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Abstract

Machine Learning Inorganic Solid-state Synthesis from Materials Science Literature

by

Tanjin He

Doctor of Philosophy in Engineering – Materials Science and Engineering

University of California, Berkeley

Professor Gerbrand Ceder, Chair

Solid-state synthesis prediction is a key accelerator for the rapid design of advanced inor-
ganic materials. However, determining synthesis variables such as the choice of precursor
materials is challenging for inorganic materials because the sequence of reactions during
heating is not well understood. To achieve predictive synthesis for the desired material, one
potential approach is to learn synthesis design patterns from a large volume of experimental
synthesis procedures. Nevertheless, a comprehensive, large-scale database of structured syn-
thesis procedures for inorganic materials does not exist. Provided the ability of converting
unstructured text to structured information, the decades of solid-state chemistry literature
constitutes a treasure trove of synthesis data. Therefore, this study aims at: (1) developing
natural language processing (NLP) algorithms to text mine a large-scale inorganic synthesis
dataset from materials science literature, and (2) developing machine learning algorithms for
precursor selection in solid-state synthesis based on the text-mined dataset.

Although many general-purpose NLP methods exist, text mining for inorganic synthesis
requires dedicated development of models for information retrieval (Chapter 2). During the
development of a text-mining pipeline, one major problem is the difficulty of identifying
which materials from a synthesis paragraph are precursors or are target materials. In this
study, we developed a two-step Chemical Named Entity Recognition (CNER) model to
identify precursors and targets, based on information from the context around material
entities. By integrating our information retrieval model for precursors and targets, and also
the ones for other synthesis variables, we established a fully automated text-mining pipeline
that extracts the structured data of synthesis procedures from the literature. Starting from
4,973,165 materials science papers, we applied our text-mining pipeline and successfully
extracted 33,343 solid-state synthesis procedures. The quality of the text-mined synthesis
dataset is validated by the high accuracy of 93% at the chemistry level, where each extracted
reaction has the target and precursor materials consistent with the original literature report.
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This dataset for inorganic solid-state synthesis is currently the largest of its kind and paves
the way toward the development of data-driven approaches for rational synthesis design.

Using the extracted data, we conducted a meta-analysis to study the similarities and dif-
ferences between precursors in the context of solid-state synthesis (Chapter 3). To quantify
precursor similarity, we built a substitution model to calculate the viability of substituting
one precursor with another while retaining the target. From a hierarchical clustering of the
precursors, we demonstrate that the “chemical similarity” of precursors can be extracted
from text data, without the need to include any explicit domain knowledge. Quantifying the
similarity of precursors offers a reference for suggesting candidate reactants when researchers
alter existing recipes by replacing precursors. The capability of creating alternative recipes
constitutes an important step toward developing a predictive synthesis model.

While the selection of alternative precursors is enabled by the similarity of precursors, it is
limited to existing materials. To learn which precursors to recommend for the synthesis of a
novel target material, we further developed a representation learning model to evaluate the
similarity of targets (Chapter 4). The data-driven approach learns “chemical similarity” of
target materials and refers the synthesis of a new target to precedent synthesis procedures of
similar target materials, mimicking human synthesis design. When proposing five precursor
sets for each of 2,654 unseen test target materials, our recommendation strategy achieves a
success rate of at least 82%. Our approach captures decades of heuristic synthesis data in a
mathematical form, making it accessible for use in recommendation engines and autonomous
laboratories.

Overall, this study contributes a valuable large-scale synthesis dataset and interpretable pre-
cursor selection algorithms to the materials science community, representing a step forward
in the prediction of solid-state synthesis.
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Chapter 1

Challenges and opportunities for
materials synthesis and text mining

1.1 Predictive solid-state synthesis

Materials discovery has become significantly facilitated and accelerated by high-throughput
ab initio computations. Thanks to the gigantic leaps in computational power and focused
big-data-driven efforts such as the Materials Genome Initiative [1, 2], the ability to rapidly
design interesting novel compounds has displaced the materials innovation bottleneck to
the development of synthesis routes for the desired material [3]. In other words, we are
“discovering” exciting new materials, but we are unable to produce them. Understanding
how to synthesize the desired compounds is a grand challenge in the development of novel
materials.

Solid-state synthesis is the prevailing approach for making inorganic materials [4]. In a
typical solid-state synthesis experiment for a target material, precursor materials are mixed
to obtain a homogeneous mixture. The mixture is then heated at a high temperature for a
specified period of time. The complexity of synthesis mainly originates from the interactions
of many design variables, including the diversity of precursor candidates for each element
in the target material (oxides, hydroxides, carbonates, etc.), the experimental conditions
(temperature, atmosphere, etc.), and the chronological organization of operations (mixing,
firing, reducing, etc.). Properly selecting the combination of experimental variables is crucial
and demanding for successful synthesis [5–7].

Because of the lack of a general theory for how phases evolve during heating, solid-state
synthesis design is mostly driven by heuristics and basic chemical insights. Unlike the success
of retrosynthesis [8] and automated design for organic materials based on the conservation
and transformation of functional groups [9–11], the mechanisms underlying inorganic solid-
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state synthesis are not well understood [10, 12–14]. Researchers are trying to tackle this
challenge from different perspectives, including in situ experiments [6, 7, 15], thermodynamic
analysis [16–21], and machine learning-guided synthesis parameter search [22–24].

To achieve predictive synthesis for the desired material, one potential approach is to learn
synthesis design patterns from a large volume of experimental synthesis procedures. Success-
ful machine-learning methods to retrosynthesis in organic chemistry [11, 25–27] have been
enabled by organic chemistry reaction databases, such as Reaxys [28], which include over 12
million single-step reactions. However, two questions arise when applying machine learning
to inorganic solid-state synthesis. The first question is how to obtain a large volume of in-
organic synthesis data. Prior to our study [29, 30], a comprehensive, large-scale database of
structured synthesis procedures for inorganic materials did not exist. The second question is
how to devise an interpretable learning strategy that rationalizes inorganic synthesis design.
Inorganic synthesis is mostly a one or few-step process, while retrosynthesis for organic ma-
terials usually consists of a sequence of steps, where each step corresponds to an independent
chemical reaction. Benefiting from existing knowledge in organic retrosynthesis, designing
an algorithm that decomposes the entire organic synthesis into multiple chemical steps for
the prediction of retrosynthesis is not only natural but also effective [11]. In contrast, the un-
derstanding of inorganic synthesis is relatively poor, and it remains unclear which algorithm
is most effective for predicting inorganic synthesis.

In this work, we aim to address these two questions by employing interdisciplinary methods
that combine materials science, natural language processing (NLP), and machine learning.
First, we develop NLP algorithms to extract a large-scale inorganic synthesis dataset from
materials science literature. Although there is no structured synthesis dataset available,
decades of synthesis data are locked up in written natural language in papers published
by materials researchers. Recent progress in NLP [31–35] has made it possible to retrieve
structured data from unstructured textual descriptions of synthesis procedures. Based on
our text-mined dataset, we leverage the concept of similarity to mimic how experimental
researchers select precursor materials during synthesis design. We create machine learning
models to evaluate the similarity of precursor and target materials. Given the similarity of
materials, new synthesis reactions can be suggested by adapting precedent synthesis proce-
dures.

1.2 Progress in NLP

The development of NLP dates back to the 1940s, but the most significant progress has
occurred in the past two decades (Figure 1.1 [31]). The progress of NLP can be roughly
divided into two main parts.

The first part is the breakthroughs of fundamental architectures. In 2001, Bengio et al. [36]
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proposed the concept of a feed forward neural network to learn the joint probability function
of sequences of words. In 2008, Collobert et al. [37] proposed the application of multi-task
learning in the field of NLP. Nowadays, the concept of multi-task learning is widely used
in large language models (LLMs) [38] . In the early 2010s, more advanced neural networks
were applied to NLP problems. At first, the attention was on convolutional neural network
(CNN) [39] because of its success in the field of computer vision. Subsequently, researchers
adopted the recurrent neural network (RNN) to capture the context of a word with respect to
surrounding words in the sentence. Long Short-Term Memory (LSTM) [40] neural network
and gated recurrent unit (GRU) [41] are the most successful variants of RNN because they
are good at learning long-term historical information. Another important breakthrough
was the neural networks using attention mechanisms such as Transformer [42]. Attention
mechanisms are influential in NLP as they facilitate the modeling of distant dependencies
similar to LSTM while enabling better training parallelization. As a result, they can scale
up to larger datasets more effectively than LSTM. The Transformer is the most widely used
architecture in state-of-the-art LLMs.

The other part is the breakthroughs of word embeddings. Mikolov et al. [43, 44] proposed a
word embedding process where the dense vector representation of text was addressed. Their
Word2Vec model automatically learns a vector embedding by predicting the context for each
word. The success of Word2Vec opened up the possibility of automated feature engineering
with the use of neural networks. Pre-trained language models, such as BERT [38] and
GPT [45], are able to produce contextual word embeddings that move beyond global word
representations like Word2Vec and achieve ground-breaking performance on a wide range of
NLP tasks [46]. The technique for training NLP models has evolved from training separate
models to pre-training an LLM and fine-tuning it for specific tasks. Pre-trained LLMs have
also opened up a new paradigm known as “prompt-based learning” [47], enabling model
prediction to be guided by different prompts and achieving greater flexibility.

Thanks to these breakthroughs, state-of-the-art NLP models, such as ChatGPT [48], have
demonstrated superiority over humans in many general-purpose tasks [49]. This study lever-
ages advanced NLP methods to extract inorganic synthesis data from materials science
literature.
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Figure 1.1: Important NLP breakthroughs in the past two decades [31].

1.3 Text mining for materials science

The significant progress in NLP provides new opportunities for data-centric materials science
research, such as the Materials Genome Initiative [1]. Our analysis of the papers indexed in
the Web of Science repository shows that since the beginning of the 2000s, the number of
publications in different fields of materials science has increased exponentially (Figure 1.2).
The increasing number of published papers is making it difficult for individuals to access the
knowledge contained within them. Text mining will become an indispensable method for
curating reported but uncollected materials science data.
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Figure 1.2: Publication trend from 1996 to 2020 in materials science. Top panel: The grow-
ing number of annual publications in various areas of materials science. Data was collected
through manual queries in the Web of Science publication database. The analysis includes
only research articles, communications, letters, and conference proceedings. The publication
count is in the order of 103. Bottom panel: A relative comparison of the proportion of scien-
tific papers accessible online as image PDF or embedded PDF versus those in HTML/XML
format. The grey arrow indicates time intervals for both the top and bottom panels.

Previous research has demonstrated the effectiveness of text mining for obtaining materials
insights. Young et al. [50] developed a semi-automated text-mining pipeline to extract and
analyze the growth conditions for four different oxide materials synthesized with a pulsed
laser deposition technique. They were able to obtain the range of growth temperatures and
pressures, and predict the relative values of critical temperatures by applying a decision tree
classifier. Court et al.[51] used the records of Curie and Néel temperatures text-mined from
the scientific literature [52] to reconstruct the phase diagrams of magnetic and supercon-
ducting materials. Kim et al. [23] explored the parameters of hydrothermal and calcination
reactions for metal oxides by analyzing the data extracted from 22,065 scientific publications.
A decision tree model applied to predict synthesis routes for titania nanotubes identified the
concentration of NaOH and synthesis temperature as the most important factors that lead
to nanotube formation. Jensen et al. [53] used a similar approach to predict the density of
germanium-containing zeolite frameworks and to uncover their synthesis parameters. Tshi-
toyan et al. [54] applied the Word2Vec model [43] to 3 million abstracts to learn the word
embeddings for materials and application areas. Interestingly, their model was able to not
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only learn some aspects of the chemistry underlying the relations between materials but
also to draw a similarity between materials for different applications. In particular, it was
demonstrated that such similarity could be used to predict novel thermoelectric materials.

These successful examples across diverse fields of materials science confirm the broad appli-
cability of text mining. They also highlight an important aspect of scientific text mining: its
capability to uncover latent knowledge about a subject by comprehending a large amount
of unstructured data – a task that is not possible for a human. Similarly, text mining holds
great potential for contributing novel data and insights to the field of solid-state synthesis
science.

1.4 Structure of this thesis

This work aims at two objectives: (1) developing NLP algorithms and an automated text-
mining pipeline to extract large volumes of structured inorganic synthesis data from material
science literature, and (2) developing algorithms for precursor selection in solid-state syn-
thesis based on the text-mined dataset.

In Chapter 2, we first introduce the problems to solve for text mining of inorganic synthesis
procedures. Then, we present our algorithm for the identification of precursor and target
materials in the text description of experimental details and the full text-mining pipeline for
the extraction of structured synthesis data from materials science papers. We also evaluate
the quality of our text-mined dataset and demonstrate its possible usage with a series of
meta-analyses.

In Chapter 3, we first present the variety of the extracted precursors. Then, we touch
on the problem of precursor selection by exploring how frequently researchers substitute
one precursor with another while retaining the target. Next, We formalize the similarity
of precursors based on the substitution of precursors and synthesis temperatures. At last,
we validate whether this text-mined similarity of precursors is a reasonable metric for the
creation of alternative recipes.

In Chapter 4, we first discuss the challenges of precursor selection for novel materials and
the limitation of the approach in Chapter 3. Then, we propose a precursor recommendation
strategy based on the similarity of target materials. At last, we evaluate the performance of
our precursor recommendation pipeline through comparison with baseline models and case
studies.

In Chapter 5, we summarize this work and outline future directions.
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Chapter 2

Text mining for inorganic solid-state
synthesis

Data-driven approaches could offer a promising solution to address the challenge of inorganic
solid-state synthesis. However, the availability of a comprehensive database that includes
experimental procedures for a wide range of materials is crucial. In this chapter1, we present a
text-mining pipeline to extract synthesis procedures from millions of materials science papers.
The large-scale dataset of “codified recipes” could open a new avenue for understanding and
predicting inorganic solid-state synthesis.

We first point out the promise and also potential problems associated with text mining
for materials synthesis. Next, we provide an in-depth explanation of identifying precursor
and target materials in the text description of experimental details, as selecting the proper
precursors for various targets is a core problem in materials synthesis. By compiling the
algorithms together, including the one for extraction of precursors and targets and the ones
for extraction of other synthesis variables, we established a fully automated text-mining
pipeline that extracts the structured data of synthesis procedures from the literature. Based
on the text-mined synthesis set, we conducted a series of meta-analyses to exemplify how to
use this dataset to acquire knowledge on synthesis. Digitizing and systematizing the large
corpus of existing solid-state chemistry literature paves the way toward the development of
data-driven approaches for understanding inorganic materials synthesis [29, 30, 35].

1 This Chapter incorporates sections from three previously published papers with permission from the
authors: (1) Tanjin He, Wenhao Sun, Haoyan Huo, Olga Kononova, Ziqin Rong, Vahe Tshitoyan, Tiago
Botari, and Gerbrand Ceder. “Similarity of precursors in solid-state synthesis as text-mined from scientific
literature.” Chemistry of Materials 32, no. 18 (2020): 7861-7873 [29]; (2) Olga Kononova, Tanjin He,
Haoyan Huo, Amalie Trewartha, Elsa A. Olivetti, and Gerbrand Ceder. “Opportunities and challenges of
text mining in materials research.” Iscience 24, no. 3 (2021): 102155 [35]; and (3) Olga Kononova, Haoyan
Huo, Tanjin He, Ziqin Rong, Tiago Botari, Wenhao Sun, Vahe Tshitoyan, and Gerbrand Ceder. “Text-mined
dataset of inorganic materials synthesis recipes.” Scientific data 6, no. 1 (2019): 203 [30].
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Experimental Section 
Powders were synthesized by a sol-gel 
method. Precursors were dissolved in 
distilled water and mixed with citric acid. 
Resulting solution was stirred at 80°C for 5 
h, and dried in a vacuum oven at 140 °C for 
24 h. Resulted compound was calcined at 
900 °C. 

Results & Discussion 
Analysis shows different particle size 
distributions for the two materials. The 
particle size of LNTMO is ~100 nm, 
whereas LMNO has a broad size 
distribution ranging from tens of 
nanometers to micrometers. 

TABLES DATA 
EXTRACTION 

INTERPRETATION OF 
FIGURES AND CAPTIONS 

BUILDING SYNTHESIS 
ACTIONS GRAPH 

CHEMICAL NAMED 
ENTITIES RECOGNITION 

Figure 2.1: Schematic representation of various information types that can be extracted from
a typical materials science paper.

2.1 Problems in text mining for materials synthesis

A scientific paper usually contains a wealth of information, including text, table, and figures,
as shown in Figure 2.1. Various types of data can be extracted from materials science pa-
pers, including synthesis experimental procedures, crystal structure parameters, diffraction
patterns, morphology information, materials properties, and so forth. The diversity of avail-
able data creates a substantial opportunity for data-centric research in materials science.
This study aims to extract data related to synthesis, which is commonly found as natural
language in the experimental section of materials science papers.

In order to take advantage of decades of valuable synthesis knowledge buried in the literature,
the text data must be converted from an unstructured to a structured form. To achieve this
goal, a range of NLP challenges must be tackled, such as acquiring the text corpus, trans-
forming it into raw text, text segmentation, text representation modeling, text classification,
and information retrieval. Although many general-purpose NLP approaches exist for these
problems, the application to the chemical or materials science domain requires adaptation
of both methods and models, as well as the development of an adequate training set that
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complies with the goal of the specific project.

Given the crucial nature of precursors and targets in synthesis data, we intend to expand on
a discussion about material entity recognition (MER), i.e., identifying precursor and target
materials in the text description of experimental details. The extraction of precursors and
targets from written text is difficult because of the complexities of natural language for
inorganic synthesis.

First, a material entity can be written in various complicated forms; they can be repre-
sented as chemical formulas such as “Al2O3” and “AxB1-xC2-δ”, chemical terms such as
hafnium oxide, acronyms such as “PZT” for “Pb(Zr0. 5Ti0. 5)O3”, and even more com-
plicated notations for composites and doped materials such as “Si3N4-30wt%ZrB2” and
“Zn3Ga2Ge2-xSixO10: 2. 5mol%Cr3+”. Translating this knowledge into explicit rules for
Chemical Named Entity Recognition (CNER) [55] is difficult.

Second, material entities can play different roles in synthesis experiments such as targets,
reagents, reaction media, and so forth. While this can usually be recognized easily by
researchers based on their domain-specific knowledge and grammar comprehension, such an
implicit assignment of meaning is much harder in computational algorithms. One näıve
approach could be to use multiple rules to distinguish between targets and precursors. For
example, assign a simple material (e.g., “TiO2)” as a precursor and a complex material
(e.g., “Pb(Zr0.5Ti0.5)O3”) as a target, because researchers usually use simple materials to
synthesize a complex one. However, there are many cases that do not follow this rule:
the same material zirconia can be a precursor for a Zr-based complex oxide, an auxiliary
component as a grinding media, or even a target in the synthesis of stabilized or doped
zirconia [56]. In order to correctly identify the role of a material, one needs to read the
context of the sentence or entire paragraph, in addition to finding the material expressions.
Hardcoding all possible rules would require an enormous amount of human effort.

In the following sections, we first tackle the problem of MER and further present the full
text-mining pipeline, as well as the synthesis dataset extracted using these algorithms.

2.2 Extraction of precursor and target materials

In this section, our focus is specifically to identify precursor and target materials in inorganic
solid-state synthesis text for further studying the relations between various precursors and
correlating them with targets. We describe the Synthesis Materials Recognizer (SMR) model
for this MER task. By comparing with a baseline model, we explain how the SMR model
works and its advantages and limitations.
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Algorithm Design and Execution

To identify and extract precursor and target materials from a synthesis paragraph, a two-step
model (SMR) based on bi-directional long-short term memory (Bi-LSTM) neural network
[40] was implemented. The SMR model recognizes context clues provided by the words
around the precursors/targets in the sentence. The identification of material entities in
the text and their subsequent classification as targets, precursors, or something else were
performed in two steps, as shown in Figure 2.2: first we identified all material entities present
in a sentence; next we replaced each material with a keyword “<MAT>” and classified it as
a “Target”, “Precursor”, or just “Material”. Each step was executed by a different Bi-LSTM
neural network with a conditional random field (CRF) [57] layer on top of it (Bi-LSTM-CRF)
[40, 58].

For the first step, each input word was represented as the combination of a word-level embed-
ding and a character-level embedding via an embedding layer. The word-level embeddings,
which are vectors of real numbers representing the words, were trained using the Word2Vec
approach [43, 44] with ∼33,000 paragraphs on solid-state synthesis to capture the semantic
and syntactic similarity of words in synthesis text. In this embedding layer, the characters
of each word were converted into an embedding vector using another Bi-LSTM to learn the
character-level features such as the prefix and suffix information. The character embedding
was concatenated with the pre-trained word embedding and input into a Bi-LSTM to capture
the left and right context at every word. Finally, the output from Bi-LSTM was combined
with a CRF model, which characterized the transition probability from one tag to another
to produce the final prediction.

For the second step, a Bi-LSTM with a similar structure to that in the first step was used
but the inputs were different. All the materials in the input sentences were replaced with
the word “<MAT>” so that the role of a material in synthesis is predicted mainly based
on the surrounding context. We found this to be more effective than directly using the
specific materials words as input to the Bi-LSTM, because such a direct model tries to store
the mapping information from each different material to the particular role this material is
mostly used for, which brings in bias for frequently appearing materials. For example, as
“zirconia” often describes the balls used in ball milling, it is difficult for the neural network
to deviate from this assignment and treat “zirconia” as a target or precursor. Since all
the chemical information about the material is lost by inputting “<MAT>” instead of the
materials words, we also included two additional features in the word representation, that is,
the number of metal/metalloid elements and a flag indicating whether the material contained
C, H, and O elements only. These additional features assist in the differentiation of precursors
and targets, as they tend to have different numbers of metal/metalloid elements and are
generally not organic compounds in inorganic synthesis. The composition information was
obtained by parsing the raw text of the material entities by regular expression comparison
[30].
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Figure 2.2: Main architecture of the SMR model. xi is the embedding used as the input
for the Bi-LSTM-CRF neural network. li represents the ith token and its left context. ri
represents the ith token and its right context. ci is the combination of li and ri. ti represents
the score for different tags.

Bi-LSTM is able to infer the role of materials from context because Bi-LSTM specifies a
variable called cell state to store the information about the words around the material.
Figure 2.3 shows a typical example of the trained Bi-LSTM cell state continuously changing
depending on token context in the example sentence [59] when feeding the tokens into Bi-
LSTM one by one. In this study, 100 neurons (cells) were used to represent the context
information; Figure 2.3 displays one of the cell states relevant to the context of precursors.
To obtain the cell states for the next token, both the next token and the current cell states
are input to the network. Hence, after seeing the sequence of tokens “was prepared from” in
the example sentence, the network predicts from the context that the tokens following this
phrase most likely refer to a precursor(s). Likewise, the network predicts that the tokens
following “at 700 ° C for” most likely are not precursors.

To train the SMR model, 834 solid-state synthesis paragraphs from 750 papers were tok-
enized with ChemDataExtractor [60], and each token was manually annotated with tags of
“Material”, “Target”, “Precursor”, and “Outside” (not a material entity). In the annota-
tion, a target is defined as a final material obtained through a series of lab operations in
the complete synthesis process, and a precursor is defined as a starting reagent involved in
the synthesis process through a lab operation and contributing to the target composition.
Other materials include media, gas, device materials, and so forth. The annotation dataset
contains 8,601 materials, out of which 1,256 are targets and 3,295 are precursors. The anno-



CHAPTER 2. TEXT MINING FOR INORGANIC SOLID-STATE SYNTHESIS 12

Figure 2.3: Change of one LSTM cell state in different context for precursor classification.
The tokens in the example sentence are separated by spaces in the hanging text and repre-
sented as the sequence numbers on the x-axis.

tated dataset was randomly split into training/validation/test sets with 500/100/150 papers
in each set. Early stopping [61] was used to minimize overfitting by stopping the iterative
training when the best performance was achieved on the validation set. To reduce the vari-
ance resulting from the limited size of the training set, the six models trained in a six-fold
cross-validation process were combined together to make the final decision by voting in the
classification. The entire training and test process was repeated 10 times, and the average
result of the test sets is reported.

Accuracy and working examples

We first aim to demonstrate that the recognition of context clues is necessary for the MER
task by comparing the SMR model with a baseline model based on näıve rules. To build this
baseline model, we used ChemDataExtractor [60] to identify and extract materials from the
text. Then, inspired by a scientific perspective that researchers usually use simple materials
to synthesize a complex one, the precursors and targets were assigned based on the number
of elements: materials with only one metal/metalloid element were assumed to be precursors,
and materials with at least two metal/metalloid elements were assumed to be targets. This
baseline is a least-effort model but provides a quantitative reference for understanding the
importance of capturing context information.

In Table 2.1, we compare the performance of the SMR model and the baseline model using
F1 scores, which provides a measure of the accuracy of a binary classification test based
on the harmonic mean of the precision and recall. The F1 scores on the extraction of
all materials, precursors, and targets using the SMR model are 95.0%, 90.0%, and 84.5%,
respectively. Out of all the extracted entities, 88.9% of precursors and 85.9% of targets in
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Table 2.1: Precision, recall, and F1 scores for the baseline and SMR models to extract
materials, precursors, and targets. The type “Materials” include precursors, targets, and all
other materials.

Model Type Precision (%) Recall (%) F1 score (%)

Baseline

Materials 78.3 68.3 73.0

Precursors 60.9 82.2 70.0

Targets 48.5 33.0 32.1

SMR

Materials 94.6 95.3 95.0

Precursors 88.9 91.2 90.0

Targets 85.9 83.4 84.5

the test set are correctly identified. These correct cases account for 91.2% and 83.4% of
all the precursors and targets which should be extracted, respectively. The possibility of
errors increases when multiple precursors and targets are present in the same sentence. Out
of all the sentences containing precursors/targets, the rate to successfully retrieve all the
precursors and targets in each sentence is 73.4%. Some representative successful examples
from the SMR model, such as the recognition of the targets “LiBaBO3:Sm3+” and “(0.725-
x)BiFeO3-xBi(Ni0.5Mn0.5)O3-0.275BaTiO3 + 1 mol% MnO2”, are shown in Table 2.2.

We interpret the results as follows. In the baseline model, only the information from the
material entity itself is used, resulting in low F1 scores for the extraction of precursors and
targets (70.0% and 32.1%, respectively). In contrast, the SMR model achieves better F1

scores because Bi-LSTM is able to infer the role of materials from the context. For example,
as discussed previously, the Bi-LSTM infers from the tokens “was prepared from” to mean
that the following tokens probably refer to a precursor(s). Likewise, the network predicts
that the tokens following “at 700 ° C for” most likely are not precursors. For a precursor with
more than one metal/metalloid element, the baseline model fails to recognize it regardless
of the context, while the SMR model can still identify the precursor nature of this material.

To highlight the unique difficulty in the problem of named entity recognition (NER) for
inorganic material synthesis, we also compared our SMR model with other publicly available
toolkits intended for general NER tasks, such as NLTK [62] and SpaCy [63], and the ones for
CNER tasks, such as OSCAR4 [64], tmChem [65], ChemSpot [66] and ChemDataExtractor
[60] (Table 2.3). Here we only compared the performance for the identification of material
entities because these toolkits are not able to distinguish the different roles of materials,
such as precursors and targets. The general-purpose NER toolkits, NLTK and Spacy, only
classify text tokens into common categories such as locations, persons, and organizations.
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They are expected not to be able to extract any material entities as the second example
in Table 2.3. In the first and third examples, NLTK and Spacy even make misleading
predictions, such as classifying “CH3COO” as an organization and “Bi2Cu1-xNixO4” as a
person. The CNER toolkits, OSCAR4, tmChem, ChemDataExtractor, and ChemSpot per-
form better than NLTK and Spacy because they were designed to identify chemical terms.
Typically, these CNER toolkits work well on simple material entities such as “water” and
“Ni(NO3)2·6H2O”. Nonetheless, they exhibit an inability to recognize complex material
entities such as “lithium, cobalt, and manganese nitrates”. Our model outperforms the
aforementioned toolkits because of the training set specifically curated for inorganic synthe-
sis. Therefore, the adaption of off-the-shelf NLP methods and models is an essential step
toward text mining in materials research.

However, some situations remain difficult for the SMR model:

(1) Some material entities tokenized into multiple tokens are not completely extracted. For
example, the incomplete pieces “(Ba1-x(K” and “Na)x/2Lax/2)(Mg1/3Nb2/3)O3” are
extracted instead of “(Ba1-x(K or Na)x/2Lax/2)(Mg1/3Nb2/3)O3”, as listed in Table
2.2. The identification of these materials is difficult because of the syntactic variability
and ambiguity of multiword expressions (MWEs) [67], which might be improved by
incorporating recent progress on MWE identification such as the language-independent
architecture proposed by Taslimipoor et al. [68]. The number of training sentences con-
taining MWE materials might remain an issue considering the relatively large dataset
[69] used by Taslimipoor et al. [68].

(2) Some sentences are ambiguous to the SMR model because of the limitations of the
training set. For example, the model correctly classifies “Y2O3” as a precursor in
“Y2O3 as a precursor was added” and “Y2O3” as neither target nor precursor in
“Y2O3 as a grinding media was added”. However, in the sentence “Y2O3 as a donor
impurity was added”, the model does not understand “donor impurity” and only as-
signs “Y2O3” as an ordinary material rather than a precursor. This situation might be
improved by including more contextual information in the input, such as the sentence
embeddings [70] of previous and next sentences, and contextualized word embeddings
trained on a much larger corpus (e.g. BERT [38] and SciBERT [71]). Future possible
directions for research include training these embedding models on papers specifically
on materials synthesis, although the training process may require a significant manual
time investment and considerable computational resources.

(3) Misclassification can occur when the sentence is written with a complicated structure.
For example, the target “Ba0.5Sr0.5CoxFe1-xO3-δ” is misclassified as a precursor when
the order of precursors and targets is reversed or closely mixed in the sentence and the
materials around this word are all precursors, as shown in Table 2.2. These sentences
with a complicated structure must often be treated on a case-by-case basis, and it is
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difficult for an NLP model to pick up general rules to correct these errors. A potential
solution is to conduct selective sampling to annotate sentences with complex syntax
more efficiently, where only the ones that a pre-trained classifier is less confident with
will be sampled for annotation [72]. Our current model lays a foundation for selective
sampling.
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Table 2.2: Representative successful and failed examples from the SMR model in this study.

Example Sentences Expected
Error in
Extraction

Successful

The LiBaBO3:Sm3+ samples were prepared by solid-state
reaction. [73]

Target: LiBaBO3:Sm3+ N/A

Ceramic samples of (0.725-x)BiFeO3-xBi(Ni0.5Mn0.5)O3-
0.275BaTiO3 + 1 mol% MnO2 (x = 0-0.08)
(BFO-BT-BNM-x) were prepared by the conventional
solid-state route using high-purity metal oxides and
carbonates as starting materials: Bi2O3 (99 %), Fe2O3 (99
%), BaCO3 (99 %), TiO2 (98 %), NiO (99 %), MnO2
(99.99 %). [74]

Targets: (0.725-x)BiFeO3-
xBi(Ni0.5Mn0.5)O3-0.275BaTiO3
+ 1 mol% MnO2, BFO-BT-BNM-x
Precursors: Bi2O3, Fe2O3,
BaCO3, TiO2, NiO, MnO2

N/A

Y2O3 as a precursor was added. Precursor: Y2O3 N/A

Y2O3 as a grinding media was added. Material: Y2O3 N/A

Failed

(Ba1-x(K or Na)x/2Lax/2)(Mg1/3Nb2/3)O3 with 0 ≤ x ≤
1 were synthesized by a conventional solid-state reaction
method. [75]

Target: (Ba1-x(K or
Na)x/2Lax/2)(Mg1/3Nb2/3) O3

“(Ba1-x(K” and
“Na)x/2Lax/2)
(Mg1/3Nb2/3)O3”
extracted

Y2O3 as a donor impurity was added. [76] Precursor: Y2O3
Y2O3 extracted
as an ordinary
material

Required amounts of BaCO3, SrCO3, CoCO3·0.5H2O and
Fe2O3 powders for Ba0.5Sr0.5CoxFe1-xO3-δ, Pr6O11,
BaCO3, and CoCO3·0.5H2O powders for PrBaCo2O5+δ
were mixed and ball-milled for 24h. [77]

Targets: Ba0.5Sr0.5CoxFe1-xO3-δ,
PrBaCo2O5+δ
Precursors: BaCO3, SrCO3,
CoCO3·0.5H2O, Fe2O3, Pr6O11,
BaCO3, CoCO3·0.5H2O

Ba0.5Sr0.5CoxFe1-
xO3-δ extracted
as a precursor
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Benefits of the Two-step Model

In the SMR model, the identification of materials entities in the text and their subsequent
classification as targets, precursors, or something else were performed in two steps: first we
identified all materials entities present in a sentence; next we replaced each material with a
keyword “<MAT>” and classified it as a “Target”, “Precursor”, or just “Material”. It is also
possible to classify “Target” and “Precursor” materials from initial plain tokens without first
finding materials entities and then replacing materials with the keyword “<MAT>” (i.e.,
make only one-step of the model). However, we found that the two-step model provides
improved generality.

The two-step model reduces bias from frequently appearing materials. For example, “zir-
conia” frequently appears in synthesis as a grinding media, leading the one-step model to
classify it as a non-target material based on a word mapping. In the two-step model, this
problem is avoided because the term “zirconia” is replaced by the keyword “<MAT>”, thus
only the context of the token is used for the classification of targets/precursors, rather than
the material name. To quantify this finding, we selected 50 “unusual” sentences in which
the role of “zirconia” was identified and was classified as a target using the two-step model.
Manual inspection indicated that 30 of the classifications were correct and 20 were wrong
due to the ambiguity in the sentences (Table 2.4). In this particular situation, both the
one-step and two-step models were easily confused, and the accuracy of the one-step model
was even slightly higher. However, the one-step model behaved inconsistently. It classified
correctly only 17 of the zirconia targets, while in 13 cases the targets were missed because of
the tendency to regard “zirconia” as a non-target material. When the word “zirconia” was
replaced with “LiMn2O4”, the one-step model classified all 50 cases as targets. This exper-
iment indicates that the one-step model leads to inconsistent results and unstable accuracy
for different materials in the same context, which can introduce a systematic bias between
frequently and infrequently appearing materials.

Since the extraction of materials and classification of targets/precursors are implemented
separately, the two-step model can, in principle, be applied to research fields outside of
solid-state materials synthesis. For example, consider the sentence “1,3,7-trimethylxanthine
was synthesized from uracil” [78]. Here, the target “1,3,7-trimethylxanthine” is an organic
material very different from the expressions of inorganic materials. As a result, both the one-
step model and the two-step model trained with solid-state synthesis data mistook “1,3,7-
trimethylxanthine” for a general English word rather than a material. To understand that
“1,3,7-trimethylxanthine” is a target, the one-step model needs to be retrained by adding
similar materials to the training data. However, when the two-step model fails in identi-
fication of some materials, the second step is still useful because it reserves the capability
to classify a material as a precursor or target from context. The first step can be fixed by
combining with some popular chemical name databases such as PubChem [79] because it
is easy to find “1,3,7-trimethylxanthine” as a material in such databases. After replacing
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Table 2.3: Examples of the chemical named entities extracted by the general-purpose NER
tools NLTK [62] and SpaCy [63], and the tools trained on chemical corpus OSCAR4 [64],
tmChem [65], ChemSpot [66], ChemDataExtractor [60], SMR (this work). For the general-
purpose tools, the assigned labels are given in parentheses. For the chemical NERs, only
entities labeled as chemical compounds are shown.

An aqueous solution was prepared by dissolving lithium, cobalt, and manganese nitrates
in de-ionized water

NLTK –

SpaCy ‘manganese’ (nationalities or religious or political groups)

OSCAR4 ‘aqueous’, ‘lithium’, ‘cobalt’, ‘manganese’, ‘nitrates’, ‘water’

tmChem ‘lithium’, ‘cobalt’, ‘manganese nitrates’

ChemDataExtractor ‘lithium’, ‘cobalt’, ‘manganese nitrates’

ChemSpot ‘lithium’, ‘cobalt’, ‘manganese nitrates’, ‘water’

SMR ‘lithium, cobalt, and manganese nitrates’, ‘water’

A series of Ce3+-Eu2+ co-doped Ca2Si5N8 phosphors were successfully synthesized

NLTK –

SpaCy –

OSCAR4 ‘Ce3+’, ‘Eu2+’, ‘Ca2Si5N8’

tmChem ‘Ce3+-Eu2+’, ‘Ca2Si5N8’

ChemDataExtractor ‘Ce3+-Eu2+’, ‘Ca2Si5N8’

ChemSpot ‘Ce3+-Eu2’, ‘co’, ‘Ca2Si5N8’

SMR ‘Ce3+-Eu2+ co-doped Ca2Si5N8’

High-purity Bi(NO3)3·5H2O, Ni(NO3)2·6H2O and Cu(CH3COO)2·H2O were used as
starting materials for Bi2Cu1-xNixO4 powders

NLTK
‘NO3’, ‘NO3’, ‘CH3COO’ (organizations); ‘Ni’, ‘Cu’ (countries,
cities, states)

SpaCy ‘Bi2Cu1-xNixO4’ (person)

OSCAR4 ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’

tmChem
‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’,
‘Bi2Cu1-xNixO4’

ChemDataExtractor
‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’,
‘Bi2Cu1-xNixO4’

ChemSpot
‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’,
‘Bi2Cu1-xNixO4’

SMR
‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’,
‘Bi2Cu1-xNixO4’
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Table 2.4: Analysis of 50 sentences containing the term “zirconia” classified as targets by the
two-step model. One-step: Bi-LSTM-CRF was used to classify materials/precursors/targets
from plain tokens without replacing materials with the keyword “<MAT>”. Two-step: first
materials were identified and replaced with keyword “<MAT>”, and then these materials
were classified as precursors/targets. Notation “T” and “F” represents correct and incorrect
classification, respectively.

Role of
zirconia

Manual
inspection

Two-step (input
“<MAT>”)

One-step (input
“zirconia”)

One-step & replace
“zirconia” with

“LiMn2O4”

Target 30
50

(T 30, F 20)
21

(T 17, F 4)
50

(T 30, F 20)

Non-
target

20 0
29

(T 16, F 13)
0

“1,3,7-trimethylxanthine” with the keyword “<MAT>”, the two-step model would correctly
classify “1,3,7-trimethylxanthine” as a target, because the classifier in the second step is
trained to recognize “<MAT>” in different context.

Comparison with BERT

The recently released large language models such as BERT [38] and GPT [45] are attracting
extensive attention because of their universality and excellent predictive power. Although
trained on a large corpus of over 3 billion words, BERT can be fine-tuned with just one
additional output layer to create state-of-the-art models for a wide range of tasks. We fine-
tuned a BERT model with the annotated dataset in this paper and the hyperparameter
searching recommended by Devlin et al. [38]. The precision, recall, and F1 scores from the
fine-tuned BERT model are similar to our SMR model (Table 2.5). However, the fine-tuned
BERT model is 5 times slower than the SMR model in the prediction because BERT employs
a huge neural network structure. Nevertheless, BERT is still highly potential because more
work inherited from BERT [71, 80] keeps coming out since 2019. Especially, we are interested
in retraining and distilling a BERT model with the synthesis papers in our database rather
than only fine-tuning, though it requires significant time and computational resources. The
utilization of BERT model is one of our future directions.
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Table 2.5: Precision, recall, F1 scores, and time for our SMR model and the fine-tuned BERT
model on the same annotation dataset as the manuscript. Timing is conducted on the same
computer with an I7-7700K CPU and a GTX 1080 Ti GPU.

Model Type
Precision

(%)
Recall
(%)

F1 score
(%)

Time of prediction for
500 paragraphs (s)

SMR

Materials 94.6 95.3 95.0

105.3Precursors 88.9 91.2 90.0

Targets 85.9 83.4 84.5

Fine-tuned
BERT

Materials 91.9 94.9 93.4

551.7Precursors 89.3 91.9 90.5

Targets 82.6 86.5 84.4

2.3 Full text-mining pipeline

To extract “codified recipes” for inorganic synthesis from scientific literature, a range of
NLP problems need to be addressed besides MER. Here, we define a recipe to be any struc-
tured information about a target material, including the precursors, operations, conditions,
and other experimental details. Our full text-mining pipeline (Figure 2.4) breaks down into
the following steps: (i) acquisition of documents and conversion from markup languages
into plain text; (ii) text pre-processing, i.e. segmentation into sentences and tokens, text
normalization and morphological parsing; (iii) text representation modeling and paragraph
classification; (iv) information retrieval for various synthesis variables. The resulting collec-
tion of synthesis recipes provides a source of data for further scientific analysis and machine
learning.

Document acquisition

A total of 4,973,165 papers were scraped from main publishers including Elsevier, Wiley,
Springer, the American Chemical Society, the Electrochemical Society, the Royal Society of
Chemistry, the American Institute of Physics, and the American Physical Society. For all
these publishers, we have received permission to download large amounts of web content in
an appropriate manner. We conducted a preliminary screening by manually identifying all
journals related to materials science that each publisher offers for download. A web-scraping
engine, Borges [81], was built using the scrapy [82] toolkit. Since the full-text articles pub-
lished before the 1990s are mostly in PDF format, which complicates their parsing, we chose
to process only papers in HTML/XML format published after the 1990s. The downloaded
content includes the text of the article as well as its metadata such as journal name, article
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Figure 2.4: Schematic representation of the text mining pipeline for information extraction
from the scientific publications.

Table 2.6: Number of journals and papers for each publisher in the database of downloaded
articles.

Publisher
Number of
journals

Number of
papers

Elsevier 2,738 3,435,507

Wiley 1,398 298,088

Royal Society of Chemistry 57 281,168

Nature Publishing Group 26 247,806

American Institute of Physics 9 211,462

Springer 1479 193,839

American Chemical Society 23 140,722

American Physical Society 5 131,676

Electrochemical Society 9 32,897

title, article abstract, authors, and so forth. All data was stored in a document-oriented
database implemented using a MongoDB [83] database instance. Because downloaded ar-
ticles contain irrelevant markups, we developed a customized library, LimeSoup [84], for
parsing article markup strings into text paragraphs while keeping the structure of paper and
section headings. The number of papers from each publisher is shown in Table 2.6. With the
highest number of journals related to materials science, Elsevier was the primary source for
∼70% of the papers in our database of downloaded articles. However, publishers with fewer
journals, such as the Royal Society of Chemistry, also contributed a considerable amount of
papers. It is important to collect papers from each of these major publishers.
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Paragraph segmentation and sentence tokenization

After markup parsing, a downloaded article is converted from its original HTML/XML
file into many paragraphs of plain text that can be easily read by humans. However, the
computer does not understand the internal structure (e.g. words, sentences) because text
is a monotonic sequence of bits representing each character to the computer. Paragraph
segmentation and sentence tokenization are required to identify the boundaries of sentences
and tokens in a paragraph.

In general, identifying the beginning and end of a sentence segment requires recognition
of specific symbolic markers, such as period (“.”), question mark (“?”), and exclamation
mark (“!”). The challenge for scientific text lies in the combination of these markers with
other meaningful notations. Frequently used expressions, such as “Fig. X”, “et al.,” and
periods in chemical formulas often lead to over-segmentation of a paragraph. On the other
hand, citation numbers placed at the end of a sentence promote the merging of two sentences.
There is no universally accepted solution to this issue, and it typically involves implementing
a set of rules tailored to address specific cases [65].

Sentence tokenization, or the process of splitting a sentence into its logical constituents, is
vital for further information extraction, as errors generated at this stage tend to propagate
throughout the pipeline (Figure 2.4) and negatively impact the accuracy of final results. Ex-
tensive research has been conducted on tokenization for general-purpose text, leading to the
development of various advanced methods and techniques [85]. However, accurate tokeniza-
tion in the fields of chemistry and materials science necessitates significant workarounds and
revisions to standard approaches. Table 2.7 showcases typical examples of sentence tokeniza-
tion executed by general-purpose tokenizers, such as NLTK [62] and SpaCy [63]. Similar to
sentence segmentation, the primary source of errors stems from the arbitrary usage of punc-
tuation symbols within chemical formulas and other domain-specific terms. The chemical
NLP toolkits, such as OSCAR4 [64], ChemicalTagger [86], and ChemDataExtractor [60], ad-
dress this issue by introducing their own rule- and dictionary-based approaches to solve the
over-tokenization problem. In our study, we used ChemDataExtractor for both paragraph
segmentation and sentence tokenization.

Classification of synthesis paragraphs

Out of the nearly five million papers possibly related to materials science, only a small portion
is relevant to inorganic synthesis. Before using expensive models for information retrieval,
we need to first find paragraphs on inorganic synthesis. In this study, we used a two-step
paragraph classification approach [87] which consists of an unsupervised algorithm to cluster
common keywords in experimental paragraphs into “topics” and generate a probabilistic
topic assignment for each paragraph, followed by a random forest (RF) classifier trained on
annotated paragraphs. The outcome of the RF is a classification of the synthesis methodology
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Table 2.7: Examples of sentence tokenization using various tokenizers. NLTK [62] and
SpaCy [63] serve as general-purpose tokenizing toolkits, while ChemDataExtractor [60], OS-
CAR4 [64], ChemicalTagger [86] are specifically designed for scientific corpora. Tokens are
delineated by “|” symbol.

Reagents (NH4)2HPO4 and Sm2O3 were mixed

NLTK Reagents | ( | NH4 | ) | 2HPO4 | and | Sm2O3 | were | mixed

SpaCy Reagents | ( | NH4)2HPO4 | and | Sm2O3 | were | mixed

OSCAR4 Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed

ChemicalTagger Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed

ChemDataExtractor Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed

We made Eu2+-doped Ba3Ce(PO4)3 at 1200 °C for 2 h

NLTK
We | made | Eu2+-doped | Ba3Ce | ( | PO4 | ) | 3 | at |
1200 | °C | for | 2 | h

SpaCy
We | made | Eu2 | + | -doped | Ba3Ce(PO4)3 | at | 1200 | °
| C | for | 2 | h

OSCAR4
We | made | Eu2+ | - | doped | Ba3Ce(PO4)3| at | 1200 |
°C | for | 2 | h

ChemicalTagger
We | made | Eu2+-doped | Ba3Ce(PO4)3 | at | 1200 | °C |
for | 2 | h

ChemDataExtractor
We | made | Eu2+ | - | doped | Ba3Ce(PO4)3 | at | 1200 | °
| C | for | 2 | h

Lead-free a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 ceramics were investigated

NLTK
Lead-free | a | ( | Bi0.5Na0.5 | ) | TiO3-bBaTiO3-c | ( |
Bi0.5K0.5 | ) | TiO3 | ceramics | was | investigated

SpaCy
Lead | - | free |
a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 |
ceramics | was | investigated

OSCAR4
Lead | - | free |
a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 |
ceramics | was | investigated

ChemicalTagger
Lead-free |
a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 |
ceramics | was | investigated

ChemDataExtractor
Lead-free |
a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 |
ceramics | was | investigated
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Figure 2.5: Number of papers containing at least one paragraph on inorganic synthesis. The
fewer papers from 2018-2020 is mainly because of the termination of subscription with Else-
vier by UC [88]. The fewer papers in and before the 1990s is mainly because the HTML/XML
format is not available for those papers.

in a paragraph as either solid-state synthesis, sol-gel synthesis, hydrothermal synthesis, co-
precipitation synthesis, or “none of the above”. As a result, 364,076 paragraphs in the
experimental sections, corresponding to 302,000 papers, were found to describe inorganic
synthesis, with 89,197 of them corresponding to solid-state synthesis. The number of papers
containing at least one paragraph on inorganic synthesis is rapidly increasing with the year
as displayed in Figure 2.5. With such a large amount of papers published every year, it
is becoming impossible for an individual to track the progress in materials synthesis. An
automated data extraction pipeline, such as this study, provides a feasible solution to this
challenge.

Retrieval of synthesis information

A typical synthesis procedure in solid-state chemistry literature contains information regard-
ing precursor and target materials, synthesis operations, and associated conditions. Collec-
tively, these elements constitute a materials synthesis “recipe” and can be extracted from a
synthesis paragraph. As detailed in Section 2.2, we used the SMR model, a two-step model
based on Bi-LSTM neural network, to identify precursor and target materials. Each material
entity was processed utilizing a material parser [89], transforming the string representation of
the material into a chemical formula, and subsequently splitting it into constituent elements
and stoichiometries. Balanced reactions were derived from parsed precursors and target
materials by solving a system of linear equations. The variables of these linear equations
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represent molar quantities of materials involved in a reaction, with each equation assert-
ing the conservation of a specific chemical element within the reaction. Similarly, we used
another Bi-LSTM model [90] to identify the type of synthesis operations, such as MIXING,
HEATING, SHAPING, and COOLING. For every operation of type HEATING, we extracted the val-
ues or range of values for time, temperature, and atmosphere corresponding to the operation,
if they are mentioned in the same sentence. We applied a regular expression approach to find
the values of temperature and time, and a keyword search to find atmosphere. For every op-
eration of type MIXING, we extracted corresponding mixing media and type of mixing device,
if they are mentioned in the same sentence. We used the list of materials labeled by the SMR
model, as well as keyword matching, to find potential devices or media substances. Finally,
the precursor and target materials, operations, and conditions were compiled together with
the balanced reaction to generate the synthesis dataset.

2.4 Dataset of structured synthesis recipes

Starting from 4,973,165 materials science papers, we applied our text-mining pipeline (Sec-
tion 2.3) and successfully extracted 33,343 inorganic solid-state synthesis recipes. To our
best knowledge, this is the largest dataset publicly available for inorganic synthesis.

Each recipe record corresponds to an individual chemical reaction derived from a paragraph
describing inorganic material synthesis, and is represented as a key-value pairs structure
within a top-level list. If a paragraph reports the synthesis of multiple materials or a material
with variable substituted elements, the corresponding reactions are divided into separate
data records. In addition to a balanced chemical equation, the metadata for each reaction
includes: the DOI of the paper from which the reaction is extracted, a snippet (the 50 first
and 50 last characters to facilitate lookup) of the corresponding synthesis paragraph, chemical
information about target and precursor materials involved in the reaction, operations and
conditions for heating and mixing steps to synthesize the target material. The data format
specifics are provided in Table 2.8.

The chemical equation for the reaction is stored as a string and a list of pairs, including chem-
ical substance (material) and stoichiometric coefficient (amount). Reactants and products
are specified in left side and right side, respectively. In cases where the original paper
presents the target compound with variable substituted elements, the specific element used
in the particular reaction is provided in element substitution.

The metadata for target and precursor materials utilized in constructing and balancing the
chemical equation is represented by a data structure exhibiting the following properties:

• material string: string of the material as given in the original paragraph before
being parsed into its chemical composition.
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• material formula: the chemical formula corresponding to the material (either pro-
vided originally or derived empirically by the parser).

• composition: the chemical composition of the material derived from its formula. Aside
from single compound materials, a considerable portion of the materials (predomi-
nantly target materials) are found to be composites, mixtures, solid solutions or alloys,
presented as a sequence of ratio-compound pairs. Consequently, a chemical compo-
sition entity is denoted by a list of dictionaries, in which each item corresponds to a
compound identified within the material’s formula. The ratio of each compound within
the material is specified as amount, while its chemical composition (i.e. element and
fraction) is provided in elements. In instances where a material is one compound,
the list contains a single item with amount=1.0. For hydrate materials, the water is
incorporated into the composition list, with the amount equal to the number of water
molecules (if specified).

• additives: a list of additive elements, such as those employed for doping, stabilization,
and substitution, as resolved from the material string.

• elements vars: lists all variable elements and their associated values identified within
the materials.

• amounts vars: lists all variable element ratios and their associated values identified
within the material formula. The values for each variable are provided as a structure
with values listing specific variable’s values, and max value/min value values if a
range is presented in the paragraph.

• oxygen deficiency: a yes/no attribute indicating whether the material was synthe-
sized with unspecified oxygen stoichiometry.

• mp id: the ID of the lowest-energy polymorph entry in the Materials Project database
[2], if specified.

To streamline querying of the dataset, the targets string field contains all target material
formulas obtained by substituting amounts vars in the material formula.

The sequence of synthesis steps for the reaction, if detailed in the paragraph, is listed as a
data structure with the following fields: the original text token (token), its type (type) in
terms of operation, and conditions employed at this stage (conditions). If the synthesis
step is classified as HEATING, the temperature, time and atmosphere conditions are included
in the conditions attribute. Temperature and time are specified as values if discrete values
are available, or max value/min value if a range is provided. If the synthesis step is of the
MIXING type, the mixing device and mixing media are included in the conditions attribute.
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Table 2.8: Format of each data record: description, key label, and data type. a{amount:
float, material: string}. b{formula: string, elements: {element: amount of element},
amount: string}. c{max value: float, min value: float, values: list of floats}. d{max value:
float, min value: float, values: list of floats, units: string}.

Data description Data Key Label Data Type

DOI of original paper doi string

Snippet of raw text paragraph string string

Chemical equation reaction

Object (dict):
- element substitution: dict
- left side: list of Objects1

- right side: list of Objects1

Chemical equation in
string format

reaction string string

Target material data target

Object (dict):
- material string: string,
- material formula: string,
- composition: list of Objects2

- additives: list of strings
- elements vars: {var: list of strings}
- amounts vars: {var: list of Objects3 }
- oxygen deficiency: boolean
- mp id: string

List of target formulas
obtained after
variables substitution

targets string list of strings

Precursor materials
data

precursors list of Objects (See target)

Sequence of synthesis
steps and
corresponding
conditions

operations

list of Objects (dict):
- token: string,
- type: string
- conditions: Object
- - heating temperature: list of Objects4

- - heating time: list of Objects4

- - heating atmosphere: list of strings
- - mixing device: list of strings
- - mixing media: list of strings
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Table 2.9: Performance of data extraction for dataset entries.

Data attribute Precision Recall F1 score

Materials
- targets
- precursors

0.97
0.99

/
0.99

/
0.99

Operations 0.86 0.95 0.90

Heating conditions
- temperature
- time
- atmosphere

0.85
0.90
0.89

0.87
0.88
0.86

0.86
0.89
0.87

Mixing conditions
- mixing media
- mixing device

0.62
0.82

0.66
0.55

0.64
0.66

Balanced reactions 0.95 / /

To assess the quality of the extracted dataset, we randomly selected 100 data entries and
manually verified each extracted field against the original paragraph. The calculated pre-
cision, recall, and F1 score for every attribute of the data entry are provided in Table 2.9.
Overall, we achieved high accuracy in extracting targets (precision 97%), precursors (F1

score 99%), operations (F1 score 90%), and balanced reactions (precision 95 %). The high
accuracy for identifying targets and precursors is attributed to the additional constraints im-
posed by constructing balanced chemical equations, which helps to reduce potential errors
caused by composition parsing. The lower accuracy of heating conditions (F1 score < 90%)
primarily results from cases where the operations extraction algorithm misses the heating
step. The retrieval of mixing conditions exhibits relatively poor accuracy with an F1 score
of 65%, largely due to misidentification by MER of the device material or media substance
used for mixing and the fact that those conditions are frequently not mentioned in the same
sentence as the mixing procedure.

This analysis leads us to conclude that at the chemistry level (correct precursors, targets,
reactions), the accuracy of the dataset is 93%. When including all operations and their con-
ditions, the accuracy of correctly extracting and assigning all recipe components (chemistry,
operations and attributes of the operations) is 51%, which is low due to poor performance in
extracting mixing attributes. For many solid-state recipes, the specifics of mixing precursors
are of lesser importance, rendering this extraction failure less critical. When considering
only the correctness of the recipe without conditions for heating and mixing (i.e. chemistry,
operations, and reactions), the accuracy increases to 64%.
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To give a sense of the typical materials being extracted, we list the ten most frequent targets
(Table 2.10), precursors (Table 2.11) and reactions (Table 2.12) in the dataset. The target
compounds effectively capture the types of materials most frequently investigated via solid-
state synthesis over the past two decades. These are lithium-ion battery cathode materials
such as LiFePO4, LiMn2O4, and LiNi0.5Mn1.5O4, in addition to perovskites employed in
multiferroics, LEDs, and CMOS applications, such as BaTiO3, BiFeO3, and SrTiO3. The
ranking of the most frequent targets is not exactly the same as that of the reactions because
the synthesis complexity differs from one target to another. For example, various recipes
have been attempted to lower the synthesis cost of the cathode material LiFePO4 because
of its high commercial value. LiFePO4 can be synthesized from different Li sources, such
as Li2CO3 and LiOH, and different Fe sources, such as Fe2O3 or FeC2O4. While LiFePO4

is the most frequent target in the dataset, the frequency of each specific reaction leading
to LiFePO4 is smaller than that of the top ten most frequent reactions. In contrast, the
perovskite BaTiO3 is synthesized from BaCO3 and TiO2 most of the time, “BaCO3 + TiO2

= BaTiO3 + CO2” is also the most frequent reaction in the dataset.

Table 2.10: Ten most common targets present in the dataset.

Rank Target Rank Target

1 LiFePO4 6 SrTiO3

2 LiMn2O4 7 Li4Ti5O12

3 BaTiO3 8 Y3Al5O12

4 BiFeO3 9 CaTiO3

5 CaCu3Ti4O12 10 LiNi0.5Mn1.5O4

Table 2.11: Ten most common precursors present in the dataset.

Rank Precursor Rank Precursor

1 TiO2 6 Bi2O3

2 SrCO3 7 Fe2O3

3 BaCO3 8 Nb2O5

4 La2O3 9 Li2CO3

5 CaCO3 10 Na2CO3
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Table 2.12: Ten most common reactions present in the dataset.

Rank Reaction

1 BaCO3 + TiO2 = BaTiO3 + CO2

2 3CuO + 4TiO2 + CaCO3 = CaCu3Ti4O12 + CO2

3 0.5Bi2O3 + 0.5Fe2O3 = BiFeO3

4 SrCO3 + TiO2 = SrTiO3 + CO2

5 2Li2CO3 + 5TiO2 = Li4Ti5O12 + 2CO2

6 TiO2 + CaCO3 = CaTiO3 + CO2

7 Nb2O5 + ZnO = ZnNb2O6

8 6Fe2O3 + BaCO3 = BaFe12O19 + CO2

9 Li2CO3 + TiO2 = Li2TiO3 + CO2

10 0.5Li2CO3 + 0.333Co3O4 + 0.083O2 = LiCoO2 + 0.5CO2

2.5 Exploratory data analysis

The large-scale dataset presents significant opportunities for improving our understanding
of solid-state synthesis. In this section, we exemplify the typical ways to use this text-
mined dataset through exploratory data analysis in different directions, including coverage
of chemical space, synthesis temperature, synthesis routes, synthesis time, reaction energy,
and the application to a specific chemical system. Subsequent studies may wish to expand
on these analyses to explore synthesis design more comprehensively.

Coverage of chemical space

Although over 100 elements exist in the universe, they are not used evenly due to disparities
in availability and variations in chemical properties. In this study, we assessed the chemi-
cal space covered by the text-mined dataset. For each chemical element, we calculated the
number of reactions involving the given element in the target materials. The results are
illustrated in Figure 2.6 using a yellow-to-green gradient frame at the top of each element
box. The database features a predominance of target materials containing Ti, Sr, Ba, La,
and Fe, with over 3,000 reactions involving these elements. This observation is also cor-
roborated by the ten most frequent target materials listed in Table 2.10. Subsequently, the
next-most common targets are materials containing Li, Ca, Nb, Mn, and Bi, with these
elements involved in 2,000 ∼ 3,000 reactions. Conversely, Au, Pt, Os, and Be are the least
common elements, appearing in fewer than 13 reactions within the dataset. Notably, rare
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Figure 2.6: Map of chemical space covered by the dataset and average firing temperature
for different precursors. For each element, a yellow-to-green gradient frame signifies the
cumulative number of reactions yielding target materials containing the element. The bar
graph beneath each element illustrates the list of ions paired with the element in precursor
compounds, with the length of the bar corresponding to the firing temperature averaged
across all reactions employing the given precursor (i.e. element+counter-ion). Elements
present in five or fewer targets are displayed in grey. The notation “Ac” represents the
acetate anion CH3COO- within the compound formula.

and radioactive elements such as francium, radium, technetium, and promethium are absent
from the target materials in the dataset.
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Synthesis temperature

In addition to exploring the coverage of chemical space, we investigated the co-occurrence of
chemical elements and the most prevalent counter-ions in precursor materials, and calculated
the average firing temperature associated with each precursor. The firing temperature is
operationally defined as the temperature used during the final heating stage in the synthesis
process sequence. Figure 2.6 presents the findings in the form of bar graphs for each element,
where the bar color represents a particular counter-ion and the pure element as a precursor
is depicted in magenta. The bar length signifies the average firing temperature.

In solid-state synthesis, the counter-ion influences the melting or decomposition temperature
of the precursor and may determine when the precursor becomes active during synthesis.
The distribution of firing temperatures in Figure 2.6 aligns closely with this statement and
demonstrates how different precursors are employed in various temperature regimes during
solid-state synthesis. For instance, the blue bars generally exhibit greater length (higher av-
erage temperature) compared to the red ones, because transition metal borides, carbides and
nitrides often require higher reaction temperatures than their corresponding oxides, owing
to the refractory nature of their precursors. Conversely, the green bars are comparatively
shorter (lower average firing temperature) than the red ones, because, compared to oxides
and complex oxide anions (carbonates, phosphates, etc.), synthesis with hydroxides, oxalates,
and acetates facilitates lower temperature reactions because of their reduced melting points.
This data-driven temperature analysis is based on the precursor, and we acknowledge that
reaction temperatures also rely on the thermal stability and reactivity of the target mate-
rials. Nevertheless, Figure 2.6 offers a semi-quantitative starting point for researchers: if a
target material decomposes at a relatively low temperature, it may be advantageous to select
a precursor that tends to become active at lower temperatures.

Synthesis routes

To illustrate the variety of synthesis routes present in the dataset, we organized the sequence
of synthesis steps based on the following pre-defined patterns (refer to the table in Figure
2.7):

• One-step synthesis involves solely solid mixing/grinding operations and a maximum of
one heating step (final firing) without regrinding.

• Synthesis with grinding in a liquid medium homogenizes (without dissolution) the start-
ing materials in any liquid medium.

• Solution-based synthesis includes any form of dissolution of starting materials in a
solvent.
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• Synthesis with intermediate heat incorporates one or more heating steps (excluding
drying after mixing with the liquid part) prior to the final firing of the materials.

First, we found that various synthesis types are almost evenly represented in the database
(refer to the top pie-chart in Figure 2.7): 26% of materials are synthesized in one step, 25%
of the syntheses routes involve intermediate heating step(s) before the final firing, 21% of
the syntheses incorporate grinding (homogenizing) in liquid, and 14% require dissolution of
precursors in a solvent. The remainder of the recipes (14%) either lack a detailed synthesis
procedure (6%), or the pathway is more intricate (8%).

As the selection of the counter-ion in a precursor frequently relies on the synthesis method, we
investigated the prevalent synthesis type for a particular ion in a precursor. We examined a
subset of reactions containing the given counter-ion in a precursor compound and determined
the proportion of each synthesis type within this subset. The resulting pie-charts are shown in
Figure 2.7. The observed pattern aligns with established aspects of solid-state synthesis. For
instance, the solution-based synthesis (orange fraction) often employs soluble precursors with
nitrates, acetates, and organic (CH-containing) anion groups. Certain counter-ions are more
amenable to one-step synthesis than others. For example, chlorides, sulfides, and hydrides
do not require much additional processing. Conversely, relatively stable precursors such as
oxides and carbonates undergo various processing methods, frequently requiring intermediate
heating and grinding. This is likely because of the common formation of reaction impurities
and non-equilibrium intermediates during reaction sequences.

Synthesis time

To investigate the typical synthesis time in reported experiments, we show the histogram of
heating time for all reactions in the text-mined dataset in Figure 2.8. We observed that most
successful syntheses are conducted within 24 h. It is worth noting that heating time is usually
reported as an upper bound rather than the actual reaction duration. Several spikes (red
color) at 12, 24, 48, and 72 h are present in Figure 2.8, because time is frequently determined
in an arbitrary way. In these cases, the actual reaction duration should be even shorter.
Synthesis experiments lasting more than three days are rare. That is mainly because of the
practical factor: shorter turnaround times are necessary to accommodate more experimental
attempts given the limited access to lab equipment. The limited time for synthesis imposes
an additional constraint on the synthesis process. In addition to thermodynamics, practical
synthesis requires a sufficient rate of chemical kinetics to form the target material in a matter
of days. The availability of data over time can assist in the study of chemical kinetics involved
in the solid-state synthesis process.
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Type Example of synthesis paragraph

one-step [...TiO2 and Li2CO3 were well mixed and 
then heated at 850 °C for 5h...]

solution
-based

[...reagents were dissolved in deionized 
water, and then dried. Resulting powders 
were calcined at 673 K, then ground and 
calcined again at 1573 K for 6 h in air...]

inter-
mediate 

heat

[...powdered Fe2O3 and SrCO3 were 
mixed, and calcining the mixture at 1000 
°C. The material was crushed, mixed with a 
binder, pressed and sintered at 1200 °C...]

grinding 
in 

liquid

[...LiOH H2O and TiO2 precursors were ⋅H2O and TiO2 precursors were 
ball-milled in acetone for 12 h and dried 
overnight at 80 °C. The mixture was 
sintered at 900 ° C air for 12 h...]
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Figure 2.7: Association between the choice of synthesis route and precursors counter-ions.
The top table exemplifies the four defined synthesis types: one-step synthesis, solution-based,
synthesis with intermediate heating steps, and synthesis involving grinding of precursors in
liquid media. The pie charts on the right illustrate the proportion of each synthesis route
within the dataset. The donut-like charts depict the fractions of the four synthesis routes
(outlined in the table) for each counter-ion used in precursors. “Ac” denotes the acetate
anion CH3COO- in the compound formula, while “Org” represents the organic anion group
(-CH-) in the compound formula.
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Figure 2.8: Distribution of reported heating time in the dataset. The longest time is adopted
when multiple values are reported in the same paper.

Energetic analysis

The energy of a material is one of the most important material properties because it enables
further analysis of thermodynamics and kinetics. However, the energy is usually not present
in the text description related to synthesis experiments in a research paper. To address
this situation, we assume that the composition in the text corresponds to the lowest-energy
structure with the identical chemical composition in the Materials Project database [2]. For
the materials not found in the Materials Project database, their energies are interpolated
using a linear combination of known compounds. Since only energy at 0 K is available from
the Materials Project database, the finite-temperature Gibbs free energy is estimated with
the method by Bartel et al. [91].

With the capability to estimate the finite-temperature Gibbs free energy of materials in
our dataset, we investigated the typical distribution of reaction Gibbs energy in solid-state
synthesis (Figure 2.9). Specifically, for each reaction, we calculated the difference of Gibbs
energy normalized by the number of atoms per target formula at 1000 °C between prod-
ucts and reactants. For gas phase species such as O2 and CO2, the temperature-dependent
enthalpy and entropy were from FREED [92] and NIST [93] experimental databases. For
materials with CO2−

3 anions, an empirical correction of -1.2485 eV/CO2−
3 from fitting exper-
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Figure 2.9: Distribution of reaction Gibbs energy in the dataset.

imental enthalpies for common carbonates was applied [94]. The reaction Gibbs energy is
negative for most of the reactions, agreeing with the known thermodynamic rule that the
driving force of a synthesis reaction comes from the lower energy of the product side com-
pared to the reactant side. It is also notable that a small portion (∼12%) of reactions exhibit
a positive Gibbs energy change from the reactants to the products, possibly because of the
uncertainties arising from the series of assumptions made during the estimation of material
energetics. Despite the uncertainties, estimating material energetics can still be potentially
useful in capturing trends when analyzing synthesis thermodynamics and kinetics.

Application to a specific chemical system

The text-mined dataset is particularly useful for a rapid literature review of different synthe-
sis procedures within a single chemical space. Figure 2.10 displays a birds-eye perspective
of the various solid-state synthesis routes to target materials in the Li-Mn-O (LMO) chem-
ical system using the dataset. By querying the dataset, a researcher not familiar with the
syntheses in the LMO system can quickly acquire the pertinent knowledge of synthesizing
LMO materials.

For example, the number of reaction records for each material is shown by the circle size
and color in Figure 2.10. The material with the most number of studies in the LMO
system is LiMn2O4, which is related to its potential applicability in batteries. Besides
LiMn2O4 itself, many materials with close stoichiometry in the Li1+xMn2−xO4 family, such as
Li4Mn5O12 and Li5Mn7O16, are also synthesizable. The synthesis temperature for Li2MnO3
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Figure 2.10: Graphical representation of dataset entries queried for the Li-Mn-O system.
Examples of the subset entries: target LMO material, synthesis reaction and route. The
DOIs are provided for reference. The triangle shows the distribution of the LMO materials
on the phase diagram. The circles’ size and color are scaled according to the number of
reactions in the dataset with the given target material.
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and Li1+xMn2−xO4 is typically lower than 900 °C, while the synthesis of LiMnO2 polymorphs
requires either higher heating temperature [95, 96] or reducing atmosphere [97, 98]. While
these details are also available by manually reading the literature, the text-mined dataset
saves time for a researcher of reading and summarizing hundreds of papers.

2.6 Conclusion

We have developed a fully automated text-mining pipeline for inorganic materials synthe-
sis science. Starting from 4,973,165 materials science papers, we applied our text-mining
pipeline and successfully extracted 33,343 solid-state synthesis recipes. Each recipe is the
structured data of a synthesis procedure, including the target material, the precursors, the
chemical reaction, the experimental operations, and the conditions associated with HEATING

and MIXING operations. Detailed discussions on extracting precursor and target materials
demonstrate the challenges and solutions for information retrieval in the field of material
science. The usage of the text-mined synthesis dataset is exemplified by exploratory data
analysis with various aspects, including coverage of chemical space, synthesis temperature,
synthesis routes, synthesis time, reaction energy, and the application to a specific chemical
system.
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Chapter 3

Similarity of precursor materials for
alternative recipes

In order to understand and eventually predict solid-state synthesis recipes, one of the im-
portant questions is how to select precursors [5–7]. Knowledge of which precursors to use
is often achieved by an individual’s experience. In this chapter1, we present a data-driven
approach to assess the similarities and differences between precursors in solid-state synthesis
by conducting a meta-analysis with the extracted data. The similarity could help guide the
selection of precursors when researchers alter existing recipes by replacing precursors.

We first present the variety of the extracted precursors. Quantitative analysis of this large-
scale dataset indicates that the most common precursors for each element are usually the
oxides, carbonates, or hydroxides stable at ambient environment. An intriguing question is
how frequently researchers substitute one precursor with another while retaining the target,
which sheds light on how similarly these precursors behave in a solid-state reaction. We
utilized a substitution model based on the work of Hautier et al. [100] and Yang et al. [101] to
quantify the probability that two precursors are interchangeable. Combining the substitution
probability and the distribution of synthesis temperatures, we define a multi-feature distance
metric to characterize the similarity of precursors. A hierarchical clustering of precursors
based on this metric demonstrates that the “chemical similarity” can be extracted from
text data, without the need to include any explicit domain knowledge. The quantitative
similarity metric offers a reference to rank precursor candidates and constitutes an important

1 This Chapter incorporates sections from a previously published paper and one in press, with permission
from the authors: (1) Tanjin He, Wenhao Sun, Haoyan Huo, Olga Kononova, Ziqin Rong, Vahe Tshitoyan,
Tiago Botari, and Gerbrand Ceder. “Similarity of precursors in solid-state synthesis as text-mined from
scientific literature.” Chemistry of Materials 32, no. 18 (2020): 7861-7873 [29]; and (2) Tanjin He, Haoyan
Huo, Christopher J. Bartel, Zheren Wang, Kevin Cruse, and Gerbrand Ceder. “Precursor recommendation
for inorganic synthesis by machine learning materials similarity from scientific literature.” Science Advances
(2023), in press [99].
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step toward developing a predictive synthesis model [29].

3.1 Common and uncommon precursors

The solid-state synthesis dataset extracted from the literature (Chapter 2) contains 71 differ-
ent metal/metalloid elements and 1,619 distinct precursors. Some precursors are rarely used.
Restricting the statistics to precursors used at least 30 times, there are 58 metal/metalloid
elements and 182 precursors.

To visualize the variety of precursors, the precursors for each metal/metalloid element are
categorized by the anion (group) class and counted by the number of corresponding reactions
in which they are used. The frequency of each anion class normalized by the total number
of reactions for an element is shown in Figure 3.1. One precursor is usually used much more
frequently than other precursors for the same element, which we denote as the common pre-
cursor. Figure 3.1 shows that for alkali and alkaline earth elements, the common precursors
are carbonates, except for MgO which is the typical source for Mg. For transition metals
and other main group elements, the common precursors are oxides except for B(OH)3 for B.
In general, the common precursor tends to be the compound that is stable under ambient
conditions, which is beneficial to the purity and accurate weighting in experiments [102]. Our
observation on the common precursors suggests that laboratory chemists will prioritize shelf
stability of precursors; although we note that more reactive precursors can help to facilitate
synthesis reactions.

However, the predominant use of the common precursor does not mean precursor selection
is a trivial problem. In our text-mined synthesis dataset, we find that approximately half
of the target materials were synthesized using at least one uncommon precursor. Figure
3.2 presents the fraction of targets in the text-mined dataset that can be achieved as one
increases the number of available precursors. The precursors on the x-axis are ordered by
the relative frequency with which they are used to bring a specific element into a synthesis
target. Sometimes, the decision to use an uncommon precursor is motivated by an interesting
advantage for a specific nontraditional precursor. For example, in some cases precursors can
function as morphology templates; Zhao et al. reported that γ-MnOOH nanorods were
used to obtain LiMn2O4 nanorods, whereas LiMn2O4 from electrolytic MnO2 (EMD) only
consisted of many irregular and aggregated particles [103]. The use of a lower-melting-point
precursor can result in a target with a smaller particle size; Liu et al. adopted Sr(NO3)2
instead of SrCO3 to synthesize SrTiO3 nanocrystals [104]. An amorphous precursor can
facilitate the reaction process and minimize the possibility of forming chemical segregations;
Mercury et al. utilized amorphous Al(OH)3 rather than Al2O3 in the synthesis of Ca3Al2O6

[105]. In these examples, there were strategically designed precursors in order to achieve a
particular synthesis result. Collecting these individual-use cases provides interesting insights
into synthesis design.
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(a) (b)

Figure 3.1: Fraction of different classes of precursors corresponding to each element: (a)
main group elements and (b) transition metal elements.

3.2 Substitution model for precursors

The large number of reactions we obtained gives us the opportunity to understand to what
extent precursors are interchangeable. To measure the probability that one precursor can be
substituted by another while retaining the target, we utilized a substitution model similar
to the one developed by Hautier et al. [100] and used by Yang et al. [101] for structure
prediction. For each pair of precursors, the model counts the number of occurrences where
the same targets can be synthesized from either of the precursors. The more frequently the
two precursors are interchanged, the more similar they are.

In the following part, we define the substitution model in a mathematical form, and express
the probability of finding a substitutional precursor pair Psub(p

j,1
i , pj,2i ) as a sigmoid with

unknown parameter λ. Assuming the independence of substitutions, we deconvolute the
probability of finding substitution between two lists of precursors Psub(RX , R

′
X) into the

product of Psub(p
j,1
i , pj,2i ). At last, we maximize Psub(RX , R

′
X) over substitution observations

to solve λ and use it to calculate substitution probability.



CHAPTER 3. SIMILARITY OF PRECURSOR MATERIALS FOR ALTERNATIVE
RECIPES 42

Figure 3.2: Fraction of targets that can be synthesized with limited number of available
precursors. The precursors are ordered by relative frequency per metal/metalloid element.
Precursors for 62 elements are considered. A new target is included if at least one reported
reaction for that target was performed with the available precursors.

First, we define precursor substitution in a mathematical form. Let E = (e1, e2, · · · , en) be
a pre-defined ordered list of all the metal/metalloid elements given in the periodic table. We
assume each precursor contributes one metal/metalloid element to targets. For the target
RTar in a reaction synthesis R = (RTar, RX), define the precursor list as RX = (p1, p2, ·, pn),
where pi is the precursor for element ei present in RTar; otherwise pi is null. For a pair
of reaction {R,R′} if RTar = R′

Tar and RX ̸= R′
X , we say precursor substitution occurs.

Through iterating over all the possible combinations of any two reactions, we obtain a
collection of N reaction pairs where precursor substitution occurs, denoted as the data
D = {{R,R′}1, {R,R′}2, · · · , {R,R′}N}. Our objective is now to find the values of the
pairwise precursor substitutions that maximize the likelihood of D.

Next, we define the potential substitutional precursor pairs. For element ei, denote the list of
candidate precursors as (p1i , p

2
i , · · · , p

mi
i ), where mi is the total number of unique precursors.

We assume that potentially every precursor pτ1i can be substituted by any other one pτ2i ,
forming a substitutional pair {pτ1i , p

τ2
i } where 1 ≤ τ1 < τ2 ≤ mi. In total, there can be up to

Mi =
(
mi

2

)
such pairs for element ei. For simplicity, we assemble all substitutional pairs for

all elements into one list and renumber the pairs as {pj,1i , pj,2i } where j = 1, · · · ,
∑n

i=1 |Mi|.
Although the index i is not necessary, we retain it for clarity to distinguish between elements.
The probability that the pair {pj,1i , pj,2i } can be found as a substitution occurs is written as

Psub(p
j,1
i , pj,2i ) = sigmoid(λj), (3.1)
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where λj is a parameter to be optimized. Assuming all substitutional precursor pairs are
independent of each other, the probability that the pair of precursor lists {RX , R

′
X} can be

found as a substitution occurs is

Psub(RX , R
′
X) =

e
∑

j λjIj(RX ,R′
X)

Z
, (3.2)

where

Ij(RX , R
′
X) =

{
1, {RX,i, R

′
X,i} = {pj,1i , pj,2i }

0, otherwise
, (3.3)

and Z is the partition function for normalization, given by

Z =
∏
j

(1 + eλj). (3.4)

The value of λ = (λ1, λ2, · · · ) is obtained by maximizing the likelihood over the data D:

λ∗ = argmaxλ

N∑
t=1

logPsub((RX , R
′
X)t|λ) (3.5)

For those substitutional pairs not found in D, the value of λj will be set to a common low
value such that Psub(p

j,1
i , pj,2i ) in Eq. 3.1 is close to zero.

Finally, we define the substitution probability. Here we discuss one substitutional pair
{pj,1i , pj,2i } and omit the index j for simplicity. For a given reaction using precursor p1i ,
the probability that p1i is substitutable by p2i is

P (p2i |p1i ) = P (p1i substituted)
Psub(p

1
i , p

2
i )∑

k ̸=1 Psub(p1i , p
k
i )
, (3.6)

where P (p1i substituted) is a prior probability of p1i being substitutable and is calculated as
the number of reactions with the substituted precursor p1i divided by the total number of all
reactions using p1i . The fractional part in the right-hand side accounts for the conditional
probability that p1i is substitutable by p2i when substitution occurs, which can be calculated
with Eq. 3.1. A small fraction of reactions (∼ 5%) which included multiple metal/metalloid
elements in the same precursors or used multiple precursors for the same element were not
considered in this model.

3.3 Cross-validation of substitution model

We evaluated the predictive power of the substitution model by performing a cross-validation
test on the generation of alternative precursor lists. Cross-validation consists in training the
model on part of the available data (the training set) and predicting back the remaining data
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(the validation set). Given a target RTar and an existing precursor list RX in the training
set, we can propose an alternative precursor list R′

X to synthesis the same target by replacing
the precursors in RX with different ones. With the substitution probability defined in Eq.
3.6, the conditional probability of RX being substitutable by R′

X is given by

P (R′
X |RX) =

∏
p1i∈RX ,p2i∈R′

X ,p1i ̸=p2i

P (p2i |p1i ). (3.7)

If P (R′
X |RX) is higher than a given threshold, the proposed R′

X will be accepted as a
positive prediction of an alternative precursor list. Otherwise, R′

X will be rejected as a
negative prediction. Applying this procedure on all possible R′

X , we obtain all the positive
and negative predictions and compare with the validation set for evaluation. Two-thirds of
the reactions were used as the training set and the remaining one-third of the data were used
as the validation set. For example, La0.7Ca0.3MnO3 is synthesized from La2O3, CaCO3, and
MnO2 [106] in the training set. As a true positive prediction, the substituted precursor list
La2O3, CaO, and Mn(Ac)2 (Ac stands for acetate anion CH3COO−) [107] was also found
in the validation set. The true positive rate (TPR) and false positive rate (FPR) were
used as metrics to evaluate the performance. The TPR and FPR of the prediction vary
with the probability threshold, as shown in Figure 3.3. Overall, the TPR is higher than
the FPR, indicating that the substitution model has a predictive power in the selection of
alternative precursors and can effectively distinguish between the substitutions leading to
existing precursor lists and those leading to nonexistent ones. Higher threshold values lead
to fewer false alarms but imply fewer true hits. An adequate threshold can be found by
selecting the one resulting in relatively higher TPR and lower FPR.

3.4 Substitution probability

The probability P (B|A) that a precursor A is substituted by another precursor B for the
same metal/metalloid element (Eq. 3.6) is displayed as a heatmap in Figure 3.4, where the
rows are A and the columns are B. The color represents the probability of substitution
defined in Eq. 3.6, as shown by the colorbar. For each element, the precursors are ordered
by the number of reactions using it from the most to the least, that is, the first precursor is
the common precursor for each element. For the sake of simplicity, we merged the precursor
in its hydrated form and its anhydrous form, for example LiOH·H2O and LiOH, based on
the assumption that water will evaporate early on during the solid-state heating process.
The rows for the common precursors usually display relatively high substitution probability,
which implies that many uncommon precursors can be replaced with the common precursors.
Note that our analysis only indicates that substitution can lead to the same target compound
under similar reaction conditions. The choice of different precursors can still be justified as
they might infer different properties on the compound. For example, in the battery chemistry,
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Figure 3.3: TPR and FPR with varying probability threshold in the prediction of alternative
precursor list. The green dashed line indicates where the largest difference between the TPR
and FPR was observed.

LiOH is sometimes preferred over Li2CO3 as it leaves less carbonate residual on the surface
of the particles.

Intuitively, hydroxides are similar to oxides; however, Figure 3.4 also captures some differ-
ences in this similarity for different elements. For example, the common precursor for Al
is the oxide, whereas that for B is the hydroxide. Furthermore, the probability of substitu-
tion between Al(OH)3 and Al2O3 is considerably higher than between B(OH)3 and B2O3.
The number of reactions using Al2O3, Al(OH)3, B(OH)3, and B2O3 are 1,606, 148, 705,
and 252, respectively, indicating that this difference is not due to limited data. The reason
behind this is possibly correlated with the unique bonding in B2O3; B is highly hybridized
with O in B2O3, much more than Al with O in Al2O3. This creates strong units in B2O3

held together by relatively weak forces [108] accounting for its low melting point and high
glass-forming ability [109]. Although nitrates are often used in solution-based synthesis, the
chance to use nitrates in solid-state synthesis is also considerable. Figure 3.4 shows that
for elements Ca, Ba, Al, and Fe, nitrates frequently replace the common oxide or carbonate
precursors. For example, the probability of substituting Fe2O3 with Fe(NO3)3 is high. The
nitrates are used in various ways such as in conventional solid-state synthesis [110], modified
solid-state synthesis [111], combustion synthesis [112], and sol-gel synthesis [113]. Although
carbonates appear interchangeable with oxides, the metals in them might not occupy the
same valence state. The probability of substitution between MnCO3 and MnO2 is higher
than that between MnCO3 and MnO, indicating that MnO2 is more similar to MnCO3 than
MnO.
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Figure 3.4: Substitution probability P (B|A), which is the probability that the precursor A
on the x-axis is substituted with precursor B on the y-axis: (a) Li, (b) Ca and Ba, (c) B
and Al, (d) Fe, (e) Co, (f) Mn. For example, we found that in 15% of reactions that use
CaCO3, it could also be substituted with another precursor to introduce Ca into the same
targets; in 73% of the substitutions, the other precursor is CaO. The joint probability that
CaCO3 is substituted and the substitute is CaO is 11%. Because CaF2 is exclusively used
for the synthesis of fluorine-containing compounds, the probability that CaF2 is substituted
to synthesize the same target is zero.
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To better understand how precursors are chosen for elements with variable valence, for each
Mn precursor with reasonable frequency of use, we plot in Figure 3.5 the distribution of
valence states for Mn in the targets synthesized from that precursor. The valence of Mn
in the target compound was determined by iterating all possible combinations of valence
states and finding the one resulting in the charge neutrality for the compound [114]. The
width of each violin plot is proportional to the probability density for different valence states;
the total area is proportional to the number of reactions using the corresponding precursor.
The adoption of MnO, Mn2O3, and MnO2 is preferred in the literature to synthesize targets
with similar valence states, that is, most Mn ions in targets from MnO, Mn2O3, and MnO2

correspond to 2+, 3+, and 3+∼4+, respectively. Different from the oxides, the valence
states in targets from MnCO3 and Mn(Ac)2 are more evenly distributed, indicating that the
use of MnCO3 and Mn(Ac)2 is less dependent on the valence states in the targets. This
appears reasonable given the ease by which MnCO3 and Mn(Ac)2 decompose when heated
and Mn2+ can be oxidized to whatever is stable in the high-component solid under proper
oxygen chemical potential. This observation is consistent with the higher probability of
substitution between MnCO3 and MnO2 as aforementioned. By comparing the number of
reactions using different precursors, it should be noted that the most frequently used Mn
precursor to synthesize targets with Mn valence states lower than 3+ remains MnO2, which
is the common precursor for Mn, even though MnO2 is more frequently used to synthesize
targets with Mn valence states between 3+ and 4+. One possible reason is that Mn at high
temperature can rapidly reduce or oxidize driven by the extent of entropic stabilization of
O2 on the right-hand side of the reaction MnO2 + ∆H ⇀↽ MnO2−x + x

2
O2. In other words,

the metal valence state in the precursor does not necessarily impose the valence state in the
target in solid-state synthesis.

3.5 Similarity of precursors

While substitutionability, discussed in the previous section, indicates that a solid-state reac-
tion to the target is possible with the substitutional precursors, it makes no statement as
to whether the reaction condition needs to be modified. In the following section we define
the similarity of precursors based on the substitutionability as well as the extent to which
the reaction conditions are similar. At this point, we only use temperature to describe the
reaction condition considering the amount of effort, but one could extend this concept to
capture other synthesis info such as atmosphere, time, number of operations, milling speed,
and so forth.

Metric for similarity

Two features, the substitution probability and the distribution of synthesis temperatures of
the reactions that use a particular precursor, were utilized to characterize the similarity of
precursors.
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Figure 3.5: Mn valence states in targets from Mn(Ac)2 (manganese acetate), MnCO3, MnO,
Mn3O4, Mn2O3, and MnO2. The width in each violin plot is proportional to the probability
density for valence at different values. The total area of each violin plot is proportional to
the number of reactions using the corresponding precursor.

As introduced in Section 3.2, a precursor p1i is substituted by another precursor p2i with
the probability P (p2i |p1i ). We use the geometric average of P (p2i |p1i ) and P (p1i |p2i ) to balance
the asymmetric situations where p1i or p2i is substituted. The distance accounting for the
substitution probability is defined as

dsub(p
1
i , p

2
i ) = 1 −

√
(P (p1i |p2i )P (p2i |p1i )), (3.8)

where p1i and p2i are two precursors for element ei.

A different precursor can be used with a different synthesis temperature. As an example, the
distribution of the highest firing temperature used in synthesis reactions with two different
Fe or Ca precursors is presented in Figure 3.6. The temperatures were extracted by regular
expression matching in the corresponding synthesis paragraphs. For example, Figure 3.6
shows that the typical firing temperature is much lower when FeC2O4 is used as a precursor
than when Fe2O3 is, whereas the firing temperature for CaO is comparable to that for
CaCO3. Utilizing the overlap between the distributions of temperatures for two precursors,
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(a) (b)

Figure 3.6: Highest firing temperature in the synthesis process for: (a) Fe2O3 and FeC2O4

and (b) CaCO3 and CaO.

a distance is defined as follows to describe the similarity between the two precursors.

dtemp(p
1
i , p

2
i ) = 1 − overlapping area of two temperature distribution

total area of two temperature distribution
. (3.9)

Both dsub in Eq. 3.8 and dtemp in Eq. 3.9 satisfy the property that 0 ≤ di ≤ 1. We utilized
the Euclidean distance to define a multi-feature distance metric [115, 116] to combine the
two features together. The distance between a pair of precursors for the same element is
defined as

D(p1i , p
2
i ) =

√
d2sub(p

1
i , p

2
i ) + d2temp(p

1
i , p

2
i ). (3.10)

The multi-feature aspect of this distance metric is general; it is straightforward to include
additional features into this distance metric as new relevant features are considered. The
current two representative features are selected because the substitution probability reflects
the comparison of overall reactions in synthesis, and temperature is the most important
parameter to activate these reactions. Finally, to visualize the similarity of precursors for the
same element, we performed hierarchical clustering based on the pairwise distance D(p1i , p

2
i )

using Ward’s minimum variance method [117]. The hierarchical clustering method iteratively
identifies two nearest clusters and merges them until only one supercluster is left.
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Clustering precursors by similarity

Based on the distance defined in Eq. 3.10, precursors for the same elements were hierarchi-
cally clustered, and the similarities between them are displayed as dendrograms in Figure
3.7. The vertical axis represents the distance between two precursors or the distance be-
tween two clusters. In general, similar precursors will be drawn closer to each other on the
horizontal axis.

Generally, the cluster with the smallest internal distance includes the common precursors,
indicated using bold fonts in Figure 3.7. Simple binary fluorides and sulfides are far away
from the common precursors and are typically used as source of F and S in target materials so
that HF and H2S can be avoided. Metals are sometimes used as precursors directly; however,
they are far away from the common precursors, indicating that metals and metal oxides tend
to be used as precursors for different classes of materials. There is a trend that precursors
are clustered following the order: oxide, carbonate, nitrate, and acetate, where the adjacent
precursors are more similar (e.g., carbonate and oxide, or carbonate and nitrate), and the
nonadjacent precursors are less similar (e.g. oxide and acetate) though there are variations
to this for some elements. When the common precursor is a carbonate, the order may change
to nitrate, carbonate, oxide, and acetate (e.g., Ba), where the carbonate and the nitrate are
more similar than the carbonate and the oxide, but the carbonate still sits between the
nitrate and the oxide. The similarity between different classes is possibly correlated with the
different bonding strength between the cations and anions, which can be indicated by the
order of melting points, namely, oxide > carbonate > nitrate/acetate.

However, there are also some observations that are not easy to immediately rationalize. For
Li, it is the hydroxide rather than oxide or nitrate closest to the carbonate, whereas for
Ca and Ba, the hydroxides are even absent, which means Ca(OH)2 and Ba(OH)2 are rarely
used. This difference may originate from the methods used to prepare these precursors
being different, resulting in different availabilities. One practical clue is that Li2O is more
expensive than LiOH; Li2O (≥95% purity) is $378.00 for 100 g ($8.10/g of Li), while lithium
hydroxide monohydrate (≥95% purity) is $181.00 for 2 kg ($0.54/g of Li) from the chemical
supplier Strem Chemicals [118]. It is also observed that LiAc and LiH2PO4, as well as
FeC2O4 and FePO4, are clustered together, because they are frequently used to synthesize
the extensively studied cathode material LiFePO4, reflecting possible application bias in the
data. In addition, oxides are similar to each other for variable valence elements, but the
most similar precursor to the common oxide is not necessarily an oxide. For example, the
oxides of Mn are clustered together, ranging from MnO2 to MnO. However, the most similar
precursor to MnO2 is MnCO3, as discussed in Section 3.4. Similarly, the nitrate Fe(NO3)3 is
more similar to Fe2O3 than the mixed-valence oxide Fe3O4 to Fe2O3. There are many factors
in the selection of precursors, including both scientific reasons such as bonding, reactivity,
and melting point, and anthropogenic reasons [119] such as literature success, convenience,
applications, price, and human bias. The data in this work are a reflection of all those
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factors; it is not entirely clear how to deconvolute all these issues. An interesting scientific
advance would be to identify the precursors that are chemically compelling while avoiding
the implicit anthropogenic biases. This work provides a historical statistical analysis to serve
as a baseline comparison.

The similarity could help guide the selection of precursors when researchers alter existing
recipes by replacing precursors. For a starting experiment, it might be profitable to pick
precursors similar to what has been tried before. On the other hand, when the synthesis is
not going well, it is best to use a very different precursor in order to diversify the synthesis
space. If there are many possible combinations of precursors, the quantitative value of the
similarity could also serve as a reference to rank them. Currently, the creation of new recipes
is in principle limited to targets already in our dataset. Therefore, it is also important to
develop similarity among targets. In that way, it would be possible to predict synthesis
recipes for new target materials by evaluating the similarity with targets for which synthesis
is known, a process that is very similar to the current literature-based approach for the
synthesis of novel materials.

3.6 Conclusion

Using the solid-state synthesis data extracted from materials science literature, we conducted
a meta-analysis on the similarities and differences between precursors. The statistics on the
frequency to use different classes of precursors shows that each element usually has a common
precursor to bring it into a target compound. A substitution model is used to quantify the
probability of substituting one precursor with another while the target remains unchanged.
By establishing distance metrics from the substitution model and the distribution of synthesis
temperature, precursors for the same element were clustered to show the similarities between
these precursors. This hierarchical clustering demonstrates that chemical domain knowledge
of solid-state synthesis can be captured from text mining and provides a foundation for
developing a predictive synthesis model.
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Figure 3.7: Clusters of precursors for (a) Li, (b) Ca, (c) Ba, (d) Fe, (e) Co, and (f) Mn by
similarity. The common precursors are indicated using bold fonts.
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Chapter 4

Target similarity for predictive
synthesis of new materials

The similarity of precursors introduced in Chapter 3 provides a meaningful metric to create
alternative recipes for existing targets, but it cannot be used to predict synthesis recipes for
new target materials. Experimental researchers usually approach a new inorganic synthesis
by manually looking up similar materials in the literature and repurposing precedent recipes
for a novel material. However, deciding what materials are similar and thus where to look is
often driven by intuition and limited by individuals’ personal experience in specific chemical
spaces, hindering the ability to rapidly design syntheses for new chemistries. With a large-
scale materials synthesis dataset from text-mining efforts, it is possible to statistically learn
the similarity of materials and the correlation of their synthesis variables in a more systematic
and quantitative fashion, and provide such tools as a guide to scientists when approaching
the synthesis of novel compounds [99].

In this chapter1, we propose a precursor recommendation strategy (Fig. 4.1) based on
machine-learned similarity of materials to automate the literature-based approach used by
experimental researchers. Inspired by natural language processing (NLP) models [38, 43, 44],
we designed an encoding neural network to learn the vectorized representation of a material
based on its corresponding precursors for the quantification of materials similarity. Assuming
that the target material can be synthesized using an experimental design adapted from a
similar material, synthesis variables such as precursors, operations, and conditions can be
proposed and ranked by querying the knowledge base of previously synthesized materials.
We applied the recommendation strategy to predict precursors for 2,654 test target materials
in a historical validation. Learning from a knowledge base of 29,900 synthesis reactions text-

1 This Chapter incorporates sections from a paper in press with permission from the authors: Tanjin
He, Haoyan Huo, Christopher J. Bartel, Zheren Wang, Kevin Cruse, and Gerbrand Ceder. “Precursor
recommendation for inorganic synthesis by machine learning materials similarity from scientific literature.”
Science Advances (2023), in press [99].
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Figure 4.1: Precursor recommendation strategy. (A) Pipeline for precursor recommendation
consisting of three steps: (1) digitize target materials in the synthesis knowledge base text-
mined from scientific literature, (2) rank target materials in the knowledge base according
to the similarity to the novel target, and (3) recommend precursors based on analogy to
the most similar target. (B) An example of precursor recommendation for Y2FeSbO7 by
referring to the synthesis of FeSbO4.

mined from the scientific literature, we demonstrate that the algorithm can acquire chemical
knowledge on materials similarity via self-supervised learning, and make promising decisions
on precursor selection.

Here, we begin with statistical insights from our text-mined solid-state synthesis dataset
to better understand the problem of precursor selection (Section 4.1). Because a universal
model for solid-state synthesis has not yet been established, we use a data-driven method
to recommend potential precursor sets for the given target material (Figure 4.1). The rec-
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ommendation pipeline consists of three steps: (i) an encoding model to digitize the target
material as well as known materials in the knowledge base (Section 4.2), (ii) similarity query
based on the materials encoding to identify a reference material that is most similar to the
target (Section 4.3), and (iii) recipe completion to (a) compile the precursors referred from
the reference material and (b) add any possibly missed precursors if element conservation is
not achieved using conditional predictions based on referred precursors (Section 4.4).

4.1 Problem of precursor selection

In the solid-state synthesis of inorganic materials, precursor selection plays a crucial role
in governing the synthesis pathway by yielding intermediates that may lead to the desired
material or alternative phases [5, 6].

For each metal/metalloid element, one precursor is often used predominantly over all others,
which we denote as the common precursor in Chapter 3. However, we also find that approx-
imately half of the target materials were synthesized using at least one uncommon precursor
(Figure 3.2). Uncommon precursors may be used for a variety of reasons including synthetic
constraints (e.g., temperature and time), purity, morphology, and anthropogenic factors [5,
29, 119].

In addition, a probability analysis of the text-mined dataset indicates that precursors for
different chemical elements are not randomly combined. The joint probability to select a
specific precursor pair (Ai, Bi) can be compared to the marginal probability to select Ai

for element Elea and Bi for Eleb. If the choices of Ai and Bi are independent, the joint
probability should equal the product of the marginal probabilities, namely, P (Ai, Bi) =
P (Ai)P (Bi). In Chapter 3, we assume the substitutional precursor pairs are independent of
each other as a simplification, where the equality between the joint and marginal probabilities
holds true. However, inspection of 6,472 pairs of precursors from our text-mined dataset
(Figure 4.2) reveals that many show a strong dependency on each other (i.e., P (Ai, Bi)
deviating significantly from P (Ai)P (Bi)). A well-known example is that nitrates such as
Ba(NO3)2 and Ce(NO3)3 tend to be used together, likely because of their solubility and
applicability for solution processing (e.g. slurry preparation). Unfortunately, these decisions
regarding dependencies of precursors are usually empirical and hard to standardize.

Different from assessment on substituting precursors for an alternative recipe in Chapter 3,
precursor selection for novel target materials is more challenging because the chemical space
of targets is much larger than that of precursors. In a set of 33,343 solid-state synthesis
reactions, only hundreds of precursors are frequently used (in at least 10 reactions) and
the number tends to converge, but the number of targets almost increases linearly with the
number of reactions (Figure 4.3). As a result, it is impractical to enumerate all pairs of
targets and evaluate the similarity between them, which is the proposed solution to the
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Figure 4.2: Pairwise dependency of precursors Ai and Bi characterized by P (Ai,Bi)
P (Ai)P (Bi)

. Prob-
ability is estimated from the frequency of occurrence in the solid-state synthesis dataset.
The value of log10

P (Ai,Bi)
P (Ai)P (Bi)

is zero when Ai and Bi are independent, positive when Ai and

Bi tends to be used in the same experiment more frequently than P (Ai)P (Bi), negative
otherwise.

similarity of precursors in Chapter 3. More importantly, the similarity of targets should be
capable of estimating the distance of an unseen target to other known targets because the
synthesis of novel materials is the most interesting.

In the following sections, we show our efforts of using machine learning as a possible solution
to ingest the heuristics that underlie precursor selections for new target materials.

4.2 Materials encoding for precursor selection

Our precursor recommendation model for the synthesis of a novel target will mimic the
human approach of trying to identify similar target materials for which successful synthe-
sis reactions are known. To find similar materials, digital processing requires an encoding
model that transforms any arbitrary inorganic material into a numerical vector. For organic
synthesis, structural fingerprinting such as Morgan2Feat [120] is a good choice [25] because
it is natural to track the conservation and change of functional groups in organic reactions,
but the concept of functional groups is not applicable to inorganic synthesis. Chemical for-
mulas of inorganic solids have been represented using a variety of approaches (e.g., Magpie
[121, 122], Roost [123], CrabNet [124]). However, these representations are typically used
as inputs to predict thermodynamic or electronic properties of materials. Here, we attempt
to directly incorporate synthesis information into the representation of a material with arbi-
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Figure 4.3: Count of target and precursor materials in the text-mined solid-state synthesis
dataset.

trary composition. Local text-based encodings such as Word2Vec [54, 125] and FastText [24]
are able to capture contextual information from the materials science literature, of which
synthesis information is a part; however, they are not applicable to unseen materials when
the materials text (sub)strings are not in the vocabulary or when the materials are not in
the predefined composition space. For example, Pei et al. [125] computed the similarity of
high-entropy alloys as the average similarity of element strings by assuming the elements
are present in equal proportions in the material (e.g., CoCrFeNiV). However, this approach
is not applicable to unseen materials different from such composition template, and con-
sequently would not be practical in our work on synthesis of diverse inorganic materials.
Substitution modeling can evaluate similarity of precursors by assessing the viability of sub-
stituting one precursor with another while retaining the same target, but it cannot be used
to identify analogues for new target materials [29]. In this work, we propose a synthesis
context-based encoding model utilizing the idea that target materials produced with similar
synthesis variables are similar.

Analogous to how language models [38, 43, 44] pre-train word representations by predicting
context for each word, we use a self-supervised representation learning model to encode
arbitrary materials by predicting precursors for each target material, which we refer to as
PrecursorSelector encoding (Figure 4.4A). The upstream part is an encoder where properties
of the target material are projected into a latent space as the encoded vector representation.
In principle, any intrinsic materials property could be included at this step. Here, we use only
composition for simplification. The downstream part consists of multiple tasks where the
encoded vector is used as the input to predict different variables related to precursor selection.
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Here, we use a masked precursor completion (MPC) task (Figure 4.4B) to capture (i) the
correlation between the target and precursors and (ii) the dependency between different
precursors in the same experiment. For each target material and corresponding precursors
in the training set, we randomly mask part of the precursors and use the remaining precursors
as a condition to predict the complete precursor set. We also add a task of reconstructing
the chemical composition to conserve the compositional information of the target material.
The downstream task part is designed to be extensible; other synthesis variables such as
operations and conditions can be incorporated by adding corresponding prediction tasks
in a similar fashion. By training the entire neural network, the encoded vectors for target
materials with similar precursors are automatically dragged closer to each other in the latent
space because that reduces the overall prediction error. This PrecursorSelector encoding thus
takes the correlation induced by precursor selection and serves as a useful metric to measure
similarity of target materials in syntheses.

To demonstrate that the neural network is able to learn precursor information, we present
the results of the MPC task (Figure 4.4B) for LaAlO3 as an example (Table 4.1). LaAlO3

is a ternary material that normally requires two precursors (one to deliver each cation,
La and Al). In this test, we masked one precursor and asked the model to predict the
complete precursor set. For the same target conditioned with different partial precursors,
the predicted probabilities of precursors strongly depend on the given precursor and agree
with some rules of thumb for precursor selection. When the partial precursors are oxides
such as La2O3 or Al2O3, the most probable precursors are predicted to be oxides for the
other element, i.e., Al2O3 for La2O3 and La2O3 for Al2O3 [126]. When the partial precursors
are nitrates such as La(NO3)3 or Al(NO3)3, nitrates for the other element are prompted with
higher probabilities, i.e., Al(NO3)3 for La(NO3)3 and La(NO3)3 for Al(NO3)3 [127]. If both
precursors are masked, oxides rank first in the prediction because the common precursors
for elements La and Al are La2O3 and Al2O3, respectively. The simple successful prediction
shows our PrecursorSelector encoding model is able to learn the correlation between the
target and precursors in different contexts of synthesis without explicit input of chemical rules
about synthesis. In addition, the use of different precursors suggests various synthetic routes
may lead to the same target material. When a practical preference for a particular route
exists, the framework we introduce in this work can be extended to include more constraints,
such as synthesis type, temperature, morphology, particle size, and cost of precursors, by
learning from pertinent datasets [119, 128, 129].
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Figure 4.4: Representation learning to encode precursor information for target materials.
(A) Multi-task network structure to encode the target material in the upstream and to pre-
dict the complete precursor set, chemical composition, and more synthesis variables in the
downstream. x and u represent the composition and encoded vector of the target material,
respectively. pi represents the ith precursor in a predefined ordered precursor list. Dense
layers are used in each layer unless specified differently. (B) Submodel of multi-label classifi-
cation for the masked precursor completion (MPC) task. Part of the precursors are randomly
masked; the remaining precursors (marked as “Y”) are used as a condition to predict the
probabilities of other precursors for the target material. The probabilities corresponding to
the complete precursors (marked as “Y”) are expected to be higher than that of unused pre-
cursors (marked as “N”). The attention block gproj [42] is used to aggregate the target vector
and conditional precursors. The final classification layer gcls and the embedding matrix for
conditional precursors share the same weights. σ represents the sigmoid function.
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Table 4.1: MPC conditioned on different partial precursors for the same target material
LaAlO3. The predicted complete precursors are the ones with the highest probabilities
(bold).

Partial precursors
(condition)

Probability to use different precursors (output)

La2O3 Al2O3 La(NO3)3 Al(NO3)3 La2(CO3)3 Al(OH)3

La2O3 0.75 0.71 0.58 0.57 0.57 0.57

Al2O3 0.72 0.73 0.58 0.57 0.58 0.56

La(NO3)3 0.60 0.59 0.64 0.63 0.61 0.61

Al(NO3)3 0.62 0.58 0.65 0.65 0.62 0.60

N/A 0.70 0.69 0.59 0.58 0.59 0.59

4.3 Similarity of target materials

Similarity establishes a link between a novel material to synthesize and the known materi-
als in the knowledge base because it is reasonable to assume similar target materials share
similar synthesis variables in experiments. Although the understanding of similarity is gen-
erally based on heuristics, the PrecursorSelector encoding introduced in Section 4.2 provides
a meaningful representation for quantified similarity analysis. Dedicated to precursor pre-
diction in this study, we define the similarity of two target materials as the similarity of the
precursors used in their respective syntheses. Although precursors for a new target material
are not known in advance, the PrecursorSelector encoding serves as a proxy reflecting the
potential precursors to use. In that latent space, we can take the cosine similarity [43, 44,
54] of the PrecursorSelector encoding as a measure of the similarity (Sim) of two target
materials x1 and x2:

Sim(x1,x2) ∼ cos(f(x1), f(x2)), (4.1)

where f is the encoder part of the PrecursorSelector model transforming the composition of
the target material x into the encoded target vector (Figure 4.4A).

To demonstrate that the similarity estimated from PrecursorSelector encoding is reasonable,
we show typical materials with different levels of similarity to an example target material
NaZr2(PO4)3 (Table 4.2). The most similar materials are the ones with the same elements
such as Zr-containing phosphates and other NASICON materials. The similarity decreases
slightly as additional elements are introduced (e.g., Na3Zr1.9Ti0.1Si2PO12) or when one el-
ement is substituted (e.g., LiZr2(PO4)3). When the phosphate groups are replaced with
another anion, the similarity decreases further, with oxides having generally mild similarity
to the phosphate NaZr2(PO4)3. The similarity decreases even further for compounds with
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Table 4.2: Different levels of similarity between NaZr2(PO4)3 and materials in the knowledge
base.

Target Similarity Target Similarity

Zr3(PO4)4 0.946 Li1.8ZrO3 0.701

Na3Zr2Si2PO12 0.929 NaNbO3 0.600

Na3Zr1.8Ge0.2Si2PO12 0.921 Li2Mg2(MoO4)3 0.500

Na3Ca0.1Zr1.9Si2PO11.9 0.908 Sr2Ce2Ti5O16 0.400

Na3Zr1.9Ti0.1Si2PO12 0.900 Ga0.75Al0.25FeO3 0.300

LiZr2(PO4)3 0.896 Cu2Te 0.200

NaLa(PO3)4 0.874 Ni60Fe30Mn10 0.100

Sr0.125Ca0.375Zr2(PO4)3 0.852 AgCrSe2 0.000

Na5Cu2(PO4)3 0.830 Zn0.1Cd0.9Cr2S4 -0.099

LiGe2(PO4)3 0.796 Cr2AlC -0.202

no anion (e.g., intermetallics) and for non-oxygen anions (e.g., chalcogenides). This finding
agrees with our experimental experience that when seeking a reference material, researchers
will usually refer to compositions in the same chemical system or to cases where some el-
ements are substituted. It is also worth noting that our quantitative similarity is purely a
data-driven abstraction from the literature and uses no externally chemical knowledge.

To better understand the similarity, we conducted a relationship analysis [43, 44, 54] by visu-
alizing four groups of target materials synthesized using one shared precursor and one distinct
precursor (Figure 4.5). For example, the syntheses of YCuO2, Ba3Y4O9, and Ti3Y2O9 share
Y2O3 as a precursor and separately use CuO, BaCO3, and TiO2. The three other groups
share the precursors In2O3, Al2O3, and Fe2O3, respectively. To separate the effect of the
precursor variation, we align the original points of the target vectors by first projecting each
target vector to the same vector space as the precursors and then subtracting the vector
of the shared precursor, providing a difference vector showing the relationship between the
target material and the shared precursor (more details in Section 4.7). Next, we plot the top
two principal components [130] of these difference vectors in a two-dimensional plane. The
difference vectors are automatically separated into three clusters according to the precursor
variate, representing three types of relationships, “react with BaCO3”, “react with CuO”,
and “react with TiO2”, respectively. For example, Ba3Y4O9 is to Y2O3 as BaAl2O4 is to
Al2O3 (i.e., Ba3Y4O9−Y2O3 ≈ BaAl2O4−Al2O3) because both syntheses use BaCO3. The
consistency between this automatic clustering and the chemical intuition again affirms the
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Figure 4.5: Relationships between targets and their shared precursors. Four groups of target
materials are synthesized each using one shared precursor shown as the original point (Y2O3,
In2O3, Al2O3, or Fe2O3) and one distinct precursor shown as the edge (BaCO3, CuO, or
TiO2). The relationship of “react with another precursor” is visualized as the first two
principal components of the difference vector between the target and the shared precursor
gproj(f(x)) − pi. The original points corresponding to different precursors pi’s are jittered
for clarity.

efficacy of using PrecursorSelector encoding as a similarity metric.

4.4 Recommendation of precursor materials

With the capability of measuring similarity, a natural solution to precursor selection is
to replicate the literature-based approach used by experimental researchers. Given a novel
material to synthesize, we initialize our recommendation by first proposing a recipe consisting
of common precursors for each metal/metalloid element in the target material because this
might be the first attempt in a lab. Then, we encode the novel target material and known
target materials in the knowledge base using PrecursorSelector encoding model from Section
4.2 and calculate the similarity between the novel target and each known material with Eq.
4.1. We rank known materials based on their similarity to the target such that a reference
material can be identified that is the most similar to the novel target. When the precursors
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used in the synthesis of the reference material cannot cover all elements of the target, we use
MPC in Figure 4.4B to predict the missing precursors. For example, for Y2FeSbO7 (Figure
4.1B), the most similar material in the knowledge base is FeSbO4. It is reasonable to assume
that the precursors Fe2O3 and Sb2O5 used in the synthesis of FeSbO4 [131] can also be used
to synthesize Y2FeSbO7. Because the Y source is missing, MPC finds Y2O3 is likely to fit
with Fe2O3 and Sb2O5 for the synthesis of Y2FeSbO7, ending up as a complete precursor
set (Fe2O3, Sb2O5, and Y2O3) [132]. Multiple attempts of recommendation are feasible by
moving down the list of known materials ranked to be most similar to the novel target.

To evaluate our recommendation pipeline, we conduct a validation (Figure 4.6) using the
33,343 synthesis recipes text-mined from the scientific literature. Using the knowledge base
of 24,034 materials reported by the year 2014, we predict precursors for 2,654 test target
materials newly reported from 2017 to 2020 (more details in Section 4.7). Because multiple
precursors exist for each element, the number of precursor combinations increases combi-
natorially with the number of elements present in the target material. A good precursor
prediction algorithm is anticipated to select from hundreds of possible precursor combina-
tions those that have a higher probability of success. For each test material, we attempt
to propose five different precursor sets. For each attempt, we calculate the percentage of
test materials being successfully synthesized, where success means at least one set of pro-
posed precursors has been observed in previous experiments. The similarity-based reference
already increases the success rate to 73% at the second attempt. The first guess is set to de-
fault to the most common precursors which leads to 36% success rate. Within five attempts,
the success rate of our recommendation pipeline using PrecursorSelector encoding is 82%,
comparable to the performance of recommendations for organic synthesis [25]. We note that
as defined here, “success” will be underestimated since some suggested precursor sets may
actually lead to successful target synthesis even though they may not have been tried (and
therefore do not appear in the data).

We also establish a baseline model (“Most frequent” in Figure 4.6) that ranks precursor sets
based on the product of frequencies with which different precursors are used in the literature
(more details in Section 4.7). This baseline simulates the typical early stage of the trial-and-
error process where researchers grid-search different combinations of precursors matching
elements present in the target material without the knowledge of dependency of precursors
(Figure 4.2). The success rate of this baseline is 58% within five attempts. Our recommenda-
tion pipeline performs better because the dependency of precursors is more easily captured
when the combination of precursors is sourced from a previously used successful recipe for a
similar target. Through in-situ diffraction of synthesis [5–7], it is now better understood that
some precursor sets do not lead to the target material because they form intermediate phases
which have consumed much of the overall reaction energy, thereby leaving a low driving force
to form the target. It is likely that our literature informed precursor prediction approach
implicitly captures some of this reactivity and pathway information, resulting in a higher
prediction power than random selection or selection based on how common a precursor is.
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In addition, we compare with three other baseline models (“Magpie encoding”, “FastText
encoding”, and “Raw composition” in Figure 4.6) using the same recommendation strategy
but different encoding methods (more details in Section 4.7). Magpie encoding [121, 122]
is a set of attributes computed using the fraction of elements in a material, including stoi-
chiometric attributes, elemental property statistics, electronic structure attributes, and ionic
compound attributes. Precursor recommendation with Magpie encoding achieves a success
rate of 68% within five attempts; it performs reasonably well because these properties reflect
the material composition and generally materials with close compositions tend to be similar.
Similarly, precursor recommendation directly with the raw material composition achieves
a success rate of 66% within five attempts. FastText encoding [24] utilizes the FastText
model [133] to capture information about the co-occurrences of context words around ma-
terial formulas/names in the literature. However, only 1,985 test materials can be digitized
with FastText encoding due to the conflict between the limited vocabulary of n-grams and
the variety of float numbers in material formulas. The success rate using FastText encoding
is 56% within five attempts. Overall, the recommendation with PrecursorSelector encoding
performs substantially better because Magpie and FastText encodings are more generic but
not dedicated to predictive synthesis. The PrecursorSelector encoding and MPC capture the
correlation between synthesis variables and known target materials, which better extends to
novel materials.

4.5 Discussion

Because of its heuristic nature, it is challenging to capture the decades of synthesis knowledge
established in the literature. By establishing a materials similarity measure that is a natural
handle of chemical knowledge and leveraging a large-scale dataset of precedent synthesis
recipes, our similarity-based recommendation strategy mimics human synthesis design and
succeeds in precursor selection. The incorporation of precursor information into materials
representations (Figure 4.4) leads to a quantitative similarity metric that successfully repro-
duces a known precursor set 82% of the time in five attempts or less (Figure 4.6). We discuss
the strengths and weaknesses of this recommendation algorithm and its generalizability to
broader synthesis prediction problems.

In this work, materials similarity is learned through an automatic feature extraction pro-
cess mapping a target material to the combination of precursors. While learning the us-
age of precursors, useful chemical knowledge for synthesis practice is accordingly embed-
ded in PrecursorSelector encoding. The first level of knowledge about materials similar-
ity is based on composition. For example, to synthesize Li7La3Nb2O13, PrecursorSelector
encoding finds Li5La3Nb2O12 as a reference target material (Table 4.3) because their dif-
ference in composition is only one Li2O unit. PrecursorSelector encoding also reflects the
consideration of valence in synthesis. Although it is not necessary to keep the valence
in the precursor the same as that in the target, a precursor with similar valence states
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Figure 4.6: Performance of various precursor prediction algorithms. For each of the 2,654 test
target materials, the algorithm attempts to propose n (1 ≤ n ≤ 5 as the x-axis) precursor
sets. The y-axis shows the success rate that at least one out of the n proposed precursor
set is observed in previous experimental records. PrecursorSelector encoding: this work.
Magpie encoding/FastText encoding/Raw composition: similar recommendation pipeline to
this work but using Magpie representation[121, 122]/FastText representation[24]/the raw
material composition. Most frequent: select precursors by frequency.

to the target is frequently used in practical synthesis [29]. For example, to synthesize
NaGa4.6Mn0.01Zn1.69Si5.5O20.1 [134], MnCO3 was used as the Mn source because the va-
lence state of Mn is 2+ in both the target and precursor. PrecursorSelector encoding finds
Mn0.24Zn1.76SiO4 similar to NaGa4.6Mn0.01Zn1.69Si5.5O20.1 because the valence state of Mn is
also 2+ in Mn0.24Zn1.76SiO4, despite NaGa4.6Mn0.01Zn1.69Si5.5O20.1 containing large fractions
of Na and Ga while Mn0.24Zn1.76SiO4 does not. Our algorithm also captures the similarity
of syntheses between compounds which have one element substituted. For example, Precur-
sorSelector encoding refers to CaZnSO for synthesizing SrZnSO because the elements Ca and
Sr are regarded as similar. While such knowledge may appear obvious to the trained chemist,
our approach enables it to be automatically extracted and convoluted as a vectorized rep-
resentation (Figure 4.4), making it thereby available in a mathematical form, convenient to
be used in recommendation engines or automated labs [135].
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Table 4.3: Representative successful and failed examples for precursor prediction using the similarity-based recommen-
dation pipeline in this study.

Target Reference Target(s) Expected Precursors
Error in
Recommendation

Successful

Li7La3Nb2O13 [136] Li5La3Nb2O12 [137] LiOH, La2O3, Nb2O5 N/A

NaGa4.6Mn0.01Zn1.69Si5.5O20.1

[134]
Mn0.24Zn1.76SiO4

[138]
MnCO3, Na2CO3, Ga2O3, SiO2,
ZnO

N/A

SrZnSO [139] CaZnSO [140] SrCO3, ZnS N/A

Na3TiV(PO4)3 [141] Na3V2(PO4)3 [142] NaH2PO4, NH4VO3, TiO2 N/A

GdLu(MoO4)3 [143] Gd2(MoO4)3 [144] (NH4)6Mo7O24, Lu2O3, Gd2O3 N/A

BaYSi2O5N [145] YSiO2N [146] Si3N4, SiO2, BaCO3, Y2O3 N/A

Cu3Yb(SeO3)2O2Cl [147] Cu4Se5O12Cl2 [148] CuO, CuCl2, SeO2, Yb2O3 N/A

LiMn0.5Fe0.5PO4 [149, 150]

LiMn0.8Fe0.2PO4

[151],
LiMn0.9Fe0.1PO4

[152]

MnCO3, FeC2O4, LiH2PO4;
Mn(CH3COO)2, FeC2O4,
LiH2PO4

N/A

Failed

Li3CoTeO6 [153] LiCoO2 [154] Co, Te, Li2CO3 Co3O4, TeO2, LiOH

Sr4Al6SO16 [155] SrAl2O4 [156] SrCO3, SrSO4, Al(OH)3 SrCO3, H2SO4, Al(OH)3

Ca7.5Ba1.5Bi(VO4)7 [157] Bi3Ca9V11O41 [158] BaCO3, NH4VO3, CaCO3, Bi2O3
BaO, NH4VO3, CaCO3,
Bi2O3
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Because of this customized synthesis similarity of materials and our precursor recommen-
dation pipeline, we are able to not only recommend trivial solutions for target synthesis
such as the use of common precursors, but also deal with more challenging situations. One
typical scenario is the adoption of uncommon precursors. For example, Lalère et al. [141]
used NaH2PO4 as the source of Na and P to synthesize Na3TiV(PO4)3, while the common
precursors for Na and P are Na2CO3 and NH4H2PO4, respectively. It is not apparent to
conclude from the composition of Na3TiV(PO4)3 that the uncommon precursor NaH2PO4

is needed. However, the similarity-based recommendation pipeline successfully predicts the
use of NaH2PO4 by referring to a similar material Na3V2(PO4)3 [142]. A plausible reason
for the choice of NaH2PO4 for Na3TiV(PO4)3 can also be inferred from the synthesis of
Na3V2(PO4)3. Feng et al. [142] reported that NaH2PO4 was used to implement a one-pot
solid-state synthesis of Na3V2(PO4)3, while Fang el al. [159] reported that a reductive agent
and additional complex operations are needed when using Na2CO3 and NH4H2PO4. Sim-
ilar outcomes may also apply to the synthesis of Na3TiV(PO4)3. A second example is the
successful precursor recommendation for target compound GdLu(MoO4)3. Instead of the
common precursor MoO3, an uncommon precursor (NH4)6Mo7O24 was adopted as the Mo
source [143]. The use of (NH4)6Mo7O24 may facilitate the mixing of different ions in the
synthesis of GdLu(MoO4)3. The adoption of uncommon precursors also provides clues in
underexplored chemical spaces such as mixed-anion compounds [160]. Taking the penta-
nary oxynitride material BaYSi2O5N [145] as an example, the five component system with
multiple anions means many options that could potentially yield the target phase, including
oxides, nitrides, carbonates, etc. Our recommendation pipeline correctly identifies that a
combination of SiO2 and Si3N4 facilitates the formation of BaYSi2O5N by referring to a
quaternary oxynitride material, YSiO2N [146]. Another challenging situation is that multi-
ple precursors may be used for the same element. Usually, only one precursor is used for
each metal/metalloid element in the target material, but exceptions do exist. For exam-
ple, CuO and CuCl2 were used as the Cu source in the synthesis of Cu3Yb(SeO3)2O2Cl
[147]. Through analogy to Cu4Se5O12Cl2 [148], the recommended precursor set includes
both CuO and CuCl2. Moreover, it is possible to predict multiple correct precursor sets by
referring to multiple similar target materials. For example, two different sets of precursors
for LiMn0.5Fe0.5PO4 were reported by Zhuang et al. [149] and Wang et al. [150]. The rec-
ommendation pipeline predicts both by repurposing the precursor sets for LiMn0.8Fe0.2PO4

[151] and LiMn0.9Fe0.1PO4 [152].

The recommendation of precursors presented here is still imperfect. The engine we present is
inherently limited by the knowledge base it is trained on, thereby biasing recommendations
toward what has been done previously and lacking creativity for unprecedented combina-
tions of precursors. For example, metals Co and Te were used in the synthesis of Li3CoTeO6

[153], but no similar materials in the knowledge base use the combination of Co and Te
as precursors. Another example is that SrCO3 and SrSO4 were used in the synthesis of
Sr4Al6SO16 [155]. Although the recommendation pipeline is, in principle, able to predict
multiple precursors for the same element, a similar case using both SrCO3 and SrSO4 as the
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Sr source is not found in the knowledge base. Both examples end up being mispredictions.
This situation could be improved when more data from text mining and high-throughput
experiments [135] are added to the knowledge base. Furthermore, the success rate of the rec-
ommendation strategy may be underestimated in some cases. For example, BaO is predicted
as the Ba source for synthesizing Ca7.5Ba1.5Bi(VO4)7, while BaCO3 is used in the reported
synthesis [157]. Given the slight difference between BaO and BaCO3, BaO may actually be
suitable.

Besides the prediction of precursors, the similarity-based recommendation framework is a
potential step toward general synthesis prediction. The same strategy can be extended to the
recommendation of more synthesis variables, such as operations, device setups, and experi-
mental conditions, by adding corresponding prediction tasks to the downstream part of the
multi-task network (Figure 4.4) for similarity measurement. For example, we may infer that
reduced atmosphere is necessary for synthesizing Na3TiV(PO4)3 [141] because it is used in
the synthesis of a similar material Na3V2(PO4)3 [142]. Moreover, synthesis constraints such
as the type of synthesis method, temperature, morphology of the target material, particle
size, and cost can be added as conditions of synthesis prediction. For example, we may inte-
grate our effort of synthesis temperature prediction [94] to prioritize the predicted precursors
within expected temperature regime. Our automated algorithm, mimicking human design
process for the synthesis of a new target, provides a practical solution to query decades of
heuristic synthesis data in recommendation engines and autonomous laboratories.

4.6 Conclusion

We presented a similarity-based recommendation strategy for predictive solid-state synthesis
of novel inorganic materials. Through representation learning based on synthesis information
from a large knowledge base of 29,900 synthesis procedures, the similarity of target materials
is quantified. Applying such similarity and a recommendation pipeline in the prediction of
precursors, the observed precursor sets are among the top five proposed ones for 82% of 2,654
test target materials. Our quantitative recommendation pipeline can serve as a predictive
tool to help experimental researchers rapidly plan materials synthesis for new compounds. It
also provides meaningful initial solutions in the active learning and decision-making process
for autonomous synthesis of inorganic materials.

4.7 Additional details of methods

Representation learning for similarity of materials

The neural network consists of an encoder part for encoding target materials and a task
part for predicting variables related to precursor selection. The encoder part f is a three-
layer fully connected submodel transforming the composition of the target material x into
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a 32-dimensional target vector u = f(x). The input composition is an array with 83 units
showing the fraction of each element. The reduced dimension of the encoded target vector is
inspired by the bottleneck architecture of autoencoders [161]. By limiting the dimension of
the encoded vector, the network is forced to learn a more compact and efficient representation
of the input data, which is more appropriate for the precursor selection-related downstream
tasks [162]. The task part uses different network architectures for different tasks of prediction,
including precursor completion and composition recovery in this work. The masked precursor
completion (MPC) task replaces part of the precursors with [MASK] at random and uses
the remaining precursors as a condition to predict the complete precursor set for the target
material, which is formulated as a multi-label classification problem [163]. An attention block
gproj [42] is used to aggregate the target vector and the vectors for conditional precursors as
a projected vector v = gproj(u;p1,p2, . . . ) with dimensionality of 32. Then, v is passed to
the precursor classification layer represented by a 417 × 32 matrix P , of which each row is
the 32-dimensional vector representation of a potentially used precursor pi. To avoid having
too many neural network weights to learn, the precursor completion task only considers 417
precursors used in at least five reactions in the knowledge base. The probability to use
each precursor is indicated by sigmoid(p⊤

i v), allowing non-exclusive prediction of multiple
precursors [163]. Here, v acts as a probe corresponding to the target material projected
in the precursor space and is used to search for pi’s with similar vector representations via
a dot product. The conditional precursors input to gproj share the same trainable vector
representations as pi’s. Circle loss [164] is used because of its benefits in capturing the
dependency between different labels in multi-label classification and deep feature learning.
The composition recovery task is a two-layer fully connected submodel decoding back to the
chemical composition x from the target vector u, similar to the mechanism of autoencoders
[161, 165]. Mean squared error loss is used because it is the most popular for regression.
More tasks predicting other synthesis variables such as operations and conditions can be
appended in a similar fashion. To combine the loss functions in this multi-task neural
network, an adaptive loss [166] is used to automatically weigh different loss by considering
the homoscedastic uncertainty of each task.

Baseline models

“Most frequent”. This baseline model ranks precursor sets based on an empirical joint
probability without considering the dependency of precursors (Figure 4.2). Assuming that
the choices of precursors are independent from each other, the joint probability of selecting
a specific set of precursors can be estimated as the product of their marginal probabilities.
For each metal/metalloid element, different precursors can be used as the source. The
marginal probability to use a precursor is estimated as the relative frequency of using that
precursor over all precursors contributing the same metal/metalloid element. For example,
the precursor set ranked in first place is always the combination of common precursors for
each metal/metalloid element in the target material, which is also typically the first attempt
in the lab.
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“Magpie encoding”. This baseline model uses the same recommendation strategy as
Figure 4.1, except that the similarity is calculated using Magpie encoding [121, 122]. The
composition of each target material is converted into a vector consisting of 132 statistical
quantities such as the average and standard deviation of various elemental properties. The
cosine similarity is used, as shown in Eq. 4.1. When the precursors from the reference target
material cannot cover all elements of the novel target, the common precursors for the missing
elements are supplemented because MPC (Figure 4.4B) is only trained for PrecursorSelector
encoding.

“FastText encoding”. Similar to the baseline of “Magpie encoding”, this baseline model
uses the same recommendation strategy as Figure 4.1, except that the similarity is calculated
using FastText encoding [24]. The formula of each target material is converted into a 100-
dimensional vector using the FastText model trained with materials science papers [24]. The
total number of target materials tested in this baseline model is 1,985 instead of 2,654 because
some n-grams such as certain float numbers corresponding to the amount of elements are
not in the vocabulary.

“Raw composition”. Similar to the baseline of “Magpie encoding”, this baseline model
uses the same recommendation strategy as Figure 4.1, except that the similarity is calculated
using the cosine similarity of raw material composition. The formula of each target material
is converted into an 83-dimensional vector corresponding to the fraction of each element.

Data preparation

In total, 33,343 inorganic solid-state synthesis recipes extracted from 24,304 materials science
papers [30] were used in this work. Because some material strings (e.g., Ba1−x Srx TiO3) ex-
tracted from the literature contain variables corresponding to different amounts of elements,
we substituted these variables with their values from the text to ensure that a material in any
reaction only corresponds to one composition, resulting in 49,924 expanded reactions and
28,598 target materials. An ideal test for generalizability and applicability of this method
would be to synthesize many entirely new materials using recommended precursors. In the
absence of performing extensive new synthesis experiments, we designed a robust test to
simulate precursor recommendation for target materials that are new to the trained model.
We split the data based on the year of publication, i.e., training set (or knowledge base) for
reactions published by 2014, validation set for reactions in 2015 and 2016, and test set for
reactions from 2017 to 2020. In addition, to avoid data leakage where the synthesis of the
same material can be reported again in a more recent year, we placed reactions for target
materials with the same prototype formula in the same data set as the earliest record. The
prototype formula was defined as the formula corresponding to a family of materials including
(1) the formula itself, (2) formulas derived from a small amount (< 0.3) of substitution (e.g.,
Ca0.2La0.8MnO3 for prototype formula LaMnO3), and (3) formulas able to be coarse-grained
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by rounding the amount of elements to one decimal place (e.g., Ba1.001La0.004TiO3 for the pro-
totype formula BaTiO3). In the end, the number of reactions in the training/validation/test
set was 44,736/2,254/2,934 from 29,900/1,451/1,992 original recipes. The number of target
materials in the training/validation/test set was 24,304/1,910/2,654, respectively.

Model training and validation

To train the PrecursorSelector encoding model, 44,736/2,254/2,934 synthesis reactions were
used as the training/validation/test set as discussed in Section 4.7. Each reaction consists
of a target material and multiple precursor materials extracted from the literature. For
the purpose of training and validation, a random subset of precursor materials is selected
to be replaced with a placeholder [MASK] [38] in each reaction, referred to as the masked
reaction. Because a combinatorial number of masked reactions can be generated from the
same reaction, the sampling space of masked reactions is much larger than that of original
reactions. To sample as many different masked reactions during the training phase, we
employ a dynamic masking strategy [167] that randomly samples a batch of reactions and
re-generates the masking pattern in every training step. Different from the training samples,
the validation samples are generated using static masking during data pre-processing because
keeping the validation set unchanged is necessary for model selection afterwards. In this
work, we trained with a batch size of 8 masked reactions for 500,000 steps, or 50 epochs with
10,000 steps per epoch. The optimizer used was Adam [168] with learning rate of 5 × 10−4,
β1 = 0.9, and β2 = 0.999. Starting from the 2,254 original reactions in the validation
set, we applied the masking procedure and randomly sampled 3,320 masked reactions for
validation. The optimal model selected was the one with minimal loss on the validation
samples to minimize overfitting [61].

Two tasks are implemented in the representation learning model: (1) the masked precursor
completion (MPC) task that predicts the complete precursor set based on the target material
and the synthesis context provided by the unmasked precursors, and (2) the composition
recovery task that predicts the chemical composition of the target material from the encoded
target vector. The loss function in the MPC task, denoted as L1, is the circle loss [164] to
maximize the within-class similarity and minimize the between-class similarity in multi-label
classification. Here, the within-class similarity corresponds to the similarity of precursor
materials present in the same reaction, while the between-class similarity corresponds to the
similarity between used and unused precursor materials. The loss function in the composition
recovery task, denoted as L2, is the mean squared error (MSE) loss to compare the difference
between predicted composition and the real composition of the target material. The total
loss, denoted as Lmulti, is an adaptive multi-task loss [166] to automatically weigh L1 and
L2 with

Lmulti =
1

σ2
1

L1 +
1

σ2
2

L2 + log σ2
1 + log σ2

2, (4.2)

where σ1 and σ2 are the model’s observation noise parameters which are learned alongside
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Figure 4.7: Evolution of training and validation loss while training the PrecursorSelector
encoding model. Top: total multi-task loss, Lmulti. Middle: loss for the MPC task, L1.
Bottom: loss for the composition recovery task, L2.

other model parameters. The training and validation losses for each task and the total are
shown in Figure 4.7. The training loss is averaged every 500 training steps to estimate
performance on a substantial number of training samples, which in this study is 4,000. The
validation loss is evaluated before training and at the end of each training epoch. As the
training loss continues to decrease, the validation loss initially decreases and then increases.
The minimal total validation loss is achieved at the end of 15th epoch, leading to the optimal
model. The final performance of the optimal model is tested by predicting precursors for
2,654 unseen target materials in the test set. Our similarity-based recommendation strategy
successfully reproduces a known precursor set 82% of the time in five attempts or less.
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Computation time for similarity evaluation

In this work, all 24,034 materials in the knowledge base are converted to 32-dimensional
vectors in advance, forming a 24, 034×32 matrix. For the 2,654 test materials, we monitored
the time required to vectorize them one by one and calculate their cosine similarity to the
target vectors in the pre-stored matrix. The similarity evaluation took merely 26 seconds for
all the test materials (i.e. 0.01 seconds/material) because of the fast matrix multiplication.
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Chapter 5

Conclusions and outlook

5.1 Conclusions

In conclusion, this dissertation employs interdisciplinary methods that combine materials
science, NLP, and machine learning to tackle the challenge of predictive solid-state synthe-
sis. Two major accomplishments include: (1) we have developed core NLP algorithms and
an automated text-mining pipeline to extract large volumes of structured inorganic synthesis
data from material science literature, and (2) we have developed successful precursor recom-
mendation algorithms for predictive synthesis by machine learning materials similarity from
the text-mined synthesis dataset. This work represents a step forward in the prediction of
solid-state synthesis.

In Chapter 2, we successfully applied text mining to the field of inorganic solid-state synthe-
sis. We developed a two-step SMR model based on Bi-LSTM to extract the precursor and
target materials from textual descriptions of synthesis experiments. The F1 scores for the
extraction of precursors and targets are 90.0% and 84.5%, respectively. Through comparison
with baseline models, we demonstrated the challenges and solutions for building informa-
tion retrieval models in the context of inorganic synthesis. By integrating both the SMR
model and other in-house NLP tools, we developed a fully automated text-mining pipeline
for inorganic materials synthesis science. Starting from 4,973,165 materials science papers,
we applied our text-mining pipeline and successfully extracted 33,343 solid-state synthesis
recipes. The quality of the text-mined synthesis dataset is validated by the high accuracy of
93% at the chemistry level (correct precursors, targets, and reactions). The usage of the text-
mined synthesis dataset was exemplified by exploratory data analysis with various aspects,
including coverage of chemical space, synthesis temperature, synthesis routes, synthesis time,
reaction energy, and the application to a specific chemical system. This dataset for inorganic
solid-state synthesis is currently the largest of its kind and provides new opportunities for
the development of data-driven approaches toward rational synthesis design.



CHAPTER 5. CONCLUSIONS AND OUTLOOK 75

In Chapter 3, we conducted a meta-analysis on the similarity of precursors for the creation
of alternative recipes. Using the solid-state synthesis data extracted from materials science
literature, we created a substitution model to quantify the probability of substituting one
precursor with another while the target remains unchanged. By establishing distance met-
rics from the substitution model and the distribution of synthesis temperature, we proposed
a multi-feature distance metric to characterize the similarity of precursors. Through hier-
archical clustering based on the similarity of precursors, we demonstrated that “chemical
similarity” in solid-state synthesis can be captured from text mining, without the need to
include any explicit domain knowledge. The similarity could help guide the selection of pre-
cursors when researchers alter existing recipes by replacing precursors. The predictive power
of this precursor substitution is validated by the higher true positive rate (TPR) than the
false positive rate (FPR) in a large-scale cross-validation. This quantitative similarity metric
offers a reference to rank precursor candidates and provides a foundation for developing a
predictive synthesis model.

In Chapter 4, we studied similarity of targets to enable precursor selection for new materials.
The similarity of precursors is limited to creating alternative recipes for existing target
materials in Chapter 3. We stepped forward by developing a precursor recommendation
strategy based similarity of target materials. This recommendation strategy mimics the
human approach of referring the synthesis of a novel material to similar target materials
for which successful synthesis reactions are known. Through representation learning based
on synthesis information from our text-mined synthesis procedures, the similarity of target
materials is quantified. Applying such similarity and our recommendation pipeline in the
prediction of precursors, the observed precursor sets are among the top five proposed ones
for 82% of 2,654 test target materials. Our quantitative recommendation pipeline can serve
as a predictive tool to help experimental researchers rapidly plan materials synthesis for
new compounds. It also provides meaningful initial solutions in the active learning and
decision-making process for autonomous synthesis of inorganic materials.

5.2 Outlook

This work exemplifies a successful practice of applying text mining to inorganic synthesis
science. However, because of time and energy constraints, many problems remain unsolved
and many new research directions need to be explored. Here, we list a few of them.

First, the potential of text mining has not been fully exploited. In this work, we used
research articles as the only data source. In fact, text mining can be applied to various
data sources. Patents may serve as another rich and high-quality data source because (a)
R&D institutions and companies are motivated to publish details of synthesis experiments to
protect their intellectual property, and (b) patents are usually strictly examined by national
patent offices before granted. By extending text mining to patents, the size of the extracted
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dataset can be enlarged quickly. Furthermore, we only tried to extract data from textual
descriptions. In addition to plain text, a research article also contains numerous valuable
pieces of information in the form of tables and figures. Typically, tables and figures are well-
formatted and present information more densely. By combining NLP and computer vision
methods, it is possible to also extract data from tables and figures.

Next, large language models (LLMs) could ease the development of text-mining algorithms.
In Chapter 2, we introduced an early attempt at fine-tuning BERT [38] for the extraction of
precursor and target materials. Although the performance is not significantly better than our
SMR model, we still value the potential of LLMs. When increasing the number of parameters
of the neural network, emergent abilities [169] that are not present in small models appear
in LLMs. Recently, several LLMs that are thousands of times larger than BERT, such as
GPT-4, [49] have been announced. It is promising that the use of the most recent LLMs can
further improve the accuracy of the text-mining pipeline because of the emergent abilities.

Finally, the predictive synthesis models are far from perfect. This work is focused on the
problem of precursor selection, while many other synthesis variables also influence the syn-
thesis outcome. Many a time, the solid-state synthesis may involve regrinding and reheating
rather than a one-shot synthesis of “Shake ’n bake”. There are also specific conditions for
mixing, heating, cooling, etc. More importantly, these synthesis variables may be corre-
lated with each other. For example, the selection of a precursor set may ask for a specific
heating temperature. More work needs to be done to predict these synthesis variables for
more thorough synthesis suggestions. In addition, the machine learning approaches used in
this work try to suggest synthesis procedures without revealing the mechanisms underlying
solid-state synthesis. Physics-based machine learning models are wanted to integrate the
possible synthesis mechanisms.
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