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HIGHLIGHTED ARTICLE
| INVESTIGATION
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ABSTRACT In plant–pathogen relations, disease symptoms arise from the interaction of the host and pathogen genomes. Host–
pathogen functional gene interactions are well described, whereas little is known about how the pathogen genetic variation modulates
both organisms’ transcriptomes. To model and generate hypotheses on a generalist pathogen control of gene expression regulation,
we used the Arabidopsis thaliana–Botrytis cinerea pathosystem and the genetic diversity of a collection of 96 B. cinerea isolates. We
performed expression-based genome-wide association (eGWA) for each of 23,947 measurable transcripts in Arabidopsis (host), and
9267 measurable transcripts in B. cinerea (pathogen). Unlike other eGWA studies, we detected a relative absence of locally acting
expression quantitative trait loci (cis-eQTL), partly caused by structural variants and allelic heterogeneity hindering their identification.
This study identified several distantly acting trans-eQTL linked to eQTL hotspots dispersed across Botrytis genome that altered only
Botrytis transcripts, only Arabidopsis transcripts, or transcripts from both species. Gene membership in the trans-eQTL hotspots
suggests links between gene expression regulation and both known and novel virulence mechanisms in this pathosystem. Genes
annotated to these hotspots provide potential targets for blocking manipulation of the host response by this ubiquitous generalist
necrotrophic pathogen.

KEYWORDS Host–pathogen interaction; pathosystem; Arabidopsis; Botrytis cinerea; RNA-sequencing; genome-wide association; dual transcriptome

Introduction

Infectious disease results from an interaction between host
and pathogen driven by the genetics of both organisms. The

mechanisms of plant–pathogen interactions are often divided
into qualitative, in which a few genetic variants of large effect
shape binary disease outcomes, or quantitative, in which a
spectrum of outcomes arise from the interaction of polygenic
variation in the host and pathogen. The past decades have
witnessed the unraveling of the molecular basis of large-

effect loci on both the host and the pathogen sides that con-
trol qualitative interactions (Giraldo and Valent 2013;
Marone et al. 2013; Meng and Zhang 2013; Cui et al. 2015;
Lo Presti et al. 2015). In the qualitative model, alternative
alleles at these genes create sweeping differences in the tran-
scriptome and phenotypic responses to infection in the host
and pathogen via differential recognition events surrounding
their proteins. However, plant–pathogen interactions cover a
full range of genetic architectures, from few genes of large
effect to many genes of small effect (Poland et al. 2009; Kou
and Wang 2010; Lannou 2012). In contrast to qualitative
systems, quantitative plant–pathogen interactions exhibit a
lack of virulence/resistance genes that explain large propor-
tions of the variance in the disease outcome in the population
(Poland et al. 2009; Kou and Wang 2010; St. Clair 2010;
Roux et al. 2014). These interactions are highly polygenic,
with genetic variation influencing diverse molecular
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mechanisms, extending beyond host–pathogen perception
and large-effect arms-race loci (Glazebrook 2005;
Nomura et al. 2005; Goss and Bergelson 2006; Rowe and
Kliebenstein 2008; Barrett et al. 2009; Corwin et al. 2016a;
Bartoli and Roux 2017; Wu et al. 2017; Atwell et al. 2018
preprint; Fordyce et al. 2018; Soltis et al. 2019). It is, how-
ever, unclear how these polygenic molecular interactions
alter higher-order phenotypes such as virulence or the tran-
scriptome of both species. There is conflicting evidence on the
balance of such pathosystem. Some studies and traits indicate
that genetic variation in the pathogen dominates the interac-
tion (Bartha et al. 2017; Wang et al. 2018a). Other studies
find a balanced contribution of plant and pathogen genetics
(Corwin et al. 2016a; Soltis et al. 2019). Thus, there is a
need to develop genomic approaches to understand how
polygenic variations affect the genomic response of both
organisms.

Polygenic variation in the pathogen should influence
numerous genes that shift the pathogen’s transcriptome
and cause differential expression of various virulence mech-
anisms. This virulence mechanism variation will affect the
host and alter the host’s resistance-associated transcrip-
tome. Thus, by measuring the transcriptome in both the
pathogen and the host, it should be possible to map how
genetic variation in the pathogen is conveyed through the
pathogen’s transcriptome, and concurrently, how the host’s
transcriptome responds. Recent work has shown that it is
possible to measure the pathogen’s transcriptome in planta
in the Arabidopsis thaliana–Pseudomonas syringae pathos-
ystem, leading to new hypotheses about virulence (Nobori
et al. 2018). In the A. thaliana–Botrytis cinerea pathosystem,
the genetic interactions are dominated by complex small-
effect loci that display a high degree of interaction between
the host and pathogen (Denby et al. 2004; Finkers et al.
2007; Finkers et al. 2008; Rowe and Kliebenstein 2008;
Anuradha et al. 2011; Fu et al. 2017; Fordyce et al. 2018).
In this pathosystem, a cotranscriptome study with simulta-
neous analysis of the host and pathogen’s transcripts was
recently done through single-sample RNA-sequencing
(Zhang et al. 2017; Zhang et al. 2019). This cotranscriptome
approach allowed the description of key virulence networks
in the pathogen and resistance responses within the host
(Zhang et al. 2017; Zhang et al. 2019). Further, this study
revealed a single network of transcripts from pathogen
and host species. However, these studies did not assess
the genetic architecture behind these cotranscriptome
interactions.

Genome-wide association mapping (GWA) that identifies
expression quantitative trait loci (eQTL; SNPs correlatedwith
variations in transcript expression) can reveal the genetic
architecture behind these cotranscriptome interactions. Pre-
vious eQTL studies revealed that the SNPs that cause differ-
ential transcript accumulation can be parsed into cis or trans
effects. Locally acting (cis) eQTL indicate regulatory variation
within or near the expressed gene itself. trans-eQTL reveal
SNPs that are acting at a distance to affect regulatory

processes influencing the expression of the transcript. A
trans-eQTL that affects many transcripts is classified as a
hotspot. Such trans-acting hotspot SNPs may influence
regulatory processes that, in turn, influence numerous
transcripts.

eQTL analysis has been utilized to study host–pathogen
interactions, albeit with a focus either on host or pathogen.
Frequently, these studies focus on the host’s response, such as
mapping how host loci control host gene expression over
time, using either traditional QTL mapping or GWA analysis
(Chen et al. 2010; Hsu and Smith 2012; Zou et al. 2012; Allen
et al. 2016; Christie et al. 2017). Additional studies have
begun to invert this scheme by looking at how genetic varia-
tion in the pathogen influences the host transcriptome to
identify pathogen loci modulating host expression levels,
and thus to identify candidate loci for interspecific signals
(Saeij et al. 2007; Wu et al. 2015; Guo et al. 2017). These
studies attest to the potential to identify pathogen loci that
influence host gene expression. However, previous studies
have thus far addressed pathogen populations with limited
genetic variation, and thus identify the few polymorphic loci
between strains with strongest effects on transcriptomic var-
iation (Wu et al. 2015; Guo et al. 2017).

The genomes of both the host and the pathogen harbor
extensive genetic diversity that has been successfully used
for genetic mapping to identify loci controlling virulence in
combination with transcriptomics and genomics (Denby
et al. 2004; Rowe and Kliebenstein 2008; Dalmais et al.
2011; Schumacher et al. 2012; Zhang et al. 2017; Atwell
et al. 2018 preprint; Soltis et al. 2019). Expanding the
scope of these studies, we performed a cotranscriptome
analysis using a single wild-type A. thaliana Columbia-
0 (Col-0) host accession, and B. cinerea pathogen tran-
scriptomes were measured using a diverse B. cinerea pop-
ulation (Zhang et al. 2017; Zhang et al. 2019). We
conducted a GWA analysis of both host and pathogen tran-
scriptomes to identify loci in the B. cinerea genome that
may affect the transcriptomes of either or both organisms
(Zhang et al. 2017; Zhang et al. 2019). The loci tagged by
these SNPs have an explicit directionality of effect, as ge-
netic causality must arise within the pathogen and then
extend to the host. Our analysis found mostly small-effect
polymorphisms dispersed throughout the B. cinerea ge-
nome, with several trans-eQTL hotspots. These hotspot
loci are associated with specific host or pathogen transcript
coexpression modules and variation in lesion size. There
was no identifiable overlap in the hotspots that influenced
the host’s or the pathogen’s transcriptome, suggesting a
surprisingly independent basis of transcriptional regula-
tion of host and pathogen by the B. cinerea genome. Most
of the hotspot-loci-tagged genes have no previous associ-
ation to plant–pathogen virulence interactions. This gen-
erates a set of B. cinerea loci that have regulatory potential
in controlling the A. thaliana and B. cinerea interaction via
modulation of gene expression to influence the lesions
outcome.
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Materials and Methods

Previously published transcriptomics

For this study, we utilized the exact previously published
transcriptome data involving 1164 RNA-sequencing libraries
available under the NCBI accession number SRP149815
(Zhang et al. 2017; Zhang et al. 2019). A brief recitation of
the materials and methods used to generate the transcrip-
tome data are provided below. This large number of libraries
measure the interaction of three A. thaliana genotypes (Col-0,
coi1-1, and npr1-1) with a collection of 96 B. cinerea geno-
types that were isolated as single spores from natural infec-
tions of fruit and vegetable tissues collected in California and
internationally (Zhang et al. 2017; Atwell et al. 2018
preprint; Zhang et al. 2019; Caseys et al. 2020 preprint).
We focused the analysis for this eGWA study on the A. thali-
ana wild-type accession Col-0. The transcriptome data were
generated using fourfold replication of the full-randomized
complete block experimental design across two independent
experiments for all interactions (i.e., two fully independent
randomized biological replicates in each of two experi-
ments). Leaves from Col-0 were harvested 5 weeks after sow-
ing, and individually inoculated in a detached leaf assay with
spores of each of 96 B. cinerea isolates (Zhang et al. 2017;
Zhang et al. 2019). Whole leaves were sampled at 16 hr post-
inoculation, before visible lesion formation, and flash-frozen
for RNA isolation while lesion area was measured at 72 hr
postinoculation. RNA-sequencing libraries were prepared as
described in Kumar et al. 2012; Zhang et al. 2017; and Zhang
et al. 2019. Reads were aligned to both the A. thaliana
TAIR10.25 and the B. cinerea B05.10 ASM83294v1 comple-
mentary DNA reference genomes, and gene counts were
pooled, summed across gene models, and normalized
(Langmead et al. 2009; Li et al. 2009; Van Kan et al. 2017).

GWA of gene expression profiles

As phenotype for the GWA, we used the z-scaled model-
adjusted least square means of normalized gene counts
obtained from a negative binomial generalized linear model
for both the A. thaliana and B. cinerea transcriptomes (Zhang
et al. 2017; Zhang et al. 2019). GWAwas implemented using
a univariate linear mixed model in a genome-wide efficient
mixed model association (GEMMA; Zhou and Stephens
2012). GWA was performed using PLINK binary ped format
files with a standardized relatedness matrix calculated in
GEMMA. The relatedness matrix accounts for population
structure among B. cinerea isolates. Individual SNP signifi-
cances were extracted as P-values from the score test. We
used haploid binary SNP calls with ,10% missing values
and the default 1% minor allele frequency (MAF) was in-
creased to 20%. The use of MAF . 0.20 should help to limit
the false positive error given the population size (Tabangin
et al. 2009). The mapping was based on 96 isolates with a
total of 237,878 SNPs mapped to the B. cinerea B05.10 ge-
nome (Atwell et al. 2018 preprint). We ran GEMMA once per

phenotype, across 9267 B. cinerea gene expression profiles
and 23,947 A. thaliana gene expression profiles.

Significance threshold by GWA of permuted transcripts

Given the large number of traits used forGWA(33,214 traits),
full permutation tests assessing the significance of all associ-
ations is unfeasible. To query for potential patterns of asso-
ciation that may exist randomly and fix global thresholds of
likely nonrandom association of SNPs with transcript varia-
tion, we performed a comparative GWA analysis of random-
ized assignment of each transcriptional profile across the
96-isolate collection. This analysis included five independent
permutations of 9267 randomized B. cinerea transcripts and
23,947 randomized A. thaliana transcripts. Using these per-
mutations, we compiled the top 5% of random P-values from
each gene across all the permutations and utilized the me-
dian of these values as conservative genome-wide permuta-
tion thresholds, 1.96e25 for the B. cinerea transcriptome and
2.9e25 for the A. thaliana transcriptome. In B. cinerea, this
threshold identified an average of 4756 SNPs associated with
the expression of 461 transcripts (range 3843–5584 SNPs
and 410–499 transcripts) across the five random permuta-
tions. In A. thaliana, this threshold identified an average of
16,446 SNPs associated with the expression of 1201 tran-
scripts (range 13,040–22,359 SNPs and 1129–1260 tran-
scripts) across the five random permutations. Permutation
approaches are often more effective than a priori P-value
thresholds to determine significance thresholds of GWA stud-
ies with large number of phenotypes (Evans and Cardon
2006).

eQTL hotspot identification, significance, and
annotation

For the hotspot analysis we utilized the top single SNP per
transcript using either the B. cinerea or A. thaliana transcripts
alone to query for hotspots. This provides 9267 SNP associ-
ations for the 9267 B. cinerea transcripts and 23,947 SNP
associations for the 23,947 A. thaliana transcripts. An eQTL
hotspot was defined as a SNP having the most significant
effect (top SNP) on the abundance of multiple transcripts.
For an initial approach to deciding upon significant hotpots
in each data set, we randomized the position of these posi-
tions across the full 237,878 SNPs and repeated this
1000 times. This analysis gave a maximum hotspot across
all permutations as three transcripts for B. cinerea and six
transcripts for 23,947 A. thaliana. This permutation ap-
proach, however, does not account for potential effects of
coexpression on hotspot detection. Thus, we also estimated
thresholds by using the five random permutations GWA anal-
ysis to query and measure the number of transcripts ran-
domly associated with each SNP. From each permutation,
we identified the position of the top SNP for each B. cinerea
or A. thaliana transcript and found the top hotspot in each
permutation. These maximum eQTL hotspot sizes across all
the permutations were 11 B. cinerea and 80 A. thaliana tran-
scripts. Thus, we conservatively defined significant hotspots
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as SNPs associated with .20 transcripts in B. cinerea and
150 transcripts in A. thaliana.

To document the putative functionality of eQTL hotspots,
we annotated SNPs to genes using the identity of the nearest
gene within a 2-kbwindow. This windowwas chosen because
the average linkage disequilibrium decay in the B. cinerea
genome is ,1 kb (Atwell et al. 2018 preprint). This loss of
allelic association over short distances allows tagging SNPs to
particular genes with some confidence. While the majority of
annotated genes had single SNP hotspots, three genes had
two independent SNP hotspots. Two genes on chromosome
12 denoting A. thaliana gene expression hotspots appear
closely linked, but are separated by �80 kb on the B. cinerea
genome.

Annotation of gene ontology and modules

We annotated functions to B. cinerea genes using the BotPortal
resource (http://dx.doi.org/10.15454/IHYJCX) and looked
for patterns indicating signal peptides for secretion using
the SignalP-5.0 Server (http://www.cbs.dtu.dk/services/
SignalP-5.0/). We looked for functional overrepresenta-
tion among the genes targeted by each A. thaliana eQTL
hotspot using the PANTHER overrepresentation test imple-
mented by plant gene ontology (GO) term enrichment
from TAIR (Lamesch et al. 2011; Cadic et al. 2013). Over-
enrichment of genes found in the previous B. cinerea and A.
thaliana transcriptome modules and the eQTL hotspots
were tested by the hypergeometric test (Subramanian
et al. 2005; Zhang et al. 2017; Zhang et al. 2019).

Biosynthetic-pathway-focused cis-eQTL analysis

All of the SNPs within the three clustered biosynthetic path-
ways were described previously (Zhang et al. 2019). Within
each pathway, the SNPs were used to cluster the isolates by
hierarchical clustering using the R package pvclust. Distances
were estimated using the unweighted pair group method
with arithmetic mean distance, with correlation distance
and 1000 bootstrap replications (Suzuki and Shimodaira
2015). The 95% bootstrap probability values are show in
green, while the approximately unbiased P-values are report-
ed in red. Clustering is drawn according to those edges with
strong support under both estimations.

Data availability statement

Strains are available upon request. Supplemental Material,
File S1 contains informationon functional annotationof theB.
cinerea genes targeted by the B. cinerea trans-eQTL hotspots.
File S2 contains information on functional annotation of the
A. thaliana genes targeted by the B. cinerea trans-eQTL hot-
spots. File S3 contains GO summary analysis of the A. thali-
ana genes targeted within each B. cinerea trans-eQTL
hotspot. File S4 contains summary information on the top
SNP hits from GWA of each B. cinerea expression trait (tran-
script). SNP data and R scripts are available in Dryad
(https://doi.org/10.25338/B83P56). Transcriptome data in-
volving 1164 RNA-sequencing libraries are available under

the NCBI accession number SRP149815 (Zhang et al. 2017;
Zhang et al. 2019). Gene annotations for B. cinerea genes
are available on the BotPortal online platform (http://
dx.doi.org/10.15454/IHYJCX). Supplemental material
available at figshare: https://doi.org/10.25386/genetics.
8069480.

Results

eQTL indicate polygenic transcriptome modulation

To understand how natural genetic variation in the pathogen
influences both the host and pathogen transcriptomes, we
performed expressionGWAacross all genes expressed in each
species within the A. thaliana–B. cinerea pathosystem. This
analysis incorporated the z-scaled expression profiles of
9267 B. cinerea genes and 23,947 Col-0 A. thaliana genes,
mapped as individual traits across 96 diverse B. cinerea iso-
lates. For each trait, we used a GEMMA univariate linear
mixed model that estimates the significance of effects of each
SNP on the focal trait as a P-value after accounting for poten-
tial effects of population structure within the B. cinerea iso-
lates (Zhou and Stephens 2012). For GEMMA, we used a
previously described B. cinerea genome-wide SNP data set
of 237,878 SNPs with a conservative minimum MAF of
0.20 (Atwell et al. 2018 preprint; Soltis et al. 2019).

Using permutation estimated thresholds (see Materials
and Methods), we identified 461,723 B. cinerea SNPs associ-
ated with transcriptional variation in 1616 B. cinerea genes
and 978,693 SNPs associated with 5213 A. thaliana genes
(Figure 1). In comparison to the random permutations, this
suggests a false discovery rate for SNPs of �1% using the
1.96e-5 threshold for B. cinerea (4756 permutation/461,723
empirical) and 1.6% using the 2.9e25 threshold for A. thali-
ana (16,446 permutation/978,693 empirical).

The range of significant SNPs per transcript is widewith 0–
16,814 SNPs (median = 0, mean = 49.8) for B. cinerea and
0–24,622 SNPs (median = 0, mean = 40.8) for A. thaliana.
The observation of transcript variation associated with a
large number of significant SNPs has been seen in other eQTL
analyses (Figure S1) (West et al. 2007; Wang et al. 2018b).
Given the wide range of significant SNPs per transcript and
how it could shape the analysis, we restricted the analysis of
the top SNP per transcript (SNP with the lowest P-value) to
survey genomic patterns. We further tested how conservative
our threshold was by comparing the permuted top to the
empirical top P-value across all SNPs per transcript. This
showed that the P-value of empirical top SNP per trait for
69% of the B. cinerea transcripts, and for 58% of the A. thali-
ana transcripts, is lower than permuted transcripts top SNP
across all five permutations. By comparing the pattern of
trans-hotspots across the genome using all the top SNP per
transcripts and only top significant SNP per transcripts
showed a similar image of the trans-hotspots, with SNP be-
low the threshold reinforcing the trans-hotspots (Figure 2, A
and B).
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Therefore, we focused on all the top significant SNP per
transcript for the remaining analysis. This restrictive analysis
on SNPs that are most likely to be associated with transcript
variation accounts for the fact that nearly every transcript has
a highly significant heritability ascribed to the B. cinerea ge-
nome (Zhang et al. 2017; Zhang et al. 2019). To account for
the potentially low resolution in genomic signal encom-
passed by the single top SNP, we also assessed any general
pattern using the top 10 SNPs.

Absence of observed transcriptome cis-effect

A hallmark of within-species eQTL mapping studies using
either GWA or structured mapping populations in a wide
range of species is the occurrence of cis-diagonals (Brem

et al. 2002; Schadt et al. 2003; Monks et al. 2004;
Keurentjes et al. 2007; West et al. 2007; Zou et al. 2012).
This occurs because polymorphisms proximal to the gene, cis-
eQTL or cis-SNPs, frequently have large effects on the tran-
scripts accumulation measured. To test if our analysis iden-
tifies a similar cis-diagonal in the B. cinerea transcriptome, we
plotted the position of the transcript’s genomic position
against the top SNP for all the B. cinerea transcripts. As cis-
diagonals are generally enriched in SNPs with the largest
effects on transcript abundance, the top GWA SNP should
identify this diagonal, assuming there are no intervening
technical or biological issues. However, there was no evi-
dence supporting a cis-diagonal (Figure 2). This pattern held
whether we examined the top SNP per transcript (Figure 2A)

Figure 1 Examples of expression-based GWA mapping in B. cinerea genome. The two transcripts plotted correspond to the mean of significant SNPs
with 50 and 41 significant SNPs, respectively. (A–C) GWA results for the mapping of the expression of Bcin01g09490, a methyltransferase. Red dashed
lines indicate significance at P = 1.96e205. (A) Manhattan plot of log-scaled P-values of SNPs associations across the 18 chromosomes of B. cinerea. (B)
Relation between significance and effect size as estimated by GEMMA. (C) P-value density in the real expression data vs. the five randomizations. (D) A
cross-species eQTL Manhattan plot for the host’s expression of AT1G28370 (an ethylene response factor) across the 18 chromosomes of B. cinerea. The
red dashed line indicates significance at P = 2.9e25.
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or the top 10 SNPs per transcript (Figure 2C). In contrast,
there is evidence for trans-eQTL hotspots: distant loci that
modulate expression variation across many of the pathogen
genes (Figure 2).

Because any significance threshold may complicate the
identification of a cis-signal, we converted all the P-values
assigned to SNPs per transcript into their percentile rank.
This conversion was performed by sorting all P-values in as-
cending order, assigning ranks values to each P-value and

converting these values to percentage of the total number
of SNPs. We then identified all the SNPs within each B. cin-
erea transcript or within 1 kb of the start or end of the tran-
script, and extracted the percentile ranks for these SNPs. The
number of local SNPs ranged from 1 to 352 SNPs, with an
average of 16 local SNPs per transcripts. The distribution of
ranks across all the local SNPs was flat and similar to a ran-
dom sampling of P-values, further indicating no general cis-
enrichment within this data set (Figure S2). We next limited
this percentile rank analysis to the local top SNP for each
transcript because each cis-region may have only one or a
few true associations masked by noncausal SNPs. As a ran-
dom comparison, we simulated a data set of percentile rank
by random draw of 16 SNPs out of all SNPs within defined cis-
defined boundaries and repeated this 9267 times (the num-
ber of B. cinerea transcripts). For each simulated transcript,
we extracted the top SNP and repeated the whole simulation
five times. This showed that that cis-SNPs are not enriched for
higher significance than the genome, and might even be less
frequent than expected by random chance (Figure S2). As
such, we do not detect evidence for overrepresentation of
cis-effect loci.

Allelic heterogeneity and structural variation potentially
masking cis-effects

Haplotype heterogeneity or allele frequency may complicate
the accurate identification of cis-polymorphisms and hide a
cis-diagonal (Chan et al. 2010; Rivas et al. 2011; Visscher
et al. 2017). To assess these possibilities, we used three clus-
tered biosynthetic pathways: the botcinic acid biosynthetic
pathway (13 genes, 55.8 kb, chromosome 1), botrydial bio-
synthetic pathway (7 genes, 26 kb, chromosome 12), and a
putative cyclic peptide pathway (10 genes, 46.5 kb, chromo-
some 1) (Deighton et al. 2001; Colmenares et al. 2002;
Porquier et al. 2016; Zhang et al. 2019). These pathways have
known presence/absence polymorphisms segregating in the
studied B. cinerea population and were expected to hold cis-
patterns, yet none were detected by our GWA analysis
(Siewers et al. 2005; Pinedo et al. 2008). Additionally, genes
of the botcinic acid and botrydial biosynthetic pathways are
variable across the Botrytis genus (Valero-Jiménez et al.
2019). Critically, the transcription profiles of the genes within
these pathways are highly correlated across isolates, suggest-
ing pathway-specific control of expression variation (Zhang
et al. 2019). This known presence/absence variation sug-
gested that the absence of cis-SNPs in these loci may repre-
sent false negatives. To test if these pathways have
undetected cis-SNPs, we extracted all the SNPs within each
biosynthetic cluster and investigated haplotype diversity
across the 96 B. cinerea isolates.

We first investigated the botcinic acid cluster that contains
multiple distinct haplotypes (Figure 3A). To test for haplo-
type-specific effects on transcript expression within a path-
way, we z-scaled each individual transcript and averaged
across all the genes in the pathway to get a pathway expres-
sion value (Kliebenstein et al. 2006). The pathway expression

Figure 2 Comparing B. cinerea gene center to position of top associated
SNP. For all 9267 transcripts mapped to the B. cinerea genome, we
retained only the SNPs with highest probability (lowest P-value) of signif-
icant effect on expression for each transcript. (A) The single top SNP per
all transcripts. (B) The single top SNP for only those transcripts that have at
least one SNP crossing the 1.96e25 significance threshold. (C) The top
10 SNPs per all transcripts. The 18 chromosomes of B. cinerea are
delimited by differentially shaded red bars along the x-axis, while posi-
tions indicate individual SNPs. The y-axis depicts the same chromosome
alignment, but positions are the center of each mapped transcript. Ver-
tical striping of SNP positions indicates genomic locations of putative
trans-eQTL hotspots.
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identified a group of 12 isolates (cluster 4 in Figure 3B) with
distinctly lower expression level than the other groups. In-
vestigating the short-read sequences and SNPs showed that
these 12 isolates share a 78.6-kb deletion that removes the
entire botcinic acid biosynthetic cluster, from Bcboa1 to
Bcboa17 (Figure 3). After accounting for this major deletion,
we found no remaining significant effect of group member-
ship in the remaining groups on the expression profile
(F(1,74) = 0.36; P = 0.55). However, within each of these
groups, independent isolates have low pathway expression,
suggesting loss-of-expression polymorphisms (e.g., isolates
Noble Rot and Apple517) (Figure 3B). While each of these
isolates contain independent smaller deletions, the origins of
the loss of expression of the genes of botcinic acid pathway
remain unknown. Functional analysis of the botcinic acid
biosynthetic cluster has thus far identified one transcription
factor (Bcboa13) that controls the expression of the cluster
(Porquier et al. 2019). However, none of the SNPs within or
near Bcboa13 were significantly associated with variation in
expression of the botcinic acid biosynthesis genes. These pat-
terns may suggest undetected cis-effect polymorphisms in
addition to the large common deletion and independent ad-
ditional events.

We then investigated the botrydial and putative cyclic
peptide biosynthetic pathways for additional evidence of un-
detected cis-acting genetic variation. These two pathways
exhibit a lack of cis-effect SNP patterns similar to the botcinic
acid pathway. Hierarchical clustering within each of these
pathways by SNP variation divided the isolate population
into two groups that were not associated with mean pathway
expression (Figure S3 and Figure S4, both bipartite divisions
were supported by.95% of bootstraps). While there was no
obvious structural variation in the botrydial pathway, the
cyclic peptide pathway contained small deletions within the
intergenic regions that correlate with low expression. Fur-
thermore, two isolates with partial deletions within the genes
early in the pathway exhibited very low pathway expression
(1.05.16 and 1.05.22) (Figure S4).

Overall, we identified cis-acting deletions in two of three of
the clustered biosynthetic pathways. This highlights the po-
tential of structural variants that often fall below the minor
allele cutoffs and compromise the detection of cis-effects by
GWA within B. cinerea. Testing whether insertion and dele-
tion events account for the majority of localized control of
expression variation would require both long-read sequenc-
ing to accurately identify these structural variants and com-
putational approaches that can blend SNP and insertion/
deletion information.

Detection of trans-eQTL hotspots

Using the top SNP per transcript, the GWA analysis identified
a strong signature of trans-eQTL hotspots (Figure 2): poly-
morphisms that may influence the regulation of numerous
genes in trans. These hotspots were detected using both the
B. cinerea and A. thaliana transcriptomewith solely the top SNP
per transcript (Figure 4 and Figure 5). Using a permutation

approach, we fixed conservative thresholds for eQTL hot-
spots to 20 transcripts for B. cinerea and 150 transcripts for
A. thaliana. This identified 25 trans-eQTL hotspots dispersed
across the B. cinerea genome that modulate either the host
(12 SNPs) or pathogen (13 SNPs) transcriptomes (Figure 5,
Figure 6, and Table 1). Hotspot SNPs had an average MAF of
27% (1% SE) with no correlation between the MAF and the
number of transcripts associated with a particular SNPwithin
either the Arabidopsis or Botrytis transcripts. Further, the
SNPs at different hotspot were not cosegregating across the
isolates.

Theuseof a cotranscriptomeapproach should theoretically
identify trans-eQTL hotspot affecting B. cinerea transcripts
that create an eQTL hotspot affecting the host’s transcrip-
tome. However, the GWA analysis detected no cross-species-
connected eQTL hotspots across the two transcriptomes
(Figure 5). This result was consistent using either the single
top SNP or the top 10 SNPs per transcript (Figure S5). The
absence of cross-species overlap in eQTL hotspots suggests
that the pathogen’s influence on the host’s transcriptome is
not limited to major interactions between trans-eQTL hot-
spots, but can involve molecularly constrained changes in
the pathogen that are magnified in the host’s response. One
possible scenario is a SNP that alters the expression of a sin-
gle effector gene or mechanism in the pathogen that does
not affect the pathogen but instead affects the host. For
example, altering expression of the botcinic acid biosyn-
thetic cluster would alter the accumulation of that phyto-
toxic metabolite and cause large responses in the host.
Similarly, mutations that do not affect transcript abun-
dance, like missense polymorphisms that alter protein func-
tion, could equally lead to a lack of overlap in hotspots.
Finally, it is possible that the high level of genetic variation
in B. cinerea may decrease our power to detect the cross-
species trans-eQTL hotspots. Deeper analysis into the tran-
scriptome and downstream responses could elucidate how
restricted responses in the pathogen transcriptome trans-
late to sweeping responses in the host. Future studies using
these eQTL hotspots as a priori candidates for control of
transcript variation in both host and pathogen may need
to increase power to detect more modulation overlap across
the two transcriptomes.

eQTL hotspot modules

To better understand the trans-eQTL hotspots, we examined
the genes influenced by each hotspot. We first collected the
GO annotations within each species to test if the hotspot
transcripts were enriched for some specific functionality.
The B. cinerea GO annotations showed a preponderance of
enzyme, signal peptides for secretion, and transcription fac-
tor annotations, but no specific molecular insights arose,
largely because the majority of genes had no annotation (Ta-
ble 1, Table S1, File S1, and File S4). In contrast, GO analysis
of the A. thaliana transcripts showed that three of the hot-
spots have an overrepresentation of photosynthesis-related
functions within their targeted genes (Table 1, File S2, and
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File S3). Downregulation of photosynthesis transcripts is a
hallmark of plant immune processes (Bilgin et al. 2010; Jiang
et al. 2017). Two other A. thaliana hotspots primarily affect
genes associated with abiotic stress responses. Only two of
the A. thaliana hotspots influence expected plant defense
loci, including chitin response and microbe defenses. This
suggests that the B. cinerea genes underlying these hotspots
specifically influence defined networks within the host.

In previous work, we had defined key transcript modules
within both the host and pathogen transcriptomes that con-
nected to virulence (Zhang et al. 2017; Zhang et al. 2019).
Thus we tested for overlap between the trans-eQTL hotspot-
defined modules and previously defined transcript modules
using a hypergeometric enrichment test (Zhang et al. 2017;
Atwell et al. 2018 preprint; Zhang et al. 2019). Nine of the
11 B. cinerea eQTL hotspots were enriched for transcripts
present in one or more of four major B. cinerea coexpression
modules identified when grown on A. thaliana (Figure 6). An
additional six B. cinereamodules did not share any transcript
membership with detected eQTL hotspots. Similarly, nine of
the A. thaliana eQTL hotspots were enriched for transcripts
from two of the major A. thaliana modules when infected
with B. cinerea (Figure 6). These two A. thaliana modules
contain genes that function in jasmonate/salicylic acid

signaling processes and camalexin biosynthesis (network I),
or photosynthesis (network IV). Interestingly, these links are
not limited to a single hotspot, but have strong connections
across several different eQTL hotspots, suggesting that these
A. thaliana modules are influenced by the pathogens poly-
genic architecture (Figure 6).

eQTL hotspot candidate genes

To generate working hypotheses on the possible causal basis
of the eQTL hotspots, we investigated the candidate genes
underlying the associated SNPs. The 12 B. cinerea hotspots
that influence A. thaliana transcripts are located within
11 genes, including four enzymes and two genes associated
with isolate compatibility (Table 1). The 13 B. cinerea hot-
spots that influence B. cinerea expression profiles were asso-
ciated with 11 genes, including four enzymes (Table 1).
However, only one of these 22 genes was previously linked
to virulence functions in B. cinerea or other fungi. Bccwh41
(Bcin16g01950), a glycoside hydrolase whose homolog
shows increased expression in virulent strains of Ustilago
maydis on A. thaliana (Martínez-Soto et al. 2013). To test if
any of these 22 eQTL hotspot candidate genes may influence
virulence in B. cinerea, we used the existing coexpression and
virulence data to compare the level of expression of these

Figure 3 Analysis of the botcinic acid gene cluster
on B. cinerea chromosome 1. (A) An SNP-based
hierarchical clustering of B. cinerea isolates. The hi-
erarchical clustering was based on unweighted pair
group method with arithmetic mean distance, with
1000 bootstrap replications. Red boxes indicate
clustering with .95% confidence. (B) Violin plots
of botcinic acid network expression within B. cin-
erea groups. The mean network expression was
obtained by converting expression of each gene
across the isolates into its corresponding z-score
and then averaging across the z-scores. Below is
the gene model of the gene cluster, with each rain-
bow-colored box delimiting single genes (including
Bcboa1 to Bcboa13 and 5 additional genes). The
large 78.6-kb deletion in the isolate cluster 4 major
deletion is indicated as a triangle.
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22 genes to existing virulence measurements (Zhang et al.
2017; Atwell et al. 2018 preprint; Zhang et al. 2019). Tran-
script accumulation for three B. cinerea hotspot genes and
two of the A. thaliana hotspot genes are strongly positively
correlated to lesion size variation, while none are negatively
correlated with lesion size (Table 1) (Zhang et al. 2019).
Further, we utilized a previous GWA analysis of virulence
of these same isolates on A. thaliana to test for any over-
lap. This showed that one of the B. cinerea hotspot genes
(Bcin16g00010, SsuA/THI5-like) is a top GWA hit, control-
ling lesion size across host genotypes and association meth-
ods (Table 1) (Atwell et al. 2018 preprint). Together, this
suggests that these genes are likely candidates for control-
ling both the host and pathogen transcriptomes.

Discussion

Dispersed interactions across host and
pathogen genomes

Using cotranscriptome GWA, we identified 25 trans-eQTL
hotspots dispersed across the B. cinerea genome that modu-
late either the host or pathogen transcriptomes. This con-
trasts with previous cross-species eQTL studies, which
identified one or only a few cross-species eQTL hotspots
(Wu et al. 2015; Guo et al. 2017). Further, most of the B.

cinerea genetic variation detected in our study is distant from
the affected B. cinerea transcripts, i.e., located in trans. These
trans-eQTL hotspots influence expression variation for five
major B. cinerea modules containing genes dispersed across
the genome (Zhang et al. 2019). In particular, the eQTL hot-
spots influenced the expression of specific B. cinerea coex-
pression networks (vesicle/virulence, translation/growth,
exocytosis regulation, and peptidase). These candidate poly-
morphisms are spread throughout the genome and the de-
tected eQTL hotspots are not in regions of the genome with
significantly elevated genetic variation. Further, the genetic
targets of these eQTL are dispersed across the plant and
pathogen genomes (Zhang et al. 2019). As such, B. cinerea
does not fit the model of what might be expected in filamen-
tous fungi showing multiple-speed genome evolution due to
varying selective pressures influencing the genome. In such
specialist fungi with closer coevolution to their host species
than B. cinerea, diverse fungal virulence effectors are clus-
tered in regions of the genome containing enhanced rates
of mutation and polymorphism, while the rest of the genome
shows slower evolutionary rates (Dong et al. 2015). If this
scenario were true for the Botrytis genome, it would predict
clustering of the GWA hits to a few locations rather than

Figure 5 Cross-species hotspot comparison in the B. cinerea genome.
For each SNP that is a top hit for one or more transcripts, the number of
associated transcripts is counted, across both the B. cinerea transcriptome
and the A. thaliana transcriptome.

Figure 4 Frequency and positions of trans-eQTL hotspots in the B. cin-
erea genome. (A) Number of Botrytis transcripts associated with trans-
eQTL SNPs aligned along the 18 chromosomes of B. cinerea (x-axis). (B)
Number of Arabidopsis transcripts associated with cross-species eQTL
SNPs aligned along the 18 chromosomes of B. cinerea (x-axis).
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distribution across the genome, as was found. This is consis-
tent with previous findings of high genome-wide diversity in
B. cinerea, and virulence and host specificity mapping to large
swaths of the pathogen genome, including 16 of 18 chromo-
somes (Atwell et al. 2018 preprint; Caseys et al. 2020
preprint). Similar eQTL analyses in the multispeed genome
filamentous fungi are required to test whether eQTL in path-
ogens with a multispeed genome truly cluster within the
highly polymorphic regions. Together, these findings provide
evidence for polygenic trans-regulation of gene expression in
B. cinerea interactions that then coalesces around specific
transcriptional modules to influence virulence.

Polygenic modules and pleiotropy in cross-species eQTL

Previous pathogen eQTL studies identified qualitative pat-
ternswhereby each host expression profilewas explained by a
single major-effect pathogen locus (Guo et al. 2017) or each
pathogen eQTL connected to a specific host network (Wu
et al. 2015). In contrast, cotranscriptomeGWAwith B. cinerea
identified a more complex picture, with numerous trans-
eQTL hotspots altering multiple transcriptome modules in
either the host or the pathogen. This suggests that the

polygenic architecture of the pathogenmay partially function
by influencing these defined modules rather than working as
thousands of individual genes, each independently targeting
the host. It remains to be ascertained if this system functions
to create robustness in these connections in the face of
changes to the pathogen or host genetics, or if this is an in-
dication of existence of a discrete set of interaction mecha-
nisms between the host and the pathogen.

Candidate causal loci encode diverse mechanisms

Querying the putative function of the candidate loci under-
lying the different trans-eQTL hotspots identified an array of
potential molecular mechanisms. While one might assume
that transcription factors are the most likely genes for con-
taining genetic variation that would lead to trans-eQTL hot-
spots, we instead found enrichment for enzyme-encoding
genes among these loci. Eight enzyme-encoding genes con-
tained the SNPs for four of the B. cinerea trans-eQTL and four
of the A. thaliana trans-eQTL hotspots. Interestingly, these
enzymes have potential activities in sugar release from the
plant cell wall, or reactions involving sugar phosphates (Ta-
ble 1). In addition to enzymatic activity, four of the Botrytis

Figure 6 Genes associated with eQTL
hotspots are in virulence and defense
coexpression networks. Circles along
the B. cinerea 18 chromosomes are
eQTL hotspots, centered at the gene
containing the eQTL, and with radius
proportional to the number of tran-
scripts associated with this hotspot.
The gene center is marked with a
white dot. Hotspots for B. cinerea
transcripts are drawn in blue, hotspots
for A. thaliana transcripts are drawn in
green. The network names are based
on biological functions from gene on-
tology analysis of network members,
from Figure 4 of Zhang et al. (2019)
and Figure 6 of Zhang et al. (2017).
The A. thaliana networks depicted
are the most inclusive of the host-de-
pendent networks, from npr1-1. Links
between hotspots and coexpression
networks are drawn according to the
number of genes shared between
them. Variable line weight represents
the percent of hotspot target genes
shared with the coexpression network;
1–25% is dashed, 25–50% is dotted,
50–75% is solid, 75–100% is bold.

262 N. E. Soltis et al.



trans-eQTL candidate genes encoded transcriptional regula-
tors. Bcin10g05900, a putative winged helix transcription
factor (TF), is predicted to have pathway-specific effects,
while the other three are putative general transcrip-
tional regulators, including Bcin12g00330, a putative

topoisomerase-II-associated protein PAT1, and Bcin09g06590,
a putative helicase (Table 1). Interestingly, the putative winged
helix TF trans-eQTL hotspot alters the expression of A. thaliana
genes associated with water deprivation responses. This sug-
gests that this putative winged helix TFmay influence a specific

Table 1 Annotation of the genes identified from B. cinerea and A. thaliana eQTL hotspots

Hotspot gene Hotspot SNP
Botrytis

transcripts
Arabidopsis
transcripts Name Gene function

Virulence
correlation Virulence GWA

Arabidopsis GO
overrepresentation

Bcin01g01610 629157 0 219 Glucose/ribitol
dehydrogenase

NA Amylopectin,
glycogen,
chlorophyll,
chloroplast,
photosynthesis

Bcin02g02480 910858 31 6 P = 0.008 NA
Bcin02g02850 1032242 32 0 Fructosamine-

3-kinase
NA NA

Bcin03g00960 336467 1 122 GTP cyclohydrolase I NA Carotenoid
biosynthesis,
chloroplast
organization

Bcin03g05020 1695103 24 15 NA NA
Bcin04g00830 310509 0 144 NACHT nucleoside

triphosphatase
NA Nucleic acid

metabolism
Bcin04g04700 1633072 0 634 Heterokaryon

incompatibility
NA Photosynthesis, light,

translation
Bcin04g05160 1791561 3 114 NA Chitin response
Bcin05g02780 1015184 22 2 NA NA
Bcin06g05680 1952544 0 157 WLM P , 0.001 NA
Bcin06g05790 1988179 25 0 NA NA
Bcin08g05340 2014228 27 0 F-box domain NA NA
Bcin09g03390 1235841 73 6 6-Phosphogluconate

dehydrogenase
NA NA

Bcin09g06590 2330312 106 56 SNF2-related; Helicase,
superfamily 1/2

NA Metabolism

Bcin09g06590 2334368 23 0 SNF2-related; Helicase,
superfamily 1/2

NA NA

Bcin10g00940 383007 23 1 P , 0.001 NA
Bcin10g05900 2268522 0 117 Winged helix-turn-helix

transcription factor
NA Water stress

Bcin12g00330 115491 37 1 Bcpat1 Topoisomerase-II-
associated protein
PAT1

P , 0.001 NA

Bcin12g00330 115511 64 3 Bcpat1 Topoisomerase-II-
associated protein
PAT1

P , 0.001 NA

Bcin12g02130 758420 0 110 NA Response to
stimulus

Bcin12g02130 760499 2 265 NA Jasmonic acid, fungal
response,
microbe
defense,
biotic stress

Bcin12g02340 842369 1 449 Bccds1 Phosphatidate
cytidylyltransferase

P , 0.001 Primary metabolism,
amino acid
biosynthesis,
salt stress, biotic
response

Bcin13g02930 1026752 0 123 SET domain NA Transport
Bcin16g00010 76596 23 2 SsuA/THI5-like NA Yes NA
Bcin16g01950 787512 0 240 Bccwh41 Glycoside hydrolase,

family 63
NA Photosynthesis

Each row identifies a significant eQTL hotspot SNP associated with transcript variations in B. cinerea or in A. thaliana. Gene functions are from BotPortal, Arabidopsis GO
overrepresentation are from PANTHER. The table lists if the gene’s transcript is correlated with virulence or if the SNP was associated with virulence via GWA (Atwell et al.
2018 preprint; Zhang et al. 2019).
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virulence factor that influences this A. thaliana network. Inter-
estingly, while the candidate genes connect to processes that
likely influence virulence, none of them have been explicitly
shown to influence virulence in B. cinerea. Future work is
necessary to test these loci and discover the mechanisms by
which they influence virulence and the host/pathogen
cotranscriptome.

Complications in detection of cis-acting loci

Thevastmajority of eQTL studies identify a strong signature
of cis-acting loci. However, in B. cinerea, the main detected
pattern was trans-eQTL, with few identified cis-eQTL. A
deeper investigation suggested that this may be due to ge-
netic factors that complicate the ability to identify cis-act-
ing SNPs. B. cinerea has high haplotype diversity, and in
three gene clusters investigated, potential rare cis-acting
variants fell below the MAF cutoff for GWA, potentially
leading to false-negative detection errors (Tabangin et al.
2009). Further, a number of deletions were found in this
locus, which complicates the detection of a cis-eQTL signa-
ture by introducing non-SNP variation unused by current
GWA algorithms. Additional cis-acting variants may also be
hidden by undetected transposon variation (Porquier et al.
2019).

A full understanding of the pattern of potential cis-acting
loci in B. cinerea would require a detailed investigation of
structural variation by incorporating long-read sequencing
in a larger population size. Additionally, the GWA algo-
rithms would need to be written to allow for simultaneous
use of both SNP and presence/absence polymorphism data;
one option is to code deletions as an additional state for
each genotyped variant (Wang et al. 2018a). It should be
noted that these same difficulties would also create unde-
tected trans-eQTL. This does suggest that there is likely a
significant fraction of undetected cis-eQTLs within B. cin-
erea, caused by the high polymorphism rate within this
species.

To summarize, previous work in the A. thaliana–B. cinerea
pathosystem established connections between host polymor-
phisms and lesion growth, between gene expression and le-
sion size, and between transcriptomes of the host and
pathogen (Corwin et al. 2016b; Zhang et al. 2017; Zhang
et al. 2019). This study establishes a foundation to study
how genetic variation in the pathogen can manipulate the
host transcriptome to influence disease progression. In the
Arabidopsis–Botrytis pathosystem, this connection had a pre-
ponderance of trans-acting polymorphisms with mainly
moderate to small effects, suggesting that a polygenic archi-
tecture underlies the transcriptome variation, similar to the
polygenic architecture observed for virulence. Using previ-
ously defined transcriptome modules showed that there
may be a modular structure to these effects, with specific
pathogen SNPs linking to specific modules in either the host
or the pathogen. However, future validation work will be
required to test the directionality and mechanism of this
cross-talk. Similar work in other systems will help to build

our functional knowledge of cross-kingdom communication
between host and pathogen.
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