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Learning to Signal 
with Two Kinds of Trial and Error

Brian Skyrms

“...and any theory, by which we explain the operations of the understanding, or the origin and 
connexion of the passions in man, will acquire additional authority, if we find, that the same 
theory is requisite to explain the same phenomena in all other animals.”

- David Hume An Enquiry Concerning Human Understanding
 IX Of the Reason of Animals

1. Low Rationality Game Theory

High rationality game theory is built on idealizations that may be hard to justify 
such as – at the minimum – common knowledge of strategic interaction and common 
knowledge of rationality of the interacting agents. Low rationality game theory 
investigates interactions between more limited agents. At the most modest level, agents 
may not even be aware that they are in strategic interaction, and may just muddle along 
with trial and error learning. If low rationality dynamics leads to the same result as high 
rationality equilibrium analysis, it lends support to high rationality game theory. If they 
disagree, this raises questions. (Suppes and Atkinson 1960, Roth and Erev 1995, Erev 
and Roth 1998, Young 2004)

It is of special interest to investigate learning to signal with in a low rationality 
setting for two reasons. The first is that some fairly robust signaling system must be 
already in place to support (or even approximate) the assumptions of high rationality. 
Signaling must presumably have its origin in a low rationality setting. The second is that 
animals incapable of high rationality can learn to signal.

But there is more than one kind of trial and error learning. The term encompasses 
a whole spectrum of learning dynamics. Here we focus on two very different kinds of 
trial and error that represent extremes of the spectrum, and compare their success in 
learning to signal. The first is the simplest form of reinforcement learning used by Roth 
and Erev (1995), Erev and Roth (1998) - which they trace to Herrnstein’s (1970) 
quantification of the law of effect. The second is probe and adjust dynamics. A somewhat
more complicated form of probe and adjust was introduced by Kimbrough and Murphy 
(2009) in an analysis of tacit collusion in oligopoly pricing. The simple form used here 



was introduced by Skyrms (2010) and analyzed by Huttegger and Skyrms (forthcoming) 
to investigate learning an optimal signaling network. It can be seen as part of the 
statistical learning theory of Estes (1950).

2. Two kinds of trial and error learning 

 Reinforcement 
An individual chooses repeatedly between actions A1…An. At each point in time 

the probability of choosing Ai is proportional to the accumulated past payoffs for 
choosing Ai. To get the process started, we assume initial “virtual payoffs” equal to 1 for 
each act. Thus the learner starts by choosing at random, and then the evolution of choice 
probabilities is driven by payoffs. 

The stochastic process may be realized by an urn scheme. There are balls of 
colors C1…Cn in and urn, initially one ball of each color. A ball is drawn at random from 
the urn – say of color Ci and replaced, and the corresponding action, Ai, is taken. A 
payoff (possibly zero, but non-negative) is realized and the number of balls equal to that 
payoff of color Ci is added to the urn. This is repeated.

Probe and Adjust 
An individual probes by just trying an act at random, and then adjusts by (i) 

adopting the new act if it has a higher payoff than the old one (ii) going back to the old 
act if the new one got a lower payoff or (iii) flipping a coin to decide if they are equal.  In 
a repeated choice situation an individual probes and adjusts with small probability, e, and
just chooses the same as last time with probability (1-e).  We can start the process by just 
choosing at random.

Comparison
Although both these processes are kinds of trial and error learning with at least 

some psychological plausibility, they are quite different in character and perform 
differently in different learning situations. Their analysis calls for different mathematical 
methods.  The transitions in Roth-Erev reinforcement depend on the number of balls in 
each urn, and thus require some memory of the whole history of the process. It slows 
down as the reinforcements pile up, and approximates better and better a mean field 
deterministic dynamics.  The transitions in probe-and-adjust depend only on a 
comparison of probe and pre-probe payoffs, and so only require a limited memory. 
Reinforcement learning is analyzed using stochastic approximation theory. (Pemantle 
2007) Probe and adjust uses Markov chains and analysis is quite straightforward and 
easy.  For an initial comparison, we apply them to a two-armed bandit learning problem.

You have two slot machines, R; L, each of which pays off with a different 
unknown probability. (Trials are independent and identically distributed, and are 



independent between machines.) Can you learn to play the optimal machine?  Roth-Erev 
reinforcement learning converges to playing the highest paying machine with probability 
one. (Beggs 2005). Here is a sketch of the stochastic approximation approach.

Let L pay 1 with probability p and 0 with probability (1-p). Let R pay 1 with 
probability q and 0 with probability 1-q.  Our learner has an urn with one R ball and one 
L ball, and proceeds with reinforcement learning. Let N = number of R balls + number of
L balls. The probability of choosing R at a given time is then just the number of R balls 
divided by N. 

We start be calculating the expected change in the probability that the learner 
chooses R, p(R). First calculate the expected value of p(R) after one trial. One of four 
things can happen: (1) R is chosen and reinforced, (2) R is chosen and not reinforced, (3) 
L is chosen and reinforced, (4) L is chosen and not reinforced. Accordingly, we calculate 
the expectation of the next value of p(R) as:

Chosen? Reinforced? New Value of p(R)

1. [p(R)       * q        * (N p(R) +1)/(N+1)] +
2. [p(R)       *      (1-q)           * p(R)     ] +
3.    [(1-p(R))    * p * (N p(R))/(N+1)] +
4. [(1-p(R)      *   (1-p) * p(R)]

Subtracting the current value, p(R) gives us the expected increment.  We get:

(1/N+1) p(R) (1- p(R) (q-p)    (expected increment)

The value 1/(N+1) is the step size. This tells us that the process slows down at a rate such 
that the stochastic process approximates the mean field dynamics with higher and higher 
probability as N builds up. The rest of the equation gives us the mean field dynamics:

d p(R)/dt = pr(R) (1-pr(R) (q-p)  (mean field dynamics)

Here learning must converge to one of the rest points of the mean field dynamics. If the 
two machines pay off equally, q=p, then every point is a rest point of the mean field 
dynamics. In this case the urn is a Polya urn and the learner can converge to anything.

If the R pays off more often than L, then there are only two rest points, a stable attracting 
equilibrium at p(R)=1, and an unstable equilibrium at Pr(R) = 0.

L →→→→→→→→→→→→→→→→R

Reinforcement learning must converge to one of these points. The instability of the latter 
equilibrium suggests that learning will never converge to it, and thus will always 



converge to always playing R. That is correct, but it requires a special argument to show 
it. (Hopkins and Posch 2005). 

In probe-and-adjust learning, nothing happens except when there is a probe. We 
can analyze it by looking only at pre-probe and post-probe states. This embedded 
sequence is a Markov chain. We can analyze as follows: Suppose bandit L pays off with 
probability p and bandit R pays off with probability q.  The state of playing bandit R 
transitions to that of playing bandit L with probability:

p(1-q)   [R doesn’t pay, probe, L does pay. Switch to L]
+ ½ pq  [both pay off, flip a coin to decide whether to switch]
+ ½ (1-p)(1-q) [neither pays off, flip a coin]

Likewise, L transitions to R with probability:

q(1-p) + ½ pq + ½ (1-p)(1-q)

This is an ergodic Markov chain with invariant probability distribution:

Pr(L) = ½ (1+p-q), Pr(R) = ½ (1- p + q). 

If, for instance, R pays off 90% of the time and L 50%, probe and adjust plays R 
70% of the time. Probe-and-adjust favors the higher paying bandit, but does not learn 
optimal play. 

In the special case where p + q = 1, the invariant distribution is:

Pr(L) = p, Pr(R) = q.  

In the long run, the machine is played with the probability of its payoff. This is some 
version of what psychologists call “probability matching”. It has been frequently 
observed in human learning experiments, and discussions of its robustness have 
generated a large and sometimes contentious literature in psychology and economics. 
[See the survey of Vulkan 2000.]

3. Signaling Games

Sender-Receiver signaling games were first introduced by David Lewis in 
Convention (1969).  There are two players, a sender and a receiver. The sender observes a
situation, which nature chooses at random. She chooses a signal, conditional on the 



situation observed. The receiver observes the signal, and chooses an act, conditional on 
the signal observed. Payoffs for sender and receiver are determined by the combination of
signal and situation. Signals are cost-free and sender and receiver have pure common 
interest. In the simplest case, there is an act that is “right” for each situation in that if that 
act is done in that situation both sender and receiver get a payoff of 1, and otherwise they 
get a payoff of 0.  For simplicity, we can index that situations and acts such that the joint 
payoff on 1 occurs just in case act Ai is done in situation Si. (Situations are often called 
“states”, but we reserve this term for the state of a Markov chain.)

Lewis calls an equilibrium in which players always receive a payoff of 1 a 
signaling system equilibrium. There are other equilibria. If the sender sends signals with 
probabilities independent of the situation and the receiver chooses acts independent of the
signals, we have a total pooling equilibrium. All the situations are pooled, in that the 
signal sent carries no information about the situation. It is an equilibrium in that neither 
sender nor receiver can improve her payoff by changing her behavior. If there are more 
than two situations, there may be partial pooling equilibria in which some but not all 
states are pooled. For example, suppose there are 3 situations, 3 signals and 3 acts, and 
that the sender sends:

signal 1 in situations 1 and 2, 
signals 2 and 3 in some proportion in situation 3 

and the receiver does:
 acts 1 and 2 in some proportion for signal 1
 act 3 for signals 2 and 3

This is a partial pooling equilibrium in which situations 1 and 2 are pooled.

Many generalizations and variations are of interest, but here we concentrate on 
the basic signaling game.

4. Learning to Signal with Reinforcement Learning: The simplest case.

In applying reinforcement learning to signaling games we do not reinforce whole 
strategies. After all, part of the point of the low rationality approach is that the agents 
involved may not be thinking strategically at all. Rather we think of just reinforcing 
responses to stimuli. A sender observes a situation as a stimulus and responds by sending 
a signal. For each situation, we equip the sender with an urn, the colored balls 
corresponding to the signal to send in that situation. And the receiver observes the signal 
as a stimulus. So for each signal, we equip the receiver with an urn, the colored balls 
corresponding to the act to take upon receiving that signal.  

Consider the simplest Lewis signaling game in which nature flips a fair coin to 
choose one of two situations, the sender observes the situation and chooses between two 
signals and the receiver observes the signals and chooses between two acts. Sender and 
receiver use reinforcement of stimuli. There are now 4 interacting reinforcement 
processes – two sender’s urns and two receiver’s urns. 



An analysis of these interacting reinforcement processes shows that sender and 
receiver always learn to signal with probability one. (Argiento, Pemantle, Skyrms and 
Volkov, 2009) Here is a sketch. 

There are 8 quantities to keep track of: the numbers of the two types of ball in 
each of the four urns. But because the receiver is reinforced just when the sender is, and 
to the same extent, the numbers of balls in the sender’s urns contain all the relevant 
information about the state of the process. Normalizing by dividing by the total number 
of balls in both sender’s urns, we get four quantities that live in a tetrahedron. The mean 
field dynamics is calculated. A quantity is found that the dynamics always increases, 
ruling out cycles.  The reinforcement learning process must then converge to a rest point 
of this dynamics. The rest points are shown in figure 1..



Figure 1: Rest points of the mean-field dynamics for reinforcement learning. (from 
Argiento, Pemantle, Skyrms and Volkov)

  
The two signaling systems are shown as square dots. At a signaling system players are 
always reinforced. One signaling system ends up with the urn for situation 1 full of signal
A balls and the urn for situation 2 full of signal B balls; the other has urn 1 full of signal 
B balls and urn 2 full of signal A balls. The curved surface consists of pooling equilibria, 
where the probability of signals is independent of the situation. On one side of the 
surface, the mean field dynamics leads to one signaling system, on the other to the second
signaling system. It is then shown that the probability that reinforcement learning 
converges to a point on the surface is zero. (The argument requires a separate treatment 
of the parts of the surface in the interior if the tetrahedron and the parts on the boundary.) 
The rest points that are left are the signaling systems. With probability one, reinforcement
learners learn to signal.

5. Learning to Signal with Probe and Adjust: The simplest case.

Consider probe and adjust learning applied to the same simple signaling game. As
before, we assume that each sender treats each situation as a separate choice stimulus. 
Each receiver treats each signal received as a separate choice stimulus. In order to apply 
probe and adjust, individuals must not remember not just what happened last time, but 
what happened last time for each stimulus. So the sender remembers what he did the last 
time he was confronted with situation 1 and the payoff he received and likewise for 
situation 2. The receiver remembers what he did last time and payoff received when 
observing signal one and likewise for signal 2. Memory requirements are still quite 
modest. 

Most of the time agents just repeat what they did last time for the same stimulus. 
Every once and a while an agent probes and adjusts. We assume here that only one agent 
probes and adjusts at a time. The other agent keeps doing the same thing during the 
probe-and-adjust process. Now we can again find an embedded Markov chain which 
consists of pre and post probe-and-adjust transitions. Here the state of the system of both 
players consists of a pair: a map from situations to signals for the sender and a map from 
signals to acts for the receiver. This is just the memory of what they did last given the 
respective stimuli. 

(This system state constrains the payoffs that they got last time they did 
something to an extent sufficient to establish that signaling systems are the only 
absorbing states, and that there is a positive probability path from any state to a signaling 
system. When the sender pools, payoffs last time may be underdetermined.  We are then 
dealing with a random, time-inhomogeneous Markov chain. Nevertheless, for each 
possibility, there is a positive probability path to a signaling system.)



There are 4 possible sender configurations and 4 receiver configurations, so there 
are 16 possible states of the system, as shown in figure 2. 

v
(figure 2 here)

The transition probabilities are calculated as follows. Nature chooses the sender or 
receiver to probe by flipping a fair coin. Nature chooses a situation by flipping a fair coin.
If sender is chosen sender probes a new signal for the situation chosen. If receiver is 
chosen, sender sends the old signal for the situation and receiver probes a new act for the 



signal. If the probe gave a higher payoff the new configuration is adopted; if it gave the 
same payoff the new configuration is adopted with probability ½; if it gave a lesser payoff
the system remains in the original state.

This Markov chain is no longer ergodic, like that for the bandit problem. States 15
and 16, which correspond to the two signaling systems, are absorbing states. Once 
entered, the Markov chain will not leave them. Any probe will get a smaller payoff, and 
the agents will adjust back to the original state. Furthermore, as we will see, they are the 
only absorbing states. If the agents enter one of these states, we will say that they have 
learned to signal.  This means that they will continue in the signaling system except for 
occasional fruitless probes that will lead them to return to it. Figure 2 shows some (not 
all) positive probability transitions between states.

States 15 and 16 are signaling systems. States 3, 4, 5, 6, 7, 8, 11 and 12 can move 
to a signaling system with one probe. Each of the other states can move to these with one 
probe. From any state there is a (short) positive probability path to a signaling system. 
Given a positive probability path from each state to an absorbing state, there is a 
maximum path length, n, and a minimum path probability, e.  Starting from any state, the 
probability of not being absorbed after n probes is at most (1-e). After m*n probes the 
probability of not being absorbed is (1-e)^n. In the limit the probability of not being 
absorbed is zero. With probability one, probe and adjust learns to signal.  

We will investigate how this logic generalizes.

6. Reinforcement: N Equiprobable Situations, N Signals, N Acts

Suppose we keep everything the same except increasing the numbers of 
situations, signals and acts. Situations are still assumed to be equiprobable and the 
number of signals and acts matches the number of situations. We know that there is now 
a new class of equilibria, the partial pooling equilibria. The question is what significance, 
if any, they have for reinforcement learners. A full analysis of this situation is not quite 
yet available, but it is known that both convergence to perfect signaling and convergence 
to partial pooling have positive probability (Hu 2010, Hu, Skyrms and Tarrés 2011). 
Learning to signal perfectly is no longer guaranteed. 

Extensive numerical simulations show that the extent of convergence to partial 
pooling is not a negligible outcome. Starting from an initial condition of one ball of each 
color in each urn, Barrett (2007) finds numerical convergence to partial pooling after 106 
iterations of learning in 103 trials as follows:



N Partial Pooling
3   9.6 %
4 21.9 %
8 59.4 %

7. Probe and Adjust: N Situations, N Signals, N Acts. 

 

 As in the simplest case, when we consider transitions between pre-probe-adjust 
states and post-probe-adjust states, we have an embedded Markov chain. The state of the 
system for this chain consists of a record of what was done last in each situation by the 
sender and last for each signal by the receiver. It is thus a pair of sender and receiver 
functions, <f, g> These are functions since each only remembers what she last did in the 
each decision situation. These need not be one-to-one, as the sender may have sent the 
same signals in multiple situations and the receiver may have done the same act on 
receiving multiple signals.

The analysis of the simplest game generalizes. Specifically:

(1) Signaling systems are absorbing states of the Markov chain.
(2) Signaling Systems are the unique absorbing states.
(3) From any state, there is a positive probability path to a signaling 

system.

For details see Skyrms (2012).

Agents always learn to signal perfectly. Here probe and adjust learning always 
achieves optimal signaling in a setting where reinforcement learning sometimes does and 
sometimes does not. One might ask how this result generalizes. First we look at cases 
where the number of signals is different from the number of states and acts, keeping 
states equiprobable. Then we relax the condition of equiprobable states.  

9. Extra Signals: N states, M signals, N acts.  (M>N)

If we have excess signals, reinforcement learning can still fall into partial pooling 
equilibria. (Hu 2010, Hu, Skyrms and Tarrés 2011)  For probe and adjust, the picture has 



changed. The embedded Markov chain generated by probe and adjust no longer has any 
absorbing states.  Efficient states - those where g(f(s)) is the identity - of the system 
consist of an N by N by N signaling system together with M-N signals that are not sent.  
These signals are mapped onto some acts by the receiver's memory.  Suppose some 
unused signal is mapped onto Ai. If the sender probes by sending the unused signal 
instead of the signal he usually sends in Si, then the probe does not change his payoff. 
Then with some probability he adjusts by retaining the new signal in place of the old.  (A 
receiver cannot probe changing an unused signal, since a receiver is not probing a new 
function, g, but only what to do if confronted with a signal. If a signal is unused, a 
receiver is not confronted with it.)

For example, in figure 3, probe and adjust can lead from state A to B and state B 
to A but not outside the set. Check all other possible probes. They don’t lead anywhere. 
This is an absorbing set (an ergodic set). Within the set, signals 2 and 3 can be thought of 
as sequential synonyms. One is used for situation 2 for a while and then the other is. 
After the system has been absorbed into this set, there is a long-term invariant 
distribution within the set. Signals 2 and 3 are each used half the time for situation 2. 
There are lots of such ergodic efficient sets.



(figure 3 here)

It is still true that from any state there is a positive probability path to an efficient ergodic 
set. The same algorithm as before works for the same reasons. Applying the algorithm 
until one runs out of states give a path to a member of an efficient ergodic set.
Probe and adjust still learns to signal with probability one.



Too few signals: N states, M signals, N acts.  (M<N)

In this case, partial pooling is the best that can be done.  There are not enough 
signals for a signaling system to map each state onto the appropriate act.  The best 
average payoff achievable is (M/N), gotten when for each signal, s, g(s)  in f-1(s).  The 
structure of these efficient signaling equilibria is investigated in Donaldson et. at. (2007). 
Consider the case of M=2, N=3.  In the efficient equilibria the sender pools 2 situations. 
There are 3 choices of situations to pool. For each, there is a choice which signal to 
assign to the pooled states. So there are 6 sender’s strategies that are components of 
efficient equilibria. On the receiver’s side, for such a sender’s strategy there are two 
situations pooled, so it makes no payoff difference if the receiver does the right act for 
one or for the other.  Thus 2 receiver’s strategies pair with each of the 6 sender’s 
strategies to make 12 optimal equilibria. This is shown in figure 4.



Figure 4: Ergodic set of efficient equilibria.
From Donaldson, et. al. 2007

Probe and adjust can move from one of these equilibria to another. Adopting the 
notation of the figure (s for situation, t for signal, a for act), suppose that we start at:

Sender Receiver
E1: s1 => t1 t1 => a1

s2 => t2 t2 => a2
s3 => t2

The sender pools situations 2 and 3. Suppose nature chooses s3, sender sends t2 and 
receiver probes a3. Receiver gets a payoff of 1 that, at worst, ties previous payoff for 
doing a2 upon seeing t2. So with positive probability receiver switches, taking us to:

Sender Receiver
E2: s1 => t1 t1 => a1

s2 => t2 t2 => a3
s3 => t2

This step is reversible; a probe can take us back to E1.

Now the receiver never does a2, so it doesn’t matter if the sender pools s2 with s1 
or with s3. Suppose nature chooses s2, and sender probes t1. This leads to 0 payoff which
matches sender’s previous payoff in s2, so with positive probability sender switches, 
leading to:

Sender Receiver
E3: s1 => t1 t1 => a1

s2 => t1 t2 => a3
s3 => t2

(This step is also reversible.)  But now sender is pooling s1 and s2, so by the same logic 
as before a receiver’s probe can lead to:

Sender Receiver
E4: s1 => t1 t1 => a2

s2 => t1 t2 => a3
s3 => t2

And now receiver never does a1, in turn setting up a sender’s probe that can lead to:
Sender Receiver

E5: s1 => t2 t1 => a2



s2 => t1 t2 => a3
s3 => t2

The process continues through a cycle of the 12 efficient equilibria. All these efficient 
states form one ergodic set. As probe and adjust moves through this set, signals shift their
meaning.

There is a positive probability path from any state to a state in the efficient ergodic
set. (Skyrms 2012)

 Probe and adjust leads to efficient signaling .

Situations with Unequal Probabilities

So far, states have been supposed to have equal probabilities. There is to date no 
rigorous analysis of reinforcement learning in situations with unequal probabilities. But 
preliminary analyses and computer simulations point to the conclusion that in this case 
reinforcement learning can lead to total pooling equilibria. Consider the case of two 
situations, signals, and acts in which situation 1 is highly probable. Then a total pooling 
equilibrium in which the receiver just does act 1 and ignores the signals, and the sender 
ignores the state and always sends the same signal, is not so implausible. Players usually 
get paid off without bothering much with signaling. Simulations show reinforcement 
learning sometimes converging to a signaling system, sometimes to total pooling. 

How does Probe and Adjust do with unequal probabilities? Notice that none of 
our foregoing analysis made use of the assumption of equal situation probabilities. We 
only need that situation probabilities are all positive in order to construct the positive 
probability paths leading to absorbing sets or states. Probe and adjust  dynamics learns to 
signal perfectly in N situation, M signal, N act signaling games when there are enough 
signals (M > = N).

In the case where there are too few signals, M<N, efficiency imposes an extra 
requirement. Since there are not enough signals, states have to be pooled. In an efficient 
configuration, the highest probability states must be serviced in a way that maximizes 
expected payoff. 

For example, suppose that M=2, N=3, and states 1, 2, 3 have 
probabilities .2, .3, .5 respectively. One efficient configuration will have the sender map 
states 1 and 2 onto one signal that the receiver maps to state 2, and have the sender map 
state 3 onto the other signal, which the receiver maps to act 3. Then the average payoff 
is .8. But Probe and Adjust may lead from this efficient state to and inefficient one, as 
shown in figure 5. 



(Figure 5 here)



In situation 1 sender sends signal 1 and receiver probes act 1. This gets a payoff of
1, which matches the receiver’s memory of a payoff of 1 for doing act 2 on receiving 
signal 1. The tie is broken by a coin flip, so with some probability, receiver stays with the
probe. The receiver has no memory of the frequencies of payoffs – only of the magnitude 
of the last payoff.  Probe and adjust can move around the whole ergodic set of the 
preceding section. This weakness of probe and adjust here is just the other side of the 
coin from its strength.

 
Rapprochment

Probe and Adjust has a constant probability of probing. A natural modification 
makes the probability of probes payoff-dependent: the worse the payoff, the more likely a
probe. One special case deserves note.  Suppose that our trial and error learner has an 
idea of an optimal payoff. Then she may not probe at all if the last payoff was optimal.  

In our signaling games, suppose a player does not probe at all if the last trial was a
success, but probes with some probability (greater than zero and less than one) if the last 
trial was a failure. Then the positive results of the preceding discussion are retained, but 
residual probing is eliminated. (And it is no longer necessary to include the assumption 
that there are no simultaneous probes.) These agents always find a signaling system by 
trial and error, and then stick to it.

On the other hand, reinforcement learners become more likely to stick with 
successes if their initial propensities are small (or equivalently the rewards for success are
large.) Pushing this to the extreme, suppose that we start out with infinitesimal initial 
propensities. Another way of saying this is that we start out with the urns empty, with the 
rule that for empty urns you choose at random, but for non-empty urns you use Roth-Erev
reinforcement.  An initial reinforcement then causes sender and receiver to lock-in the 
actions that produced the reinforcement. This is like the lock-in of the modified probe 
and adjust described in the previous paragraph. With this dynamics such learners always 
learn to signal. (Barrett and Zollman 1999) 

This modification weakens exploration. It does very poorly in bandit problems. 
But reinforcement with very small initial propensities is almost as good at learning to 
signal. Simulations with very small propensities always learn to signal in all the signaling
games discussed here. And small initial propensities still guarantee asymptotic optimality
in bandit problems.

Conclusion



Is it possible to learn to signal by trial and error? The answer is robustly positive. 
Both kinds of trial and error that we have considered sometimes learn to signal in all 
signaling games, and always learn to signal in the simplest signaling game.  In addition, 
probe and adjust always learns to signal in a wide variety of settings.

Related Work

The need for low rationality game theory is emphasized in Roth and Erev (1995), 
Erev and Roth(1998), Fudenberg and Levine (1998),and Young (2004) (2009). Probe 
and adjust can be seen as a version of the one-element stimulus sampling model of Estes 
(1950). Estes learning theory was applied to game theory in the pioneering work of 
Suppes and Atkinson (1960).  There are more complicated versions of probe and adjust 
type learning, with more memory and payoff-dependent probes, which perform well very 
generally. (Marden et. al. 2009, Young 2009).  

Equilibrium structure of signaling games with many or few signals is analyzed in 
Donaldson et. al. (2007).  Two-population replicator dynamics of a 2 situation, 2 signal, 2
act signaling game where the situations have unequal probabilities is analyzed, with and 
without mutation, in Hofbauer and Huttegger (2008). 

Blume et. al. (1998) and Blume et al (2001) present experimental evidence for the
emergence of signaling by learning in a 2 situation, 2 signal, 2 act signaling game. Where
subjects were only given own payoffs as feedback, experimental results were consistent 
with reinforcement learning.
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