networks are trained via back propagation.

Back-propagation starts by calculating the loss with regard to the output of each individual

neuron in the output layer. Using the chain rule, we then calculate the loss gradient with regard

to the internal weights and current activity at each neuron, and calculate the gradient with regard

to both the inputs and the weights of the final layer. The gradient with regard to the layer inputs

is our back propagated loss.

After we have propagated loss through the output layer, we can proceed to calculate the

gradient at each neuron in the layer before the output layer in the same manner, and repeat for

4



the next layer, until we have calculated the loss gradients for neurons in the input later. Once we

have calculated the gradients with regard to every parameter in the network, we can update the

parameters using gradient descent algorithms such as RMSProp and Adam.

So far, we have illustrated neural networks which are fully connected, where each neuron

accepts connections from all neurons in the previous layer. This is, however, not the optimal

neural network architecture for most tasks, which require specific topological constraints in the

network to learn more efficiently. We will illustrate neural networks that are more optimized to

specific tasks below.

1.2.2 Convolutional Neural Networks

In deep learning for image-related tasks, Convolutional neural networks, or CNNs, have

been found to be wildly successful. CNNs apply a form of spatial colocation constraint to the

general neural network, by forcing network layers to only learn a small “kernel” with which

to convolve on comparatively large images. These kernels are also known as “features,” which

intuitively correspond to their role in CNN layers: generating activation maps over the input

image that correspond to specific local image features. In other words, a pixel value in an

activation map represents the similarity between the corresponding kernel and the local patch of

image centered at said pixel. Similar mechanics have been found to exist within early human

vision pathways.

At a high level, convolutional neural networks model a hierarchical information pro-

cessing framework, where each layer or functional block in the network represents one more

level of abstraction from its input; the farther the layer is from the network input, the more

abstract the information is in the layer. For example, the first convolutional layer in a CNN

often learns features that match to object edges or corners, while the last layer in the same CNN

may learn features that will match to the picture of a cat’s ear or a dog’s muzzle. To facilitate

this learning, it’s common for CNNs to utilize pooling layers, which aggregate activation with

regard to spatial patches in the input activity, in order to decrease the spatial dimension of the
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Figure 1.4. Example Convolutional Neural Network (VGG 16 [28])

activity maps; CNNs also tend to increase the number of features learned in their later layers, as

features become increasingly abstract and global farther down the network. The pooling layers

(in particular, max-pooling layers) also allow the CNN to exhibit translation invariance to an

extent, although recent studies have shown that this is not entirely true [34].

The receptive field (RF) is an important concept with regard to CNNs. In neuroscience,

the receptive field of a certain neuron represents the set of neurons at the bottom layer of the

network, whose excitation will result in the excitation of said neuron. In a convolutional neural

network, the receptive field of a particular output unit is the set of input units, from which there

is a path to said output unit in the computation graph. For a CNN to effectively learn global

features, i.e. large features in the image that may span the entire image, the CNN must be deep

enough such that the receptive field in every unit in the output layer is at least as large as the

input image.

In recent years, a large number of image processing neural networks are constructed by

stacking a large number of convolutional layers, achieving impressive processing depth, hence

the invention of the term Deep Learning. Deep CNN networks have achieved superhuman

performance in previously difficult problems such as image classification, and even in hard

time-series problems such as speech modeling. Fully convolutional networks such as the FCN,

Faster R-CNN and U-Net have been shown to perform excellently on image segmentation tasks.

In this work, we will use state-of-the-art fully convolutional networks, specifically the U-Net, as
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Figure 1.5. CNN Receptive Field [13]. The yellow regions are the receptive field of the single
cell in layer 3, and the green regions are the receptive field of the single cell in layer 2.

the baseline model to compare to.

1.2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of artificial neural networks where neurons

may receive input from its own layer at previous timesteps, and not necessarily from layers

before it. This allows self- and within-layer connections, and introduces persistent activity states

to the network model, enabling the network to become stateful, i.e. able to “remember” its own

processing history, unlike the stateless feed-forward networks. Stateful models are often found

to perform well in time series modeling, where the output of the model depends not only on the

current input, but also on inputs from the previous timestep and beyond. RNN models such as

the gated recurrent unit (GRU) and the long-short term memory (LSTM) architectures have been

shown to excel at time-series modeling, and are able to achieve excellent performance in tasks

such as simple language modeling and music generation [20].

Another use case of recurrent networks, aside from time-series modeling, is increasing

effective receptive field size with minimal increase in the number of network parameters. This is

especially useful in convolutional neural networks, where receptive field sizes of output units
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Figure 1.6. Different RNN Connectivity Schemes [30]. Shown are the three major connectivity
schemes in recurrent networks: bottom-up (feed-forward), lateral (horizontal), and top-down.

are constrained by network depth, filter sizes and spatial pooling. In feed forward CNNs, large

receptive fields are only achievable by increasing the size of convolution filters in each layer

or the number of convolutional layers in the network, both of which significantly increase the

number of parameters in the network. In contrast, recurrent convolutional networks are able to

reuse the convolution filters in the same layer by passing its own output back as its input, thus

eliminating the need to make the filters larger or increase the number of layers. In addition, such

recurrent connections can enable lateral, or horizontal contextual information processing, which

is supported by anatomical evidence [31, 26]. It has been shown that recurrence in convolutional

neural networks significantly increases the effective depth of the recurrent layers, thus enabling

efficient learning of global, context-rich features [15].

Compared to most feed-forward neural networks, modern recurrent neural network

architectures are often established on the basis biological knowledge, building on discoveries

from fields such as neuroscience, psychology and cognitive science. As a result, these networks

can exhibit behaviors similar to those found in the human brain [14].

Because the weights of recurrent neural networks depend not only on its input data, but

also on its own persistent activity states during the forward pass, a special back-propagation
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Figure 1.7. Unrolling A Recurrent Neural Network [20]

method called back-propagation through time (BPTT) must be used to train them. In back

propagation, the recurrent network is ”unrolled,” such that network weights and activites at

each time step are treated separately, and the computation graph becomes a direct acyclic graph.

Back-propagation is then performed normally, taking care to calculate loss gradients with regard

to the same model weights at each time step. After back propagation is complete, the gradients

for the same weights at different time steps are aggregated into single values, and the gradient

optimizer updates the weight.

Due to the need to unroll the network through many time steps during the training process,

training recurrent neural networks can become prohibitively expensive in terms of processing

and storage costs, so special care must be taken to make efficient use of network parameters.

This is especially the case with large recurrent networks.
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Chapter 2

Related Works

2.1 Image Segmentation

Image segmentation is the task of producing pixel-wise labels of an image in one of

several possible categories, segmenting the image into groups of pixels that represent different

regions of interest. In recent years, the image segmentation task is becoming incredibly important

with the rise of advanced computer vision, finding applications from automated driving to large-

scale medical imaging processing.

Early attempts at image segmentation using neural networks often involved using slid-

ing windows to classify image patches centered at each pixel, thus producing labels for each

individual pixel [7]. This process is not only incredibly expensive, as each window must be

individually classified, but it also faces the dilemma of optimizing for either spatial resolution

versus contextual information: small windows offer good spatial resolution but little spatial

context, while large windows provide more context but poor resolution.

More recent approaches to the image segmentation problem often rely on fully convolu-

tional networks, which do away with many of the above mentioned tradeoffs.

2.1.1 Fully Convolutional Networks

It has been argued that fully convolutional networks (FCNs) are the most important

development with regard to the image segmentation task. Unlike the above mentioned methods,
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Figure 2.1. FCN Architecture proposed by Long et al. [17]

FCNs are capable of performing a single-pass computation on the image and produce pixel-wise

labels, instead of iterating over a large number of image patches. Relying purely on convolution

operations and foregoing all fully-connected layers, FCNs directly compute a non-linear mapping

in the original image space, which not only significantly accelerates the segmentation process, but

are also generalizable to arbitrary image sizes, owing to FCN’s fully convolutional architecture

[17].

Crucially, early FCNs such as that proposed by Long et al. produce segmentations by

directly combining highly abstract feature maps in the downsampling path, as shown in 2.1,

thus collapsing high-level abstract features with low-level, concrete features without additional

processing. We note that there is still a conflict between spatial resolution and and contextual

information in this early fully convolutional network, depending on the design of upsampling

paths [32].

2.1.2 DenseNet

Another notable fully convolutional network is the Densely Connected Convolutional

Network (DenseNet), proposed by Huang et al in 2017 [10]. A major departure from the early

FCNs, the DenseNet is formed by a mirrored series of downsampling and upsampling blocks.
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Figure 2.2. DenseNet Architecture, 5 functional blocks with all connections shown. [10]

Each functional block is composed of a series of convolutional layers and an up- or down-

sampling layer, and receives input from all blocks preceding it via feature map rescaling and

concatenation.

While originally applied to image classification, the DenseNet architecture can be easily

adapted for image segmentation, as studied by Zhu et al [35] and Krešo et al [11]. Compared

to early FCNs, DenseNet integrates feature maps at different levels of abstraction at every

processing block via feature map concatenation, and is shown to produce segmentations that are

both more detailed and more contextually accurate. Krešo et al. noted, however, that DenseNet

is difficult to train due to overfitting in its upsampling blocks, likely due to the densely connected

nature of the network. It has been shown that variety in the training data composition is crucial

to obtaining better performance in DenseNets [11].

2.1.3 U-Net

U-Nets, named after their topology, are a class of Fully Convolutional Networks utilizing

both a symmetric, bottlenecked auto-encoder architecture, and skip connections between layers

of the same downsampling depth in the network [27]. This is in contrast to previous FCNs, which

have much shorter upsampling paths and no skip connections to ground the upsampled outputs.
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Figure 2.3. U-Net Architecture, 5 depth levels. [27]

Similar to the later DenseNet, U-Nets combine feature maps from the upsampling path and skip

connections via feature map concatenation. U-Nets are known to achieve high segmentation

performance using less training data than previous fully convolutional networks.

A unique feature of the U-Net is the two diverging processing pathways, which focus on

contextual information and spatial resolution, respectively. The downsampling-upsampling path,

the part of the network shaped like a ”U,” allows the network to process spatial relationships

and global context, the extent of which depends on the network’s depth. At the same time, the

skip connections at each depth level provides local spatial information which is integrated with

the upsampled feature maps. By recombining information from the diverged pathways, U-Nets

are able to produce both spatially detailed and context-aware segmentations, thus averting the

context-vs-localization issues that plagued earlier models.

2.1.4 γ-Net

The γ-Net, developed by Linsley et al., is a recent recurrent extension to the popular

U-Net, which employs recurrent horizontal and top-down processing pathways, as well as self-

attention. This allows γ-Net to converge through several time steps onto an optimal output for
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Figure 2.4. γ-Net converging to a ”best-effort” output through several timesteps. [14]

each input image, and requiring much less training data than comparable feed-forward models to

reach the same performance. We explain the architecture of the γ-Net in detail below.

Horizontal Gated Recurrent Unit

The Horizontal Gated Recurrent Unit (hGRU) is γ-Net’s most important addition to

the standard U-Net [14, 15]. The hGRU emulates biological neural networks, specifically

connections in the mammalian visual cortex, which are known to exhibit a range of contextual

phenomena. By using a gated, recurrent convolutional architecture, the hGRU allows information

to ”spread” horizontally in its activity map for several time steps, which gives the network the

ability to learn long-range spatial dependencies.

In the traditional Gated Recurrent Unit (GRU), a “update” gate and a “forget” gate are

implemented as part of the recurrent processing, and these gates have been shown to be critical

for maintaining information over long time intervals. Notably, the hGRU explicitly separates

inhibitory and excitatory connections, which is commonplace in biological neural networks.

This explicit separation adds additional constraints to the hGRU architectre, allowing it to learn

more effectively. Linsley et al. have demonstrated that this inhibition-excitation implementation

allows the network to emulate the effect of lateral inhibition, which is an important phenomenon

in early human vision that enhances edge detection and increases feature salience.
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Figure 2.5. hGRU circuit. The hGRU explicitly separates the inhibitory and excitatory stages of
the recurrent processing, constraining the model further and increasing training effectiveness.
[15]

The hGRU was inspired by the recurrent neural model of contextual interactions originally

developed by Mély et al [18]. The original neurological model can be expressed as the following

differential equations:

ηḢ(1)
xyk + ε

2H(1)
xyk = [ξ Xxyk− (αH(1)

xyk +µ)C(1)
xyk]+ (2.1)

τḢ(2)
xyk +σ

2H(2)
xyk = [γC(2)

xyk]+ (2.2)

where

C(1)
xyk = (WI ∗H(2))xyk

C(2)
xyk = (WE ∗H(1))xyk

Here, X ∈RW×H×K is the forward drive which may come from earlier feed-forward convolutional

layers, H(1) ∈ RW×H×K is a intermediate internal state known as “circuit input”, and H(2) ∈

RW×H×K is the output activity of the hGRU. The WI and WE convolution kernels model
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hypercolumn activity in early human vision, and have been found consistent with anatomical

data. C(1)
xyk and C(1)

xyk are the inhibition and excitation activities calculated during each time step.

η ,τ,σ and ε are time constants.

From the above, Linsley et al derived the following difference equation in order to

quantize the learning process for computer models, by applying Euler’s method to the differential

equations. Here we assume η = τ and σ = η , and set ∆t = η/ε2.

H(1)
xyk [t] = ε

−2[ξ Xxyk− (αH(1)
xyk [t−1]+µ)C(1)

xyk[t]]+ (2.3)

H(2)
xyk [t] = ε

−2[γC(2)
xyk[t]]+ (2.4)

where ·[t] denotes the activities at the t-th time step. This gives us a set of usable operations for

training the hGRU.

Linsley et al further improved the above model by: (1) adding learnable 1×1 convolu-

tional gates at each time step, represented by U; (2) asserting equality between inhibition and

excitation kernels, i.e. W = WI = WE ; and (3) applying squashing non-linearity to intermediate

activities.

To obtain the activities at each stage of the hGRU for one timestep, the following

computations are performed. First we obtain the circuit input, H(1)[t] by the following:

G(1)[t] = σ(U(1) ∗H(2)[t−1]+b(1)) (2.5)

C(1)
xyk[t] = (WI ∗ (G(1)[t]�H(2)[t−1]))xyk (2.6)

H(1)
xyk [t] = ξ (Xxyk−C(1)

xyk[t](αkH(2)
xyk [t−1]+µk)) (2.7)

where ξ is the non-linearity function, U(1) is similar to the ”forget” gate in GRU, b(1) is the

bias of the ”forget” gate, αk and µk are scalar parameters controlling the linear and quadratic

components of the inhibition activity. Importantly, we use ReLU as the non-linearity function as

opposed to the tanh function proposed in the original hGRU paper, as ReLU has been shown to
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Figure 2.6. Comparison between GRU (a) and hGRU(b). The hGRU explicitly separates
inhibitory and excitatory processing, further constraining the training process [15]

improve hGRU’s learning efficiency [15].

The circuit output is computed as following:

G(2)
xyk[t] = σ((U(2) ∗H(1)[t])xyk +b(2)k ) (2.8)

C(2)
xyk[t] = (W∗H(1)[t])xyk (2.9)

H̃(2)
xyk [t] = ξ (κkH(1)

xyk [t]+βkC
(2)
xyk[t]+ωkH(1)

xyk [t]C
(2)
xyk[t]) (2.10)

H(2)
xyk [t] = ηt(H

(2)
xyk [t−1](1−G(2)

xyk[t])+ H̃(2)
xyk [t]G

(2)
xyk[t]) (2.11)

where U(2) is similar to the ”update” gate in GRU, b(2) is the bias of the ”update” gate, ξ is the

non-linearity function, κ , β and ω are learnable scalar parameters controlling the quadratic and

linear components of both H(1)[t]) and C(2)[t], and η is the set of scalar parameters controlling

the weight of each time step. H̃(2)[t] is the ”candidate” activity, which is integrated with the

previous activity H(2)[t−1] into the output activity for the current time step, H(2)[t].

It has been shown that modern feed-forward convolutional networks need considerable

depth to achieve large receptive field (RF) sizes, which makes processing global contextual

information incredibly expensive in terms of model size (number of parameters), as well as

computation and memory costs. Compared to traditional feed-forward networks, the hGRU

achieves high effective receptive field (RF) area with minimal network depth and efficient use of

weights, by reusing the save horizontal processing kernels through all its execution time steps.

It has been shown that a very small hGRU can achieve the same performance as very large
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Figure 2.7. The Pathfinder Task requires the model to integrate global contextual information
for the correct solution. Traditional feed-forward CNNs either struggle with inadequate RF size
or inefficient use of parameters, while the hGRU solves this problem with minimal network
depth and parameter count [15].

feed-forward networks in tasks that require global context, a prime example of which is the

Pathfinder Task, a synthetic task where models are trained to determine if two dots in the input

image are connected by a dashed path.

γ-Net Architecture

The γ-Net Architecture extends the U-Net architecture, adding both horizontal and top-

down information pathways during recurrent processing. γ-Net does not remove any component

of the base U-Net architecture, although it does decrease the block sizes at each layer of the

network to allow more parameter-efficient learning through recurrence.

The horizontal and top-down connections are implemented by incorporating a modified

version of the hGRU, the Feedback Gated Recurrent Unit (fGRU), into each layer of the U-Net.

We note that the fGRU differs from hGRU in that it does not enforce the source of its two input

tensors; in hGRU, the module’s outputs are always routed back to itself as previous the activity

H(2)[t−1], and the other input is always the forward drive, but fGRU allows arbitrary contextual

input in place of the previous activity, which enables a general context-integration operation

between the two input tensors. Much like the hGRU, the fGRU is a anatomically-constrained

method to incorporate contextual information into the forward drive in recurrent processing.
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Figure 2.8. A 9-block, 4-depth level γ-Net Architecture. The black, blue and green components
in the graph denote the original, feed-forward U-Net architecture, while the red components
mark the γ-Net modifications. Note that the fGRU units in the graph do not accept their own
hidden activities, but instead pass their hidden activities to the fGRU in the upsampling block of
the same layer, and receive hidden activites from said fGRU. Additionally, top-down connectivity
is implemented by concatenating the fGRU activities of each layer below the current layer along
the feature dimension in the upsampling path, which are then concatenated with the skip activity
before the convolutional block. The information flow at each layer of the network resembles a γ ,
hence the name.

Crucially, the fGRU allows for a key innovation in γ-Net: instead of treating each

recurrent fGRU layer as its own self-contained module, and performing recurrent computation

independently for each, γ-Net treats the entire network as one recurrent “cell,” and allows data

to flow through all its modules in a single time step. In addition to propagating information

horizontally, this also enables top-down information flow. Through this highly interconnected

architecture, the output of each functional block in γ-Net becomes a highly non-linear function

of every other functional block, enabling complex computations with a relatively small number

of parameters.
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Figure 2.9. The Global and Local Attention Layer [16]. The input volume is split into two
distinct pathways, the global attention and local attention pathways, each of which learns “what”
and “where” to attend, respectively. The global and local attention maps are then integrated to
produce a attention volume of the same shape as the input volume, which can then be used for
multiplicative attention.

γ-Net also implements a form of self-attention, Global And Local Attention (GALA), in

order to further constrain internal activities and improve performance [16]. The Global and Local

Attention layer, as the name suggests, splits incoming information into two distinct pathways –

local and global – then recombines the two forms of attention to produce a final attention volume

which can be applied to the input data.

We note that the GALA self-attention mechanism essentially emulates the design phi-

losophy of the U-Net architecture, by constructing separate information processing pathways

for both context and localization, then integrating information from both pathways to produce a

final result. Conceivably, this mechanism can be used as a general-purpose image processing

unit, not only for estimating attention maps.

Perceptual Artifacts and Illusions in γ-Net

It has been found that γ-Net exhibits sensitivity to the center-surround tilt illusions that

humans perceive, which is further evidence of the validity of the neurological model that inspired

the network’s architecture.

This sensitivity to visual illusions exemplifies the importance of horizontal and spatial
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Figure 2.10. γ-Net exhibits sensitivity to the center-surround tilt illusion experienced by humans.
Comparable feed-forward models fail to exhibit this sensitivity.

context in the human visual cortex’s ability to process inhomogenous data and generalize to

arbitrary new data sources [14], and is one of the factors that led us to choose γ-Net for the

segmentation task, the performance on which is very sensitive to both global context and local

information. While the U-Net architecture has already been shown to integrate global and local

information efficiently, we think γ-Net’s additional recurrent connections will produce more

salient features, and allow the model to converge to better outputs than the U-Net can produce.

2.2 Model Complexity and Analysis in FCNs and RNNs

In recent years, advances in computer hardware has allowed increasingly complex

models, with parameter counts in the range of millions to train successfully and produce state-

of-the-art results. Over time, however, studies have found that the widespread trend of model

overparameterization not only increases the amount of computation and storage resources needed

to train models for specific tasks, but also degrades model performance in some cases when

compared to more lightweight models.

A range of model optimizing and pruning techniques have been proposed to deal with

model overparameterization in feed-forward and recurrent neural networks [12, 8, 9]. A previous

study by Uys (2019) found that the original U-Net proposed by Ronneberger et al. (2015)
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is significantly overparameterized for CMR image segmentation tasks, and investigated the

most effective forms of network pruning for U-Net in CMR imaging applications [32]. Uys’s

paper proposed a lightweight implementation of U-Net, which reduces the network’s number of

parameters by 98% compared to the original U-Net, while reaching state-of-the-art performance

on the Automated Cardiac Diagnosis Challenge dataset.

For the purpose of this thesis, we’ll pitch our implementation of γ-Net against Uys et al.’s

U-Net implementation, as the two models have similar parameter counts, and is most appropriate

for demonstrating the effect of added recurrence in γ-Net.

2.2.1 Difficulties in Training Recurrent Neural Networks

Due to their highly nonlinear nature and theoretical ability to maintain information for

a large number of time steps, recurrent neural networks are known to be difficult to properly

train and tune for many individual tasks [4]. On one hand, recurrent neural networks face many

of the same problems as deep feed forward neural networks, such as vanishing and exploding

gradients during back-propagation-through-time [21]. On the other hand, recurrent networks

face difficulties in tasks such as learning long-term temporal dependencies, and in correctly

applying gradient descent optimizers [3]. Recurrent networks also take much longer to train

than feed forward networks of similar size, due to the need to perform the same operations for

multiple time steps.

Pascanu et al. provided a thorough analysis on the vanishing/exploding gradient problems

in recurrent networks, building on the 1994 paper by Bengio et al. [4, 21]. Pascanu showed via

formal proof that without normalization, it is trivial for recurrent networks that run for a sufficient

number of time steps to have individual back-propagated gradients to either asymptote to zero

or explode to infinity. As γ-Net is a large recurrent network, normalization is more pertinent,

and Linsley et al. (2018) took care to apply a multitude of instance normalization and batch

normalization methods throughout γ-Net [15, 14].

Bengio et al.’s 2013 paper provided an overview of the difficulty in training recurrent
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networks, noting that their highly non-linear mapping made them difficult to initialize, as slightly

different initializations may cause the recurrent model to learn completely different mappings;

recurrent networks are also subject to underfitting due to dense activation patterns, a result of

gradient diffusion which makes it difficult for units in recurrent networks (and also deep feed-

forward networks) to specialize [3]. The paper proposed a range of solutions to these problems,

such as applying leaky integration to time step activations, enforcing output regularization and

using a more robust gradient optimizer. Due to time and resource constraints, we were not able

to apply these solutions in our experiments, but we hope to so do in the future.

In addition, activities in recurrent networks are also harder to visualize and interpret, since

information from multiple time steps is superimposed together, and each time step performs a

non-linear map that completely changes activities from the previous timestep. Without advanced

visualization and interpretation techniques, recurrent networks remain black boxes, which

hinders their deployment in mission-critical fields such as medical imaging, where inferential

transparency is crucial.
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Chapter 3

Data

3.1 CMR Data Basics

3.1.1 CMR Imaging Procedures

As MRI imagers can only produce 2D images, CMR images must be captured along a

given axis of the heart. For datasets used in this work, all images are taken along the short axis,

or the rostral-caudal axis, which makes horizontal slices of the heart. This is because the left

ventricle, which is the target for segmentation, is most clearly delineated by its thick, circular

walls when imaged along the short-axis.

MRI machines are capable of quickly capturing a collection of images slices along the

given axis of the heart, with only a few miliseconds of delay between each slice. This collection

of slices is known as a frame. In one CMR imaging session, multiple frames are usually captured

for a single patient, covering at least half a heart cycle starting from end-diastole (ED) and ending

in end-systole (ES), between which the volume of the left ventricle ejection fraction (LVEF) can

be calculated. The process results in a four-dimensional data volume for a single CMR session

of a single patient: one 2-D grayscale image for each slice of each frame from the CMR session.

3.1.2 Common CMR Data Formats

We have obtained data in two common MRI data formats, the Digital Imaging and

Communications in Medicine (DICOM) format and the Neuroimaging Informatics Technology
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Figure 3.1. The organization of frames and slices in the ACDC data. Frames represent the
temporal axis, and slices represent the spatial axis along the rostral-caudal direction.

Initiative (NIfTI) format. Of the two, DICOM is the more widely used format, as it’s the format

most commercial MRI machines produce, and includes a wide range of standard and custom

metadata fields; the downside of the DICOM format is that it doesn’t support packaging multiple

frames into a single file, and that metadata fields often have missing data. The NIfTI format is

specifically designed for use in medical research, and allows easy packaging of multiple frames

into a single file, thus simplifying data storage and access.

3.2 Datasets

We make use of two different cardiac imaging datasets in this thesis, the Automated

Cardiac Diagnosis Challenge (ACDC) dataset [5], and the Sunnybrook Cardiac Dataset [25].

The ACDC dataset, being the larger and more comprehensively labeled dataset, is used for

model training and validation. The older Sunnybrook dataset is used for model generalization

experiments.
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3.2.1 The Automated Cardiac Diagnosis Challenge Dataset

We obtained our training data from the Automated Cardiac Diagnosis Challenge (ACDC)

dataset, which was created using clinical data obtained over a period of six years and from two

different MRI machines [5]. The ACDC challenge aims to specifically foster development of

automated cardiac disease diagnosis, and contains a relatively large amount of segmented cardiac

images. The ACDC dataset is also made available in the NIfTI format, which makes the dataset

more available to medical researchers. This is the largest and best-quality publicly available

human cardiac segmentation dataset that we can find. We note that the dataset also contains

detailed metadata on disease conditions associated with each patient image, but we don’t need

these data for the purpose of this study.

The ACDC data are already split into the training and test sets, where the test data have

no segmentation labels and have very little associated metadata. For this study, we use the

training set exclusively to obtain credible validation performance scores, since it is difficult to

quantify segmentation performance without ground truth data.

The ACDC training set is organized by patients with anonymized patient IDs, and is

organized by frames subdivided by slices, as illustrated above. Of all the frames, only one

end-diastole and one end-systole frame are segmented. All slices within the abovementioned

frames are individually segmented.

We note that the ACDC dataset is also the most well labelled we could find, with

individually segmented labels for inner border of the left ventricle, the outer border of the left

ventricle, and the inner border of the right ventricle for each slice of the ED and ES frames.

For training, we performed a training-validation split by patient. Since images from the

same patient are often very similar to each other, this ensure that the models will not be trained

on samples that are very similar to those in validation.
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3.2.2 The Sunnybrook Cardiac Dataset

The Sunnybrook Cardiac Dataset, also known as the 2009 Cardiac MR Left Ventricle

Segmentation Challenge Dataset, was originally produced by Radau et al. for their 2009 paper

and subsequently put into public domain [25]. The dataset consists of CMR images from

45 patients and control group members. All images are accompanied by ground truth LV

segmentations, as well as metadata pertaining to basic patient information, pathologies, and

left-ventricular finite element models (CAPs). For the purpose of this study, we will use only the

CMR images and their LV segmentations.

For the Sunnybrook data, LV segmentation labels are available only in the form of

polygon vertex coordinates, where the contour of the LV segment is traced by connecting nearby

vertices while enforcing convex constraints. This makes it necessary to first convert these

coordinates into pixel masks in order to train neural network models. To this end, we made use

of the OpenCV library’s fill poly function to draw and fill the LV segmentation on a blank canvas

using the coordinates for each set of LV label coordinates [6].
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Chapter 4

Methods

4.1 Experimental Setup

All experiments were performed using the Cognitive Hardware and Software Ecosystem

Community Infrastructure (CHASE-CI), and the Nautilus HyperCluster maintained by the Pacific

Research Platform [2, 29]. Each experiment was trained on a single Nvidia GTX 2080Ti GPU,

each of which has 12GB of VRAM. We opted not to train any model on multi-GPUs due to

resource constraints.

We used the PyTorch machine learning platform for easy implementation of complex

recurrent circuits as required by the γ-Net architecture. PyTorch’s implementation of fast eager

execution has been invaluable to accelerating our training process, and the platform’s dynamic

computation graphs makes sure that the smallest amount of VRAM is used during training,

making it possible to train more timesteps and larger minibatches [22].

We note that, compared to Linsley’s implementation of γ-Net in Tensorflow 1.x, our

PyTorch implementation is much more flexible and runs about two times faster, thanks to VRAM

saving and an efficient implementation of eager execution.

4.2 Data Preprocessing

Multiple studies have found that input data selection and preprocessing is crucial to

increasing the performance of U-Nets and similar models [32, 11]. In particular, we control for
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image noise, brightness variation and pixel value range for the purpose of our experiments.

We also discuss methods of assembling mini-batches, which we have also found to be an

important factor in model performance. Specifically, we test for the effect of training our models

with different mini-batch sizes.

4.2.1 Gaussian Smoothing

During earlier training sessions, we noticed clear noise patterns in the learned kernels

of γ-Net, which may have been magnified due to the recurrent nature of the architecture. We

have thus opted to perform Gaussian Smoothing of all input images before feeding them into the

network. We chose a Gaussian kernel of size 3 and standard deviation of 1, which allows noise

reduction while keeping image blurring to a minimum.

4.2.2 Brightness Redistribution via CLAHE

Because CMR images often have “bright spots” which will cause regions of the image

with different brightness levels to contribute differently to the prediction, we used the Adaptive

Histogram Equalization (AHE) technique to redistribute brightness levels over the input images,

in order to improve local contrast and decrease global variation in brightness. In particular, we

performed Contrast Limited AHE (CLAHE) processing to avoid over-amplifying the noise in

relatively uniform regions of the image [24].

4.2.3 MinMax Scaling

To ensure a constant range of input pixel values, we applied MinMax scaling to bring the

pixel value range of each image to between zero and one. Through experimentation, we have

found that the performance of U-Nets and similar architectures are very sensitive to changes in

model input range, and MinMax scaling will alleviate this issue by mapping pixel values to a

fixed range and allow U-Nets to generalize to new datasets more readily.
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Figure 4.1. Image resizing and cropping. The original image is only downsampled if its shorter
edge is larger than the crop size, otherwise the image won’t be resampled; this is to preserve
as much of the original image as possible if the original images are large, or preserve the pixel
resolution if the original image is small. Empty regions in the result image is padded with black
pixels, then a center crop is performed.

4.2.4 Image Resizing and Cropping

To correctly batch the input images for minibatch training, we need to enforce uniform

dimensions for all input images. This can be challenging, as medical images (CMR images in

particular) are often pre-cropped to contain only areas of interest, and come in a wide range of

different dimensions.

To make sure that the resized images retain the maximum amount of information from

the original images, we apply the following procedure. First, we determine a size for the resized

image, which is kept square to accommodate original images of different shapes; this size must

be a multiple of 2k−1, where k is the depth of the U-Net or the γ-Net tested, in order to ensure

that upsampling operations are performed correctly. Then we determine whether or not to

downsample the image, based on the shorter axis of the original image: if the short axis of the

original is shorter than that of the target size, we do not downsample the image to preserve as

much information in the original as possible; if the shorter axis is longer than the target size, we

downsample the original such that the shorter axis becomes equal in size to the target size. Last,

we pad the image, if necessary, so that the shorter axis is the same size as the target size, and

perform a center-crop to obtain the final resized image.
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4.2.5 Train-Validation Split

In biomedical image segmentation datasets, medical images are often grouped by the

patient, from whom the images are taken, and images from the same patient are often more similar

to each other than to those from other patients. Thus we need to perform the train-validation split

by patient, instead of by individual images, to ensure that our validation performance numbers

truly represent the model’s ability to perform well on unseen data.

To this end, we designed a data loader that identifies each image using its metadata, and

group images from the same patient together. The patients are then shuffled randomly, and the

train-validation split is performed according to a predetermined validation set ratio. Note that this

method doesn’t guarantee that the number of images in the training and validation sets exactly

conforms to the predetermined split ratio, but we’ve determined empirically that this difference

is not sufficiently significant to have an impact on validation performance.

4.3 Model Training

4.3.1 Experiment Harness

We have observed unstable behaviors while training both the U-Net and γ-Net, where

model performance (in particular, the validation BCE and Dice scores) would consistently worsen

for a period of time after reaching a low point, which matches criteria of overfitting, but then

suddenly spike as the model’s performance increases drastically. The reverse also happens,

wherein model performance would increase drastically and fall back to a worse level. Because

of these observations, we have decided to not employ early-stopping in our experiments, and

allow the model to train for a long period of time until its performance stabilizes. We have found

through experimentation that prolonged training does not lead to significant overfitting for either

model, taking into account both validation loss and visual inspection of segmentation results.

To ensure that we can get the best model out of each training run, we chose to save the

model regularly at short, predefined intervals measured in number of epochs; we also save the
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validation scores for each validation minibatch at each training epoch to assist us in finding the

best model from the training run.

We have also devised an automated pipeline to accelerate model training, by leveraging

the batch job system of the Kubernetes cluster management platform, in use at SDSC’s Nautilus

Hypercluster. This pipeline allows for a large number of concurrent training pipelines, and takes

advantage of the hundred of GPUs in use in the Nautilus Hypercluster, thus drastically decreasing

the amount of time needed to perform model fine tuning and hyperparameter search.

4.3.2 Model Overviews

We outline the two main models we have tested for this work, an implementation of

U-Net by Uys et al [32], and our PyTorch implementation of the γ-Net.

U-Net

We have opted to use Uys et al’s lightweight implementation of the U-Net, which previous

work has found to not only require very little resource to reach impressive performance compared

to the standard U-Net, but also is more specifically suitable for CMR image segmentation tasks

[32]. The parameter count of this lightweight U-Net is only a small fraction of that of a standard

U-Net, and yet is able to achieve better performance than the latter.

γ-Net

We reimplemented Linsley et al’s γ-Net code, which was originally written in TensorFlow

1.x, using the PyTorch platform. We chose to use a 5 depth-level architecture for the γ-Net,

in order to stay consistent with the U-Net we are comparing it against. Most of the network’s

configurations were kept the same as in Linsley et al’s original implementation, such as the

network topology, use of normalization, sizes of the feed-forward convolution blocks, and

upsampling methods. We experimented with different numbers of timesteps at which to train the

network, and minibatch sizes. As the original γ-Net paper didn’t specify the read out block to use,

we attached a convolution layer at the end of the network to calculate the final, single-channel
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prediction of the segmentation label. The convolution layer uses a single 1×C×5×5 kernel,

where C is the number of output channels of the γ-Net stack.

In addition, we have made modifications to the original γ-Net architecture beyond Linsley

et al’s original paper, at the suggestion of the author’s open source code and later papers [16]. In

particuar, we added Global-And-Local Attention (GALA) layers to the fGRU components of the

network, to allow the model to better focus on regions of interest during recurrent processing.

4.3.3 Pairwise Training

To make direct comparisons between U-Net and γ-Net, we construct experiments such

that the two models are trained to complete exactly the same tasks. We control the training

environment by performing all training tasks inside docker containers, which are constructed

using the same docker image; whenever possible, we also run the training containers on identical

hardware nodes. We also control the preprocessing steps for each training run, such that the

two models are fed identical training and validation data; in particular, the train-validation split

is performed identically for each paired training instance of the models. We seed the PyTorch

random number generators in order to produce replicable results.

In addition to using the binary cross entropy loss for validation, we also use the soft Dice

similarity coefficient, which is differentiable and can be used to back propagate errors. To ensure

correctness, we pass the raw model outputs through a sigmoid squashing function to bring the

output range to between zero and one, then calculate the dice coefficient. Both the U-Net and the

γ-Net are trained for 200 epochs on the same training data for each hyperparameter configuration.

Each training run is repeated five times, and performance scores are averaged from each run.

4.4 Reduced Training Set

In Linsley et al’s original paper, one of the most important claims regarding the γ-Net

model is that it requires only a very small dataset compared to feed-forward models in order

to perform well on the validation set. We have thus decided to test this claim on the CMR
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data by adjusting the train-validation split ratio between 1:9 to 8:2. For each train-validation

split, we control the seed used in the random split and shuffling processes to ensure experiment

repeatability. The train-validation split is made on patients instead of individual images to avoid

contaminating the training set, since images from the same patient are often very similar.

We performed this experiment for both the U-Net and γ-Net models, to establish a

side-by-side comparison of the two models’ ability to train on a small dataset and perform well

on the validation set.

We note that this experiment is important especially in medical data processing, where

patient data are expensive to obtain and are often available in very small datasets. The ability to

train a model successfully on a small dataset and generalize it to a large amount of unlabeled

patient data is invaluable in medical applications.

4.5 Training with Temporal Context

We opted to perform an additional experiment for γ-Net only, inspired by the successful

application of recurrent convolutional neural networks in video segmentation. In this experiment,

we use the unlabeled frames as temporal context for the labeled frames, and stack a predetermined

number of unlabeled frames before the labeled frame as the input data. This turns γ-Net into a

many-to-one recurrent network, instead of the original one-to-one model.

To build the new dataset, we build a timeseries of slices for each slice in the labeled

frame (ED or ES), preserving the order of the frames where the slices come from. As the ED

frames are often the first frame in the available frames, we reverse the order of frames to build

the timeseries for the ED slices, such that each labeled ED slice would be at the end of the time

series. We also modified γ-Net to allow it to accept time series data instead of single images.

Since the entire γ-Net architecture is ran as a recurrent cell, this involves only allowing the model

to read a new input image at each timestep, instead of forcing the input to be the same input

image.

34



Figure 4.2. Time series for Training γ-Net with Temporal Context. Pictured is the assembled
time series of frames for a single slice from a single imaging session. The model is tasked to
predict the label of the last image in the image time series.

4.6 Model Evaluation

4.6.1 Model Validation

For each experiment, we use the validation set obtained from the train-validation split

before training to gauge model performance. We perform model validation at the end of each

training epoch, and record the average validation score over all images in the validation set.

We obtain validation scores for both binary cross entropy loss, which is the same metric

for training the model, and the Dice coefficient, which is a better metric for determining

segmentation performance [36]. For hyperparameter tuning, we use only the Dice coefficient and

disregard cross entropy loss. We note that binary cross entropy can be seen as an approximate of

the Dice coefficient, but is much more numerically stable and easily differentiable, which makes

the cross entropy loss more suited for training the model compared to the Dice loss function.
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4.6.2 Model Generalizability

We test for model generalizability using the Sunnybrook Cardiac Dataset, which is a

much smaller dataset than ACDC and contains only LV labels.

Generalizability Without Fine Tuning

For this study, we have decided to not fine tune our trained models on the Sunnybrook

training set, to simulate application scenarios where the model is deployed as a static system and

cannot be further adjusted to new CMR data. It is our intention, however, to conduct transfer

learning experiments on other datasets, and observe model performance after fine tuning on new

data.

Generalizability Using Reduced Training Set

We have also performed generalizability experiments using models trained with smaller

training sets, to observe the models’ ability to generalize when given less training data in the

first place. With this experiment, we intend to push the U-Net and γ-Net models to their limit,

and fully expect them to show severe performance degradation when given only a fraction of the

training data.
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Chapter 5

Results

5.1 Model Performance

We have obtained our baseline performance scores using the following model config-

urations and training setup. The γ-Net was trained for 2 time steps for each input image and

used a mini-batch size of 2, which was determined empirically. The U-Net was trained with a

mini-batch size of 8, in accordance to Uys et al’s conclusions [32]. Each model was trained for 5

times, and the resulting scores were aggregated.

At the baseline configuration, our γ-Net implementation showed minimal performance

increase over our lightweight U-Net implementation. This is expected, as previous studies [32]

have found that the lightweight U-Net implementation performs very well with this training

configuration.

The means and standard deviations of the reported Dice scores are calculated by ag-

gregating the dice scores obtained after each training epoch of each training run; i.e. for each

experiment configuration, we have calculated the mean and standard deviation over all training

Table 5.1. Performance γ-Net vs U-Net. The γ-Net exhibits minimal performance improvement
over the U-Net when trained with sufficient data and standard data preprocessing.

Model γ-Net U-Net

Validation Dice Avg 0.882 0.884
Validation Dice Stdev 0.021 0.005
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Figure 5.1. Validation Dice scores vs training set ratio. Validation is run using the ACDC
validation set from the train-validation split. We note that γ-Net shows increasing peformance
gain over U-Net as the training set ratio is reduced.

epochs of all training runs. This is due to the highly unstable dice score curves we have observed

during earlier training runs. We will elaborate on this observation in the discussion section below.

5.2 Reduced Training Set

We obtained performance scores for our reduced training set experiments using the

same baseline setup as above, and varying only the train-validation split ratio. Here, our γ-Net

implementation has exhibited performance improvement over our baseline U-Net model when

trained on reduced training sets, and validated on the complementary validation set. For each

train-validation split we have experimented on, with the exception of the original 8:2 split, the

γ-Net’s performance is significantly better than that of U-Net with p < 0.001.

We have also observed increasingly large performance improvements for the γ-Net over

the U-Net while reducing the train-validation ratio, which shows that the γ-Net is much more

resilient to smaller datasets compared to the U-Net. This corroborates Linsley et al’s original

claim for γ-Net, that the architecture trains much better on smaller datasets than comparable

feed-forward models.
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Table 5.2. Generalization γ-Net vs U-Net. Obtained using the Sunnybrook LV segmentation
dataset. γ-Net performs significantly better than U-Net with p < 0.01.

Model γ-Net U-Net

Generalization Dice Avg 0.757 0.721
Generalization Dice Stdev 0.052 0.011

5.3 Model Generalization

5.3.1 Generalizability

We obtained Dice scores on the Sunnybrook LV segmentation dataset using our baseline

models with configurations specified in Section 5.1, and aggregating scores for 5 training runs.

The models were not fine tuned to the Sunnybrook dataset, but were used to infer the labels

directly from the new data after image preprocessing.

Our γ-Net implementation outperforms the U-Net by over 3%. This is a significant

improvement, at p < 0.01. We have expected this result, since the γ-Net’s recurrent architecture

effectively allows it to train for longer on the training data, and reusing weights via recurrence

mitigates the effects of overfitting.

5.3.2 Generalizability Using Reduced Training Set

We tested model generalizability using γ-Net and U-Net models trained with reduced

training sets. The models tested are all trained with the baseline configuration, with only varying

train-validation split ratios during model training.

We observed generalizability improvements for our γ-Net implementation over the U-Net

when trained with all train-validation split ratios. In general, γ-Net exhibits more generalizability

improvements over U-Net with smaller training set sizes, but we note that when trained with

larger training sets, the U-Net catches up quickly with the γ-Net in generalizability, and the

performance gap becomes insignificant.
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Figure 5.2. Generalization Dice scores vs training set ratio. Generalization experiments are
run using the Sunnybrook validation set. We note that γ-Net shows increasing generalization
peformance gain over U-Net as the training set ratio is reduced.

5.4 Sensitivity to Input Data Quality

We have also examined model performance when given poorly preprocessed data, which

may have meaningful impacts in realistic applications where data sources are heterogeneous and

input images may not be properly processed. We test this by attempting to take out each of the

three preprocessing steps: Gaussian smoothing, CLAHE brightness redistribution, and MinMax

scaling of pixel values.

5.4.1 Sensitivity to Image Noise

By removing the Gaussian filter specified in section 4.2.1, we test the models’ resilience

to image noise. We trained the γ-Net and U-Net models in their baseline configuration with only

the Gaussian filter removed from the preprocessing steps, and compare validation performance

against the baseline models. All scores are aggregated from 5 training runs.

We have found no significant validation performance degradation after removing the

Gaussian filter, which indicates that image noise is not a significant performance bottleneck in

our current experiment setup. In fact, there is a noticeable (but not significant) performance
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Table 5.3. Sensitivity to image noise γ-Net vs U-Net. There is no significant performance impact
in the baseline models when Gaussian filtering is removed.

Model γ-Net U-Net

Validation Dice 0.882 (0.021) 0.884 (0.005)
Generalization Dice 0.757 (0.052) 0.721 (0.011)

Validation Dice w/o Gaussian Filtering 0.892 (0.020) 0.885 (0.005)
Generalization Dice Avg w/o Gaussian Filtering 0.701 (0.049) 0.709 (0.020)

Table 5.4. Sensitivity to global brightness variation γ-Net vs U-Net. There is no significant
performance impact in the baseline models when CLAHE preprocessing is removed, except for
γ-Net generalization.

Model γ-Net U-Net

Validation Dice 0.882 (0.021) 0.884 (0.005)
Generalization Dice 0.757 (0.052) 0.721 (0.011)

Validation Dice w/o CLAHE 0.887 (0.022) 0.881 (0.005)
Generalization Dice w/o CLAHE 0.665 (0.060) 0.708 (0.034)

increase in our γ-Net model after removing Gaussian filtering.

There is a noticeable (but not significant) decrease in generalization performance for

both γ−Net and U-Net, indicating that the Sunnybrook dataset is possibly more noisy than the

ACDC dataset.

5.4.2 Sensitivity to Global Brightness Variation

We test the models’ resilience to brightness variation by removing the CLAHE brightness

redistribution process from the preprocessing pipeline. We trained the γ-Net and U-Net models

using the baseline configuration, taking out only CLAHE during image preprocessing. Scores

are aggregated from 5 training runs.

We have not observed significant performance degradation after removing CLAHE

preprocessing for both models, An exception is the γ-Net generalizability experiment, where

there is a significant performance decrease with p < 0.05. This indicates that γ-Net is more

sensitive to global brightness variation when generalizing to new datasets, which is surprising.
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Table 5.5. Sensitivity to pixel value range γ-Net vs U-Net. U-Net is significantly impacted when
pixel value range is not controlled.

Model γ-Net U-Net

Validation Dice 0.882 (0.021) 0.884 (0.005)
Generalization Dice 0.757 (0.052) 0.721 (0.011)

Validation Dice w/o MinMax Scaling 0.887 (0.017) 0.863 (0.003)
Generalization Dice w/o MinMax Scaling 0.742 (0.046) 0.003 (0.003)

5.4.3 Sensitivity to Pixel Value Range

We examine the models’ resilience to varying pixel value ranges by removing MinMax

scaling, noting that the average pixel value between the ACDC and Sunnybrook datasets differ

by almost two orders of magnitude. Models are trained using the baseline configuration, with

only MinMax scaling removed from preprocessing steps. Scores are aggregated over 5 training

runs.

We observe no significant performance degradation after removing MinMax scaling for

γ-Net, even for generalization without fine-tuning. This indicates that γ-Net is resilient to pixel

value ranges in the input. On the other hand, U-Net exhibits significant performance degradation

(p < 0.01) for both validation and generalization tests, exhibiting poor resilience to different

input pixel value ranges. In particular, U-Net completely fails the segmentation task when

generalizing to a new dataset with a different pixel value range, and tends to predict all negatives

everywhere in the image.

5.5 Training with Temporal Context

We investigated whether adding temporal context while training our γ-Net implementa-

tion offers performance improvement. The following γ-Net models were trained for 1 training

run, with varying mini-batch sizes and sequence length of added temporal context. Performance

scores were taken using early-stopping, and selecting the best score in a single training run.

We note a slight improvement in γ-Net’s validation performance, which signals that
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Table 5.6. γ-Net validation performance with temporal context. In the configuration labels, “ts”
stands for the sequence length (time steps), while “bs” stands for batch size. There is a slight but
noticeable improvement when temporal context is applied.

Model Baseline bs=2,ts=4 bs=2,ts=6 bs=4,ts=4 bs=4,ts=6 bs=6,ts=4

Validation Dice 0.8927 0.8967 0.8942 0.9049 0.8917 0.9108

providing temporal context offers information that the recurrent architecture can take advantage

of during training. There is also a noticeable difference between different mini-batch size and

sequence length configurations. For this experiment, we found that a mini-batch sizes of 6 and

sequence length of 4 yielded the best performing model.

While inspecting model inputs and outputs, we noticed that images in the same input

sequence do not vary significantly, with only marginal change between each frame. It’s possible

that training γ-Net with longer temporal sequences will yield better performance scores, but we

have not done so due to time constraints on the project.

5.6 Discussion

5.6.1 Model Stability with regard to Dice Coefficients

While training the U-Net and γ-Net models, we calculated dice coefficients after each

training epoch for both models, and were able to plot dice coefficient curves similar to the

training and validation loss curves. Contrary to the relatively stable validation binary cross-

entropy loss curves, we observed very unstable dice coefficient curves, where dice scores can

vary significantly (sometimes by over 30%) between two neighboring epochs. This is particularly

the case with our reduced training set experiments, where smaller training sets lead to more

unstable Dice curves. Because of this observation, we have chosen to not deploy early stopping

for training our models, as this would very likely yield dice scores that are not representative of

the model’s best possible performance.

We have tried a variety of criteria for selecting portions of the dice curves to count as
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Figure 5.3. BCE and Dice curves for both U-Net and γ-Net, showing training instability. Both
models were trained on 40% of the training set, and exhibit unstable curves for dice scores during
the pictured sample training run, with U-Net being exceptionally unstable and varying erratically
between epochs. Green graphs in the above plots represent validation dice scores, while red
graphs represent generalization dice scores to the Sunnybrook Dataset.

the model’s final dice scores, but failed as the curves have simply too much variation. In the

end, we chose to take the mean of the model’s dice performance over the entire training run,

which offers an acceptable measure of the model’s average performance during training, and one

which allows fair comparison between the γ-Net and U-Net models. We note that by averaging

dice scores over the entire training session, the resulting performance scores does not reflect

the final performance of the model, but rather a combination of performance metrics including

the speed and quality of convergence, as well as model stability; we only chose to calculate our

performance scores in lieu of better options to obtain repeatable performance scores.

Additionally, we note that the dice curves for γ-Net are more stable than that of U-Net,

and do show a general trend of improvement despite local variations and abrupt changes. We

again attribute this to γ-Net’s recurrent architecture and weight reuse, which constrains weight

changes across epochs and prevent the model from moving too erratically on the error plane.

It is still not clear to us why our dice curves show such drastic changes while the binary

cross entropy losses remain relatively low and stable, though we hypothesize that the sigmoid

squashing function used to calculate the Dice scores (which is standard practice when calculating
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Dice) may have magnified performance differences in otherwise similar outputs. Further work

is required to investigate the true cause of these erratic dice score curves, and to improve the

training pipeline to make model performance more consistent.

5.6.2 Sensitivity to Input Image Preprocessing

We have discovered that compared to the feed-forward U-Net, the γ-Net is very resilient

to input pixel value range, which is surprising, considering recurrent architectures do not

intrinsically deal with drastically different input ranges between training and testing.

As both our γ-Net and U-Net implementations heavily employ batch- and/or instance-

normalization layers, we cannot attribute this observation to normalization. We hypothesize

that γ-Net’s observed resilience to pixel value ranges arises from its horizontal and top-down

information pathways, which over several time steps can increase local contrast in its persistent

activity maps, and as a result enhance local features.

5.6.3 Effect of Batch Sizes

We have noticed that mini-batch size is an important factor in improving model perfor-

mance for both our γ-Net and U-Net implementations. In many cases, simply changing the size

of the training mini-batch can produce performance gains far outshining complex model changes

or image preprocessing techniques. Notably, smaller mini-batch sizes often yielded better results

than larger ones for both γ-Net and U-Net.

We attribute this observed effect of mini-batch sizes to the complex nature of the error

plane with regard to the cardiac image segmentation task. While short-axis cardiac MRI images

don’t typically have as much global variation as typical scenery images, there is a lot of subtlety

in cardiac features, and it can often be difficult for even medical professionals to properly label

heart tissues in cardiac images. In particular, heart chambers can vary greatly in apparent size

and location in the image, heart shapes can be highly irregular, and tissue boundaries can be

blurry or missing altogether. As such, it’s likely that segmentation models would have to learn a
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large number of very specific cases of the segmentation task, and since learning gradients from

mini-batches are aggregated, gradients from drastically different cases can get mixed together

and cause the model to effectively “skip over” the correct descent path in the error plane.

This hypothesis is supported by our best empirically determined batch size of 2 for our

baseline γ-Net model, which is smaller than 4 for the U-Net. As γ-Net reinforces its learning

by iterating on the same input images for several time steps, learning gradients are aggregated

over all time steps in addition to all samples in the mini-batch, exacerbating the gradient mixture

problem stated above. We do take note that we are far from reaching a conclusion about the true

nature of the effects of mini-batch sizes in segmentation tasks, and will need to investigate the

issue further.
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Chapter 6

Conclusion

Through extensive experimentation, we compared Linsley et al.’s γ-Net model to Uys’s

lightweight U-Net model for cardiac image segmentation tasks, where the two models have

comparable size and parameter counts and identical training conditions, and performance compar-

isons were made using the empirically determined best hyperparameters for each model. While

γ-Net does not outperform the lightweight U-Net when given sufficient training data, γ-Net does

significantly outperform the lightweight U-Net when trained using reduced training sets, yielding

more comparative performance improvement for smaller training set sizes. γ-Net outperforms

the lightweight U-Net when generalizing to a new dataset without additional training, and also

shows more generalization performance increase when trained with smaller training set sizes

compared to the lightweight U-Net.

In our experiments, we observed a variety of unexpected phenomena, such as unstable

dice coefficient scores during model training, and significant impact of mini-batch sizes on model

performance. Further work is needed to investigate these observations.

In the interest of eventually deploying γ-Net for cardiac image segmentation in the field,

in the future we’ll also need to develop proper model inspection, debugging and visualization

techniques to make the model more explainable and intuitively easy to understand, as γ-Net’s

recurrent nature and highly-interconnected architecture obscures meaning from its activity maps

and intermediate outputs.
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Appendix A

Network Architectures

A.1 U-Net

Throughout our experiments, we used a lightweight U-Net heavily inspired by Uys’s

lightweight U-Net [32], which was designed and tuned specifically to the cardiac image segmen-

tation task. Our implementation of the network’s architecture is as follows.

Table A.1. Lightweight U-Net implementation inspired by Uys et al’s 2019 study.

Depth Conv Blocks Conv Filters Conv Size Conv Stride Pool Size Pool Stride

1 3 8 3x3 1x1 2x2 1x1

2 3 16 3x3 1x1 2x2 1x1

3 3 32 3x3 1x1 2x2 1x1

4 3 64 3x3 1x1 2x2 1x1

5 3 128 3x3 1x1 2x2 1x1

Table A.2. Additional U-Net Hyperparameters

Network Depth Normalization Upsampling Method Padding

5 Batch Normalization Bilinear Rescaling Same
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A.2 γ-Net

We reimplemented Linsley et al’s 2018 γ-Net using the PyTorch platform. The network’s

architecture details is as follows.

Table A.3. γ-Net reimplementation from Linsley et al’s 2018 paper. Note that the architecture is
outlined by functional blocks instead of network depth, with blocks 1-4 being the downsampling
path, block 5 the bottleneck, and blocks 6-9 the upsampling path.

Block Conv Conv Conv Conv Pool/Ups Pool/Ups fGRU fGRU fGRU

Blks Filt Size Strd Size Strd Filt Size Attn Size

1 3 24 3x3 1x1 2x2 1x1 24 9x9 5x5

2 3 28 3x3 1x1 2x2 1x1 28 7x7 5x5

3 3 36 3x3 1x1 2x2 1x1 36 5x5 5x5

4 3 48 3x3 1x1 2x2 1x1 48 3x3 5x5

5 3 64 3x3 1x1 N/A N/A 64 1x1 5x5

6 3 48 3x3 1x1 2x2 1x1 48 1x1 5x5

7 3 36 3x3 1x1 2x2 1x1 36 1x1 5x5

8 3 28 3x3 1x1 2x2 1x1 28 1x1 5x5

9 3 24 3x3 1x1 2x2 1x1 24 1x1 5x5

Table A.4. Additional γ-Net Hyperparameters. Not all hyperparameter options in the original
γ-Net were implemented for our study.

Network Depth Normalization Upsampling Attention Attn Layers

5 Instance Norm Bilinear GALA 1 per fGRU
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