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A Control Theoretic Approach to Simultaneously
Estimate Average Value of Time and Determine
Dynamic Price for High-occupancy Toll Lanes

Xuting Wang, Wen-Long Jin, Member, IEEE, and Yafeng Yin

Abstract---The dynamic pricing problem of a freeway corridor
with high-occupancy toll (HOT) lanes was formulated and solved
based on a point queue abstraction of the traffic system [1].
However, existing pricing strategies cannot guarantee that the
closed-loop system converges to the optimal state, in which the
HOT lanes’ capacity is fully utilized but there is no queue on the
HOT lanes, and a well-behaved estimation and control method
is quite challenging and still elusive.

This paper attempts to fill the gap by making three funda-
mental contributions: (i) to present a simpler formulation of the
point queue model based on the new concept of residual capacity,
(ii) to propose a simple feedback control theoretic approach to
estimate the average value of time and calculate the dynamic
price, and (iii) to analytically and numerically prove that the
closed-loop system is stable and guaranteed to converge to the
optimal state, in either Gaussian or exponential manners.

Index Terms---dynamic congestion pricing, high-occupancy toll
(HOT) lanes, residual capacity, simultaneous estimation and
control problem, stability, value of time (VOT).

I. INTRODUCTION

A. Background

H IGH-OCCUPANCY vehicle (HOV) lanes are those
reserved for cars with a minimum of two or three

occupants and other qualified vehicles. The first HOV lane was
implemented on Virginia’s Shirley Highway busway facility
(I-395) in 1969; as of 2005, HOV lanes comprised 1,305
(directional) lane miles of freeway in California, and 950
additional lane miles had been proposed for construction
[2]. They can encourage car-sharing and reduce congestion,
improve the people-moving capability and reliability, and lead
to more efficient usage of the available roadway infrastructure
and transit system [3]. However, some HOV lanes could be
underutilized, even when the corresponding general purpose
(GP) lanes on the same roads are congested. For example, for
more than 700 detector stations in California during PM peak
hours on 128 weekdays in 2005, the flow-rates of 81% HOV
lanes were below 1400 vphpl, and most of them had speeds
over 45 mph and thus were uncongested and underutilized [4].
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Congestion pricing has received more and more attention
in both economics and transportation fields since the work
by [5], [6]. Many strategies (such as raising fuel prices)
usually only provide short-term relieves, but only pricing
strategies could manage congestion in the long run [7]. A type
of relatively recent congestion pricing strategies are realized
with high-occupancy toll (HOT) lanes, where single-occupancy
vehicles (SOVs) can pay a price to use HOV lanes during peak
periods. The first HOT lane has been implemented on SR-91
in California since 1995; the first HOV-to-HOT conversion
project started operation on I-15 near San Diego in 1996; as of
May 2012, 14 HOT lanes had been implemented, and additional
14 facilities were under construction [8]; as of January 2019,
41 HOT lanes had been implemented nationwide [9]. As can
be seen in Fig. 1, the number of HOT lanes in the U.S. has
exponentially increased during the last twenty years. In addition
to improving the performance of the overall system with better
utilization of underutilized HOV lanes, HOT lanes can have
some other benefits: (i) generating new revenue sources that can
be used to support the construction of HOT lanes themselves or
other initiatives and (ii) protecting environment by providing
opportunities to encourage carpooling, improving transit service
and moving more people in fewer vehicles at faster speeds
[10].
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Fig. 1. Exponential increase in the number of HOT lanes in the U.S.

Typical objectives of operating HOT lanes are: (i) main-
taining a certain level of service (LOS) on the HOT lanes,
which includes keeping free-flow speed, keeping zero queue,
and keeping the speed above certain value; (ii) improving the
overall system performance (e.g., maximizing vehicle or person
throughput, which is equivalent to minimize the travel time);
and (iii) maximizing revenue for the operators [8].

So far HOT lanes implemented in the real world have
been operated based on heuristic pricing schemes, which
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are determined based on the historic and current traffic
conditions. For example, the original SR-91 Express Lanes
in the Orange County applied time-of-day pricing schemes to
optimize the throughput of the HOT lanes at free-flow speed
while generating sufficient revenue for operation and corridor
improvement; since there was only one entry and one exit in
each direction, the toll collection can be categorized as per
use-based. Since March 2017, the Express Lanes have been
extended to Riverside County, and drivers may drive the entire
length or enter or exit at the county line near Green River Road;
thus the prices to use the extended SR-91 Express Lanes are
both time-of-day and distance-based. The prices are adjusted
quarterly based on the average hourly flow-rate in the last 12
consecutive weeks [11]. During Phase I of the I-15 Express
lanes near San Diego, a limited number of SOVs paid a flat
monthly fee to access the Express Lanes; during the ongoing
Phase II (started in March 1998), the I-15 Express Lanes apply
a distance-based dynamic pricing scheme for SOVs between
$0.50 and $8.00 to maintain LOS C on the Express lanes,
and the price was updated once every 6 minutes initially or
3 minutes more recently based on the level of traffic of the
Express Lanes [12], [13]. However, these heuristic pricing
schemes cannot guarantee that the overall traffic system is at
the optimal state. In some cases, they would increase the price
when the HOT lanes are uncongested and severely underutilized
with a very low flow-rate even if the corresponding GP lanes
are congested, cannot eliminate congestion on the HOT lanes
after a queue forms on them and the demand is relatively high,
and may not be able to cope with accidents on the toll lanes.
For example, the SR-91 Express Lanes increase the hourly toll
by $1.00 if the average flow-rate is 3300 vph or more during
peak hours [11]. However, the flow-rate itself cannot describe
whether the traffic is congested or not. Less SOVs will pay
and switch if the operators increase price when the Express
Lanes are uncongested, thus the congestion on the GP lanes
will be even worse.

B. Literature review

To develop more efficient pricing schemes for HOT lanes, it
is critical to have a better understanding of the characteristics
of such a traffic system, including how SOVs respond to the
change in the price. In general, more SOVs want to pay and
switch to the HOT lanes with a lower price when the overall
system is congested. When the GP lanes are becoming more
congested, there will be a larger travel time difference between
the GP and HOT lanes, and more SOVs will choose the HOT
lanes; in this case, the operators need to increase the price to
keep the HOT lanes from being congested1. So, in a corridor
with HOT lanes, intuitively, SOVs’ choices between the HOT
and GP lanes depend on the difference in the travel times on

1A positive demand elasticity to the dynamic price for the HOT lanes is
found in [14], [15]. As more SOVs enter the HOT lanes and the tolls increase,
there is a positive correlation between price and usage [16]. A study on the
MnPASS lane revealed that at lower tolls, an increase in price results in
a higher HOT lane share (probability that a transponder owning SOV will
use the MnPASS lane), whereas at higher tolls, an increase in price causes
a decrease in HOT lane share [17]. Thus the choice model in this study is
reasonable once the toll price is above a threshold value.

the HOT and GP lanes, as well as congestion prices. Generally,
utility (or generalized cost) is applied to connect those two
factors above in discrete choice or other lane choice models.
On the HOT lanes, the generalized cost of an SOV equals the
product of the travel time and value of time (VOT) plus the
congestion price; but on the GP lanes, it equals the product of
the travel time and VOT. In economics, the VOT represents the
opportunity cost of the time that a traveler spends on trips. The
concept of VOT plays an important role in congestion pricing
analysis as it shows user’s trade-off between cost and time [18].
For examples, at the same price, SOVs with higher VOTs will
be more willing to pay and switch to HOT lanes, and fewer
SOVs will pay to use HOT lanes if the price is too high. In
most cases, travelers’ VOTs are unknown to the operators, and
have to be estimated. Traditionally, VOTs have been estimated
offline. With the maximum log-likelihood criterion, Lam and
Small estimated the mean VOT based on the survey data
and loop detector data on SR-91 [19]. Later, Brownstone et
al. estimated the median VOT of $30/hr with the revealed
preference data from drivers, loop detector data and ETC
data from I-15 in Southern California [13]. However, those
estimation methods cannot be applied in real-time operation,
since it takes time to collect data from FasTrak users. At the
same time, Liu et al. found that the median VOT is dependent
of the departure time during the peak hours with the data
from SR-91 [20]. Tseng and Verhoef showed that VOTs vary
by time of day with the stated-preference survey data from
Dutch commuters [21]. Campbell mentioned that it is difficult
to accurately quantify the true benefits of dynamic pricing
projects without a quick estimation of VOTs [22]. Based on
those observations, we conclude that it is necessary to estimate
VOTs in real-time to determine effective pricing strategies.

Several types of models have been proposed to capture
the lane choice behaviors subject to different travel times,
VOTs, and congestion prices. Gardner et al. presented three
models to calculate the proportion of SOVs switching to
the HOT lanes [23]. The first model was an all-or-nothing
assignment, in which all vehicles were assigned to the lane
with lower generalized cost. The second model was a logit
model, with the utility of each lane being the sum of travel time,
congestion price and an independent and identically distributed
Gumbel disturbance term. In the third model, the proportion of
SOVs choosing the HOT lanes was exactly the proportion of
travelers whose VOT exceeded the ratio of price and travel time
difference. The last model can be regarded as an application of
the user equilibrium principle, considering a Burr distribution
for VOTs. Therefore, assuming that traffic conditions, including
SOVs’ choices of lanes and travel times on the HOT and GP
lanes, can be observed, drivers’ VOTs can be calculated from
congestion prices, and vice versa. That is, VOTs and congestion
prices can be determined simultaneously; in particular, VOTs
can be estimated online, with a dynamic pricing strategy.

In literature, most studies are concerned with the first two
operational objectives, which guarantee that the trip time
reliability of both HOVs and paying SOVs and help to minimize
the delay on the GP lanes. But they differ in their estimation of
VOTs, pricing strategies as well as the underlying traffic flow
and lane choice models. Yin and Lou proposed a feedback
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method and a self-learning method to determine the dynamic
price to provide a free-flow traffic condition on the HOT lanes
while maximizing the throughput of the freeway [1]. For both
methods, they used a logit model to capture the lane choice
of SOVs in a freeway segment with HOT and GP lanes, and
a point queue model to capture traffic dynamics. But different
from [13], [19], they applied the Kalman filtering technique, an
estimation method in control theory, to estimate drivers’ VOTs
in real time. Zhang et al. modeled the lane choice behavior of
vehicles with a logit model [24]. Then, they applied a piecewise
feedback control model to calculate the probability for choosing
HOT lanes based on different speeds on the HOT and GP lanes.
And the price was estimated from the logit model. Based on
the self-learning method, Lou et al. considered the impacts
of lane-changing behaviors with a multi-lane hybrid traffic
flow model [25]. Michalaka et al. formulated a robust pricing
optimization problem to maximize the total throughput while
controlling the congestion level on the HOT lanes [26]. The
traffic dynamics were described by the cell transmission model,
and the flow-rates on the GP and HOT lanes were estimated
by a logit model.

However, there are some deficiencies in literature. Zhang et
al. didn’t consider VOTs in the lane choice model [24]. VOTs
are assumed known to the operators before determining the
dynamic price [27], [28]. The feedback method in [1] can be
regarded as an application of the ALINEA strategy [29], which
is widely used in ramp metering. But when the overall traffic is
congested, a single Integral controller is not able to keep zero
queue on the HOT lanes. Examples can be found in Fig. 4, 5
and 8 in [1]. In the self-learning method, a substantial residual
queue exists on the HOT lanes in the simulation results for the
self-learning method. At the same time, a theoretic study on
the stability of the HOT lanes’ operation is not available. In
summary, existing pricing strategies cannot guarantee that the
closed-loop system converges to the optimal state, in which
the HOT lanes’ capacity is fully utilized but there is no queue
on the HOT lanes, and a well-behaved estimation and control
method is quite challenging and still elusive.

Note that the simultaneous estimation and control problems
are relatively new in the transportation field but have been
studied in many other areas. In the field of economics, Taylor
applied a Kalman filter to estimate the firm’s long-term demand
for inventoried goods in the existence of distributed lags [30].
After estimating the demand, a feedback decision rule was
applied to minimize the expected cost. An estimation and
identification of parameters and control variables of electric-
motor-driven motion system can be found in [31]. In space
science, Habib used an extended Kalman filter to estimate
the spacecraft position and velocity, and then applied a PD
controller to control the system [32].

C. Study objectives

In this study, we attempt to fill the gap and solve the
estimation and control problem simultaneously in the same
physical traffic system as [1], [25]. In particular, we will (i)
define a new variable called the residual capacity and present
a simpler formulation of the point queue model; (ii) propose

a simple feedback control theoretic approach to estimate the
average value of time and calculate the dynamic price; and (iii)
analytically and numerically prove that the closed-loop system
is stable and guaranteed to converge to the optimal state.

HOT systems can have many stochastic attributes in traffic
demands, VOTs and traffic flow models. The stochasticity
in traffic demands were considered in [1], [25]. The Burr-
distributed VOTs was introduced to include heterogeneous
drivers in [23]. In this study, we include the randomness in
the lane choice model, and numerically check the impacts of
stochasticity in Section VII-B. As our estimation and control
method is stable and robust, the impacts of such stochasticity
are limited, and this justifies the importance of the stability
property of our method.

A list of notations is provided in Table I.

Variables Definitions Variables Definitions
q1(t) Demands of HOVs q2(t) Demands of SOVs
q3(t) Demands of paying SOVs C1 Capacity of the HOT lanes
C2 Capacity of the GP lanes ζ(t) Residual capacity of the HOT lanes
λ1(t) Queue size on the HOT lanes λ2(t) Queue size on the GP lanes
ε Infinitesimal positive number ∆t Time step size
w1(t) Queuing time on the HOT lanes w2(t) Queuing time on the GP lanes

w(t)
Queuing time difference between the
GP and HOT lanes g1(t) Throughput of the HOT lanes

g2(t) Throughput of the GP lanes u(t) Time-dependent price for paying SOVs
π? True average VOT π(t) Estimated average VOT

α∗ A scale parameter in the logit model η
A random variable to capture
randomness in the logit model

K1 Integral controller coefficient for λ1(t) K2 Integral controller coefficient for ζ(t)

TABLE I: List of notations

The rest of this paper is organized as follows. In Section
II, we define a new variable called the residual capacity of
the HOT lanes. Then, we describe the system dynamics for
the HOT and GP lanes based on the residual capacity. We
also define the simultaneous estimation and control problem
for the HOT lanes. In Section III, we provide the solution
of the control problem with constant demand, assuming the
operators knows the true average VOT of SOVs before making
the pricing schemes. In Section IV, we provide a detailed
review of two control methods in [1]. In Section V, we present
a control theoretic approach to estimate the average VOT of
SOVs, and calculate the dynamic price with the estimated
average VOT and the travel time difference. In Section VI, we
analyze the equilibrium state and stability of the closed-loop
control system. In Section VII, we first provide numerical
examples to show that the method is effective, and compare
it with the methods in [1]. Then, we test the robustness of
the control system with respect to randomness in demands
and parameters or variables in the lane choice model. At the
same time, we numerically prove that the closed-loop system is
stable and guaranteed to converge to the optimal state. We also
examine the effect of the scale parameter in the lane choice
model. In Section VIII, we conclude the study and provide
future research topics.

II. DEFINITIONS, SYSTEM DYNAMICS, AND PROBLEM
STATEMENT

We consider a freeway corridor between an origin and a
destination, as shown in Fig. 2. The downstream is uncongested
initially. The freeway has two types of lanes: the HOT and GP
lanes. There is one bottleneck on the GP lanes, but not on the
HOT lanes. HOVs can use the HOT lanes for free, but SOVs
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have to pay a price to use the HOT lanes. Thus we separate
SOVs into paying SOVs that pay a price to use the HOT lanes,
and non-paying SOVs that stay on the GP lanes all the time.
Therefore, the HOVs and paying SOVs share the HOT lanes,
but the non-paying SOVs use the GP lanes. There are two sets
of loop detectors on the freeway. The first set of detectors is
installed before the toll-tag reader to detect the demand on the
HOV and GP lanes; while the second set is installed after the
reader to detect the demand on the HOT and GP lanes.

Fig. 2. Illustration of the traffic system with HOT lanes

A. Definitions of variables

We define variables describing road and traffic characteristics
as follows:
• Traffic demand: q1(t) and q2(t) are demands of HOVs

and SOVs, respectively, at time t.
• Capacities: C1 and C2 are the capacities of the HOT and

GP lanes, respectively.
• Queue sizes: λ1(t) and λ2(t) are the queue sizes, i.e.,

number of vehicles in queue, on the HOT and GP lanes,
respectively.

• Queuing times: w1(t) and w2(t) are the queuing times
for vehicles leaving at t on the HOT and GP lanes,
respectively; w(t) = w2(t) − w1(t) is the queuing time
difference between the GP and HOT lanes.

We have the following two assumptions regarding the
demand patterns. First, the total demand exceeds the total
capacity during the study period t ∈ [0, T ]; i.e.,

q1(t) + q2(t) > C1 + C2;

therefore, the overall traffic system is congested. Second, the
demand of HOVs is below the capacity of the HOT lanes, i.e.,

q1(t) < C1. (1)

Under these assumptions, if SOVs are not allowed to use
the HOV lanes, the HOV lanes will be underutilized and the
GP lanes congested. By introducing HOT lanes, however, we
can charge some SOVs to use the underutilized HOV lanes.
Thus we denote the demand of paying SOVs by q3(t), and
the demand on the GP and HOT lanes should be q2(t)− q3(t)
and q1(t) + q3(t), respectively. Then, we define the residual
capacity of the HOT lanes by

ζ(t) = C1 − q1(t)− q3(t). (2)

We further denote the time-dependent price for paying SOVs
by u(t).

B. Models of system dynamics

1) Traffic flow model: We apply the point queue model to
model traffic dynamics [33], [34]. In the point queue model, all
drivers follow the first-in-first-out (FIFO) rule, and the travel
time is composed of the free-flow travel time and the queuing
time. For vehicles in a homogeneous freeway segment, their
travel time difference only exists in the queuing time on the
HOT and GP lanes.

Fig. 3. Point queue representation of the traffic system with HOT lanes

For the HOT and GP lanes in this system (see Fig. 3),
the dynamics of the two point queues are described by the
following ordinary differential equations:

d
dt
λ1(t) = max{q1(t) + q3(t)− C1,−

λ1(t)

ε
}, (3a)

d
dt
λ2(t) = max{q2(t)− q3(t)− C2,−

λ2(t)

ε
}. (3b)

With the definition of ζ(t) in (2), we rewrite (3) as

d
dt
λ1(t) = max{−ζ(t),−λ1(t)

ε
}, (4a)

d
dt
λ2(t) = max{q1(t) + q2(t)− C2 − C1 + ζ(t),−λ2(t)

ε
},

(4b)

where ε = lim∆t→0+ ∆t is an infinitesimal number and equals
∆t in the discrete form. Then, the discrete version of the point
queue model becomes

λ1(t+ ∆t) = max{−ζ(t)∆t+ λ1(t), 0}, (5a)
λ2(t+ ∆t) = max{(q1(t) + q2(t)− C2 − C1 + ζ(t))∆t+ λ2(t), 0}.

(5b)

From (4a), we can see that the queue changing rate on the
HOT lanes is determined by either the existing queue size or
the residual capacity.

In addition, the throughputs of the HOT and GP lanes are
given by

g1(t) = min{C1 − ζ(t) +
λ1(t)

ε
, C1}, (6a)

g2(t) = min{q1(t) + q2(t)− C1 + ζ(t) +
λ2(t)

ε
, C2}. (6b)

So, the queuing times on the HOT and GP lanes are

w1(t) =
λ1(t)

C1
, (7a)

w2(t) =
λ2(t)

C2
. (7b)
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After obtaining the queuing times on two types of lanes, the
queuing time difference, w(t), can be calculated by

w(t) = w2(t)− w1(t) =
λ2(t)

C2
− λ1(t)

C1
. (8)

2) Lane choice model: For the drivers in this system,
the proportion of SOVs choosing the HOT lanes, Pr(t), is
represented by a logit model:

Pr(t) =
exp(α∗VHOT (t))

exp(α∗VHOT (t)) + exp(α∗VGP (t))
,

where VHOT (t) and VGP (t) represent the measurable utility
of drivers using the HOT and GP lanes at time step t; and α∗ is
a scale parameter, which determines the variation of a Gumbel
distribution. π∗ represents the true VOT, and it is not affected
by the scale parameter [35]. We introduce a random variable, η,
to capture the randomness in the VOTs, π∗, the detection errors
or imperfect information in the queuing time difference, w(t),
and the differences between the implemented and calculated
prices, u(t). In particular, (1 + η)π∗ can be interpreted as a
random or heterogeneous VOT, (1 + η)w(t) as the detected
or estimated queuing time difference, and u(t)/(1 + η) as the
implemented price. Then, the lane choice model for SOVs
becomes

Pr(t) =
1

1 + exp(α∗(u(t)− (1 + η)π∗w(t)))
. (9)

When the total demand of SOVs is q2(t), the demand of
paying SOVs is

q3(t) =
q2(t)

1 + exp(α∗(u(t)− π∗(1 + η)w(t)))
. (10)

With the definition of ζ(t), (10) is rewritten as

ζ(t) = C1 − q1(t)− q2(t)

1 + exp(α∗(u(t)− π∗(1 + η)w(t)))
.

(11)

C. Simultaneous estimation and control problem

In this study, we only consider the first two objectives
for operating the HOT lanes, which aim to optimize the
whole system’s performance without sacrificing the HOT lanes’
LOS [10]: (i) keeping zero queue on the HOT lanes, and (ii)
maximizing the HOT lanes’ throughput. Note that maximizing
the HOT lanes’ throughput is equivalent to maximizing the
whole system’s throughput in this case, since the GP lanes are
always congested and their throughput is fixed.

When both of the above objectives are met at the same time,
we refer to the traffic state as an optimal state. That is, in an
optimal state, we have: (i)

λ1(t) = 0, (12)

and (ii)
g1(t) = C1. (13)

Lemma II.1. In the optimal state, the residual capacity on
the HOT lanes is given by

ζ(t) = 0. (14)

Proof: Since λ1(t) = 0 in the optimal state, (6a) is equivalent
to

g1(t) = min{C1 − ζ(t), C1}.

The maximum throughput of the HOT lanes occurs if and only
if ζ(t) ≤ 0. Also, ζ(t) cannot be negative in the optimal state
from (4a). So, at the optimal state, ζ(t) = 0. �

Even though the optimal queue size is zero, and the optimal
demand of paying SOVs can be calculated from (2) and (14),
the operators cannot simply force SOVs to switch into or out
of the HOT lanes to achieve these objectives. As in [1], we are
interested in finding an appropriate pricing scheme that can
drive the system to the optimal state, since the price influence
SOVs’ lane choice behavior according to (10), which in turn
would influence the HOT lanes’ queue size according to (3).
In this sense, the congestion price is an actuation signal to
the system, and this is a control problem [36]. In addition,
we are interested in estimating the average VOT of SOVs
simultaneously since VOT is a key parameter in the lane
choice model.

III. SOLUTION OF THE CONTROL PROBLEM WITH
CONSTANT DEMAND AND VOT

We consider a simple case when the operators know the
true average VOT of SOVs, then the problem is simplified
as a control problem. We assume the demand of HOVs and
SOVs are time-independent. The demand of HOVs is constant
at q1 < C1, and the demand of SOVs is constant at q2 >
C2 + C1 − q1. These are consistent with the two assumptions
regarding the demand patterns in Section II. In this case, if we
do not allow SOVs to use the HOT lanes, then the GP lanes
are congested, but the HOT lanes are underutilized.

With appropriate pricing schemes, the system reaches the
optimal state when the two operational objectives stated in
Section II-C are met at the same time. That is, (i)

λ1(t) = 0;

i.e. there is no queue on the HOT lanes; and (ii)

ζ(t) = 0;

i.e., there is no residual capacity on the HOT lanes.
Initially both lanes are uncongested, i.e., λ1(0) = λ2(0) = 0.

For the HOT lanes, the demand equals the capacity. According
to (4a), the queue changing rate is zero, so there will be no
queue on the HOT lanes. Then, the queuing time on the HOT
lanes w1(t) = 0. At the same time, the demand on the GP lanes
is q2− (C1−q1) in the optimal state. Based on (5) and (7), the
queue size on the GP lanes is λ2(t) = (q2+q1−C1−C2)t, and
the queuing time on the GP lanes is w2(t) = q1+q2−C1−C2

C2
t.

Then w(t) = w2(t) = q1+q2−C1−C2

C2
t. According to (11), the

lane choice model is written as

C1 − q1 −
q2

1 + exp(α∗(u(t)− π∗ q1+q2−C1−C2

C2
t))

= 0,

which leads to

u(t) =
q1 + q2 − C1 − C2

C2
π∗t+

ln q1+q2−C1

C1−q1
α∗

. (15)
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This analytical result shows that the price should increase
linearly with constant demand pattern and known average VOT.
In this paper, we assume that the operators know the SOVs
follow a logit model for the lane choice, but they do not know
that the true average VOT. In this sense, we need to estimate
the average VOT to determine the appropriate pricing scheme
for the HOT lanes. We denote π(t) as the estimated average
VOT. Then, the operators should replace π∗ by π(t) in (15)
to calculate the price.

IV. REVIEW OF YIN AND LOU’S METHODS

This section provides a review of [1]. In this paper, they
proposed two dynamic pricing strategies for operating HOT
lanes to provide an uncongested traffic condition on the HOT
lanes while maximizing the freeway’s throughput.

A. Feedback method

In the feedback method, one loop detector was required
downstream of the toll reader to detect the occupancy on
the HOT lanes. The dynamic price on HOT lanes, u(t), was
calculated by an I-controller:

u(t+ ∆t) = u(t) +KI(OHOT (t)−O∗HOT (t)),

where OHOT (t) was the measured occupancy on the HOT lanes
at time step t, O∗HOT (t) was the desired occupancy, and was
usually equal or slightly less than the critical occupancy. The
error term was the difference between the desired occupancy
and the measured occupancy. KI was the coefficient for the
integral controller (I-controller). The framework for operating
HOT lanes could be described as Fig. 4(a). Due to the
application of the point queue model, the information of
occupancy is not available, so they used the demand of the
HOT lanes as the state variable in the simulation. The error
term was replaced by the difference between the actual and
desired demand on the HOT lanes. Then, the control logic
becomes

u(t+ ∆t) = u(t) +KI(qHOT (t)− q∗HOT (t)). (16)

When qHOT (t) > q∗HOT (t), the price would increase; when
qHOT (t) < q∗HOT (t), the price would decrease; and when
qHOT (t) = q∗HOT (t), the price would be constant.

Even though the feedback method is simple to implement, it
fails to achieve the two objectives by directly calculating the
price. Let’s consider the same demand pattern in Section III.
When the two objectives are met at the same time, qHOT (t) =
q∗HOT (t), then the price would be constant according to (16).
According to (10), more SOVs are willing to pay and switch,
thus the HOT lanes would be congested. So, the control system
is unstable.

B. Self-learning method

In the self-learning method, two sets of loop detectors were
required. The first set of detectors was installed before the
toll-tag reader to detect the demand on the HOV and GP lanes;
while the second set of detectors was installed after the reader
to detect the demand on the HOT and GP lanes. They applied

a logit model to describe SOV’s lane choice and point queue
models to capture traffic dynamics. In each step, they first
learned SOV drivers’ willingness to pay (WTP) by mining the
loop detector data, and then determined the price based on
the demand, estimated travel times, and the calibrated WTP.
When calibrating the WTP, they applied a discrete Kalman
filter to estimate the parameters in the logit model. And the
framework is shown in Fig. 4(b).

+

-

Plant

(a) The feedback method

 

 

 

Kalman
Filter

 
 
 

Logit

model
PQM

(b) The self-learning method

Fig. 4. Block diagrams of two methods in [1]

α1 and α2 represented the marginal effect of travel time
and price on drivers’ utility respectively, and γ captured other
factors that affect the WTP. α1/α2 was the trade-off between
time savings and prices, i.e., VOT. In each step, they updated
the Kalman gain and error covariance matrix in the Kalman
filter. Then, they determined the dynamic price for the HOT
lanes based on the logit model:

u(t) =
ln

q2(t)−q∗HOT (t)
q∗HOT (t) + α1(t)w(t)− γ(t)

α2(t)
, (17)

where q∗HOT (t) was the optimal demand on the HOT lanes,
and w(t) was the travel time difference on the GP and HOT
lanes at time t.

When we consider the same constant demand as Section III.
In the optimal state, qHOT = C1. Then, the queue size on the
GP lanes is λ2(t) = (q2 + q1−C1−C2)t, and the travel time
difference is w(t) = q1+q2−C1−C2

C2
t. Based on (17), the price

should be

u(t) =
ln q2−C1

C1
+ α1

q1+q2−C1−C2

C2
t− γ

α2
. (18)

Since the price is calculated from the logit model, and it only
influences the lane choice for SOVs, C1 − q1 should replace
C1 in the log term in (18).

Note that there is an inconsistency in the simulation setup
in [1]. In both scenario 1 and 2, the average demand of HOVs
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is 300 vph for the feedback method, but 600 vph for the self-
learning method. This can be seen by comparing Fig. 4a and
7a for scenario 1 and Fig. 5a and 9a for scenario 2. Such
an inconsistency can also be confirmed by comparing the
corresponding queue sizes.

V. A NEW CONTROL THEORETIC APPROACH

In this study, we are interested in simultaneously estimating
the average VOT of SOVs and calculating the dynamic price
for the HOT lanes to achieve those two operation objectives.
We want to combine the advantages of the two methods in
[1]. Similar to the self-learning method, we first estimate the
average VOT, and then calculate the dynamic price. However,
we want to take advantage of the simplicity of the feedback
controller, and apply it in the estimation process. Basically,
given the accurate estimation in travel time, if we overestimate
the VOT, less SOVs would choose the HOT lanes; and if
we underestimate the VOT, more SOVs would switch to the
HOT lanes. This gives us the guideline for designing the
controller: we should increase the estimated VOT when the
HOT lanes are congested, and decrease it when the HOT lanes
are underutilized.

The block diagram of the control system is shown in
Fig. 5(a). This is a feedback system, in which the price and the
system dynamics are connected together such that each system
influences the other and their dynamics are strongly coupled
[36]. Let’s recall the objectives for operating the HOT lanes
(12 and 14): λ1(t) = 0 and ζ(t) = 0. They are the reference
signals of the system, ~r(t). Then, λ1(t) and ζ(t) are the two
error signals related to the traffic condition on the HOT lanes.
With appropriate pricing schemes, u(t), we can achieve those
objectives. The plant has a logit model and a point queue
model, and the detailed block diagram is shown in Fig. 5(b).
Inside the plant, the inputs for the lane choice model are u(t),
q2(t) and w(t), and the output is ζ(t); for the traffic model,
the inputs are q1(t), q2(t) and ζ(t), and the outputs are λ1(t),
λ2(t) and w(t).

A. A feedback estimation method
PID control is the most common way of using feedback in

engineering systems so far. In traffic operation, PID control is
widely used in ramp metering [29] and variable speed limits
[37]. In this paper, we want to apply it to solve the feedback-
based estimation problem. Since π∗ is a constant value, we
apply an I-controller to estimate it. The operators can gradually
estimate π∗ of SOVs through learning their reaction to the
dynamic price and traffic condition.

We assume that the operators have full information of the
flow-rate and queue size on the HOT lanes. For time-dependent
demand, the I-controller is designed as

d
dt
π(t) = K1λ1(t)−K2ζ(t). (19)

If there is a queue on the HOT lanes, i.e., λ1(t) > 0, we
should increase the estimated average VOT of SOVs. If the
HOT lanes are underutilized, i.e., ζ(t) > 0, we should decrease
the estimated average VOT. Therefore, all the coefficients in
(19), including K1 and K2, should be positive. In the optimal
state, the error signals are zero, so π(t) would be constant.

 
 

+ -
Plant

Controller

(a) Block diagram of the control system

Logit
model PQM

(b) Block diagram of the plant

Fig. 5. Block diagram of the control system

B. Calculation of the dynamic price

With the estimated parameters in the previous subsection,
we calculate the dynamic price for the HOT lanes as in (15),
except that the true parameters are unknown and replaced by
the estimated values, and the travel time difference is replaced
by w(t):

u(t) = π(t)w(t) +
ln q1(t)+q2(t)−C1

C1−q1(t)

α∗
. (20)

Since π(t) 6= π∗ initially, we would expect some fluctuation in
the traffic condition and the dynamic price even if the demand
is constant.

Thus (19) and (20) form the controller, which is illustrated
in Fig. 6. The controller is implemented in two steps: in the
first it estimates the average VOT based on λ1(t) and ζ(t),
and in the second it calculates the dynamic price.

Estimation Control
 signal

Fig. 6. Block diagram of the controller

VI. ANALYTICAL PROPERTIES OF THE CLOSED-LOOP
CONTROL SYSTEM WITH CONSTANT DEMAND AND VOT

With the definition of ζ(t) in (2), the feedback-based
estimator in (19) and the dynamic price in (20), the point
queue models in (4) and the lane choice model in (11) form a
closed-loop control system. There are six unknown variables
in the system: λ1(t), λ2(t), ζ(t), w(t), π(t) and u(t). In this
section, we examine the analytical properties of the closed-loop
control system with constant demand levels and a constant
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average VOT. Different from Section III, here we assume we
don’t know the true average VOT of SOVs.

A. Equilibrium state

Further by substituting (20) into (11), we obtain the following
system:

d
dt
λ1(t) = max{−ζ(t),−λ1(t)

ε
}, (21a)

d
dt
λ2(t) = max{q1 + q2 − C1 − C2 + ζ(t),−λ2(t)

ε
}, (21b)

ζ(t) = C1 − q1 −
q2

1 + exp(α∗(u(t)− π∗w(t)))
, (21c)

w(t) =
λ2(t)

C2
− λ1(t)

C1
, (21d)

d
dt
π(t) = K1λ1(t)−K2ζ(t), (21e)

u(t) = π(t)w(t) +
ln q1+q2−C1

C1−q1
α∗

. (21f)

We define the equilibrium state as when λ̇1(t) = 0 and
π̇(t) = 0, which leads to λ1(t) = λ1 and π(t) = π∗. From
(21a) and (21e) we can see that, λ1 = 0, and ζ(t) = ζ = 0.
From (21b) we find that, in the equilibrium state, d

dtλ2(t) =
q1 + q2 − C1 − C2. At a very large time t, the equilibrium
queue size on the GP lanes is λ∗2(t) ≈ (q1 + q2 − C1 − C2)t.

B. Stability of the equilibrium state

In this subsection, we analyze the local stability of the
equilibrium state at a large time t, when λ1(t) and ζ(t) are
both very small. In this case, substituting (21c) into (21e), we
obtain

−
˙w(t)

α∗w2(t)
ln(

q1 + q2 − C1 + ζ(t)

C1 − q1 − ζ(t)

C1 − q1

q1 + q2 − C1
)

+
1

α∗w(t)

q2

(q1 + q2 − C1 + ζ(t))(C1 − q1 − ζ(t))

d
dt
ζ(t)

= K1λ1(t)−K2ζ(t). (22)

Since λ2(t) is very large, and ζ(t) is very small near
the equilibrium state, from the above equation we have the
following approximate dynamics for ζ(t):

d
dt
ζ(t) ≈ βt(K1λ1(t)−K2ζ(t)), (23)

where β = α∗(q1+q2−C1−C2)(q1+q2−C1)(C1−q1)
C2q2

> 0. There-
fore, the system of (21a) and (23) approximates the dynamics
of the original closed-loop control system, (21), at the equi-
librium state subject to a small disturbance after a long time.
Clearly the equilibrium state of the approximate system is at
(λ∗1, ζ

∗) = (0, 0). Note that (23) is a liner time-variant system;
thus the approximate system is a switching linear time-variant
system.

Theorem VI.1. The approximate system of (21a) and (23)
is locally stable at the equilibrium state (0, 0) after a long
time. Thus the closed-loop system, (21), is locally stable at its
equilibrium state.

Proof: From (21a), there are two phases for the queue
dynamics on the HOT lanes.

1) When ζ(t) ≥ λ1(t)
ε , λ1(t+ ε) = 0, and the queue on the

HOT lanes vanishes. In this case, (23) can be simplified
as

d
dt
ζ(t) ≈ −βK2tζ(t).

The solution of the above equation is

ζ(t) ≈ ζ(0)e−
1
2βK2t

2

, (24)

which converges to the equilibrium value 0 in a Gaussian
manner, much faster than exponentially.

2) When ζ(t) < λ1(t)
ε , λ1(t) > 0, and the queue size on

the HOT lanes is positive. In this case, (21a) can be
written as

d
dt
λ1(t) = −ζ(t).

At a very large time t, d
dtζ(t) is finite, and (23) is

equivalent to

K1λ1(t)−K2ζ(t) ≈ 1

βt

d
dt
ζ(t)→ 0.

Thus
ζ(t) ≈ K1

K2
λ1(t) ≈ K1

K2
λ1(0)e−

K1
K2

t. (25)

which converges to the equilibrium state exponentially.
In both cases, the approximate system is stable. �

We conclude that there are two convergence patterns of the
approximate model after a long time:

Pattern 1: When λ1(t) = 0, ζ(t) converges in a Gaussian
manner.

Pattern 2: Both λ1(t) and ζ(t) converge exponentially, and
λ1(t)
ζ(t) = K2

K1
.

VII. NUMERICAL EXAMPLES

In this section, we provide numerical results of the methods
above. The study site is a freeway segment with lane drop
downstream of the GP lanes (see Fig. 2), and the capacity for
one HOT and one GP lane is 30 veh/min. The downstream is
not congested initially (λ1(0) = λ2(0) = 0). The study period
is 20 minutes, and the time-step size is 1/60 min. For simplicity,
We assume the true average VOT is $0.5/min (π∗ = $0.5/min),
and α∗ = 1. Our initial guess of average VOT is $0.25/min.

A. Comparison of three controllers with constant demand

We first consider the constant demand. The demand of HOVs
is constant at q1(t) = 10 veh/min, and the demand of SOVs
is constant at q2(t) = 60 veh/min. Then q∗3(t) = 20 veh/min.

For the controller, (19), we set K1 = 0.1 $/min2 and
K2 = 0.1 $/min.
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Fig. 7. Numerical results of our method ((19) and (20)) with K1 =
0.1 $/min2 and K2 = 0.1 $/min

From Figure 7(a), we can observe some fluctuations in queue
size at the beginning because the estimated average VOT is
lower than the true value. After 2.5 minutes, the queue size on
the HOT lanes starts to decrease and keeps at zero. Meanwhile,
the queue on the GP lanes first increases at a rate lower than 10
veh/min, and at a higher rate between 2.5 and 7 minutes. After
7 minutes, it increases linearly with time. The HOT lanes are
underutilized initially, but later the throughput is at capacity,
as shown in Figure 7(b). The average throughput of the HOT
lanes is 29.96 veh/min, and the throughput of the GP lanes is
30 veh/min since the GP lanes are always congested. Since
there is no residual queue and no residual capacity on the HOT
lanes, the control system can reach the optimal state after some
time. In Figure 7(c), we overestimate the average VOT initially,
but after about 6 minutes, we can estimate the true average
VOT ($0.5/min). In Figure 7(d), the dynamic price increases
linearly with time after the true average VOT is estimated, and
the price is $4.024 at 20 minutes. Then, we go back to the
analytical results. From (15), we can get u(t) = 1

6 t+ ln 2. At
t = 20 min, the corresponding price is u(20) = $4.026. The
optimal throughput of the HOT lanes is 30 veh/min. Comparing
the numerical results with the analytical results, we find that
our method indeed drive the system to the optimal state as
expected.

For the feedback method (16), we set the initial price u(0) =
ln 2, and KI = 0.01($ ·min) for the controller. The numerical
results are shown in Fig. 8. Since the demand is always higher
than the capacity of the HOT lanes, the price increases with time
as shown in Fig. 8(b), and the queue size in Fig. 8(a) increases
as well. The zero-queue condition cannot be guaranteed by
the I-controller. This verify our conclusion that the dynamic
price determined by a single I-controller cannot achieve the
two operation objectives for the HOT lanes at the same time.
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Fig. 8. Numerical results of the feedback method in [1]

For the self-learning method (17), we set the true value
to be [α1;α2; γ] = [0.5; 1; 0], and the initial guess is
[α1(0);α2(0); γ(0)] = [0.25; 1; 0.1]. And the variance of
measurement noise is 0.09.
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Fig. 9. Numerical results of the self-learning method in [1]

Since the demand of paying SOVs is higher than the optimal
value, queue size increases on the HOT lanes, as shown in
Fig. 9(a). So, the optimal state cannot be guaranteed. Since
the demand of paying SOVs is not less than 20 veh/min, the
throughput of the HOT lanes is always 30 veh/min. In Fig. 9(c),
π(t) rises from $0.25/min, and converges to $0.5/min. Different
from Fig. 7(c), there is no overshoot in the estimation process.
In Fig. 9(d), the dynamic price increases with time, and it
is $4.024 at 20 minutes. We also find that the length of the
residual queue on the HOT is sensitive to the measurement
noise and the initial guess of α1. The queue size will be longer
if there is a larger measurement noise or a smaller initial guess
of α1.

Comparing with the system performance of those three
methods, we conclude that our method is more effective.

B. Robustness

In the previous section we considered a constant demand and
VOT. That is not the case in reality: the demand varies with the
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time, the measurements are inaccurate subject to disturbances,
and even the model parameters can change. Robustness is the
degree to which a system can function correctly in the presence
of uncertainty. Providing robustness is one of the key uses for
feedback control. In this subsection, we examine the robustness
of the designed controller subject to disturbances in the demand
pattern and VOT. We assume the demand of HOVs is Poisson
with an average of 10 veh/min, and the demand of SOVs is
Poisson with an average of 60 veh/min. For the controller, we
keep K1 = 0.1 $/min2 and K2 = 0.1 $/min.
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Fig. 10. Numerical results of our method: (a) queue sizes with random
demands; (b) estimated VOT with random demands; (c) queue sizes
with random demands and other parameters or variables in the lane
choice model; (d) estimated VOT with random demands and other
parameters or variables in the lane choice model

With the random traffic demands, we can still estimate the
average VOT, as shown in Figure 10(b). Same as the results
in Figure 7(a), no queue exists on the HOT lanes after the
system reaches the optimal state (see Figure 10(a)).

We further add the randomness to other parameters or
variables in the lane choice model in (9), where η ∈ [−0.1, 0.1]
follows a uniform distribution. Different from Figure 10(c),
there is a residual queue on the HOT lanes. However, the queue
size is close to zero. Thus the equilibrium state is Lyapunov
stable. In Figure 10(d), the estimated VOT fluctuates around
the average VOT. In this sense, we can conclude that the
controller is robust with respect to random variations in the
demand patterns and other parameters or variables in the lane
choice model.

C. Stability of the system

In this section, we provide numerical results of the original
and the approximate model in Section VI.

1) The original model: In this subsection, we numerically
solve (21) with different parameters, and subject to different
initial perturbation to the equilibrium state.

For the first pattern, we set K1 = 0.1 $/min2, K2 = 0.1
$/min, λ1(0) = 1 veh, and π(0) = $0.25 /min.
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Fig. 11. Numerical results of the original model (convergence pattern
1 in VI.1).

Fig. 11(a) is the phase diagram, the horizontal axis represents
λ1(t), and the vertical axis represents ζ(t). The staring point
is (1,0.11). Initially, ζ(t) decreases till reaches -0.44 veh/min,
and the maximum λ1(t) is 1.46 veh. It is obvious that λ1(t)
reaches 0 earlier than ζ(t). Fig. 11(b) shows how λ1(t) and
ζ(t) change with the time. The horizontal axis is time, the
left vertical axis represents λ1(t) and the right vertical axis
represents ζ(t). It is clear that λ1(t) reaches 0 at around 4
minutes, and after that ζ(t) converges to 0 in a Gaussian
manner (Theorem VI.1).

For the second pattern, we set K1 = 0.1 $/min2, K2 = 0.2
$/min, λ1(0) = 1 veh and π(0) = $0.25 /min.
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Fig. 12. Numerical results of the original model (convergence pattern
2 in VI.1)

In Fig. 12(a), the starting point is (1,0.11). The minimum
value of ζ(t) is -0.39 veh/min, and the maximum value of λ1(t)
is 1.36 veh. Both λ1(t) and ζ(t) converges to 0 exponentially
after a long time. In Fig. 12(b), the horizontal axis is time, and
the left vertical axis represents λ1(t). Different from Fig. 11(b),
the right vertical axis represents the ratio between λ1(t) and
ζ(t). λ1(t) converges exponentially staring from 2 minutes,
and reaches 0 at around 20 minutes. λ1(t)/ζ(t) converges to
2, which equals K2/K1 (Theorem VI.1).

We further numerically check the convergence pattern. With
λ1(0) = 1 veh and π(0) = $0.25 /min, when we set K1 =
0.1 $/min2, the two phases switch around K2 = 0.14 $/min.
From Fig. 11 and 12, we observe that a larger K2 leads to
congested, exponential convergence; a smaller K2 leads to
uncongested, Gaussian convergence (Theorem VI.1).

When the demands are stochastic, we can observe similar
convergence patterns to Fig. 11 and 12.

2) The approximate model: In this subsection, we numeri-
cally solve the approximate model of (21a) and (23).
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For the first pattern, we set K1 = 0.1 $/min2, K2 = 0.1
$/min, λ1(0) = 1 veh and ζ(0) = 0.11 veh/min.
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Fig. 13. Numerical results of the approximate model (convergence
pattern 1 in VI.1)

In Fig. 13(a), the trajectory starts from (1,0.11), and ends
at (0,0). The maximum value of ζ(t) is 0.44 veh/min. The
convergence pattern is different from Fig. 11(a) initially,
because we drop the first term on the left-hand side of (22)
when deriving (23). After a long time, the convergence pattern
is similar to Fig. 11(a). From Fig. 13(b), we can observe that
λ1(t) decreases until it reaches 0, while ζ(t) increases to 0.44
and then converges to 0 in a Gaussian manner (Theorem VI.1).

For the second pattern, we set K1 = 0.1 $/min2, K2 = 0.2
$/min, λ1(0) = 1 veh and ζ(0) = 0.11 veh/min.
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Fig. 14. Numerical results of the approximate model (convergence
pattern 2 in VI.1)

In Fig. 14(a), the convergence pattern is similar to Fig. 12(a)
after a long time. The starting point is (1,0.11), and ends
at (0,0). The maximum value of ζ(t) is 0.31 veh/min. In
Fig. 14(b), λ1(t) converges to 0 exponentially (Theorem VI.1);
and λ1(t)/ζ(t) converges to 2 after a long time, which is the
same as Fig. 12(b).

We also numerically check the convergence pattern. With
λ1(0) = 1 veh and ζ(0) = 0.11 veh/min, when we set K1 =
0.1 $/min2, the two phases switch around K2 = 0.14 $/min.
From Fig. 13 and 14, we observe that a larger K2 leads to
congested, exponential convergence; a smaller K2 leads to
uncongested, Gaussian convergence (Theorem VI.1).

D. The scale parameter

In this section, we discuss the case when the operators don’t
know the true value of the scale parameter. Instead, they make
a guess of the scale parameter, denoted as α, when determining
the dynamic price. Then, the price is set as

u(t) = π(t)w(t) +
ln q1+q2−C1

C1−q1
α

. (26)

The setup is the same as Section VII-A, and α = 1.2.
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Fig. 15. Numerical results of our method ((19) and (26)) with K1 =
0.1 $/min2 and K2 = 0.1 $/min

In Fig. 15(a), no queue exists on the HOT lanes after some
time, which is the same as Fig. 7(a). The throughputs on both
lanes are 30 vph eventually (see Fig. 15(b)). So, the price in
(26) drives the system to the optimal state. In Fig. 15(c), the
estimated average VOT is approaching the true value. The
price is $4.061 at 20 minutes in Fig. 15(d), which is slightly
higher than the one in Fig. 7(d).

After a long time, π(t) converges to π∗ (see Fig. 16). The
result is consistent with the statement that the VOT is not
affected by the scale parameter [35].
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VIII. CONCLUSION

In this study, we provide a new control theoretic approach
to solve the simultaneous estimation and control problem for a
traffic system with HOT lanes. We define a new variable called
the residual capacity for the HOT lanes. We apply two point
queue models to capture traffic dynamics on the HOT and GP
lanes, and capture the lane choice of SOVs with a logit model.
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The controller can estimate the average VOT and calculate
the dynamic price simultaneously, which has received little
attention in the field of traffic control. We also analytically
prove that the closed-loop system is stable and guaranteed to
converge to the optimal state. We provide numerical examples
to show that our method is effective and robust with respect to
randomness in demands and parameters or variables in the lane
choice model. We find the system converges to the equilibrium
state in the patterns predicted by Theorem VI.1. At the same
time, we show that the two methods in [1] are either unstable
or cannot guarantee the convergence to the optimal state, and
our controller is more efficient and leads to a better system
performance. Before designing a specific controller for the
system, we present a simple analytical example to show that
when the HOT lanes are underutilized while the whole system
is congested, the price for the HOT lanes should increase with
time. This gives us an guideline for the controller design. Then,
we design a simple I-controller to estimate the average VOT
of SOVs. We also provide a novel analytical proof of the
stability, since such a theoretic study on the stability was not
available in previous researches on the HOT lanes. At last, we
numerically show that the scale parameter does not affect the
estimation of VOT and the optimal state after a long time.

In summary, this study makes three fundamental contribu-
tions: (i) to present a simpler formulation of the point queue
model based on the new concept of residual capacity, (ii)
to propose a simple feedback control theoretic approach to
estimate the average value of time and calculate the dynamic
price, and (iii) to analytically and numerically prove that the
closed-loop system is stable and guaranteed to converge to the
optimal state, in either Gaussian or exponential manners. The
methodology and result are novel and relevant both theoretically
and practically, and the estimator/controller as well as the
analytical method can enable us for better understanding and
design of effective and efficient dynamic pricing strategies for
real-world systems in the future.

The following are some potential future research topics.
• Queue detection problem is fundamental in traffic control.

To measure the queue size on HOT and GP lanes, we
need two sets of loop detectors on each lane group. For
each lane group, the queue size is the difference between
the cumulative arrival and departure flows. Cao et al.
proposed a detection method based on the shockwave
theory [38]. We will be interested in developing new
methods to measure queues on freeways.

• We will be interested in the estimation and control
problem in a more complex network. We will consider
the effect of lane changing [39] and capacity drop [40].

• In a HOT lane system, the choice of SOVs is quite
complex [17], [41]. We will be interested in developing
new models to better capture the choice behavior for a
traffic system with HOT lanes.

• Another research topic would be a simultaneous departure
time and lane choice model for SOVs [42]. For SOVs,
their travel costs include a free-flow travel time, a queuing
time, a schedule delay and a dynamic price. We want to
design pricing schemes considering departure time user
equilibrium.

• Conceptually, an underlying assumption is that the HOT
lanes are Pareto improving compared with the HOV lanes;
i.e., both paying and non-paying SOVs are better off, and
the HOVs are not negatively affected. Such an assumption
is only valid when the HOV lanes are underutilized
and the GP lanes are congested. We will be interested
in examining the situations when these conditions are
violated.
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