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Highlights

• The Gesneriaceae originated in the region of modern-
day Central America and Andean South America 
during the early Palaeocene.

• Gesneriaceae arrival into the Old World probably 
occurred through a long-distance dispersal event 
from the Americas around 60 Ma.

• There is plausible evidence that the Indian plate was 
a key locus in the diversification and distribution of 
the Old World Didymocarpoideae.

• The Gesnerioideae subfamily diversified in the Late 
Eocene, after the Didymocarpoideae in the Early 
Eocene.

• This study underlines the importance of rare, 
stochastic events in shaping diversity.

Abstract

The Gesneriaceae consists of around 150 genera and 
c. 3750 species with a predominantly tropical and 
subtropical distribution across all continents. Although 
previous studies have proposed an American origin 
of Gesneriaceae, the biogeographic history of this 
pantropical plant family is still unclear, particularly in 
the Old World. To address this, we assembled the most 
comprehensively sampled matrix of Gesneriaceae with 
143 Gesneriaceae genera and 355 species, including 
key samples from Sri Lanka analysed here for the first 
time. We generated molecular phylogenies based on 
four plastid gene regions (ndhF, matK, rps16 and trnL-F), 
obtained fossil-calibrated trees, and reconstructed 
ancestral areas and dispersal routes using Bayesian 
methods. Our results confirm the origin for the family in 
the Early Palaeocene (67. Ma) in the region of present-
day Central America & Andean South America, and 
that diversity in the Old World originated from a long-
distance dispersal event from South America around 59 
Ma, most likely to the Indian plate, which was an island 
at the time. This lineage then dispersed to Malesia and 
later East Asia, which would ultimately become a major 
centre of diversity and source of many dispersals to 
other regions. Our results thus highlight the Indian plate 
as a likely key player in the early diversification of Old 
World Gesneriaceae, even though it is now more diverse 
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Introduction
Vicariance and long-distance dispersal (LDD) are 

the two processes by which global biotic disjunctions 
can be explained, but these hypotheses can be 
difficult to distinguish for any particular disjunction. 
However time-calibrated phylogenies, especially when 
supported by near-complete taxon sampling, can 
address this question by determining the time and 
direction of movement between landmasses (e.g., 
Renner 2004a,b, Givnish et al. 2004, Sytsma et al. 
2004, Buerki et al. 2011, Olmstead 2013, Baker and 
Couvreur 2013a,b, Perret et al. 2013, Armstrong et al. 
2014, Dupin et al. 2016, Luebert et al. 2017, Wu et al. 
2018, Schneider et al. 2022). For pantropical plant 
groups, LDD is considered important but the role 
of island chains as potential stepping stones, and 
the precise routes employed, are still debated (e.g., 
Schneider et al. 2022, Zhao et al. 2022).

The Indian plate, the land portion of which 
comprises the Indian subcontinent, was part of the 
Gondwanan supercontinent 150 million years ago 
(Ma) (Jokat et al. 2003), before separating from Africa 
130-110 Ma (Morley 2003, Lomolino et al. 2017), then 
Madagascar and the Seychelles 99-66 Ma (Ashton and 
Gunatilleke 1987, Plummer et al. 1998, Lomolino et al. 

2017), and then drifting northwards and colliding 
with Eurasia 55-42 Ma (Ashton and Gunatilleke 
1987, Briggs 2003). Dramatic climatic shifts during 
its northward journey resulted in the loss of many 
endemic plant lineages (Morley 1998, 2000, 2003), 
but the region might have played a key role in the 
diversification of species-rich plant families in Asia, 
such as Dipterocarpaceae and Zingiberaceae (e.g., 
Karanth 2006, Ashokan et al., 2022) as the recipient 
of long-distance dispersals (e.g., Zhao et al. 2022); the 
site of rapid in situ radiations (e.g., Surveswaran et al. 
2021) and as ‘a biogeographical raft’ (Zhao et al. 
2022). Certainly, biotic exchanges following collision 
with Eurasia would have had profound effects on the 
composition of the flora of that region (e.g., Mani 1974, 
Conti et al. 2002, Karanth 2006, Sen et al. 2019), but 
most biogeographic studies involving the Indian plate 
have focused on animals, with plants examined only 
rarely (e.g., Sen et al. 2019, Zhao et al. 2022).

The Gesneriaceae is a pantropical family of around 
150 genera and c. 3,750 species (GRC 2022) (Fig. 1). 
It comprises herbs, shrubs and occasionally small trees 
and shows exceptional morphological diversity across 
the family with highly diversified flowers adapted to a 
wide range of pollinators (Weber 2004, Roalson and 
Roberts 2016). The fruits are either fleshy with seeds 

elsewhere, and hence offer novel insights into this plant 
family’s dispersal routes and areas of diversification in 
the Old World.

Keywords: dispersal routes, Gesneriaceae, Gondwana, Indian plate, long-distance dispersal, Old World, vicariance

Figure 1. Distribution and approximate taxa numbers of Gesneriaceae worldwide. Didymocarpoideae subfamily in blue; 
Gesnerioideae subfamily in red; Sanangoideae subfamily in yellow (base map modified from: http://www.freeworldmaps.net).
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most likely dispersed by animals, or dry and dehiscent 
capsules with seeds dispersed by gravity, wind, or rain 
(Weber 2004). Molecular dating indicates stem ages for 
the family between 58 and 76 Ma (Perret et al. 2013, 
Petrova et al. 2015, Roalson and Roberts 2016, Fonseca 
2021), much younger than the break-up of Gondwana 
180-160 Ma (Jokat et al. 2003), and hence rejecting 
Burtt’s (1998) proposal that a Cretaceous Gondwanan 
origin could explain the modern distribution of the 
family. Instead, an origin in the temperate Andes and 
Amazonian rainforests during the late Palaeocene 
period, followed by diversification within South America 
and then migration of two major lineages through 
Antarctica to Asia and Australasia, was proposed 
(Perret et al. 2013, Roalson and Roberts 2016).

Stem age estimates for the core family (i.e. excluding 
Sanango, which is sometimes excluded from the family) 
range from 57.5 million years (Ma) (Perret et al. 2013) 
through 67.7 Ma (Fonseca et al. 2021) to 71.88 or 
73.07 Ma (Petrova et al. 2015, Roalson and Roberts 
2016). These differences might be due to sampling 
differences: Perret et al. (2013) sampled only three Old 
World Gesneriaceae genera, whereas the supermatrix 
approach of Roalson and Roberts (2016) resulted in a 
> 90% proportion of missing data. Furthermore, because 
Gesneriaceae lacks usable fossil calibration points, two 
of these studies relied on secondary calibration points 
obtained from large scale studies investigating the age 
of angiosperms, but these disagreed strongly regarding 
the crown age for Lamiales, e.g., c. 65 Ma (Li et al. 
2019), c. 85-88 Ma (Magallón et al. 2015, Smith and 
Brown 2018) versus c. 153 Ma (Janssens et al. 2020). 
Hence the dates obtained may be questionable, and 
sampling gaps, particularly from South Asia, mean that 
no-one has yet addressed Burtt’s (1998) assertion that 
the ‘Indian plate’ must be the ‘centre of attention’ in 
understanding the evolution of Gesneriaceae in the 
Old World.

The current study aims to address these points 
through greatly increased taxon sampling at genus 
level (94% of Gesneriaceae genera) including regions 
such as Sri Lanka not previously sampled, and the 
use of the same four DNA regions across all sampled 
accessions. Moreover, more robust age estimates are 
obtained by including samples representing all 24 other 
Lamiales families (Fonseca 2021) permitting the use of 
primary fossil calibration points from across the order. 
Our goal was to generate a robust, well-supported 
and time-calibrated phylogeny, to reassess the age 
and biogeography of the family, and in particular 
examine the significance of the Indian plate and LDD 
in the family’s spread across the Old World. This will 
enhance our understanding of the mechanisms and 
global events involved in shaping the present-day 
pantropical distribution of plant groups.

Materials & Methods

Sampling
Throughout this paper, the family Gesneriaceae is 

taken to include Sanango (subfamily Sanangoideae) 
unless stated otherwise, following Weber et al. (2013).

Ingroup sampling: Within Gesneriaceae, 356 acces-
sions representing 353 species were examined, covering 
142 of the 151 currently recognised genera (including 
Sepikea) and covering all recognised subfamilies, tribes 
and subtribes (Table S1). These comprised the only 
species from the monotypic subfamily Sanangoideae, 
155 accessions of 156 species from 73 out of 78 genera 
of the mainly New World (NW) subfamily Gesnerioideae, 
and 200 accessions of 196 species from 68 out of 
72 genera from the mainly Old World (OW) subfamily 
Didymocarpoideae. Thirty-seven species from 19 of 
the 24 Gesneriaceae genera known from India and Sri 
Lanka were included. Material could not be obtained 
from five NW and four OW genera, all but one of which 
are monotypic.

Outgroup sampling: 49 species were sampled 
from all 24 families of order Lamiales (according to 
Schäferhoff et al. 2010, Luna et al. 2019, Li et al. 2021), 
with one to four species per family depending on its size 
(Table S1). Two species from Solanales and one from 
Gentianales were included as outgroups and the latter 
used to root the phylogenetic trees (as per Li et al. 
2019, 2021, Janssens et al. 2020) (Table S1). In total 
the phylogenetic analyses included 408 samples.

DNA extraction and phylogenetic analyses
DNA extraction: Most samples were field collected 

leaf material dried in silica gel, which was ground 
using a Tissuelyser II (Qiagen, Hilden, Germany). Total 
genomic DNA was then extracted following one of 
three methods depending on leaf quality: a modified 
CTAB method (Doyle and Doyle 1987), QIAxtractor 
(Qiagen), or DNeasy Plant Mini kit (Qiagen) following 
manufacturers’ protocols. DNA quality was tested by 
electrophoresis.

Four plastid DNA regions were PCR amplified 
following Luna et al. (2019). These comprised two 
coding genes, ndhF (Olmstead and Reeves 1995) 
and matK including the intron (Sang et al. 1997, 
Perret et al. 2013), and two non-coding regions, i.e., 
the rps16 intron (Oxelman et al. 1997) and the trnL-F 
intron / intergenic spacer region (Taberlet et al. 1991).

For ndhF and matK, two overlapping PCR 
amplifications were required to obtain the full region 
(Table S2; e.g., Ranasinghe 2017, Luna et al. 2019). 
PCR amplification was carried out for all regions with 
the following temperature regime: one cycle at 94˚C for 
3 minutes, followed by 35 cycles at 94˚C for 1 minute, 
55˚C for 1 minute, 72˚C for 1.5 minutes, and finally 
one cycle at 72˚C for 10 minutes. The PCR products 
were purified using ExoSap-IT (USB Corporation, 
Ohio, USA), and direct cycle sequenced using Big Dye 
(Applied Biosystems, Waltham, MA, USA) following 
the manufacturer’s protocols at Edinburgh Genomics 
(the University of Edinburgh).

The electropherograms were analysed in Sequencher 
v.5.1 (Gene Codes Corporation, Ann Arbor, Michigan, 
USA). All newly acquired sequences were submitted 
to GenBank (Table S1). The sequences obtained in this 
study and those acquired from GenBank (Table S1) 
were aligned online using MAFFT v.7 (https://mafft.

https://mafft.cbrc.jp/alignment/server/
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cbrc.jp/alignment/server/) (Kuraku et al. 2013, 
Katoh et al. 2019) and optimised manually.

Combinability between the four regions was tested 
by visually assessing the individual gene trees for highly 
supported incongruences, following Nishii et al. (2015). 
The result confirmed that there was no incongruence 
due to technical issues (e.g. mix-ups or contamination) 
between the four data matrices (p-value = 0.32), and 
the phylogeny analyses were therefore performed 
on a concatenated matrix of the four plastid regions. 
Maximum parsimony (MP) was implemented on 
unordered and equally weighted characters in PAUP. 
A two-step heuristic tree search strategy was employed 
generating first 10,000 PAUPRat starting trees (Sikes 
and Lewis 2001), which were then optimised using 
tree bisection-reconnection (TBR), with MulTrees 
and Steepest Descent options on (Möller et al. 2011) 
in PAUP. Branch support values were obtained from 
10,000 random addition sequence bootstrap replicates 
with TBR on and MulTrees off (Möller et al. 2011).

Maximum likelihood (ML) analysis was carried 
out using the IQ-TREE online server (http://iqtree.
cibiv.univie.ac.at) (Trifinopoulos et al. 2016), with 
the optimal substitution model set to be detected 
automatically for each sequence region; the models 
selected were GTR+F+G for trnL-F, and GTR+F+I+G 
for matK, ndhF and rps16. The analysis was run 
with empirical state frequencies, and branch 
support obtained from 1,000 replicates of ultrafast 
bootstrapping with 1,000 iterations.

For Bayesian inference (BI) analyses, the best 
nucleotide substitution model for each marker was 
independently determined to be GTR+I+G using 
MrModelTest v.2 (Nylander 2004) choosing the AIC 
criterion (Akaike 1974). BI analyses were implemented 
in MrBayes v.3.2.7 (Ronquist and Huelsenbeck 2003, 
Ronquist et al. 2012). Two independent runs were 
executed with four Markov Chain Monte Carlo (MCMC) 
chains each, set to 10 million generations sampled 
every 500th generation with the heat set to 0.05, and 
with an enforced stop rule when the average standard 
deviation of split frequencies (ASDSF) reached 0.01. 
To further check that adequate convergence had 
occurred, the Potential Scale Reduction Factor (PSRF) 
was confirmed to be close to 1 (Gelman and Rubin 
1992). The runs were further checked in Tracer v.1.7.1. 
(Rambaut et al. 2018), for effective sample size values 
for each parameter to have exceeded 200. At reaching 
the stop rule limit, 25% of the sampled trees were 
removed as burn-in and the remaining trees were 
used to generate a 50% majority rule consensus tree 
containing the clade support values as posterior 
probabilities (PP). The trees were visualized in FigTree 
v.1.4.4 (Rambaut 2006-2018).

Dating Analyses
To estimate divergence times, the four plastid 

DNA matrices were concatenated in BEAST 
v.1.10.4 (Suchard et al. 2018), using the substitution 
models determined above. We used an approach 
following Magallón et al. (2015) where the youngest 
points in the age range of each fossil were taken and 

placed at the earliest nodes, e.g., the crown nodes of 
families. The converse approach to use oldest fossil 
ages and their placement at the stem node might have 
resulted in older ages, but with greatly overlapping 
confidence intervals with our approach reported here 
(this study, youngest ages: 55.66-71.51 Ma; oldest 
ages: 54.64-73.58 Ma). The prior distributions for 
calibration points were set to lognormal for fossils, but 
normal for secondary calibration points (see below). 
A Birth-Death prior (Gernhard 2008) was chosen since 
many extinctions are likely to have occurred during 
the evolution of the family, particularly within tribe 
Epithemateae (e.g., Burtt 1977, Weber et al. 2013, 
Ritchie et al. 2017). The analysis was also run with 
Yule prior to determine the extent to which prior 
choice affected the outcome. We ran 27 independent 
MCMC runs, each of 100 million states and sampled 
every 1,000th generation. Convergence between these 
runs was checked in Tracer v.1.7.1, ensuring that the 
effective sample size was > 200 for each parameter. 
LogCombiner v.1.10.4 and TreeAnnotator v.1.10.4 were 
used to obtain the final combined metric tree, ages 
and confidence intervals. The consensus tree was 
visualized with FigTree v.1.4.4.

Calibration points: There is only one fossil known 
for Gesneriaceae, pollen of Rhabdothamnus from 
the Quaternary of New Zealand (Mildenhall 1980). 
However, it is of too young an age to be useful. 
Thus, we selected nine Lamiales fossils from outside 
Gesneriaceae that have been identified based on the 
presence of reliable reproductive structures such as 
seed and/or fruits (Table 1). Most of these are verified 
and described in detail in Martínez-Millán (2010) and 
Magallón et al. (2015). For all primary fossil calibration 
points, their minimum ages were chosen as the 
crown age for families, except for species-level fossils 
including the monotypic Paulowniaceae (Table 1).

The stem age of Lamiales forms an important 
secondary calibration point for dating Gesneriaceae 
diversification. However, previous age estimates for 
Lamiales from angiosperm-wide phylogenies range 
from 88 Ma (Magallón et al. 2015, Smith and Brown 
2018) to 153 Ma (Janssens et al. 2020), due perhaps to 
differences in taxon sampling, marker usage, algorithms 
employed, and especially the number, quality, and 
placement of fossil calibration points (see Li et al. 
2019). To account for this uncertainty, we selected 
an age distribution peaking at 88 Ma with a long tail 
up to 140 Ma, so as to not exclude older ages in the 
prior distribution.

Age estimates for Gesneriaceae likewise ranged 
from ~43 Ma (Zanne et al. 2014) to 103 Ma 
(Janssens et al. 2009), but in comprehensive studies 
with > 80 Gesneriaceae species, the crown age only 
ranged between 57.5 Ma (Perret et al. 2013) and 
73.07 Ma (Roalson and Roberts 2016). Petrova et al. 
(2015) obtained a somewhat median age with 
71.88 Ma and we chose this estimate as the crown 
age of Gesneriaceae (including Sanango) in this study, 
as it included a balanced OW / NW sampling and near 
complete data matrices.

https://mafft.cbrc.jp/alignment/server/
http://iqtree.cibiv.univie.ac.at
http://iqtree.cibiv.univie.ac.at
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For cross-validation we used the approach of Near 
and Sanderson (2004), where the trees were calibrated 
on each individual fossil in turn, and the sum of the 
squared (SS) differences at the other calibration points 
calculated, from which the average squared deviations 
(s) for all fossils was obtained. The fossil with the 
largest deviation was removed, and s recalculated 
for the remaining fossils, and this was repeated until 
only two fossils remained. After plotting the s values, 
the fossils with the most impact on reducing s were 
identified and excluded. Only the remaining fossils 
were then used as fossil calibration points in the final 
dating analysis.

Biogeographic analyses
For ancestral area reconstructions (AAR), the 

metric MCC BEAST tree was used in BioGeoBEARS 
v.1.1.1 (Matzke 2013a) in R v.4.1.2 (R Core Team 2021) 
run in RStudio v.2021.09.1 (RStudio Team 2021). Prior 
to AAR, the tree was cropped to remove all outgroup 
taxa except Calceolariaceae, the sister family to 
Gesneriaceae, to avoid interference of the states at 
the root on the estimates of the ingroup, and the tree 
was trimmed to one sample per taxon at species level 
(= 359 samples) (Matzke 2014).

To obtain a clearer pattern for the Indian plate 
and surrounding areas, the Asia-Pacific area was 
subdivided into five regions: the ‘Indian plate’ (I), 

‘East Asia’ (N), ‘Australia & Pacific‘ (P), ‘Sunda Shelf 
& Philippines’ (S), and ‘Wallacea & New Guinea’ 
(W) (Fig. 2). These areas were selected to elucidate 
potential migration routes and are those frequently 
used in Asian biogeographic studies, reflecting as they 
do both tectonic history of the region and previously 
understood biogeographic patterns (see Raes and 
van Welzen 2009 and references therein). Within 
Malesia, there have been many differing studies on 
the biogeographic regions (see van Welzen et al. 2011), 
often resulting in several biogeographic regions, but 
to avoid nearing computational limits due to the 
presence in multiple areas of widespread species 
(Matzke 2016), such as Rhynchoglossum obliquum 
and Rhynchotechum parviflorum, we have chosen to 
divide Malesia into just two regions based on Wallace’s 
Line. To these we added four regions corresponding 
roughly to other continents, i.e. ‘South America’ (A), 
‘Central America & West Indies’ (C), ‘Europe’ (E), and 
‘Africa & Madagascar’ (F) (Fig. 2, Table 2). The Indian 
plate comprised Sri Lanka, Bangladesh, and India 
except the northeastern part (Lomolino et al. 2017, 
Sen et al. 2019). The East Asian region included China, 
Taiwan, Japan, continental Southeast Asia and the 
Himalayas (Sen et al. 2019), plus Northeast India, 
whose Gesneriaceae species more closely resemble 
those of the neighbouring East Asian regions than 
they do other Indian species (Sinha and Datta 2016, 

Table 1. Details of fossil and secondary calibration points used in the present study.
Node Age (Ma) Set node Prior Position Age set SD References

1 33.9-28.1 Acanthus Ln Stem 28.1 1 Reid and Chandler 1926, 
Hooker et al. 2009,  

Seldon 2014
2 50.0-49.0 Bignoniaceae* Ln Crown 49.5 1 Wehr and Hopkins 1994, 

Pigg and Wehr 2002
3 47.8-38.0 Byblidaceae Ln Crown 38.0 1 Conran and Christophel 

2004
4 33.9-28.1 Catalpa Ln Stem 28.1 1 Reid and Chandler 1926
5 47.8-38.0 Fraxinus* Ln Stem 38.0 1 Call and Dilcher 1992
6 33.9-28.1 Lamiaceae Ln Crown 28.1 1 Reid and Chandler 1926; see 

also Hooker et al. 2009
7 15.97-11.6 Paulowniaceae Ln Stem 11.6 1 Butzmann and Fischer 1997, 

Manchester et al 2009, 
Fischer and Butzmann 2006

8 5.33-2.58 Pedaliaceae Ln Crown 2.58 1 Tralau 1964, 1965, Martínez-
Millán 2010

9 23.03-5.33 Plantaginaceae Ln Crown 5.3 1 Łańcucka-Środoniowa 1977
10(S) 71.88 Gesneriaceae Normal Crown 71.88 5 Petrova et al. 2015
11(S) 88.25 Lamiales Normal Stem 88.25 20 Magallón and Sanderson 

2005; see also Bremer et al. 
2004

Calibration points marked “(S)” are secondary. Gesneriaceae (point 10(S)) includes Sanango. Fossils marked with an asterisk were 
excluded following cross-validation analysis.
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Möller et al. 2017). East Asia also included the Nicobar 
& Andaman Islands whose closeness to Myanmar and 
Thailand lead to floristic similarities, though they also 
have some Malesian elements (Balakrishnan and Ellis 
1996). The combination of Australia with the Pacific 
islands followed Roalson and Roberts (2016), and 
formed the largest area, containing six NW and two 
OW Gesneriaceae genera (Fig. 1). Calceolariaceae is a 
South American family, other than two New Zealand 
species that occupy derived positions within the family 
(Andersson 2006, Nylinder et al. 2012, Roalson and 
Roberts 2016), so the outgroup was coded as South 
American.

Three models of AAR were explored: DEC (dispersal-
extinction cladogenesis; Ree and Smith 2008), DIVA 
(dispersal-vicariance analysis; Ronquist 1997) and 
BayArea (Bayesian inference of historical biogeography 
for discrete areas; Landis et al. 2013). Because the 

latter two models were implemented in a maximum 
likelihood framework, they are referred to as DIVA-
like and BayArea-like (Matzke 2013b). The factor ‘j’ 
was included to allow founder event jumps which 
may be an important process in the biogeographical 
history of the family (Matzke 2014, 2022) in order 
to obtain probability distributions for the most likely 
ancestral areas for lineages. We followed Roalson 
and Roberts (2016) in exploring whether adding the 
parameter subset sympatry (‘s’) would improve the 
BayArea-like model fit, as it only allows exact range-
copying sympatry, and a number of species had wide 
geographic ranges. Likelihood ratio tests were applied 
to find the best fitting model to generate the output 
of the biogeographical events and most probable 
ancestral areas of distribution (Matzke 2013a). 
We performed 500 simulations of biogeographical 
stochastic mapping (BSM) in BioGeoBEARS (Matzke 

Table 2. Geographic regions defined for the ancestral area reconstruction in BioGeoBEARS in the current study.
Code Region

A South America.
C Central America (Panama through to Mexico), & West Indies (Caribbean islands).
E Europe (Pyrenees, Balkans, Greece).
F Africa & Madagascar (South Africa, East & West Africa, Madagascar and Comoro islands).
I Indian plate (Indian subcontinent including Bangladesh, Sri Lanka).
N East Asia (Northeast India, Nicobar & Andaman Islands, Nepal, Bhutan, China, Japan, Taiwan, 

Cambodia, Laos, Myanmar, Thailand & Vietnam).
S Sunda Shelf & Philippines (including Java, Bali, Sumatra, Borneo, Peninsular Malaysia).
W Wallacea & New Guinea (including Sulawesi, Maluku and the Lesser Sunda Islands (excl. Bali)).
P Australia & Pacific (Australia, New Zealand, Pacific islands).

Figure 2. Defined geographic regions used for AAR of Gesneriaceae. A – South America; C – Central America & West Indies; I – 
Indian plate; E – Europe; F – Africa & Madagascar; N – East Asia; P – Australia & Pacific; S – Sunda Shelf & Philippines; W – Wallacea 
& New Guinea (base map modified from https://www.theworldofmaps.com/sites/theworldofmaps.com/files/WGS84_1.jpg).
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2016, Dupin et al. 2016) on the best model to obtain 
the number of biogeographic events, e.g., anagenesis 
(range switch and range expansion dispersal), and 
cladogenesis (i.e., narrow sympatry, subset sympatry, 
vicariance, and founder events), that may be involved 
in the shaping of the present-day distribution of the 
species.

Results

Phylogeny analysis
A total of 553 sequences were downloaded from 

GenBank and 993 sequences were newly generated 
here (Table S1). Across the four plastid DNA regions, 
86 sequences (5.3%) were missing. The concatenated 
matrix was 8,573 characters long, of which 7,236 were 
included for analyses after the exclusion of poor 5’ 
and 3’ ends of the matrices and the removal of a 
hypervariable region in rps16. The final matrix contained 
2,912 (40.3%) constant, 1,087 (15%) autapomorphic, 
and 3,237 (44.7%) parsimony informative sites (Table 
S2). The MP analysis of the concatenated dataset 
resulted in 115,583 most parsimonious trees of 
22,434 steps length (Fig. S1), with a CI of 0.3441 and a 
high RI of 0.8087. This large number of possible trees 
was largely generated by unresolved nodes near the 
tips of the tree (Fig. S2), whereas deeper relationships 
relevant to biogeography tended to be fully resolved 
and well-supported. The BI analysis had a convergence 
diagnostic of 0.009988 ASDSF reached after 3.8 million 
generations, and a PSRF between 0.999 and 1.067 with 
an average of 1.002 (Table S3). The ML tree had a best 
log-likelihood of -142,097.933.

The MP majority rule consensus tree, and the 
ML and BI trees were mainly congruent wherever 
the branches were highly supported (Figs S1-S5). 
The outgroup family relationships were basically as 
resolved as in Luna et al. (2019) and Li et al. (2021), 
with Plocospermataceae (MPBS: 100%; MLBS: 100%; 
BIPP: 1) splitting off first in Lamiales, followed by a 
clade comprising Carlemanniaceae plus Oleaceae 
(MPBS: 100%; MLBS: 100%; BIPP: 1), and then 
Tetrachondraceae (MPBS: 100%; MLBS: 100%; BIPP: 
1). The 18 families that comprise the core Lamiales 
(Hilu et al. 2003) formed a large clade identical or 
highly similar to that in Luna et al. (2019); this clade 
was sister to a clade in which Peltanthera floribunda 
(Peltantheraceae) was sister (MPBS: 85%; MLBS: 
100%; BIPP: 1) to Calceolariaceae plus Gesneriaceae. 
The relationship between the latter two families was 
highly supported (MPBS: 91%; MLBS: 100%; BIPP: 
1). Within Gesneriaceae, the monophyly of both 
Gesnerioideae and Didymocarpoideae had maximum 
support in all analyses, as did their sister relationship to 
one another, with Sanango racemosum (Sanangoideae) 
branching off first in the family.

All tribes and subtribes (leaving aside four 
monotypic ones) in Gesneriaceae were monophyletic 
with high to maximum support ((70-)93-100%/1PP), 
except subtribes Besleriinae, Didissandrinae and 
Leptoboeinae (Fig. 3, Table S4). Subtribe Anetanthinae 
was nested within subtribe Besleriinae, whereas the 

two genera classified in subtribe Didissandrinae, 
Didissandra and Tribounia fell in different parts of the 
tribe Trichosporeae clade, and Championia (placed 
in subtribe Leptoboeinae by Weber et al. 2013) fell 
outside the clade of this subtribe with high branch 
support (MPBS: 79%/100%; MLBS: 99%/100%; BIPP: 
1/1) (Fig. 3, Figs S1-S5, Table S4). The relationships 
between subtribes and tribes received mostly 
maximum branch support across all analyses.

Divergence time estimates
The cross-validation analysis revealed that the SS 

values were highest for the fossils of Fraxinus and 
Bignoniaceae (Fig. S6), and their removal resulted 
in the strongest drops in the ‘s’ values (Fig. S7), and 
they were removed for the final dating analysis. It is 
noteworthy that these two fossils were not verified or 
included by Martínez-Millán (2010) or Magallón et al. 
(2015). The use of Yule prior gave very similar results 
to the birth-death prior in our BEAST analyses, so only 
the latter is reported here.

The BEAST analysis estimated the family 
Gesneriaceae to have diverged from Calceolariaceae 
66.84 Ma (HPD: 58.4-75.48 Ma) and begun diversifying 
63.48 Ma (HPD: 55.66-71.51 Ma) (Fig. 3, Fig. 
S8, Table 3). Within Gesneriaceae, the major 
subfamilies Didymocarpoideae and Gesnerioideae 
diverged 59.46 Ma (HPD: 51.56-67.68 Ma), but these 
subfamilies began to diversify at greatly different times, 
respectively 55.96 Ma (HPD: 48.27-63.95 Ma), and 
38.6 Ma (HPD: 28.45-52.01 Ma).

The divergence of the East Asian Titanotrichum 
lineage from its NW relatives in Gesnerioideae was 
calculated as an early Oligocene event, 33.36 Ma 
(HPD: 22.97-45.79 Ma). Two other intercontinental 
disjunctions, each between a species pair, were 
estimated to be recent events in the late Miocene: 
the NW-distributed Rhynchoglossum azureum 
diverged from the Sri Lankan R. gardneri 5.94 Ma 
(HPD: 2.32-10.79 Ma), whereas the African Epithema 
tenue diverged from the South and Southeast Asian 
E. ceylanicum 7.62 Ma (HPD: 3.41-12.66 Ma).

Among the Indian taxa examined, the age (i.e. time 
since divergence from its closest sampled relative) of 
Jerdonia indica was estimated to be 51.55 Ma (HPD: 
43.93-59.61 Ma), and that of Championia reticulata as 
46.78 Ma (HPD: 39.32-54.48 Ma). Thus, both represent 
ancient lineages of early Eocene origin (Fig. 3, Fig. 
S8). The ages of other species recorded on the Indian 
plate ranged from 1.84 Ma (Lysionotus serratus; HPD: 
0.51-3.9 Ma), to 18.95 Ma (Corallodiscus lanuginosus; 
HPD: 8.57-31.12 Ma), in the Quaternary and Miocene 
epochs respectively (Fig. 3, Fig. S8).

Ancestral area reconstruction
In all three models tested in the BioGeoBEARS 

analysis, the addition of ‘j’ to allow consideration of 
founder events, significantly improved the likelihood 
values (Figs S9-S11, Table 4) although the results were 
very similar under all models. Adding parameter ‘s’, 
for subset sympatry, to the BAYAREAlike+j (LnL=-579.8) 
model further significantly lowered the likelihood 
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value (BAYAREAlike+s+j: LnL=-515.0). There was 
virtually no difference in P-values between AIC and 
AICc. The automatically generated ΔAIC and ΔAICc 
values were all >7 compared to the best model, and 
therefore the BAYAREAlike+s+j model is the most likely 
scenario (cf. Burnham et al., 2011), and is described 
here. Briefly, according to this model, South America 
(A) (0.62) is the ancestral area for the family and South 
America (A) and Central America & West Indies (C) 
(0.93-0.99) for most of the NW lineages and clades 
(Fig. 4). The Indian plate (0.42) emerged as the most 
likely ancestral area for the Didymocarpoideae (and 
hence all OW species except Titanotrichum and some 
Australia/Pacific lineages). From here, lineages spread 
to East Asia, and from there to the Sunda Shelf & 
Philippines, Wallacea & New Guinea and the Australia 
& Pacific islands (Fig. 4).

In the NW, the BSM analysis indicated that South 
America (A) was the main source area producing almost 
11 dispersal events (17.2% of all dispersal events starting 
within the NW). Dispersal from South America (A) into 
Central America (C) occurred 6.9 times, while 2.5 dispersal 
events were inferred from South America to Australia 
& Pacific (P) (in Coronanthereae), and 0.79 events to 

East Asia (N) (Titanotrichum). Central America (C) was 
an important source area with 2.21 dispersal events to 
South America (Fig. 5, Figs S12, S13, Table 5, S5, S6).

In the OW, East Asia (N) was the most important 
source area with 29.1 events (46.7% of OW dispersal 
events). Most dispersals were from East Asia (N) to the 
Sunda Shelf & Philippines (S) (12.95 events), and to the 
Indian plate (I) (8.77 events). Europe & and Africa (F) 
were not the source of any dispersal events, but each 
was the destination of a single dispersal event from East 
Asia (N), concerning respectively subtribe Ramondinae 
(0.99) and subtribe Streptocarpinae (Streptocarpus) and 
Epithema tenue (1.26). The second most prolific source 
area in the OW was the Sunda Shelf & Philippines (S) 
with 11.3 events (18.2%), with 1.34 dispersals to the 
Indian plate (I) (Rhynchotechum permolle), 2.76 events 
to East Asia (N), and 5.77 to Wallacea & New Guinea (W). 
The Indian plate (I) was the source area for 3.1 dispersal 
events (5%), with 1.22 dispersals to East Asia (N), and 
one event to either South America (A, 0.54) or Central 
America (C, 0.47) (Rhynchoglossum azureum). Wallacea 
& New Guinea (W) and Australia & Pacific (P) were the 
source areas for just over 2 dispersal events each (Fig. 5, 
Tables 5, S5, S6).

Figure 3. Simplified BEAST time-calibrated chronogram to subtribal level of Gesneriaceae samples included in the analysis 
of 408 samples, with ages shown below the branches (in blue), and superimposed above branches MPBS, MLBS, and BIPP 
support values. * indicates maximum support, - indicates support values <50% (BS) or <0.5 (PP); PALEOC. – Palaeocene; 
OLIGOC. – Oligocene; P – Pliocene; p – Pleistocene; Q – Quaternary. To the right subfamily (shaded grey boxes) and tribes 
(open boxes) are indicated: Epithem. – Epithemateae; Coron. – Coronanthereae.
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Discussion
We conducted the most comprehensive genus-level 

phylogenetic, dating, and biogeographic analysis to 
date of the family Gesneriaceae, with more sampled 
genera than previous work on the family (142 out of 
151 genera) and a balanced inclusion of NW and OW 
samples. The completeness of the data matrix was 
very high with only ~5% missing data. For the trees 
generated, the branch support values were mostly 
100% BS and/or 1 PP, providing the basis for a stable 
and strongly supported phylogenetic hypothesis with 
very little incongruence between the MP, ML and BI 
analyses (Figs S1-S5) providing a solid foundation 
for our studies. Our topologies here based on 
chloroplast data largely agree with the trees obtained 
by Ogutcen et al. (2021) based on the phylogenomic 
analysis of 418 single-copy nuclear genes. Topological 
differences with this study mainly concern the more 
weakly supported relationships among subtribes, 
indicating that phylogenomic approaches targeting 

a large number of nuclear genes might be needed to 
fully resolve and stabilise phylogenetic relationships 
in Gesneriaceae. However, topological differences 
between the current study and Ogutcen et al. (2021) 
do not involve the key biogeographic events detected 
here, providing more confidence in our broad scale 
biogeographic analysis.

Divergence time of Gesneriaceae
Our conservative dating approach attaching the 

youngest possible age of each fossil to a stem node 
(following Magallón et al. 2015), revealed an origin 
for Gesneriaceae around the Cretaceous-Palaeogene 
boundary (67.23 Ma), with diversification beginning 
soon afterwards (63.87 Ma). The two main clades 
in Gesneriaceae had very different diversification 
patterns, with the mainly OW Didymocarpoideae 
diversifying much earlier in the Early Eocene 
(56.29 Ma), whereas the extant members of the mainly 
NW Gesnerioideae did not begin to diversify until the 
late Eocene (39.34 Ma). These differences were in line 

Table 4. Results of BioGeoBEARS biogeographical model testing for Gesneriaceae under AIC and AICc selection. Model 
parameters: (d) anagenetic dispersal, (e) extinction, (j) jump dispersal or founder events, (s) subset sympatry. The best 
fit model is highlighted in grey.

AIC
Model LnL numparams d e j s AIC ΔAIC model 

weight P

DEC -590.8 2 0.0028 6.2 x 10-05 0 1.00 1186 150 8.2 x 10-33 8.8 x 10-09

DEC+J -574.3 3 0.0023 1.0 x 10-12 0.0049 1.00 1155 119 4.6 x 10-26

DIVALIKE -628.2 2 0.0036 1.0 x 10-12 0 0 1260 224 4.8 x 10-49 3.8 x 10-10

DIVALIKE+J -608.6 3 0.0026 1.0 x 10-12 0.0064 0 1223 187 5.7 x 10-41

BAYAREALIKE -799.8 2 0.010 0.010 0 0 1604 568 1.4 x 10-123 1.1 x 10-97

[BAYAREALIKE+J0 -579.8 3 0.0007 0.022 0.0048 0 1166 130 1.9 x 10-28]
BAYAREALIKE+J -579.8 3 0.0007 0.022 0.0048 0 1166 130 1.9 x 10-28 4.8 x 10-30

BAYAREALIKE+s+J -515.0 4 0.0008 1.0 x 10-07 0.0091 0.51 1036 0 1
AICc

Model LnL numparams d e j s AICc ΔAICc

model 
weight P

DEC -590.8 2 0.0028 6.2 x 10-05 0 1.00 1186 148 8.6 x 10-33 8.8 x 10-09

DEC+J -574.3 3 0.0023 1.0 x 10-12 0.0049 1.00 1155 117 4.7 x 10-26

DIVALIKE -628.2 2 0.0036 1.0 x 10-12 0 0 1260 222 5.0 x 10-49 3.8 x 10-10

DIVALIKE+J -608.6 3 0.0026 1.0 x 10-12 0.0064 0 1223 185 5.8 x 10-41

BAYAREALIKE -799.8 2 0.010 0.010 0 0 1604 566 1.5 x 10-123 1.1 x 10-97

[BAYAREALIKE+J0 -579.8 3 0.0007 0.022 0.0048 0 1166 128 1.9 x 10-28]
BAYAREALIKE+J -579.8 3 0.0007 0.022 0.0048 0 1166 128 1.9 x 10-28 4.8 x 10-30

BAYAREALIKE+s+J -515.0 4 0.0008 1.0 x 10-07 0.0091 0.51 1038 0 1

Table 5. Results of the biogeographic stochastic modelling (BSM) of Gesneriaceae for all dispersal events from the 
BAYAREAlike+s+j model in BioGeoBEARS. Numbers shown are means with SD in parentheses.

A South 
America

C Central
America E Europe F Africa I Indian

plate N East Asia S Sunda & 
Philippines

W Wallacea & 
New Guin.

P Australia & 
Pacific

A South America 0 (0) 6.92 (1.81) 0 (0) 0 (0) 0.38 (0.49) 0.79 (0.67) 0.094 (0.29) 0 (0) 2.49 (1.02)
C Central America 2.21 (1.13) 0 (0) 0 (0) 0 (0) 0.12 (0.32) 0.57 (0.58) 0.056 (0.23) 0 (0) 0.38 (0.49)

E Europe 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.004 (0.063) 0 (0) 0 (0) 0 (0)
F Africa 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.004 (0.063) 0.006 (0.077) 0 (0) 0 (0)

I Indian plate 0.54 (0.51) 0.47 (0.5) 0.01 (0.1) 0.092 (0.29) 0 (0) 1.22 (0.85) 0.38 (0.53) 0.37 (0.5) 0 (0)
N East Asia 0.006 (0.1) 0.004 (0.063) 0.99 (0.11) 1.26 (0.6) 8.77 (1.38) 0 (0) 12.95 (2.08) 4.87 (1.22) 0.20 (0.4)

S Sunda & Phili. 0 (0) 0 (0) 0.002 (0.045) 0.65 (0.6) 1.34 (0.96) 2.76 (1.6) 0 (0) 5.77 (1.42) 0.80 (0.67)
W Wallacea & NG 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.41) 0.28 (0.52) 1.03 (0.83) 0 (0) 1.00 (0.69)

P Austr. & Pac. 1.15 (0.75) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.006 (0.1) 1.00 (0.69) 0 (0)

From:
To:
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Figure 4. Ancestral range estimation for the family Gesneriaceae based on the BEAST ultrametric tree, and the best fitting model 
determined by BioGeoBEARS (BayArea-like+s+j). Areas are colour-coded as indicated in the insets. Pie graphs at each node indicate 
the probability of presence in a given area (or combined areas). Subfamilies (pale pink), tribes (light green) and subtribes (pale 
yellow) are indicated. Abbreviations used: Tribes: Besleri. = Beslerieae, Cor. = Coronanthereae, Epith. = Epithemateae, Napean. = 
Napeantheae, Titanotri. = Titanotricheae. Subtribes: Anet. = Anetanthinae, Bes. = Besleriinae, Coron. = Coronantherinae, Co. = 
Corallodiscinae, D. = Didissandrinae, Ep. = Epithematinae, Ge. = Gesneriinae, Je. = Jerdoniinae, Le./Lepto. = Leptoboeinae, Lig. = 
Ligeriinae, Li. = Litostigminae, Loxon. = Loxoniinae, Loxotid. = Loxotidinae, Mitrar. = Mitrariiinae, Monoph. = Monophyllaeinae, 
Negrii. = Negriinae, R. = Ramondinae, Sph. = Sphaerorrhizinae, St. = Streptocarpinae, Te. = Tetraphyllinae.
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with earlier studies (e.g., Roalson and Roberts 2016, 
suppl. fig. 3; Fig. 3). In general, our age estimates 
were most similar to those of the order level analysis 
of Fonseca (2021), older than those of Perret et al. 
(2013), and younger than those of Petrova et al. (2015) 
and Roalson and Roberts (2016) (Fig. S14).

Transoceanic dispersal into the OW, and early 
diversification in South Asia

Our analysis indicates three early probable 
transoceanic dispersal events from the NW to the OW 
including Australasia. The earliest such dispersal event 
was the common ancestor of the Didymocarpoideae 
into the OW around 59.46 Ma, newly reported in the 
current study (Fig. 4, Figs S8, S15). The most likely 
arrival point (42% probability, Fig. 4) was the Indian 
plate (see detailed discussion below). This was followed 
by the ancestor of Titanotrichum which reached East 
Asia c. 33.36 Ma, whereas that of the Coronanthereae 
reached the Pacific c. 33.1 Ma (Figs 4, 5); both of these 
events were previously detected (Woo et al. 2011, 
Perret et al. 2013).

All three of these dispersal events to the OW 
require either an LDD event, or a long journey via 
intervening landmasses such as Africa, Antarctica 
and/or Australia, leaving no extant descendant along 
the way. LDD events are known to occur regularly 
through geological time (Higgins et al. 2003, Nathan 
2006), with a minimum of 72 detected for Urticaceae 
alone (Wu et al. 2018); indeed, Gesneriaceae exhibits 
relatively few by comparison (Fig. 5), and the families 
are of comparable age. During the period when all 

three Gesneriaceae dispersal events occurred, 60-
30 Ma, Antarctica had an equable climate (Thorn 
and DeConto 2006), was connected to South America 
(Barker and Burrell 1977), and exchanged flora with 
it (e.g., Taylor 1991, Morley 2003, Sytsma et al. 2004, 
Knapp et al. 2005, Buerki et al. 2011). Hence it is 
perfectly plausible that one or more of the three 
dispersing lineages moved over land into Antarctica 
and then dispersed north from there, as has been 
proposed for the Coronanthereae (Perret et al., 2013).

The presence of Titanotrichum in Asia (Taiwan, 
Japan and China) and the absence of relatives in Malesia 
argues in favour of a direct LDD as hypothesised for 
the arrival of other disjunct plant groups in Taiwan, 
such as Lardizabalaceae (Wang et al. 2020), although 
the similar age of this event with the Coronanthereae 
could possibly suggest a co-migration overland through 
Antarctica. Overall, in all three cases, all of LDD 
direct from South America, LDD from Antarctica, or 
stepping stone dispersal via another route, are possible 
hypotheses to be explored in the future.

The role of the Indian plate
Key to the occurrence and diversification of the 

OW lineage in Asia is the location of the arrival point 
of the Didymocarpoideae common ancestor, around 
59.46 Ma. The most likely arrival point (42% probability, 
Fig. 4, Fig. S11) was the Indian plate, followed by 
East Asia (29%) and Sunda Shelf & Philippines (11%); 
other scenarios from the analysis can be discounted 
because they require simultaneous arrival onto the 
Indian plate and another area with which it was not 
contiguous at the time. The two subclades into which 

Figure 5. Graphical summary of the Biogeographical Stochastic Mapping (BSM) analysis of Gesneriaceae in BioGeoBEARS 
on the best-fitting model, BayArea-like+s+j, showing dispersal events (with a rate higher than 0.4) between geographic 
regions. The thickness of the lines is roughly proportional to the number of predicted dispersal events (founder 
events and range expansion). Events with counts below 1 are indicated by a dotted line. (base map modified from 
https://www.theworldofmaps.com/sites/theworldofmaps.com/files/WGS84_1.jpg).
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Didymocarpoideae then divided are strongly supported 
to be Indian plate (Trichosporeae) and Sunda Shelf & 
Philippines (Epithemateae) in origin (Fig. 4), and hence 
the analysis appears to be presenting three scenarios. 
In order of likelihood (Fig. 4), these are (i) (42%) Indian 
plate arrival followed by dispersal of Epithemateae to 
Sunda Shelf & Philippines, (ii) (29%) East Asia arrival 
and dispersal of Trichosporeae and Epithemateae 
to the Indian plate and Sunda Shelf & Philippines 
respectively, and (iii) (11%) Sunda Shelf & Philippines 
arrival followed by dispersal of Trichosporeae to the 
Indian plate. Scenarios (i) and (iii) are both consistent 
with Morley’s (2003) suggestion of early Eocene 
floristic exchanges involving the Sunda Shelf, close 
to the equator. Scenario (ii) requires either extinction 
on the Asian mainland following the two dispersal 
events (unlikely given that several Didymocarpoideae 
lineages thrived and diversified there), or multiple 
successive dispersals to the Indian plate, which 
would be less parsimonious. Based on this, and the 
low (11%) probability for scenario (iii) from Fig. 4, 
an Indian plate arrival will be discussed here as the 
most probable scenario, with the necessary caveat 
that the other two cannot be ruled out. Moreover, 
because an Indian plate origin is strongly supported 
for Trichosporeae, which is far more species-diverse 
than Epithemateae and accounts for the great majority 
of OW species outside of Malesia, the Indian plate is 
strongly indicated here to have played a crucial role in 
the early history of OW Gesneriaceae, even if it was 
not the original arrival point.

Massive volcanic eruptions occurred on the 
Indian plate around 65 Ma lasting almost a million 
years, forming the Deccan Plateau and pushing the 
present-day Western Ghats to over 1,000 m a.s.l. (e.g., 
Renne et al. 2015, Richards et al. 2015, Schulte et al. 
2010). This region was isolated in the Indian Ocean 
between the African and Australian plates at this 
point (e.g., Morley 2003, fig. 4; Bernardes et al. 2021, 
fig. 1), and around 5,000 km south from the Asian 
mainland (Wheeler et al. 2017). Volcanic eruptions, 
and crossing the equator during the northward rafting, 
might have led to biotic extinctions, and suppressed 
biodiversity on the plate (Lowery and Fraass 2019, 
Morley 2000, Rutschmann et al. 2004). Hence, the 
stem Didymocarpoideae might have arrived into a 
region undergoing significant biotic turnover, which 
created both opportunities for establishment and 
challenges for survival.

The first two diverging lineages of Trichosporeae are 
both monotypic Indian plate genera: the South Indian 
Jerdonia, and the now Sri Lankan Championia. These 
diverged respectively 51.55 and 46.78 Ma (Fig. 3), 
implying a long presence and high levels of extinctions 
of early Trichosporeae on the Indian plate. This might 
explain that these two relict lineages have greatly 
differing and unusual habits, with Jerdonia being a 
rosette perennial herb in South India with strongly 
zygomorphic flowers and unique capsules, whereas 
Championia in Sri Lanka is a caulescent shrubby plant 
with actinomorphic flowers (Gardner 1846, Wight 
1848); they hence offer few clues as to the habit 

of the Trichosporeae common ancestor. The Indian 
plate is known for its importance as a repository (e.g., 
Morley 2003, Karanth 2006), possibly reflecting relative 
stability in its southern part following the upheavals 
of extreme volcanism, progressive latitude change, 
and collision with Asia.

The Indian plate collided with the Eurasian plate 
(65-(55-50)-40) Ma (Wambulwa et al. 2021, and 
references therein), and this is consistent with fossil 
evidence of terrestrial faunal exchanges between the 
Indian and Asian plates around 54 Ma (Clementz et al. 
2011). However, the first node that is likely to have 
been present in East Asia was the third divergence 
event within Trichosporeae, which was the divergence 
of Corallodiscus (comprising the monogeneric subtribe 
Corallodiscinae), from all other species, 41.91 Ma. 
Therefore, Trichosporeae might have taken longer 
than some other groups to migrate away from the 
Indian plate. The broad distribution of Corallodiscus 
includes parts of the Indian plate as well as much of 
China (Kamble et al. 2006, Rout et al. 2008). Since the 
Indian Corallodiscus sample did not represent a basal 
lineage in the genus phylogeny (Zhou et al. 2017), 
the Corallodiscus divergence event might have been 
the first to have occurred outside the Indian plate. 
By this time the Himalayan orogeny would have been 
underway, presenting suitably diverse habitats for 
biological diversification, potentially promoting the 
generation of new lineages which might have been 
better adapted to colonising regions further east 
(Wambulwa et al. 2021, and references therein).

From around 40 Ma onwards, the Indian plate 
gained further Gesneriaceae species almost entirely 
by dispersals from elsewhere. Chief among these 
were ~10 back dispersals from East Asia between the 
early Miocene and early Pleistocene (18.2 to 1.84 Ma) 
(Figs 3-6, Table 4). This involved at least eight genera 
including some species with wide distribution ranges 
(e.g., Epithema ceylanicum, Rhynchoglossum obliquum 
and Rhynchotechum parviflorum). We coded the Indian 
plate to exclude Northeast India because of geological 
uncertainties in this region and its similar flora to 
adjacent areas in East Asia. Had we included this region 
within the Indian plate, additional back-dispersals to 
the region would have been indicated, because most 
of the 20 Gesneriaceae genera in Northeast India have 
ranges extending eastwards into East Asia (Sinha and 
Datta 2016). One, presumably long distance, back-
dispersal from the Indian plate to South America was 
inferred, involving Rhynchoglossum azureum (sister 
to the Sri Lankan R. gardneri) in the early Pliocene 
(5.94 Ma) underlining the role of the Indian plate in 
diversification of the family.

Diversification through the Old World: East Asia as 
a centre of diversity

Trichosporeae is the largest tribe in Gesneriaceae 
with around 2,400 species (Weber et al. 2020), and 
has several centres of diversity in Asia (Tan et al. 2020). 
From around 40 Ma onwards, most diversification 
in Trichosporeae occurred in East Asia, with many 
interchanges with neighbouring regions (Figs 3-6). 
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Our stochastic mapping analysis likewise highlights 
East Asia, as defined in Table 2 (Area N in Fig. 5) as 
a major source of dispersals to both Sundaland and 
Wallacea & New Guinea (with 12.95 BSM modelled 
dispersal events) as well as to the Indian plate noted 
above, Europe (subtribe Ramondinae), and Africa 
(subtribe Streptocarpinae and Epithema tenue) (Fig. 4, 
Table 5). In contrast, it was the recipient of relatively 
few dispersal events (Fig. 4, Table 5). This is consistent 
with the meta-analysis of De Bruyn et al. (2014) 

which resolved continental Southeast Asia to be a 
major evolutionary hotspot in Asia. We recommend 
further analysis of this highly diverse and important 
subregion separately in the future (following Matzke, 
2016) separating, for example, continental southeast 
Asia from the rest of East Asia to further elucidate the 
speciation and dispersal dynamics in such a scenario 
would be valuable.

Hilliard and Burtt (1971, p. 380) had suggested 
a Gondwana origin for what is now subtribe 

Figure 6. Simplified BEAST time-calibrated chronogram to subtribal level of Gesneriaceae samples included in the analysis 
of 408 samples, annotated with key dispersal events as coloured dots indicated by the BGB analysis. Each dot represents 
the destination of a separate dispersal event.  ‘Indian plate’ (I),  ‘East Asia’ (N),  ‘Australia & Pacific‘ (P),  ‘Sunda Shelf 
& Philippines’ (S), and  ‘Wallacea & New Guinea’ (W),  ‘South America’ (A),  ‘Central America & West Indies’ (C),  
‘Europe’ (E), and  ‘Africa & Madagascar’ (F). Colour code of dots as in Fig. 2. Posterior probabilities are given along the 
branches. Shaded HPD bars are given only for nodes linked to major geological events: (1) Orogenic origin of the Andes 
(Taylor 1991, Morley 2003); (2) Asteroid impact 66 Ma creating the Chicxulub crater in the Yucatán Peninsula in Mexico 
(Mann 2018); (3) Collision of Indian and Eurasian plates 55-42 Ma (Ashton and Gunatilleke 1987, Briggs 2003); (4) Orogeny 
of the Himalayas 55-20 Ma (Antonelli et al. 2015); (5) Separation of South America from Antarctica 40-30 Ma (Barker 
and Burrell 1977), and Antarctica and Australia ~30 Ma (Sanmartín and Ronquist 2004); (6) GAARLandia (Antonelli et al. 
2015), and the beginning of Antarctic inland glaciation 35-32 Ma (Zachos and Klump 2005); (7) Two periods of proposed 
connectivity across the Panama Isthmus 20 and 6 Ma, after Bacon et al. (2015). PALEOC – Palaeocene; OLIGOC. – Oligocene; 
P – Pliocene; p – Pleistocene; Q – Quaternary. Subfamily and tribe annotation as in Fig. 3.
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Streptocarpinae (see Nishii et al. 2015). However, this 
can be rejected because the estimated stem (31.59 Ma) 
and crown (17.72 Ma) ages of the Streptocarpinae 
lineage are at least five times younger than the break-
up of Gondwana in the mid Jurassic (~180-160 Ma) 
(Fig. 4, Fig. S8). Instead, the BGB analysis suggests a 
dispersal of the lineage into Africa to have occurred 
in the Oligocene-Early Miocene. One plausible 
route would have been overland migration after 
the closure of the Tethys seaway during the Early 
Miocene, although the route still requires crossing 
of some narrow seaways (Bialik et al. 2019). This 
would fit a southward migration route within Africa 
and two separate colonisations of Madagascar that 
was proposed by Hilliard and Burtt (1971) and later 
supported by molecular data (Möller and Cronk 2001). 
A second more recent dispersal from East Asia into 
Africa in the Late Miocene involved Epithema tenue 
(7.66 Ma), and could have followed a similar route, 
although direct LDD is also possible.

Dispersal of the Ramondinae lineage from East Asia 
(N) into Europe (E) occurred during the Oligocene, 
consistent with Petrova et al. (2015) (Fig. 4). At that 
point the European and Asian plates were firmly 
sutured, and hence overland migration to the 
contemporary Balkan Peninsular (and later further on 
to Spain for R. myconii) is the most likely hypothesis.

Other dispersals from East Asia (N) involved more 
than a dozen mainly southwards overland migrations 
to cross the Isthmus of Kra and into the Sunda Shelf & 
Philippines (S) over a wide period of time spanning the 
mid Oligocene and Miocene (e.g., Loxocarpinae p.p., 
22.75 Ma; Codonoboea, 18.88 Ma; Liebigia, 15.56 Ma; 
Paraboea p.p.; 8.71 Ma) (see also Puglisi et al. 2016) 
(Figs 3-6). During periods of glaciations when sea 
levels were lower, the Sunda Shelf was part of the 
Eurasian landmass (Hall 2002, 2012a, b) and overland 
dispersal was possible. Several dispersals from East 
Asia (N) directly to the Sunda Shelf & Philippines (S) 
involved larger genera such as Aeschynanthus and the 
widespread Rhynchoglossum, but these species-rich 
genera were undersampled here.

Diversification through the Old World: Malesia and 
the Pacific

Dispersals between the Sunda Shelf and Wallacea & 
New Guinea require crossing Wallace’s Line, a seaway 
that was never closed (Hall 2002, 2012a, b). In our study, 
these were on the whole more recent than dispersals 
from East Asia to the Sunda Shelf, and mostly eastwards 
into Wallacea & New Guinea (Figs 3-6), adhering to the 
more common pattern in this geographic area seen 
in numerous plant groups including Begonia, Aglaia, 
and Pseuduvaria (Richardson et al. 2012, Thomas et al. 
2012, Grudinski et al. 2014, Su and Saunders 2009). 
Examples of this Sunda to Wallacea dispersal route 
included the large genera Agalmyla (16.2 Ma) and 
Cyrtandra (6.34 Ma) in tribe Trichosporeae, and 
the widespread Epithema benthamii and E. saxatile 
(2.5 Ma) in tribe Epithemateae (Figs 3-6). Agalmyla 
species have long hair-like seed appendages, as in 
Aeschynanthus, where this type of appendage was 

shown to aid wind-dispersal or zoochory (perhaps on 
the feet of birds) across Wallace’s Line (Hilliard and 
Burtt 2002, Kokubugata et al. 2011). Zoochory may 
also be involved in Cyrtandra species because of the 
presence of fleshy fruits (Atkins et al. 2020).

The BSM suggested one dispersal into and one 
out of Australia & Pacific Islands from Wallacea & 
New Guinea, split between the two genera Boea 
(11.42 Ma) and Cyrtandra (6.22 Ma). Both genera 
are undersampled here, and recent detailed 
biogeographic studies on Cyrtandra indicated that 
the direction of dispersal is predominantly from 
west to east in this region for the genus with three 
dispersals recorded from New Guinea to Australia and 
the Pacific (Johnson et al. 2017, Atkins et al. 2020). 
The directionality of dispersal events in eastern Malesia 
can, however, be highly complex (Low et al. 2022).

Conclusions
Our results provide new insights into the 

biogeographic history of the Gesneriaceae, 
particularly in the palaeotropics. With much denser 
sampling at genus level, particularly from the OW 
Didymocarpoideae subfamily, we have evidence 
to support the importance of rare LDD dispersal 
events in shaping the present-day distribution of 
the family, particularly the late Palaeocene arrival in 
the OW of a lineage from the Americas, most likely 
onto the Indian plate. This initial dispersal event to 
the OW ultimately led to the current diversity of the 
Didymocarpoideae, underlining the importance of rare, 
stochastic events in shaping diversity. Our work also 
indicates the importance of comprehensive sampling 
and the significance of endemics, such as Championia 
from Sri Lanka and Jerdonia from India in elucidating 
contemporary biogeographic patterns.

The analysis also highlights the importance of the 
Indian plate in the early history of Gesneriaceae in 
the Old World as both the source area of dispersals 
into the rest of Asia and as a later recipient. East 
Asia, including China and continental Southeast Asia, 
emerge as hotspots for Gesneriaceae where diversity 
evolved via both in situ speciation and subsequent 
emigration with lineages from this area dispersing to 
Europe, Africa and in high numbers to the Sunda Shelf 
and the Philippines and Wallacea and New Guinea.
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