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QUARK PHYSICS WITHOUT QUARKS *t 
A REVIEW OF RECENT DEVELOPMENTS IN S-MATRIX THEORY 

** Fritjof Capra 

Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 947;:-0 

May 15. 1978 

ABSTRACT 

A review is given of the developments in S-matrix theory over 

the past five years which have made it possible to derive results 

characteristic of quark models without any need to postulate the 

existence of physical quarks. In the new approach, the quark 

patterns emerge as a consequence of combining_ the general s-matrix 

principles with the additional concept of order. 

* Adapted from a series of lectures given by the author in Spring 

1978 during his stay at Macalester College as Visiting Hubert H. 

Humphrey Professor. 

t Supported in part by the United States Department of Energy 

** Participating Guest. 
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I. INTRODUCTION 

The belief that quarks and leptons are the fundamental 

constituents of matter is held by the majority of particle physicists 

and has become widely known in the physics community and by the public 

at large. An alternative view of matter, pursued by a small but 

growing minority of physicists, holds that quarks are not primary 

physical entities but merely patterns generated by the dynamics of 

the strong interactions. This view has arisen in the framework of 

s-matrix theory and of the bootstrap approach which does not accept 

any fundamental entities but tries to understand nature entirely 

through its self-consistency. 

In the last five years, there have been several important 

developments in s-matrix theory which have brought extremely 

encouraging results •.. starting from the dual models of the late 

sixties, topology was introduced into the s-matrix framework, and 

a further decisive advance was made when the notion of order was 

recognized as a new and important ingredient of hadron physics. 

The new approach culminated in the concept of the ordered S matrix 

which has made it possible to derive results characteristic of quark 

models without any need to postulate the existence of physical quarks. 

These results have generated great enthusiasm among S-matrix theorists, 

many of whom believe now that we shall be able, in the not too distant 

future, to go beyond the quark model; to do, as it were, quark 

physics without quarks. 

The new developments in s-matrix theory have recently been 

reviewed by Chew and Rosenzweig1 in a fairly technical paper. The 

purpose of our review is to communicate the recent results to a wider 
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audience. our readers will be assumed to be familiar with quantum 

mechanics and special relativity but need not have any knowledge of 

S-matrix theory, nor will any detailed knowledge of particle physics 

be assumed. Those who wish to study the new S-matrix approach in 

greater detail are referred to Ref. 1 which will serve as our main 

guide and source of reference. Throughout this review, we shall hint 

at philosophical implications of the concepts and theories under 

discussion. Readers with a deeper interest in these philosophical 

questions are referred to Ref. 2, Chapters 16-18. 

The paper is organized as follows. Section II reviews the 

concept of basic building blocks of matter from a historical perspective 

and presents the quark model as the most recent version of this 

age-old idea. The present state of the quark model and the diffi-

culties inherent in the notion of physical quarks are discussed. 

In Section III, the basic formalism and the underlying 

concepts of S-matrix theory are reviewed. They include the principles 

/ 
of Poincare invariance, unitaritY, and analyticity, the unified 

description of stable and unstable particles as poles of the S matrix, 

the concept of crossing, the notion of nuclear democracy, the Regge 

formalism, the bootstrap philosophy, and the dynamic re-formulation 

of the quark concept. 

Section IV deals with the ordered S matrix. Starting from a 

brief description of duality, the notion of particle order is 

introduced; various categories of order are discussed and it is shown 

that the most general type of order consistent with the properties of 

the S matrix is the one represented by quark lines. The quark 
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patterns are thus seen to emerge as a consequence of combining the 

s-matrix principles with the notion of order. 

Section V introduces the concepts of the planar S matrix and 

the topological expansion, which are necessary to make contact with 

experiment, and reviews some of the previously mysterious regularities 

observed in hadronic phenomena that can now be understood as 

manifestations of order. 

Section VI concludes the review with a few speculative 

remarks about the meaning of order in fundamental physics. 

II. QUARKS AS BASIC BUILDING BLOCKS 

Physics in the twentieth century has been characterized by 

an e~progressing penetration into the world of submicroscopic 

dimensions, down into the realms of atoms, nuclei and their con-

stituents. This exploration of the submicroscopic world has been 

motivated by one basic question which has occupied and stimulated 

human thought throughout the ages: what is matter made of? Ever 

since the beginning of natural philosophy, men and women have 

speculated about this question, trying to find the ''basic stuff" of 

which all matter is made. In fact, the philosophical questions that 

physicists have to confront today are just modern versions of problems 

that were discussed thousands of years ago in ancient Greece, in 

India and in China, as well as in many other cultures. 

The school of thought that has had the strongest influence 

on modern physics was Greek atomism. The Greek atomists - Democritus, 

Leucippus, and others - saw matter as being made of several "basic 

building blocks". These were purely passive and intrinsically dead 

indivisible constituents, or~' which were too small to be seen, 

., 
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but whose properties and behavior gave rise to all the physical 

phenomena observed in the everyday world. 

In the twentieth century, atoms were actually observed and 

could be investigated experimentally. They were not indivisible but 

turned out to consist of smaller parts which, in turn, consisted of 

smaller parts. Penetrating deeper and deeper into matter, physicists 

applied, again and again, the approach suggested by Democritus over 

two thousand years ago: if you don't understand a material structure 

or a physical phenomenon, break it up into its constituents and try 

to understand it in terms of their properties and behavior! 

In the past, this approach was extremely successful in 

explaining the physical world in terms of a few atoms; the structures 

of the atoms in terms of a few nuclei surrounded by electrons; and 

finally, the structures of the nuclei in terms of two nuclear 

"building blocks", the proton and the neutron. Thus atoms, nuclei 

and hadrons {i.e. protons, neutrons and other strongly interacting 

II l t rt" l II particles) were, in turn, considered to be e emen ary pa 1c es • 

None of them, however, fulfilled that expectation. Each time, these 

particles turned out to be composite structures themselves, and each 

time physicists hoped that the next generation of constituents would 

finally reveal themselves as the ultimate components of matter. 

on the other hand, the theories of atomic and subatomic 

physics made the existence of elementary particles increasingly 

unlikely. They revealed a basic interconnectedness of matter, 

showing that kinetic energy can be transformed into mass, and 

suggesting that particles are transient stages in an ongoing cosmic 

process. All these developments strongly indicated that the simple 
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mechanistic picture of basic building blocks had to be abandoned, 

and yet many physicists are still reluctant to do so. The age-old 

tradition of explaining complex structures by breaking them down into 

simpler constituents is so deeply ingrained in Western thought that 

the search for these basic components is still going on. 

The most recent candidates for the basic building blocks of 

matter are the so-called quarks. The quark hypothesis was introduced 

in 1963 by Gell-Mann and Zweig in an attempt to account for the 

surprising regularities that had been discovered in the spectrum of 

hadrons. The properties characteriz.ing the strongly interacting 

particles - their spin, electric charge and other, more abstract, 

"charges" called hypercharge, isospin, etc. - do not take arbitrary 

values but are restricted to integer or half-integer values (in cer-

tain units). These integers or half-integers are called quantum 

numbers in analogy to the quantum numbers in atomic physics. Each 

particle is characterized by a set of these quantum numbers which, in 

addition to its mass, specifY its properties completely. 

Quantum numcers are extremely useful to classifY not only 

particles but also the interactions between them. This can be done 

because the quantum numbers cha:r;acterizing hadrons are "conserved", 

i.e. they remain constant during an interaction. For example, in a 

situation where two particles, A and B, collide and three 

particles, c, D, and E, emerge from the collision, the total 

electric charge carried by the initial particles A and B will 

equal the total charge carried by the final particles C, D, and E; 

and the same is true for the particles' total isospin, hypercharge and 

other quantum numbers. Quantum numbers, then, are elements of 

constancy in the complex dance of subatomic matter and are thus ideal 
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to describe and classifY the particle interactions. 

When the particles are arranged according to the values of 

their quantum numbers, they are seen to fall into very neat patterns; 

hexagonal and triangular patterns known as octets and decuplets.3 

Hadrons fall into two broad groups - mesons and baryons. Mesons are 

grouped in octets, baryons in octets and decuplets; mesons have 

integral values of spin, baryons have half-integral spins. Another 

difference between the two kinds of hadrons is that each meson octet 

contains particles as well as antiparticles, wheras for each baryon 

multiplet (octet or decuplet) there is a distinct multiplet containing 

the corresponding antibaryons. 

The emergence of these patterns, known technically as SU(2) 

and SU(3) symmetries, was very surprising, and even more surprising 

was the discovery that they can be represented in a very simple way 

if one assumes that all hadrons are made of a small number of 

elementary entities which have so far eluded observation. These 

entities are the quarks introduced by Gell-Mann and Zweig. The two 

physicists succeeded independently in accounting for all the regulari­

ties mentioned above by assigning appropriate quantum numbers to three 

quarks and their antiquarks, and then putting these building blocks 

together in various combinations to form baryons and mesons whose 

quantum numbers are obtained simply by adding those of their 

constituent quarks. In this sense, baryons are said to consist of 

quarks, their antiparticles of the corresponding antiquarks, and 

mesons of a quark plus an antiquark. 
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The simplicity and efficiency of this model is striking, 

but it leads to severe difficulties if quarks are taken seriously as 

actual physical constituents of hadrons. So far, no hadrons have 

ever been broken up into their constituent quarks, in spite of 

bombarding them with the highest energies available, which means 

that quarks would have to be held together by extremely strong 

binding forces. According to our present understanding of particles 

and their interactions, these forces can only manifest themselves 

through the exchange of other particles, and consequently these other 

particles, too, would be present inside each hadron. If this were 

so, however, they would also contribute to the hadron's properties 

and thus destroy the simple additive scheme of the quark model. 

In other words, if quarks are held together by strong 

interaction forces, these must involve other particles and the quarks 

must consequently show some kind of "structure", just like all the 

other strongly interacting particles. For the quark model, however, 

it is essential to have pointlike, structureless quarks. Because 

of this fundamental difficulty, it has so far not been possible to 

formulate the quark model in a consistent dynamic way which accounts 

for the observed hadron patterns as well as for the binding forces 

holding quarks together within the hadrons. 

On the experimental side, there has been a fierce but, so 

far, unsuccessful "hunt for the quark" over the past decade. If 

single quarks exist, they should be quite conspicuous because the 

model requires them to possess some very unusual properties, like 

electric charges of 1/3 and 2/3 of that of the electron, which do not 

appear anywhere in the particle world. So far, no particles with 

.. 
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these properties have been observed in spite of the most intensive 

search. This persistent failure to detect them experimentally, 

plus the serious theoretical objections to their existence, have 

made the reality of quarks extremely doubtful. 

on the other hand, the quark model continues to be very 

successful in accounting for the regularities found in the particle 

world, although it is no longer used in its original simple form. 4 

In the original model, all hadrons could be built from three kinds 

of quarks and their antiquarks·, but in the mean time physicists have 

had to post~ate additional quarks to account for the great variety 

of hadron patterns. 

The three original quarks were denoted, rather.arbitrarily, 

by u, d, and s for "up", "down" and "strange". The first 

extension of the model which emerged from the detailed application 

of the quark hypothesis to the full body of particle data was the 

requirement that each quark has to appear in three different 

varieties, or three different "colors". The use of the term color 

is, of course, quite arbitrary and has nothing to do with the usual 

meaning of color. According to the colored quark model, baryons 

consist of three quarks of different colors, wheMBS mesons consist of 

a quark plus an antiquark of the same color • 

The.introduction of color increased the total number of 

quarks to nine, and more recently an additional quark - again 

appearing in three colors -was postulated. With the physicists' 

usual penchant for fanciful names, this new quark was denoted by c 

for "charm". This brought the total number of quarks up to twelve -
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four kinds, each of them appearing in three colors. To distinguish 

the different kinds of quarks from the different colors, physicists 

soon introduced the term "flavor" and now speak of quarks of different 

colors and flavors. 

The latest attempts have been to add two new flavors to the 

model, denoted by t and b for "top and "bottom" (or, more 

poetically, for "true" and "beautiful"), which brings the total 

number of quarks up to eighteen - six flavors and three colors. In 

this development, it is remarkable that more and more flavors seem 

to be necessary to account for the detailed hadron data, as new 

particles are discovered in collision experiments involving ever 

increasing energies, whenBS the number of colors seems to be limited 

to three. 

The current mathematical formulation of the quark model is 

known as QCD which stands for quantum-chromodynamics. It is a 

field theory and has been named in analogy with quantum-electrodynamics, 

or QED, the first and still most successful modern field theory, 

which describes the electromagnetic interactions between charged 

particles. Whereas electromagnetic interactions are mediated by the 

exchange of photons, the strong interactions between quarks are 

mediated, in QCD, by the exchange of "gluons". These are not real 

particles but some kind of quanta that "glue" quarks together to form 

mesons and baryons • 

The main problem of the quark model is to explain why there 

are no free quarks. In the framework of QCD, this phenomenon has 

been given the name quark confinement, the idea being that quarks are, 
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for some reason, permanently confined within the hadrons and thus 

will never be seen. Several mechanisms have been proposed to account 

for quark confinement, but so far no consistent theory has been formu­

lated. 

This, then, is the present state of the quark model: to 

account for the observed patterns in the hadron spectrum, at least 

18 quarks plus 8 gluons seem to be needed; none of these have ever 

been observed as free particles and their existence as physical con­

stituents of hadrons would lead to severe theoretical difficulties; 

various mechanisms have been developed to explain their permanent 

confinement, but none of them represents a satisfactory dynamic 

theory. Yet, in spite of all these difficulties, most physicists 

still hang on to the idea of basic building blocks of matter which 

is so deeply ingrained in our Western scientific tradition. 

There is an amusing analogy which illustrates the kind of basic 

conceptual error that may be involved in the idea of permanently 

confined building blocks. Suppose we have a vibrating string and 

we keep both of its ends fixed. The result is the well-known 

phenomenon of standing waves; wave patterns involving a limited 

number of well-defined shapes and, in particular, a limited number 

of nodes along the axis of the string; e.g. as shown in Fig. 1. The 

nodes are generated by the confinement of the string; they are a 

consequence of the detailed dynamics and boundary conditions of the 

phenomenon. It does not make sense to speak of "free nodes"; nodes 

only appear when the string is confined. They are not primary 

physical entities which are then confined but patterns generated by 

the confinement. Similarly, quarks may not be primary physical 
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entities which are confined within hadrons, but merely patterns 

generated by the detailed dynamics of the strong interactions. As 

it does not make sense to speak of free nodes, it may not make sense 

to speak of free quarks. 

This analogy illustrates the view of quarks held in s-matrix 

theory, an approach to hadron physics which is in many ways comple­

mentary to the quantum-field-theory approach but is much less 

known outside the field of particle physics. The basic formalism 

and the main concepts underlying S-matrix theory will be discussed 

in the following section. 

III. S-MATRIX THEORY 

One of the major challenges of present-day physics is to 

describe the symmetries and regularities observed in the particle 

world in terms of a dynamic model, that is, in terms of the great 

variety of phenomena associated with the strong interactions: the 

continual transformation of hadrons into one another, their mutual 

interaction through the exchange of other hadrons, the formation 

of "bound states" of two or more hadrons, and their decay into 

various particle combinations. All these processes, which are 

usually given the general name "particle reactions" are essential 

features of the strong interactions and have to be accounted for in 

a dynamic model of hadrons. 

S-matrix theory is the framework which seems to be most 

appropriate for the description of hadrons and their interactions. 

Its key concept, the S matrix, was originally proposed by Heisenberg 

in 1943 and has been developed, over the past two decades, into a 

complex mathematical structure which seems to be ideally suited to 

• 

• 
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describe the strong interactions. Many physicists have contributed 

to this development, but the unifying force and philosophical leader 

in s-matrix theory has been Geoffrey Chew, 5 much in the same way as 

Niels Bohr was the unifying force and philosophical leader in the 

development of quantum theory half a century earlier • 

The S matrix is a collection of probability amplitudes for 

all possible reactions involving hadrons, It derives its name from 

the fact that one can imagine the whole assemblage of possible hadron 

reactions arranged in an infinite matrix; the letter S is a 

remainder of the original name "scattering matrix" which refers to 

scattering processes, the majority of particle reactions. 

To be more precise, suppose we perform an experiment of some 

kind and get a result a . This result is associated, according to 

the framework of quantum mechanics, with a state vector in Hilbert 

space. on the basis of that measurement, we then want to predict the 

probability of obtaining a certain result ~ when we do another 

experiment. This is done through the elements of the S matrix and is 

written 

(III.l) 

where s is an operator connecting the states a and ~ • The 

absolute square of this matrix element will give the probability that 

the result a will be followed by the result ~ 

Any conceivable experimental results in hadron physics can 

be cast into this language. If we know the S matrix, we know everything 

that can be known about hadrons. However, this formalism cannot be 

used to describe the electromagnetic, weak, and gravitational 
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interactions, due to its inherent inability to deal with massless 

particles. 

In hadron physics, a typical sequence of events would be a 

scattering process where two particles, A and B, collide and emerge 

from the collision as particles C and D This can be illustrated 

by the diagram shown in Fig. 2a. In this example, the particles A 

and B constitute the initial state a, C and D the final state 

~ ' and the s-matrix element (III.l), squared, gives the transition 

probability between the two states. 

More complicated processes are illustrated by the diagrams 

shown in Figs. 2b-d. It must be emphasized that these S-matrix 

diagrams are very different from the Feynman diagrams of quantum 

field theroy. They do not picture the detailed mechanism of the 

reaction, but merely specify the initial and final particles in 

terms of their quantum numbers. Note also, that the experiments that 

determine the states a and ~ describe macroscopic experimental 

situations. This is an important point which was often emphasized 

by Bohr. Quantum mechanics represents a description of microscopic 

phenomena in terms of macroscopic experimental situation&, In fact, 

Bohr's whole approach to atomic physics can be said to have been an 

s-matrix approach; of course, without the explicit introduction of 

the S matrix itself. 

An important aspect of s-matrix theory is the shift of 

emphasis from objects to processes. Its basic concern is not with 

the particles, but with their reactions. such a shift from objects 

to processes is required both by quantum mechanics and by relativity 
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theory. Quantum mechanics has made it clear that a subatomic 

particle can only be understood as a manifestation of the interaction 

between various processes of observation and measurement. It is not 

an isolated object but rather an occurrence, or event, which inter­

connects other events in a particular way. 

Relativity theory has further influenced this picture by 

forcing us to conceive of particles in terms of space-time; as four­

dimensional patterns, processes rather than objects. The s-matrix 

approach combines both of these viewpoints. Using the four-dimensional 

relativistic framework, it describes all properties of hadrons in 

terms of reactions - or, more precisely, in terms of reaction 

probabilities - and thus establishes an intimate link between 

particles and processes. Each reaction involves particles which 

link it to other reactions and thus build up a whole network of 

processes. 

A neutron, for example, may participate in two successive 

reactions involving different particles; the first, say, a proton 

and a pion, the second a sigma and a kaon. The neutron thus inter­

connects these two reactions and integrates them into a larger process, 

as illustrated in Fig. 3· Each of the other particles will, in turn, 

be involved in other reactions, so that the original neutron is seen 

to be part of a whole network of interactions, e.g. as shown in Fig. 4, 

all described by the S matrix. 

The interconnections in such a network cannot be determined 

with certainty but are associated with probabilities. Each reaction 

occurs with some probability which depends on the available energy 

and on the characteristics of the reaction, and these probabilities are 

given by the various elements of the S matrix. 
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This approach allows one to define the concept of "constituents" 

of a hadron in a thoroughly dynamic way. The neutron pictured in 

Fig. 3, for example, can be seen as a bound state of the proton and 

the pion from which it arises, and also as a bound state of the sigma 

and kaon into which it decays. Either of these hadron combinations, 

and many others, may form a neutron, and consequently can be said to 

be the neutron's "constituents". 

A hadron, therefore, does not consist of a definite arrangement 

of constituent parts but shows tendencies to undergo various reactions, 

and these tendencies define the hadron's "constituents". This notion 

of constituents is in perfect agreement with the experimental facts. 

Whenever hadrons are broken up in high-energy collisions, they 

disintegrate into combinations of other hadrons; thus they can be said 

to "consist" potentially of all these hadron combinations. Each of 

the particles emerging from such a collision will, in turn, undergo 

various reactions, thus building up a whole network of events. 

Although it is a matter of chance which network will arise in 

a particular experiment, each network is nevertheless structured 

according to definite rules. These are the conservation laws 

mentioned above. Only those reactions can occur in which a well-defined 

set of quantum numbers is conserved. 

In S-matrix theory, the question of the structure of hadrons 

is reformulated in terms of the structure o±' hadron reactions. 

Hadrons "consist of" other hadrons or, rather, involve other hadrons 

in a dynamic way, and this dynamic way shows a certain structure. 

, 
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The main challenge of s-matrix theory is to use its tmrcughly 

dynamic description of hadrons to account for the symmetries and 

regularities observed in hadronic phenomena. In such a theory, 

these regularities would be reflected in the mathematical structure 

• 
of the S matrix in such a way that it would contain only elements 

which correspond to reactions allowed by the conservation laws. 

Furthermore, only those reactions would be possible which show a flow 

of quantum numbers exhibiting the patterns associated with quarks, 

i.e. the "two-ness" characteristic of mesons and the "three-ness" 

characteristic of baryons, together with the various f'lavors that can 

combine to form the quantum numbers of the observed hadrons. This 

would be the dynamic equivalent of the statement, made in the static 

quark model, that hadrons consist of quarks. 

How can one construct a mathematical model of the S matrix 

which ref'lects all these patterns observed in the hadron world? At 

present, s-matrix theorists are trying to achieve this ambitious aim 

by postulating a few very general principles, all of which have been 

verified empirically, and which restrict the mathematical possibilities 

of constructing s-matrix elements and thus give the s matrix a 

definite structure. So far, three of these general principles have 

been established, all of which are related to our methods of 

observation and measurement. 

Poincar~ invariance 

The first principle is suggested by relativity theory and by 

our macroscopic experience of space and time. It says that the 

reaction probabilities (and thus the s-matrix elements) must be 

independent of displacements of the experimental apparatus in space 

and time, and independent of the state of motion of the observer. This 

principle is known as Poinca~ invariance and reflects the homogeneity 

of space and time. The independence - or "invariance" - with respect 

to displacements in space means that we shall get the same results 

whether we perform an experiment in Los Angeles or in New York. In 

the formalism of quantum mechanics, this invariance implies the con­

servation of momentum. The invariance with respect to displacements 

in time means that particle reactions will occur in the same way on a 

Monday or on a Wednesday. This can be shown to imply the conservation 

of energy. 

The invariance with respect to the state of motion of the 

observer - known as Lorentz invariance - is taken into account by 

expressing each s-matrix element as a function of Lorentz-invariant 

variables. To illustrate this, let us take a scattering process 

involving four particles. The kinematic variables in this process are 

the momenta and energies of these particles, as shown in Fig. 5, where 

we have adopted the relativistic notation 

p 
2 2 

m c (III.2) 

When conservation of momentum and energy is taken into account, it 

turns out that only two independent invariants can be formed from the 

four momenta which are conventionally chosen as follows. 

s (III.3) 

t (In.!;.) 

There is a third invariant which is useful, 
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u 

but it is not independent, since 

s + t + u 
L 
i 

(III.5) 

(III.6) 

The variable s is called the invariant mass, squared; t is called 

the momentum transfer, squared. s-matrix elements, then, are expressed 

as a function of s and t, and this guarantees that they will be 

Poincar~ invariant. 

Unitarity 

The second principle is suggested by quantum theory. It 

asserts that the outcome of a particular reaction can only be predicted 

in terms of probabilities and, furthermore, that superpositions of 

probability amplitudes associated with different experimental results 

correspond themselves to possible experimental results. This represents 

the essential quantum character of the s-matrix formalism. Finally, the 

principle states that the sum of the probabilities for all possible 

outcomes of a particle reaction - including the case of no interaction 

between the particles - must be equal to one. In other words, we can 

be certain that the particles will either interact with one another, or 

not. This seemingly trivial statement turns out to be, in fact, a very 

powerful principle. It is expressed, mathematically, by the require-

ment that the S matrix be unitary, 

1 (III. 7) 

The whole principle is therefore known under the name of unitarity. 

The unitarity equation is usually written in a different form. 

Since the case where no particle interactions take place is 
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mathematically trivial, it is separated from the remainder of the 

S matrix by writing 

(fji) + i (f!Tii) (III.8) 

where the factor i is adopted for mathematical convenience. The 

unitarity equation can now be expressed in terms of the T matrix which 

contains the physically interesting reactions. With the notation 

it reads 

Im Tfi(s,t) 
1 
2 

~--·-

L 
n 

Tfnt (s,t)T .(s,t) 
n1 

(III.9) 

(III.lO) 

where we have exhibited the dependence of the matrix elements on the 

kinematic variables s and t discussed before. We see that the 

unitarity requirement imposes a nonlinear condition on the probability 

amplitude. This condition severely restricts the possibilities of 

constructing S-matrix elements and forms the corner-stone of S-matrix 

theory. 

Analyticity 

The third and final principle is related to our notions of 

cause and effect and is known as the principle of macro-causality. It 

states that energy and momentum are transferred over macroscopic 

spatial distances only by particles, and that this transfer occurs in 

such a way that a particle can be created in one reaction and destroyed 

in another only if the latter reaction occurs after the former; furt~ 

more, that the transfer of energy cannot occur with velocities 

exceeding the speed of light. 

• 

.... 
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The mathematical formulation of the causality principle 

implies that the s matrix is an analytic function of the kinematic 

variables involved - in our 'example of the variables s and t 

with certain isolated singularities. These singularities correspond 

to all the possible ways in which energy and momentum (plus other 

information) can be transferred over macroscopic distances. For 

example, for a reaction involving six particles, the singularities of 

the corresponding amplitude would include those represented by the 

diagrams shown in Figs. 6a-d. One special type of singularity 

that is of particular interest is the type shown in Fig. 6a in which 

a single particle transmits information over the macroscopic distance. 

The singularity represented by this diagram is a single pole. The 

position of the pole - i.e. the value of the energy variable at which 

the pole occurs - corresponds to the mass, squared, of the particl~. 

An important aspect of this formalism is the fact that it 

can accomodate unstable particles, i.e. the hadrons known as resonance& 

unstable particles appear as poles at complex values of the energy 

variable. For example, in the case of our amplitude T(s,t), the 

variable s is continued to complex values which can be represented 

in the complex plane (see Fig. 7). Only the values of s along the 

positive real axis are physical values, since an energy squared is 

always a positive real number, but the continuation of the energy 

variables to unphysical complex values is a very powerful mathematical 

tool. 

A pole in this complex plane, corresponding to an unstable 

particle, may have, for example, the position shown in Fig. 8. The 

real part of the pole position gives the mass, squared, of the 
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particle; the imaginary part (r) is related to the inverse of the 

particle's lifetime. If we plot the probability for the reaction to 

occur as a function of the energy variable s, we shall find a peak 

in the probability as we pass the value of the pole. The resulting 

curve (see Fig.9) is a typical resonance curve, and this is why 

unstable hadrons are called resonances. In fact, the word "resonance" 

is a very appropriate term. It refers to a phenomenon characteristic 

of hadron reactions. The probability amplitude resonates when energy 

is transferred in a certain way. The resonance is therefore an event, 

an occurrence, rather than an object. This shows very clearly the 

close connection between particles and processes in S-matrix theory. 

The width of the resonance curve (r), which is related to 

the inverse lifetime of the particle, corresponds to the disp~acement 

of the pole from the real axis. The closer the pole to the real axis, 

the sharper the peak will be; the longer the lifetime of the particle 

and the more important its contribution to the reaction. 

Crossing 

These, then, are the three principles which imply that the 

S matrix must exhibit the properties of Poincar'e invariance, unitarity, 

and analyticity. Poincare invariance, together with analyticity, 

implies another property of the S matrix which plays a crucial role in 

the theory; the property known as crossing. 

To illustrate crossing, let us consider an S-matrix element 

represented by the diagram shown in Fig. lOa. The fact that the 

probability amplitude corresponding to this diagram is an analytic 

function of the particles' momenta (including their energies) means 

that it may be analytically continued to regions where some of these 
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momenta become negative. For example, we may continue the function to 

a region where the momentum of particle C is negative. 

The crossing property, now, says that in this region - which 

is, of course, an unphysical region - there is an alternative inter­

pretation of the amplitude. It can be interpreted as the probability 

amplitude for the reaction in which particle c, instead of being 

an ingoing particle, is an outgoing antiparticle. This can be illus-

strated by swinging the line representing C over to the other side 

and denoting the antiparticle by C (see Fig. lOb). The crossing 

property thus interrelates two different processes: the amplitude 

for the process A + B ..... D + E + F + C is the analytic continuation of 

the amplitude for the process A+ B +C -> D + E + F and vice versa. 

This can be carried on with the other particles; we can swing around 

the particle lines any way we like, changing ingoing particles into 

outgoing antiparticles, and vice versa, by analytic continuation of 

the amplitude from positive to negative momenta. The resulting 

processes, therefore, are not really independent but are merely 

different aspects, or "channels", of one and the same reaction. They 

are described by the same S-matrix element in different regions of the 

kinematic variableso 

The concept of crossing is crucial for the picture of inter-

particle forces in S-matrix theory. As an illustration, let us 

consider the amplitude for the reaction Prr -> Prr An important 

contribution to this amplitude will come from the singularity 

pictured in Fig. lla. In this diagram, the 0 rr can be seen as the 

mediator of the interaction force between the proton and the rr 

The two hadrons can be said to interact through the exchange of a 

0 
rr On the other hand, the 0 

rr 
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can also be seen as a bound state 

of a proton and antiproton in the "cross channel" which describes 

the reaction pp + -rr rr as shown in Figo llb. Thus, the particle 

that acts as the agent of a force in one channel, is a bound state 

in another channel. 

In our example, the Prr system, too, can form a bound state. 

This will happen when the channel energy reaches the mass of the neutron, 

as illustrated in Fig. llc. This neutron, then, can be seen as a 

composite of the proton and the rr- and the binding force holding 

the composite together is associated, again, with the pion-pole in 

the cross channel. In terms of the kinematic variables introduced 

before, the neutron pole will be a pole in s the pion pole a pole 

in t (see Fig. 12); the variable playing the role of momentum 

transfer in one channel plays the role of the channel energy in the 

cross channel and vice versa. 

This picture of particle interactions leads naturally to the 

notion that all hadrons have a more or less equivalent basis; a notion 

that Chew has called "nuclear democracy". We cannot say that any 

hadron is a constituent of any other in an absolute sense. Each hadron 

can play three roles: it is a composite, it may be the constituent of 

another hadron, and it may be exchanged between constituents and 

thus contribute to the binding forces holding hadrons together. 

Each hadron, then, is held together by forces .associated with 

other hadrons that appear as bound states in the cross channel, each 

of which is, in turn, held together by forces to which the first 

hadron makes a contribution. In this way, as Chew has put it, "each 

particle helps to generate other particles which, in turn, generate it." 

• 
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Regge formalism 

A particular advantage of the S-matrix framework is the fact 

that it is able to describe the exchange of entire groups, or 

"families", of hadrons in a natural way by associating them with a 

special type of poles. These groups are not the hadron multiplets 

mentioned in Section II, but another type of hadron families which 

was discovered in the nineteen-sixties. 

All hadrons seem to fall into sequences whose members have 

identical properties, except for their masses and spins. The masses 

and spins increase with striking regularity within each sequence and 

the sequences seem to extend indefinitely. When the mass, squared, of 

each hadron is plotted against its spin, one obtains approximately 

linear patterns. For mesons the patterns look as shown in Fig. 13; 

baryons show similar patterns with spin sequences J 1/2, 3/2, 5/2, 

etco 

The way in which these patterns are incorporated into the 

s-matrix framework is based on a formalism proposed originally by 

Tullio Regge and the hadron sequences are therefore known as Regge 

trajectories. over the past years, physicists have increasingly come 

to see the higher members of a Regge trajectory not as different 

particles, but merely as excited states of the member with the lowest 

mass, in analogy to the excited states in atomic physics. Like an 

atom, a hadron can exist in various short-lived excited states 

involving higher amounts of angular momentum (or spin) and energy 

(or mass)o The incorporation of the Regge formalism into the S-matrix 

framework has thus been a major advance towards a unified description 

of hadron phenomena" 

~e formalism was developed by Regge for non-relativistic 

potential scattering and was then generalized to relativistic 

scattering and incorporated into the s-matrix frameworko 6 The 

starting point is the partial-wave expansion of the scattering 

amplitude in potential theory, 

co 

f(E,cos 9) (III.ll) 

By continuing the angular momentum 2 to complex values, the partial-

wave expansion can be written as an integral in the complex 2 

plane. Furthermore, it was shown by Regge that in the limit 

cos 9 ~co - which is, of course, unphysical - the amplitude can be 

written as a sum of poles in 2 , the position of which depends 

analytically on E . These poles are called Regge poles, and the 

scattering amplitude reads 

f(E,cos 9) ~ cos 9 .... co 
t3 (E) 

sin~ (E) Pa (E)(cos 9 ) 
n n 

(III.12) 

where the conventional change of notation 2 ~ a(E) has been adopted. 

All this remains highly unp~ysical in potential scattering 

but it acquires important physical relevance when it is generalized 

to relativistic scattering amplitudes. The partial-wave expansion for 

the amplitude T(s,t) in the t channel reads 

T(s,t) (III.l3) 

The essential new ingredient in the relativistic case is the crossing 
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property of the s-matrix, Whereas in potential scattering, the 

region in which Regge poles dominate the amplitude, namely cos 9 --+ ro , 

is highly unphysical (the physical region running between +1 and 

-1) , in relativistic scattering the scattering angle in one channel, 

for large values, becomes proportional to the energy variable in the 

cross channel, 

cos gs t 

(III.l4) 

The region cos 9 --+ oo corresponds therefore to high-energy scattering 

in the cross channel, and the application of Regge's technique makes 

it possible to write the amplitude in that region as a slliill of Regge 

poles, 

T(s,t) L 
n 

13n(t) 

s-+oo 

In the expression (III,l5), the functions 0: (t) 
n 

0: (t) 
s n (III.l5) 

represent the Regge 

trajectories. For each integer value of o:( t 0) 
J 

j the amplitude 

will have a pole in t corresponding to the exchange of a particle 

with spin j and mass 2 
m t 0 • 

J 
The exchange of this whole 

family of particles is expressed by saying that a "reggeon", or 

Regge trajectory, o:(t) , is exchanged. This reggeon exchange 

determines the asymptotic behavior of the amplitude in the s 

channel (i.e. its behavior for s --+ co ) through the factor So: 

A further consequence of crossing is the fact that Regge poles 

will appear not only in the s-channel amplitude but also in the 

u-channel amplitude. This so-called "exchange amplitude" has to be 

added to the s-channel amplitude, which has the effect of cancelling 

half of the particles on a Regge trajectory, Meson trajectories, for 

example, carry particles either at even values of spin (j = 0,2,4, e~1 

or at odd values (j 1,3,5, etc.); baryon trajectories carry 

particles either at j = 1/2,5/2,9/2, etc., or at J = 3/2, 7/20111/2, 

etc. These two types of trajectories are called trajectories of even 

and odd signature. Signature, then, is a new quantum number 

characteristic of reggeons. 

In the early stages of Regge theory, Chew and others postulated 

that all poles of the S matrix are Regge poles or, in other words, 

that all particles lie on Regge trajectories. This hypothesis, 

as well as the resulting Regge behavior of scattering amplitudes 

for high energies (s--+ ro) , was first met with a great deal of 

doubt, but has found striking experimental confirmation over the 

past decade. The incorporation of Regge theory into the S-matrix 

framework now represents a major advance in our understanding of 

hadron physics. 

Bootst.rap 

The three basic properties of the S matrix - Poincar~ invarianc~ 

analyticity and unitarity - are the mathematical consequences of 

general principles which are closely related to our methods of 

observation and measurement. All three of these principles are 

essential for the scientific approach to reality. Without them, 

... 
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science as we know it would not be possible. Nevertheless, it has 

not been possible, so far, to construct a mathematical model of the 

S matrix that satisfies all three principles, i.e. an S matrix which 
/ 

is Poincare invariant, analytic and unitary. The idea has therefore 

arisen that these three principles may be sufficient to determine the 

structure of the S matrix, and thus all the properties of hadrons, 

uniquely. This idea is known as the bootstrap hypothesis. Its 

originator and main advocate is Geoffrey Chew who has ma.de the 

bootstrap approach the philosophical foundation of S-matrix theory 

and has also developed it into a more general "bootstrap" philosophy 

of nature.7 

According to the bootstrap philosophy, nature cannot be 

reduced to fundamental entities, like fundamental building blocks of 

matter, but has to be understood entirely through self-consistency. 

All of physics has to follow uniquely from the requirement that its 

components be consistent with one another and with themselves. 

This idea constitutes a radical departure from the traditional 

spirit of basic research in physics which had always been bent on 

finding the fundamental constituents of matter. At the same time, 

it is the culmination of the conception of the material world as an 

interconnected web of relations which has emerged from quantum theory. 

The bootstrap philosophy abandons not only the idea of fundamental 

building blocks of matter, but accepts no fundamental entities 

whatsoever - no fundamental laws, equations or principles. The 

universe is seen as a dynamic web of interrelated events. 

None of the properties of any part of this web is fundamental; 

they all follow from the properties of the other parts, and the 

overall consistency of their mutual interrelations determines the 

structure of the entire web. 

In the framework of S-matrix theory, the bootstrap approach 

attempts to derive all properties of hadrons and their interactions 

uniquely from the requirement of self-consistency. The only 

"fundamental laws" accepted are the three S-matrix principles which 

are required by our methods of observation and are thus essential 

parts of our scientific framework. Other properties of the S matrix 

may have to be postulated temporarily as "fundamental principles", 

but will be expected to emerge, eventually, as a necessary consequence 

of self-consistency. 

If the bootstrap hypothesis is correct, its philosophical 

implications would be very profound. The fact that all the properties 

of hadrons are determined by principles closely related to our methods 

of observation would mean that the basic structures of the material 

world are determined, ultimately, by the way in which we look at 

this world. In other words, the observed patterns of matter are 

nothing but reflections of patterns of mind. 
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IV· THE ORDERED S MATRIX 

How can we derive the structure of the s t · ma r~x, and in 

particular the quark structure of hadron interactions 
' 

from the general 

principles? The starting point is the unitarity equation (III.lO) 

which can be represented graphically as shown ~n 4 ~ Fig. 1 , where we 

have taken a 2 ~ 2 l't d amp ~ u e as an example. The unitarity equation 

imposes a very restrictive nonlinear cond~t~on th' · ~ ~ on ~s ampl~tude, 

relating its imaginary part to an ~nf~n~te ~ ~ ~ sum over products of 2 ~ n 

amplitudes. The aim of S-matrix theory is to construct mathematical 

models of the S matrix which satisfy this condition. Only the full 

physical S matrix will satisfy unitarity completely, but there may be 

approximations to th h . e P ys~cal S matrix which satisfy the unitarity 

relations to some extent a d b · n ear suffic~ent resemblance to the ob-

served hadron phenomena. One model of that kind, which has emerged 

from the developments of the past five years, · ~s extremely promising, 

as it exhibits the desired quark structure, 

Before discussing-this model, let us remember the meaning of 

"quark structure" in the S-matrix framework. It means that hadron 

reactions proceed in such a way that the transfer, or flow, of the 

conserved quantum numbers exhibits certain patterns which may be 

called quark patterns; a certain "two-ness" associated with mesons 

and a certain "three-ness" associated with baryons. For example, in 

the reaction Pn ~ Pn the flow of quantum numbers can be exhibited 

as shown in Fig. 15. The "quark lines" in this diagram carry definite 

flavors and generate the qq structure of the mesons and the qqq 

structure of the baryons .• 

Quark-line diagrams can be used to exhibit the s-channel and 

t-channel poles simply by distorting the diagram, e.g. as shown in 

Fig. 16. The fac~known as duality, that s-channel and t-channel 

poles are equivalent representations of the amplitude was the starting 

point for the recent developments ins-matrix theory. The study of 

various "dual models"8 led to the model we shall now describe. The 

new model is quite distinct fr-om the dual models, however, in that it 

recognizes unitarity from the beginning as an essential ingredient. 

The key element of the new approach is the notion of order as 

a new aspect of the S matrix. In the context of S-matrix theory, 

order means a definite structure of interconnectedness between 

particles, to be defined more precisely below. When this concept of 

order is incorporated into the S-matrix framework, only a few special 

categories of ordered relationships turn out to be consistent with 

the well-known properties of the S matrix, These categories of order 

can be identified with the quark patterns observed in hadronic 

phenomena. Thus, the qu4rk structure emerges as a manifestation of 

order withoutanynred to postulate quarks as physical constituents of 

hadrons. 

What, then, is the definition of order in S-matrix theory? In 

a ge~ diagram picturing a particle reaction, the ingoing and out­

going particles are not placed in any particular order. For example, 

the three diagrams pictured in Fig. 17 are all equivalent. Order can 

be introduced in the simplest way by placing particles in a linear 

sequence, associating each particle with a definite predecessor and 

a definite successor, as shown in Fig. 18a. In such an ordered 
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diagram, each particle is "connected" to two other particles. 

Order, then, repr~ts a definite connectedness structure. In 

the physical S matrix, this structure is not observed, but it turns 

out that the ordered S matrix represents an important approximation 

to the physical S matrix. We shall now describe the properties 

of the ordered S matrix9 and shall the~ in Section v, discuss the 

experimental evidence justifying the assumption that it is a good 

approximation to the physical S matrix. 

Sequential order is not the only possible connectedness 

structure. A general representation of particle order may be given 

in terms of connected graphs whose vertices are associated with 

particles and are interconnected through a number of edges. In this 

notation, the diagram of Fig. 18a turns into the "ring diagram" 

shown in Fig. 18b, with particles represented by 2-vertices. More 

complicated types of order are represented by graphs in which vertices 

are interconnected by more than two edges, e.g. as shown in Fig. 19a. 

The vertices representing the particles are ordered in the 

sense that each has a unique set of neighbors and occupies a unique 

position in the graph. Note, however, that these graphs merely 

describe the connectedness structure and are not to be understood as 

projected on a plane. The graph shown in Fig. 19a for example, could 

also be drawn as shown in Fig. 19b. Each hadron reaction, of course, 

is part of a larger network of reactions, so that the connectedness 

structure represented by a particular order refers to the connectedness 

of the whole network. 
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In order to see how the properties of the S matrix restrict 

the categories of particle order, it will be useful to distinguish 

between amplitude graphs, picturing the whole amplitude, and channel 

graphs containing only the ingoing or outgoing particles. For example, 

the amplitude graph shown in Fig. 19a can be divided into the two 

channel graphs shown in J:l'ig. 20. The S matrix is defined as an 

operator connecting ingoing and outgoing channels in such a way that 

the corresponding probability amplitude is uniquely defined by 

specifying the two channels. Therefore, the two channel graphs 

uniquely define the amplitude graph. In other words, there must be 

a unique prescription for sewing the two channel graphs together to 

form the amplitude graph. Conversely, all channel graphs must be 

obtainable by cutting the amplitude graph into two connected pieces. 

When these cutting and resewing conditions are combined with 

the other properties of the S matrix, it is found that the only 

allowed ordered amplitudes are the ones represented by graphs that 

can be obtained from a ring by successively adding ''bubbles" on any 

of the edges. Examples of such graphs, exhibiting ''bubbles" and 

''bubbles within bubbles", are shown in Fig. 21. Futhermore, 

2-vertices may be placed on any of the edges. These graphs are 

called fully reducible because they can be reduced to a ring by 

successively eliminating all 2-vertices and all bubbles. 

In order to be able to resew all possible channel graphs 

of an amplitude graph in a unique way, their "dangling" edges have 

to be distinguished. For example, the structure of the channel 

graphs shown in Fig. 22 {obtained from the amplitude graph shown in 

Fig. 2lc) allows us to distinguish the edge c from the others, but 



35 

the edges a, b, d, and e cannot be distinguished from one another 

unless we label, or "color", them. (Remember that these graphs merely 

describe connections and are not to be understood as projected on a 

plane). In order to satisfY the resewing condition, then, we need 

graphs with colored edges. The term "color" is used here in the way 

it is used by mathematicians in graph theory, e.g. in the four-color 

theorem, but will turn out to be related to the color concept of quantum 

chromodynamics. 

When one studies the most economic way of coloring amplitude 

graphs, it turns out that all edges of any graph can be completely 

distinguished in the following way. Graphs are colored with three 

colors in such a manner that the three edges meeting at any 3-vertex 

show different colors, whereas the two edges meeting at a 2-vertex 

have the same color. An example of a channel graph, colored in this 

way is shown in Fig. 23a, where the colors have been denoted by 

1, 2, 3. This coloring procedure still leaves a two-fold ambiguity 

which can be removed by assigning an "orientation" to each vertex, 

e.g. by labeling it with a (+) or (-) label, as shown in Fig. 23b. 

All fully reducible graphs colored and labeled in this manner will 

satisfY the cutting and resewing conditions. 

An easily derived property of such graphs is the fact that 

(ignoring 2-vertices) their edges connect 3-vertices of opposite 

orientation, e.g. as shown in Fig. 24a. In other words, the orien­

tation of neighboring 3-vertices alternates. This fact allows us 

to introduce a different notation for the two kinds of vertices. 

Instead of labeling them by (±), we may assign a direction to their 

edges, as shown in Fig. 25. The (±) labels and directed edges are 

completely equivalent notations. No new information is added by 
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putting arrows on the edges. In the new notation, the graph of 

Fig. 24a takes the form shown in Fig. 24b. 

This, then, is the final result: the most general type of 

order consistent with the properties of the S matrix is the one 

represented by fully reducible graphs, colored with three colors and 

containing 2-vertices and 3-vertices connected by directed edges in 

the way described above. In these graphs, the directed edges can now 

be identified with quark lines, and the vertices associated with 

hadrons in the way shown in Fig. 26. Reversing the direction of the 

arrows in a graph corresponds to interchanging particles and 

antiparticles. Contact with the conventional quark-line notation can 

be made by "opening up" the 2-vertices and 3-vertices in a graph, 

e.g. as shown in Fig. 27. 

The quark structure, then, and in particular the 3-color 

structure of hadrons, is a property of the ordered S matrix. It 

emerges as a consequence of combining the S-matrix principles with 

the notion of order. The role of flavor in the ordered S matrix is 

not yet understood, but work on this problem is in progress.10 

V. THE PLANAR S MATRIX AND THE TOPOLOGICAL EXPANSION 

Ordered S-matrix elements cannot be compared to experiment, 

since physical hadron reactions do not exhibit particle order. 

However, by summing over all possible ordered amplitudes for a given 

reaction, one can construct an s-matrix element which does not depend 

on particle order and may be compared to experiment. s-matrix elements 

constructed in this way make up the so-called planar S matrix. The 

meaning of the term "planar" will be clarified below. 

.. 
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Although the elements of the planar s matrix are independent 

of particle order, they exhibit several striking regularities because 

of their linear connection with the elements of the ordered s matrix. 

These regularities have been observed to hold approximately in nature 

and have been the main motivation for introducing the concept of 

order into s-matrix theory. They indicate that the planar s matrix 

provides a reasonably accurate description of hadronic phenomena. 

To go beyond the planar approximation, an expansion of the 

physical S matrix has been developed in which the planar s matrix 

constitutes the leading term. Successive levels of the expansion are 

characterized by increasing degrees of disorder. The language of 

topology is used to distinguish order from disorder, and the expansion 

is therefore known as the topological expansion. This approach has 

been carried out successfully for reactions involving mesons and is 

presently being extended to include baryons. In the following, we 

shall limit the discussion to phenomena involving mesons only. 

As an example, let us study the process A + B ~ c + D 

The planar amplitude for this reaction will consist of the terms shown 

in Fig. 28, where the diagram representing the planar amplitude, which 

dqes not exhibit any definite ordering of the particles A - B and 

C - D , has been given the label P , whereas the diagrams representing 

the ordered amplitudes ha~e been given labels R to indicate that they 

are ring diagrams exhibiting definite particle order • 

The quark-line diagrams corresponding to the ring diagrams of 

Fig. 28 are of the form shown in Fig. 29. They are planar diagrams, 

i.e. they can be drawn on a plane without any quark lines crossing. 
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All elements of the planar S matrix can be represented by such planar 

diagrams. 

Among the approximate regularities observed in hadronic 

phenomena, a selection rule known as the Okubo-Zweig-Iizuka (OZI) 

rule represents a particularly striking manifestation of order. The 
~i 

rule states that meson states represented by quark lines --f-- i 

---+- j 
do not communicate with states represented by quark lines ---(- j 

This leads to the suppression of certain reactions which are not 

forbidden by any conservation law, such as the reaction ~ ~ pn 

The quark-line structure of the mesons participating in this 

reaction is shown in Fig. 30. One sees immediately that no connected 

planar diagram can be drawn to represent the amplitude for this 

process. The reaction is therefore forbidden at the planar level. 

At higher levels of the topological expansion, however, the reaction 

will occur, as we shall show below. 

Another striking regularity which is exact at the planar 

level and is broken at levels of increasing disorder is the fact 

that meson Regge trajectories of opposite signature coincide to form 

degenerate pairs.- a property known as exchange degeneracy. Examples 

of such pairs are the p - A2 trajectories and the m - f 

trajectories whose approximate degeneracy is a well-known experimental 

fact. It can readily be shown that the existence of exchange-degenerate 

Regge trajectories is a requirement of the planar S matrix. 

The planar S matrix exhibits most of the properties to be 

satisfied by the physical S matrix, e.g. Poincar~ invariance, 

analyticity and crossing. However, it is not unitary. This can 
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easily be seen by imposing the unitarity condition, as represented 

in Fig. 14, on the planar amplitude shown in Fig. 28. on the right-

hand side of the unitarity equation, the products of 2 ~ n 

amplitudes will include sixteen terms exhibiting two-particle 

intermediate states which can be represented as shown in Fig. 31, 

where the connections a - a and b - b have to be made to produce 

the appropriate intermediate states. It is evident that these products 

will involve terms of the two kinds shown in Fig. 32. The corresponding 

quark-line diagrams (with arrows suppressed) are shown in Fig. 33. 

Diagrams of the type shown in Fig. 33b are clearly nonplanar 

and represent the first degree of disorder introduced by unitarity. 

They are inevitably generated from ordered amplitudes by the formation 

of "nonplanar" products in the unitarity equation. Their existence 

implies that unitarity cannot be imposed on the planar amplitude. 

Products involving more particles in the intermediate states will 

include terms of increasing disorder. For example, among the diagrams 

involving three-particle intermediate states, there will be terms of 

the form shown in Fig. 34. 

Topology can be used to classify these diagrams, according 

to their degree of order, by noting that nonplanar diagrams can be 

embedded in two-dimensional closed surfaces of increasing "genus" 

or number of ''handles". (A sphere has zero handles; a· torus can be 

pictured as a sphere with one handle; a double torus as a sphere with 

two handles, etc.). For example, the diagrams shown in Figs. 33b and 

34 can be embedded in a sphere and a torus, respectively, as shown in 

Fig. 35· 

40 

The topological expansion, then, is an expansion of the 

unitarity equation into a sum of diagrams of increasing disorder, with 

the diagrams making up the planar S matrix as the leading iErm. It 

can be shown that the nonplanar products are smaller than the planar 

products and that their values decrease as the diagrams become 

increasingly complex, so that the expansion converges. Unitarity is 

restored by these successive steps, and the disorder introduced in 

this way is measured in terms of topological parameters. 

The first correction to the planar S matrix is known as the 

cylinder correction, since the corresponding diagrams can be embedded 

in a cylinder (which is, of course, topologically equivalent to a 

sphere). It has the effect of shifting the positions of the Regge 

poles, so thatthe exchange degeneracy of Regge trajectories is lifted. 

For example, the ill - f trajectories look as shown in Fig. 36. This 

breaking of exchange degeneracy has been worked out quantitatively 

without the need of introducing any arbitrary parameters. 

The cylinder correction also breaks the OZI rule. The 

reaction ~ - prr for example, can be represented by the diagram 

shown in Fig. 37a. Again, the topological expansion gives a 

quantitative account of the extent to which the OZI rule is broken. 

The accuracy of the rule is directly related to the accuracy of 

exchange degeneracy. It is also directly related to the ~-ill 

mixing in SU(3) symmetry, as can be seen by redrawing the diagram of 

Fig. 37a in the way shown in Fig, 37b. The situation where the ~ 

is a pure ss state is known as ideal mixing. It corresponds to the 

planar level where the OZI rule and exchange degeneracy hold exactly. 
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The observed ~ - ru mixing angle of about 4° shows that the 

correction introduced by the cylinder diagrams is small. Thus the 

OZI rule and exchange degeneracy are found to be observed in nature 

quite accurately. 

In a similar way, various other regularities in hadronic 

phenomena can be understood in the framework of the ordered S matrix 

and the topological expansion. Note, in particular, that this approach 

enables one to relate symmetry patterns, such as the quark structure 

of hadrons, or the ~ - m mixing, to the dynamics of the strong 

interactions, as expressed by the OZI rule, exchange degeneracy, or 

the resulting asymptotic behavior of scattering amplitudes. All 

these regularities are seen as different facets of a single principle 

of order. 

VI. THE MEANING OF ORDER 

The significance of the notion of order in hadron physics is 

still mysterious, and the extent to which it can be incorporated into 

the s-matrix framework is not yet fully known. Order and unitarity 

appear to be opposed principles. Disorder is an inevitable conse­

quence of unitarity which prevents the physical S matrix from being 

ordered. It is therefore unlikely that the concept of order will play 

the role of a new s-matrix principle, similar in status to Poincare 

invariance, analyticity and unitarity. 

However, it is intriguing no note that, like those three 

principles, the notion of order plays a very basic role in the 

scientific approach to reality and is a crucial aspect of our methods 

of observation. The ability to recognize order seems to be an 

essential property of the rational mind; every perception of a 

pattern is, in a sense, a perception of order. The clarification of 

the concept of order in a field of research where patterns of matter 

and patterns of mind are increasingly being recognized as reflections 

of one another promises thus to open fascinating new frontiers of 

knowledge. 
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FIGURE CAPTIONS 

Fig. 1. standing-wave pattern. 

Fig. 

Fig. 

2. 

3· 

Diagrams picturing various scattering processes. 

Diagram showing two successive reactions interconnected 

Fig. 4. 

Fig. 5· 

through a neutron. 

Network of interconnected hadron reactions. 

Energy-momentum variables in four-particle scattering 

process. 

6 ~vn~les of singularities for a six-particle reaction. Fig, • ~-"' 

Fig. 7. The complex s plane. 

Fig. 8. Position of a pole in the complex s plane corresponding 

to an unstable particle. 

Fig, 9. Resonance curve showing the probability for a reaction 

m • involving an unstable particle with mass 

Fig.lO. Diagrams for two reactions related by crossing: 

(a) A + B + C -> D + E + F, (b ) A + B ... D + E + F + (! • 

Fig.ll. contributions to the reaction Pn ... Pn exhibiting (a) the 

singularity corresponding to n ° -exchange, (b) the 0 
n 

ch 1 (c) t he neutron as as a bound state in the cross anne , 

a bound state of the pn- -system. 

Fig.l2, Energy variables for direct - and cross-channel poles of the 

reaction Pn ... pn 

Fig.13. Approximate linear pattern of meson sequences. 

Fig.l4. Graphic representation of the unitarity equation for a 

2 ... 2 amplitude. 

Fig.15. Quark-line diagram for the reaction Pn ... Pn 

6 k 1 . dJ."agrams for the reaction shown in Fig.15, Fig.l Quar - 1ne 

exhibiting (a) the s-channel pole, (b) the t-channel pole. 

.... 

( 

" 
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Figol7. Equivalent diagrams for the reaction A + B + C ~ D + E + F 

Fig.l8. Ordered diagram for the reaction shown in Fig.l7; (a) in 

conventional notation, (b) as "ring diagram" in graph 

Fig.l9. 

Fig.20. 

Fig.21. 

Fig.22. 

Fig,23o 

Figo24, 

notation. 

Graph picturing a more complicated type of order, drawn in 

two equivalent ways, (a) and (b). 

Channel graphs obtained from amplitude graph shown in Fig.l9a. 

Examples of fully reducible graphs. 

Channel graphs obtained from amplitude graph shown in Figo2lc. 

Example of a channel graph with (a) colored edges, (b) 

colored edges and oriented vertices. 

Example of an amplitude graph with edges connecting vertices 

of opposite orientation, vertices being distinguished (a) 

by (i) labels, (b) by directed edges. 

Fig.25. Relation between (:) labels and directed edges. 

Fig.26. Identification of vertices with hadrons. 

Fig.27. Relation between graph notation and quark-line notation. 

Fig.28. Diagram representing the planar amplitude for the reaction 

A + B ~ C + D , pictured as the sum of diagrams representing 

ordered amplitudes. 

Fig.29. Planar quark-line diagram. 

) Fig.30. Quark-line structure of mesons participating in the reaction 

~ ~ pn • 

~ Fig.31. Unitarity products involving two-particle intermediate states, 

generated by imposing unitarity on the planar amplitude for 

the reaction A + B ~ C + D • 

Figo32. Planar and non-planar contributions to the unitarity 

products shown in Fig.31. 

Fig.33. Diagrams of Fig.32 in quark-line notationo 

Fig.34. Non-planar diagram showing a three-particle intermediate state. 

Fig.35. Embedding of diagrams shown in Figs.33b and 34 in a sphere 

and a torus, respectively. 

Fig.36. Breaking of exchange degeneracy for ill - f trajectories. 

Figo37o Cylinder diagrams representing (a) breaking of OZI rule for 

the reaction ~~ pn (b) relation between OZI rule and 

<li - ill mixing. 
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