UC Berkeley

UC Berkeley Previously Published Works

Title

Electron Accumulation and Emergent Magnetism in LaMnO3/SrTiO3 Heterostructures

Permalink

https://escholarship.org/uc/item/8ds2b7ck

Journal

Physical Review Letters, 119(15)

ISSN

0031-9007

Authors

Chen, Zuhuang Chen, Zhanghui Liu, ZQ et al.

Publication Date

2017-10-13

DOI

10.1103/physrevlett.119.156801

Peer reviewed

Electron Accumulation and Emergent Magnetism in LaMnO₃/SrTiO₃ Heterostructures

Zuhuang Chen, ^{1,2} Zhanghui Chen, ² Z. Q. Liu, ^{3,*} M. E. Holtz, ⁴ C. J. Li, ^{5,6} X. Renshaw Wang, ⁷ W. M. Lü, ⁸ M. Motapothula, ⁶ L. S. Fan, ⁹ J. A. Turcaud, ¹ L. R. Dedon, ¹ C. Frederick, ¹⁰ R. J. Xu, ¹ R. Gao, ¹ A. T. N'Diaye, ¹¹ E. Arenholz, ¹¹ J. A. Mundy, ^{1,2} T. Venkatesan, ^{5,6} D. A. Muller, ⁴ L.-W. Wang, ² Jian Liu, ^{10,†} and L. W. Martin^{1,2,‡}

¹Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA ² Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ³ School of Materials Science and Engineering, Beihang University, Beijing 100191, China ⁴ School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA ⁵ Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore ⁶ NUSNNI-Nanocore, National University of Singapore, Singapore 117411, Singapore ⁷ School of Physical and Mathematical Sciences & School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 637371, Singapore ⁸ Condensed Matter Science and Technology Institute, School of Science, Harbin Institute of Technology, Harbin 150081, People's Republic of China ⁹ Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ¹⁰ Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ¹¹ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 13 February 2017; revised manuscript received 10 July 2017; published 11 October 2017)

Emergent phenomena at polar-nonpolar oxide interfaces have been studied intensely in pursuit of next-generation oxide electronics and spintronics. Here we report the disentanglement of critical thicknesses for electron reconstruction and the emergence of ferromagnetism in polar-mismatched LaMnO₃/SrTiO₃ (001) heterostructures. Using a combination of element-specific x-ray absorption spectroscopy and dichroism, and first-principles calculations, interfacial electron accumulation, and ferromagnetism have been observed *within* the polar, antiferromagnetic insulator LaMnO₃. Our results show that the critical thickness for the onset of electron accumulation is as thin as 2 unit cells (UC), significantly thinner than the observed critical thickness for ferromagnetism of 5 UC. The absence of ferromagnetism below 5 UC is likely induced by electron overaccumulation. In turn, by controlling the doping of the LaMnO₃, we are able to neutralize the excessive electrons from the polar mismatch in ultrathin LaMnO₃ films and thus enable ferromagnetism in films as thin as 3 UC, extending the limits of our ability to synthesize and tailor emergent phenomena at interfaces and demonstrating manipulation of the electronic and magnetic structures of materials at the shortest length scales.

DOI: 10.1103/PhysRevLett.119.156801

The observation of emergent interfacial electronic reconstruction and, in turn, new electronic phases at polar-nonpolar oxide interfaces have launched numerous studies on the fundamental mechanisms for and potential uses of these exotic properties [1-3]. The nature of such electronic reconstruction (used here in the broad sense as any change in valence that results from the interfacial polar mismatch) depends on many factors such as the interfacial band alignment and the conductivity of the materials that can alter the boundary conditions and thus the degree of charge compensation [4]. To date, the most widely studied system in this regard is the two-dimensional electron gas in LaAlO₃/SrTiO₃ [5]. LaAlO₃ is an insulator with a band gap of 5.6 eV that consists of alternating charged (LaO)⁺ and $(AlO_2)^-$ layers along the [001]. SrTiO₃ is also an insulator, with a band gap of 3.2 eV, which has neutral $(SrO)^0$ and $(TiO_2)^0$ layers alternating along the [001]. When these materials are brought together, a so-called polarization catastrophe is believed to occur at the (001) interface due to a potential buildup in the polar LaAlO₃, which drives charge transfer from the LaAlO₃ valence band to the SrTiO₃ conduction band at a LaAlO₃ critical thickness of 4 unit cells (UC) [6–8]. As a result, there is electron doping into the SrTiO₃ near the interface, which induces a reduction of Ti⁴⁺ towards Ti³⁺ [9] and the onset of conductivity [2]. Meanwhile, there have been reports of other exotic interfacial phenomena, such as orbital reconstruction [10], ferromagnetism [11], and superconductivity [12], and researchers have also explored the role that structural imperfections can play in the evolution of effects at these interfaces [13–17].

Since the initial observation of emergent phenomena at the LaAlO₃/SrTiO₃ heterointerface, a number of additional systems have been found to exhibit similar potential buildup-induced electronic reconstruction and interfacial phenomena (e.g., LaTiO₃/SrTiO₃ [18], LaVO₃/SrTiO₃

[19], NdTiO₃/SrTiO₃ [20], etc.). Studies of other related polar-nonpolar interfaces, namely, LaCrO₃/SrTiO₃ [21] and LaMnO₃/SrTiO₃ [22], however, have suggested that this rule is not universal since no critical thickness for a metal-to-insulator transition was found in either system. At first glance this is surprising since, for example, LaMnO₃ is constructed from alternating (LaO)⁺ and (MnO₂)⁻ layers and thus electronic reconstruction akin to that in LaAlO₃/SrTiO₃ should be expected. Initially, the lack of metallic conductivity was enough to discourage researchers from further study, but it does not necessarily mean that the interfacial polar mismatch does not have some influence on the charge or spin degrees of freedom. In fact, recent work on the LaMnO₃/SrTiO₃ system has proposed that charge transfer may occur within LaMnO₃ as a result of a similar potential buildup that produces electron doping near the interface and hole doping near the surface and subsequently gives rise to ferromagnetism in LaMnO₃ [23,24]. Direct evidence for the electron reconstruction and the nature of magnetism has not, however, been reported, precluding further understanding and control of the functional properties.

In this work, we apply x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD), and firstprinciples calculations to investigate the effect of polar mismatch on the electronic and magnetic structure of the polar, antiferromagnetic insulator LaMnO₃ grown on nonpolar SrTiO₃. XAS reveals a significant change of the Mn valence state in LaMnO₃ even in 2-UC-thick films, but no change in Ti valence in the SrTiO₃. XMCD, on the other hand, reveals ferromagnetism with a critical thickness of 5 UC. The decoupling of the charge and magnetic critical thicknesses and the absence of hole doping near the film surface suggest that the charge transfer picture [23,24] may not be directly applicable or is an oversimplification. Theoretical studies show that the potential buildup in the LaMnO₃ is 0.177 V/Å and this, together with the small band gap of LaMnO₃, results in a critical thickness for the built-in potential to collapse at only 2 UC. In turn, we identify a chemical route—whereby small changes in film stoichiometry can be used to effectively control the doping level and modulate the influence of the polar mismatch so as to induce ferromagnetism in films down to just 3 UC.

LaMnO₃ films were grown on TiO₂-terminated SrTiO₃ (001) substrates by reflection high-energy electron diffraction (RHEED)-assisted pulsed-laser deposition [25]. For all films, RHEED intensity oscillations were persistent throughout the growth indicating a layer-by-layer growth mode [25]. Further characterization of the heterostructures reveals high-quality LaMnO₃ films with atomically smooth surfaces and high crystalline quality, and interfaces that are free of dislocations [25]. To probe the potential for electron reconstruction and associated ferromagnetic order, we have performed soft XAS and XMCD studies in a grazing incidence, total electron yield (TEY) geometry on

LaMnO₃/SrTiO₃ heterostructures Fig. 1(a)] [25]. Compared to previous local magnetometry studies using a scanning superconducting quantum interference device (SQUID) [23,24], the current approach is surface sensitive and provides a direct measurement of the valence state of the various elements in the films and substrates via XAS and enables the detection of subtle $(\sim 0.005 \,\mu_B/\text{atom})$, element-specific magnetic moments (thus excluding magnetic impurities) via XMCD [9]. XMCD measurements at the Mn $L_{2,3}$ edges at 25 K reveal strong dichroism [Fig. 1(a)], indicative of a net ferromagnetic moment, arising from Mn in the films. XMCD of \sim 28% and \sim 26% is observed for the 9 and 12 UC thick LaMnO₃ films, respectively. To give this some context, the corresponding SQUID magnetometry measurement on the 9-UC-thick LaMnO₃/SrTiO₃ heterostructure revealed a magnetic moment of ~400 emu/cc at 25 K [25]. The XMCD is reduced to ~22% for the 6 UC films and finally to ~11% for the 5 UC films. There are a number of important observations to be noted here. First, due to the high sensitivity of the XMCD, we are able to detect the small magnetic moment of the 5-UC-thick films, something not accomplished in previous studies [23]. Second, the large XMCD in the LaMnO₃ films as thin as 9 UC is comparable to that observed in hole-doped $La_{0.67}Sr_{0.33}MnO_3$ [40].

These thickness-dependent XMCD results confirm the existence of intrinsic magnetization in the LaMnO₃ films,

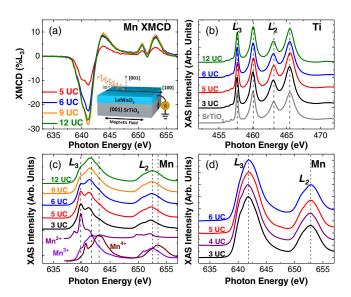


FIG. 1. (a) Mn XMCD spectra for various LaMnO₃/SrTiO₃ heterostructures. The inset shows a schematic of the experimental configurations for the x-ray spectroscopy studies. Thickness dependence of the XAS spectra of the LaMnO₃/SrTiO₃ heterostructures at the (b) Ti $L_{2,3}$, and (c) Mn $L_{2,3}$ edges with reference spectra for SrTiO₃, bulk SrMnO₃, LaMnO₃, and MnO are shown for comparison. (d) XAS of Mn $L_{2,3}$ edges for various LaMnO₃/NdGaO₃ heterostructures where no reconstruction has occurred.

in line with previous magnetometry studies [23,24]. To understand the nature of the magnetism, we first performed XAS measurements at both the Ti- and Mn- $L_{2.3}$ edges as a function of LaMnO₃ thickness to probe the corresponding evolution of the valence states. Regardless of the LaMnO₃ thickness, the Ti- $L_{2,3}$ edges are unchanged and match that of a SrTiO₃ substrate reference [Fig. 1(b)]. In other words, there is no indication of electron transfer to the SrTiO₃ and the bulklike character of Ti4+ is maintained at the LaMnO₃/SrTiO₃ heterointerface. In contrast, XAS studies at the Mn- $L_{2,3}$ edges reveal marked variation with film thickness [Fig. 1(c)]. To understand the evolution of the Mn valence state, we provide spectra for bulk SrMnO₃ (i.e., Mn⁴⁺ reference), LaMnO₃ (i.e., Mn³⁺ reference), and MnO (i.e., Mn²⁺ reference) for comparison [41,42]. Starting with relatively thick LaMnO₃ films (e.g., 12 UC), the absorption spectra are observed to be similar to that of bulk LaMnO₃, indicating a predominant Mn³⁺ valence state. Note that the absorption peak has a slightly lower energy position than that of bulk LaMnO₃, indicating that the films are somewhat electron doped. Upon reducing the LaMnO₃ thickness (e.g., 9 UC) a shift of the main spectral feature near 641.4 eV to lower energies is observed, indicating a lower average valence state. Further reducing the LaMnO₃ thickness (e.g., 6, 5, and 3 UC) results in further shifts of the feature. Moreover, a strong feature near 640 eV appears that corresponds to the main absorption peak of Mn²⁺. Note that the suppression of the fine feature at ~638 eV in our ultrathin LaMnO₃ films, as compared to the MnO reference spectrum, is likely due to different local environments for the two structures [43]. Similar studies of 2-UC-thick heterostructures likewise reveal a strong feature from Mn²⁺ [25]; these data are not shown on the same graph since sample charging distorts the background of the spectra. Our XAS studies clearly show that the average Mn valence state within the thin samples is reduced, and further suggest that electrons are accumulated in the LaMnO3 layer near the interface starting at a critical thickness of 2 UC. This is in contrast to our above XMCD studies and the previous local magnetometry studies [23,24], which found that the emergent ferromagnetism is not measureable until a thickness 5–6 UC. That is, there is a decoupling of the electron accumulation and ferromagnetic critical thicknesses.

Furthermore, our studies are completed in TEY geometry that probes the topmost 3–5 nm of thin-film samples such that the contribution of the deeper layers to the TEY intensity decays exponentially with the distance from the film surface. Therefore, with increasing LaMnO₃ layer thickness the contribution of the Mn at the interface decreases accordingly. The observed decrease of Mn²⁺ signatures in the Mn XAS spectra with increasing LaMnO₃ layer thickness suggests that the valence state is likely nonuniform along the surface normal. Thus, we find that the fraction of Mn²⁺ is higher in the thinner films where the interface contributes more to the Mn XAS signal. This

variation in the valence state with film thickness is also evident in the evolution of the O K edge [25]. It is possible that the bottom 3 UC, near the interfacial region, remains $\mathrm{Mn^{2+}}$ rich for the 5 and 6 UC samples [44]. As the thickness increases beyond 6 UC, the thickness becomes comparable or larger than the probing depth and the contribution from the interfacial region to the spectrum is reduced. To compensate for the polar field, the excess electrons are likely to accumulate at the interface, creating an inhomogeneous charge profile across the film thickness. Such an observation is consistent with studies of $\mathrm{La_{1-x}Sr_xMnO_3/SrTiO_3}$ (001) heterostructures wherein excess electrons are found to reside near the interfaces [44].

The presence of this electron accumulation due to the polar mismatch is further supported by similar XAS studies of LaMnO₃/NdGaO₃ (110)_O heterostructures (subscript O denotes orthorhombic indices). The NdGaO₃ substrates were treated to produce GaO₂-terminated surfaces that are polar in nature [45]; consequently, there should be no polar mismatch at the LaMnO₃/NdGaO₃ heterointerface. XAS spectra at the Mn- $L_{2,3}$ edges are characteristic of bulklike Mn³⁺ with no Mn²⁺ features (even for 3-UC-thick films), and there is no thickness dependence of the XAS spectra [Fig. 1(d)]; thus, no excess charge is observed in the LaMnO₃/NdGaO₃ heterostructures. Ultimately, these studies indicate that electrons accumulate in the LaMnO₃ near the interfaces to alleviate the polar catastrophe in the LaMnO₃/SrTiO₃ heterostructures at film thicknesses as small as 2 UC.

To understand the origin of the electron accumulation, the band offset at the LaMnO₃/SrTiO₃ interface and the potential buildup in the LaMnO3 were computed for symmetric $(LaMnO_3)_m/(SrTiO_3)_n/(LaMnO_3)_m$ (n = 4.5,m=2, 4, 6 UC) structures [Fig. 2(a), m=4 UC] using first-principles density functional theory [25]. The resulting in-plane-averaged (oscillating blue line) and macroscopically averaged (red line) electrostatic potentials reveal a potential buildup in the LaMnO₃ layers due to the alternating charged atomic layers along the surface normal [Fig. 2(b), m = 4]. An average slope for the potential evolution was extracted for heterostructures with m = 2, 4[Fig. 2(c)] from which the average internal field is determined to be ~0.177 V/Å. This internal field is smaller than that reported for the LaAlO₃/SrTiO₃ system (0.24 V/Å) [7] and the difference could be due to the different screening effects of LaAlO₃ and LaMnO₃. The calculated potential buildup is based on an idealized abrupt interface without defects and adsorbates. Such a potential buildup, however, has been difficult to detect experimentally (see Figs. 35–37, Ref. [15]) and is still under debate. Additionally, by evaluating the average potential in bulk and multilayer heterostructures, the valence band offset between the LaMnO₃ and SrTiO₃ was extracted to be ~0.6 eV [25]. This, combined with the large difference in band gap between LaMnO₃ (1.3 eV) and SrTiO₃ (3.2 eV) [25], results in a straddling band configuration at the

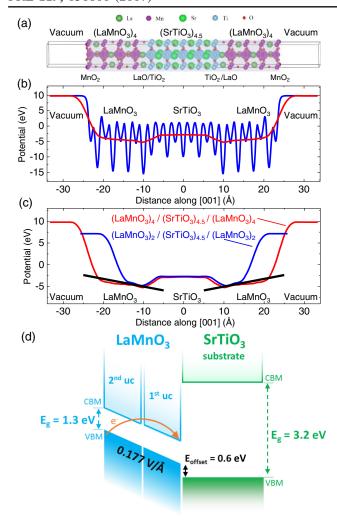


FIG. 2. (a) Schematic of the symmetric, vacuum-terminated $(LaMnO_3)_m/(SrTiO_3)_n/(LaMnO_3)_m$ slab with two identical n-type interfaces (here m=4 and n=4.5). (b) The in-plane average (oscillating blue line) and macroscopic average (red line) electrostatic potential across the $(LaMnO_3)_4/(SrTiO_3)_{4.5}/(LaMnO_3)_4$ simulation slab. (c) Comparison of the macroscopic average potential between the $(LaMnO_3)_4/(SrTiO_3)_{4.5}/(LaMnO_3)_4$ and $(LaMnO_3)_2/(SrTiO_3)_{4.5}/(LaMnO_3)_2$ heterostructures; the average intrinsic electric field is indicated by the black lines with a value of 0.177~V/Å. (d) Schematic band diagram of LaMnO₃/ $SrTiO_3$ interface.

LaMnO₃/SrTiO₃ interface [Fig. 2(d)]. Based on these two facts, electron accumulation is expected to occur when the built-in potential in the LaMnO₃ layer surpasses the LaMnO₃ band gap, which is calculated to happen at a critical thickness of \sim 7.3 Å (just less than 2 UC of LaMnO₃). As a result, the system will become unstable and must find a way to compensate the potential. Because the potential difference is positive from the interface to the surface, the screening or compensation effect will always tend to accumulate negative charges near the interface. This naturally explains the reduction of the Mn³⁺ towards Mn²⁺ in the very thin limit and near the interfaces for thicker

samples. This is different from the case of LaAlO₃/SrTiO₃, where the LaAlO₃ band gap straddles the SrTiO₃ bands; thus, the negative charges stay in the SrTiO₃ near the interface and reduce the Ti⁴⁺ towards Ti³⁺ [7–9].

Intriguingly, no indication of Mn⁴⁺ was detected at or near the LaMnO₃ film surfaces, implying that the previous proposed charge transfer model [23,24] could be oversimplified or may not be directly applicable to this system. In turn, any number of additional surface structural or chemical reconstructions could possibly occur to adequately compensate for the electron accumulation [46–49]. Furthermore, oxygen vacancies, in particular, have been considered as a means to compensate the polar field [48–50]. In these LaMnO₃/SrTiO₃ heterostructures, there is no evidence for the reduction of and oxygen vacancy formation in the SrTiO₃ since there was no signature of Ti³⁺ detected via XAS near the interface and the heterostructures show insulating behavior [25]. Furthermore, there is no evidence for a large concentration of oxygen vacancies in either the film or substrate as a result of the growth process. This is supported by the lack of evidence for Mn²⁺ in LaMnO₃/NdGaO₃ heterostructures, which, despite being fabricated at the same conditions, show no evidence of a change in the valence state. Both of these observations are consistent with the high oxygen growth pressure (10^{-2} mbar) [25]. In turn, the emergence of Mn²⁺ in the LaMnO₃/SrTiO₃ heterostructures is attributed to the polar discontinuity at the heterointerface regardless of the specific mechanism responsible for the electron accumulation, which could be electronic, structural, and/or chemical in nature [46–51]. Oxygen vacancies (not necessarily induced by deposition) have been proposed to be an intrinsic compensation mechanism for polarnonpolar oxide heterostructures, which would lead to electron accumulation at the interface [48,49,51].

Bulk, stoichiometric LaMnO₃ with Mn³⁺ is an A-type antiferromagnetic insulator [52]. Despite a possible electronhole asymmetry in the manganite phase diagram similar to cuprates [53], the addition of either extra holes or electrons via chemical doping could lead to ferromagnetism as a result of Mn³⁺-O²⁻-Mn⁴⁺ or Mn³⁺-O²⁻-Mn²⁺ double exchange, respectively [52,54–57]. It is known that extrinsic defects, such as cation deficiency (e.g., La deficiency) or oxygen excess, could give rise to ferromagnetism in LaMnO₃ [58,59]. However, LaMnO₃ with cation deficiency or oxygen excess tends to be a ferromagnetic metal with a mixture of Mn³⁺ and Mn⁴⁺ (i.e., hole doping) [60], which is not consistent with the observation that our films are electron doped with nominal cation stoichiometry and insulating behavior [25]. Therefore, in our work, the emergence of electron doping at the LaMnO₃/SrTiO₃ interface triggered by the polar mismatch induces a mixed valence (i.e., Mn^{2+}/Mn^{3+}), which is thought to give rise to the ferromagnetic phase [52,54–57]. In fact, both the XAS and XMCD spectra observed in our relatively thick LaMnO₃/SrTiO₃

heterostructures [Figs. 1(a) and 1(c)] are similar to that of electron-doped manganites deriving their effects from chemical alloying (e.g., Ce-doped LaMnO₃), which also exhibit an insulating ferromagnetic ground state [57].

The absence of ferromagnetism for films less than 5 UC is likely due to "overaccumulation" of Mn²⁺ (stemming from the need to localize a significant number of electrons to accommodate the potential and resulting in reduced magnetization from a lack of double-exchange coupling with Mn³⁺), which favors an antiferromagnetic state [55]. In turn, we explored the possibility of reducing the Mn²⁺ component by adjusting the composition of the films to confirm our understanding of the origin of the ferromagnetism and demonstrating the potential of such systems. Previous studies have found that La vacancies give rise to hole doping in LaMnO₃ [58,60]. Thus, we have grown 5% La-deficient LaMnO₃ (La_{0.95}MnO₃) films of varying thicknesses on SrTiO₃ substrates [25] to induce holes that should act to counterdope the system under the influence of the potential and thus reduce the amount of Mn²⁺ in the ultrathin films (i.e., drive it back from an over-electrondoped state to a more "optimally doped" level). La deficiency is an effective route to introduce holes into LaMnO₃ via the defect formula $(La_{1-x}^{3+}[V_{La}^{3-}]_x)(Mn_{1-3x}^{3+}Mn_{3x}^{4+})O_3^{2-}$. The $La_{0.95}MnO_3$ exhibits alternating $(La_{1-x}O)^{1-3x}$ and $(Mn_{1-3x}^{3+}Mn_{3x}^{4+}O_2)^{-1+3x}$ layers and thus a polar mismatch still exists at the La_{0.95}MnO₃/SrTiO₃ interface. Because of the La deficiency, the magnitude of the polar discontinuity would be reduced with additional holes. From XAS studies of these La_{0.95}MnO₃ films, a weaker thickness dependence of the Mn valence is observed [Fig. 3(a)]. In particular, the peak corresponding to Mn²⁺ at 639.8 eV is suppressed in the 3-UCthick La_{0.95}MnO₃ films. In turn, subsequent XMCD studies reveal clear dichroism even in 3-UC-thick La_{0.95}MnO₃/ SrTiO₃ heterostructures [Fig. 3(b)]—confirming the importance of controlling the valence state of the material to relieve the overaccumulation of electrons. All told, the observation of an insulating ferromagnetic ground state in films as thin as just 3 UC shows the power of emergent phenomena and

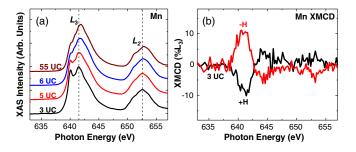


FIG. 3. (a) Mn $L_{2,3}$ XAS spectra of the La_{0.95}MnO₃/SrTiO₃ heterostructures. (b) Mn XMCD spectra for the 3 UC La_{0.95}MnO₃/SrTiO₃ heterostructure. The XMCD features reverse in sign when the magnetic field is reversed, confirming the reliability of the observation.

approaches the limits of our ability to synthesize and study emergent phenomena at interfaces, and has potential applications in spin polarized tunneling devices.

To summarize, we have provided direct evidence for electron accumulation and ferromagnetism occurring within the polar, antiferromagnetic insulator LaMnO₃ when grown on nonpolar SrTiO₃. Using XAS combined with first-principles calculations, the critical thickness for the onset of electron accumulation is determined to be 2 UC. The strength of the polar mismatch can drive overdoping of the LaMnO₃, which suppresses the onset of ferromagnetism as the average valence state tips towards Mn²⁺. In stoichiometric LaMnO₃, ferromagnetism is observed in only 5-UC-thick films. In turn, through chemical doping (achieved via control of the film stoichiometry), the average valence state can be tuned, and clear ferromagnetism can be observed in La_{0.95}MnO₃ films as thin as 3 UC. Ultimately, this work demonstrates the state of the art as it pertains to ultrafine control of materials, whereby controlling both the atomic structure of interfaces and doping level, unprecedented properties and control of materials is produced.

Z. H. C. thanks Dr. Chang-Yang Kuo for useful discussion and acknowledges support from the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy (DOE) Contract No. DE-AC02-05CH11231. Z. C. and L.-W. W. acknowledge the support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05-CH11231 within the Nonequilibrium Magnetic Materials program (MSMAG). Z. Q. L. acknowledges financial supports from the National Natural Science Foundation of China (NSFC Grant No. 11704018) and the startup grant from Beihang University, China. X. R. W. acknowledges supports from a startup grant from Nanyang Technological University. L. R. D. acknowledges support from the Department of Energy under Grant No. DE-SC0012375. R. X. acknowledges support from the National Science Foundation under Grant No. DMR-1608938. R.G. acknowledges support from the National Science Foundation under Grant No. OISE-1545907. T. V. acknowledges support from the Singapore National Research Foundation Competitive Research Program (CRP Grant No. NFR-CRP13-2014-04). J. L. acknowledges support from the Alliance Joint Directed Research Development Program at the University of Tennessee. L. W. M. acknowledges support from the Gordon and Betty Moore Foundation's EPiQS Initiative, Grant No. GBMF5307. Work performed at the electron microscopy facility of the Cornell Center for Materials Research was funded by the National Science Foundation (NSF) Materials Research Science and Engineering Centers program (DMR Grant No. 1120296) and U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Grant No. DE-SC0002334. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under Contract No. DE-AC02-05CH11231.

- *zhiqi@buaa.edu.cn [†]jianliu@utk.edu [‡]lwmartin@berkeley.edu
- A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature (London) 419, 378 (2002).
- [2] A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
- [3] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
- [4] H. Seungbum, M. N. Serge, and D. F. Dillon, Rep. Prog. Phys. 79, 076501 (2016).
- [5] J. Mannhart and D. G. Schlom, Science 327, 1607 (2010).
- [6] S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
- [7] J. Lee and A. A. Demkov, Phys. Rev. B 78, 193104 (2008).
- [8] J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, Nat. Commun. 1, 94 (2010).
- [9] J. S. Lee, Y. W. Xie, H. K. Sato, C. Bell, Y. Hikita, H. Y. Hwang, and C. C. Kao, Nat. Mater. **12**, 703 (2013).
- [10] M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, Phys. Rev. Lett. 102, 166804 (2009).
- [11] A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).
- [12] N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
- [13] W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, and M. R. Beasley, Phys. Rev. Lett. **98**, 196802 (2007).
- [14] G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J. M. Broto, A. Barthélémy, and A. Fert, Phys. Rev. Lett. 98, 216803 (2007).
- [15] S. A. Chambers, M. H. Engelhard, V. Shutthanandan, Z. Zhu, T. C. Droubay, L. Qiao, P. V. Sushko, T. Feng, H. D. Lee, T. Gustafsson, E. Garfunkel, A. B. Shah, J. M. Zuo, and Q. M. Ramasse, Surf. Sci. Rep. 65, 317 (2010).
- [16] E. Breckenfeld, N. Bronn, J. Karthik, A. R. Damodaran, S. Lee, N. Mason, and L. W. Martin, Phys. Rev. Lett. 110, 196804 (2013).
- [17] Z. Q. Liu, C. J. Li, W. M. Lü, X. H. Huang, Z. Huang, S. W. Zeng, X. P. Qiu, L. S. Huang, A. Annadi, J. S. Chen, J. M. D. Coey, T. Venkatesan, and Ariando, Phys. Rev. X 3, 021010 (2013).
- [18] J. S. Kim, S. S. A. Seo, M. F. Chisholm, R. K. Kremer, H. U. Habermeier, B. Keimer, and H. N. Lee, Phys. Rev. B 82, 201407 (2010).

- [19] Y. Hotta, T. Susaki, and H. Y. Hwang, Phys. Rev. Lett. 99, 236805 (2007).
- [20] P. Xu, Y. Ayino, C. Cheng, V. S. Pribiag, R. B. Comes, P. V. Sushko, S. A. Chambers, and B. Jalan, Phys. Rev. Lett. 117, 106803 (2016).
- [21] S. A. Chambers, L. Qiao, T. C. Droubay, T. C. Kaspar, B. W. Arey, and P. V. Sushko, Phys. Rev. Lett. 107, 206802 (2011).
- [22] P. Perna, D. Maccariello, M. Radovic, U. Scotti di Uccio, I. Pallecchi, M. Codda, D. Marré, C. Cantoni, J. Gazquez, M. Varela, S. J. Pennycook, and F. M. Granozio, Appl. Phys. Lett. 97, 152111 (2010).
- [23] X. R. Wang, C. J. Li, W. M. Lü, T. R. Paudel, D. P. Leusink, M. Hoek, N. Poccia, A. Vailionis, T. Venkatesan, J. M. D. Coey, E. Y. Tsymbal, Ariando, and H. Hilgenkamp, Science 349, 716 (2015).
- [24] Y. Anahory, L. Embon, C. J. Li, S. Banerjee, A. Meltzer, H. R. Naren, A. Yakovenko, J. Cuppens, Y. Myasoedov, M. L. Rappaport, M. E. Huber, K. Michaeli, T. Venkatesan, Ariando, and E. Zeldov, Nat. Commun. 7, 12566 (2016).
- [25] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.119.156801 for details on film growth, structural characterization, soft x-ray absorption measurement, transport and magnetic properties characterizations, and first-principles calculations, which includes Refs. [26–39].
- [26] L. F. Kourkoutis, J. H. Song, H. Y. Hwang, and D. A. Muller, Proc. Natl. Acad. Sci. U.S.A. 107, 11682 (2010).
- [27] A. Tebano, C. Aruta, S. Sanna, P. G. Medaglia, G. Balestrino, A. A. Sidorenko, R. De Renzi, G. Ghiringhelli, L. Braicovich, V. Bisogni, and N. B. Brookes, Phys. Rev. Lett. 100, 137401 (2008).
- [28] D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino, E. Magnano, F. Sánchez, and J. Fontcuberta, Nat. Commun. 3, 1189 (2012).
- [29] D.-Y. Cho, S. J. Oh, D. G. Kim, A. Tanaka, and J. H. Park, Phys. Rev. B 79, 035116 (2009).
- [30] M. Abbate, F. M. F. de Groot, J. C. Fuggle, A. Fujimori, O. Strebel, F. Lopez, M. Domke, G. Kaindl, G. A. Sawatzky, M. Takano, Y. Takeda, H. Eisaki, and S. Uchida, Phys. Rev. B 46, 4511 (1992).
- [31] G. Subias, J. García, M. C. Sánchez, J. Blasco, and M. G. Proietti, Surf. Rev. Lett. 09, 1071 (2002).
- [32] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- [33] G. Kresse and D. Joubert, Phys. Rev. B **59**, 1758 (1999).
- [34] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
- [35] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
- [36] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- [37] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- [38] Y. Li and J. Yu, J. Appl. Phys. 108, 013701 (2010).
- [39] G. Singh-Bhalla, C. Bell, J. Ravichandran, W. Siemons, Y. Hikita, S. Salahuddin, A. F. Hebard, H. Y. Hwang, and R. Ramesh, Nat. Phys. 7, 80 (2011).
- [40] F. Yang, M. Gu, E. Arenholz, N. D. Browning, and Y. Takamura, J. Appl. Phys. 111, 013911 (2012).
- [41] C. Mitra, Z. Hu, P. Raychaudhuri, S. Wirth, S. I. Csiszar, H. H. Hsieh, H. J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 67, 092404 (2003).

- [42] T. Burnus, Z. Hu, H. H. Hsieh, V. L. J. Joly, P. A. Joy, M. W. Haverkort, H. Wu, A. Tanaka, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 77, 125124 (2008).
- [43] M. Nagel, I. Biswas, P. Nagel, E. Pellegrin, S. Schuppler, H. Peisert, and T. Chasse, Phys. Rev. B **75**, 195426 (2007).
- [44] J. A. Mundy, Y. Hikita, T. Hidaka, T. Yajima, T. Higuchi, H. Y. Hwang, D. A. Muller, and L. F. Kourkoutis, Nat. Commun. 5, 3464 (2014).
- [45] V. Leca, D. H. A. Blank, and G. Rijnders, arXiv:1202.2256.
- [46] R. Pentcheva and W. E. Pickett, Phys. Rev. Lett. 102, 107602 (2009).
- [47] A. Janotti, L. Bjaalie, L. Gordon, and C. G. Van de Walle, Phys. Rev. B 86, 241108 (2012).
- [48] N. C. Bristowe, P. B. Littlewood, and E. Artacho, Phys. Rev. B 83, 205405 (2011).
- [49] L. Yu and A. Zunger, Nat. Commun. 5, 5118 (2014).
- [50] C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nat. Mater. 7, 298 (2008).
- [51] R. Colby, L. Qiao, K. H. L. Zhang, V. Shutthanandan, J. Ciston, B. Kabius, and S. A. Chambers, Phys. Rev. B 88, 155325 (2013).

- [52] J. M. D. Coey, M. Viret, and S. von Molnár, Adv. Phys. 48, 167 (1999).
- [53] C. Weber, K. Haule, and G. Kotliar, Nat. Phys. 6, 574 (2010).
- [54] P. Raychaudhuri, C. Mitra, P. D. A. Mann, and S. Wirth, J. Appl. Phys. 93, 8328 (2003).
- [55] Q. Zhang and W. Zhang, Phys. Rev. B 68, 134449 (2003).
- [56] W. J. Lu, Y. P. Sun, B. C. Zhao, X. B. Zhu, and W. H. Song, Phys. Rev. B 73, 174425 (2006).
- [57] S. Middey, M. Kareev, D. Meyers, X. Liu, Y. Cao, S. Tripathi, D. Yazici, M. B. Maple, P. J. Ryan, J. W. Freeland, and J. Chakhalian, Appl. Phys. Lett. 104, 202409 (2014).
- [58] A. Gupta, T. R. McGuire, P. R. Duncombe, M. Rupp, J. Z. Sun, W. J. Gallagher, and G. Xiao, Appl. Phys. Lett. 67, 3494 (1995).
- [59] J. Töpfer and J. B. Goodenough, J. Solid State Chem. 130, 117 (1997).
- [60] C. Aruta, M. Angeloni, G. Balestrino, N. G. Boggio, P. G. Medaglia, A. Tebano, B. Davidson, M. Baldini, D. Di Castro, P. Postorino, P. Dore, A. Sidorenko, G. Allodi, and R. De Renzi, J. Appl. Phys. 100, 023910 (2006).