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' . A STUDY OF REGGE DYNAMICS IN PION NUCLEON SCATTERING
| | John D. Stack -
Iawrence Radiation Iaboratory
University of California
Berkeley, California

April 27, 1965

- ABSTRACT

_ R
A theoretical study 1s made of the MacDowell symmetry and .

the properties of Fermioﬁ Regge poles. Subsequent to this, a set

of Reggeized bootstrap equat?ons for. #N scattering ié-defived and
analyzed. A careful‘discussﬁqn of kinematics is glven, the inhémoge-
neocus terms in the integfal equation are constructed in detail, and the

integral equation 1s transformed to one of standard Fredholm type.



INTRODUCTION

Recent yéars have seen a tremendous proliferation in the
ﬁumber and variety of known strongly interacting particles. The
progress that has been made In understanding this complex of stateé
has been mainly the result of‘two complementary general approaches.
One of these 1s the study from the dynamical point of view of certain

systems chosen for their simplicity. The attempts to understand the

qr and N éystems dynamically are perhaps the best examples of this.

The other approach has been the observation of regularities in the whole

spectrum of particles and th%ir'interactions and the association of
these regulerities with syﬁmétries and approximete symmetrles.. The
discovery of the conservation of isotopic spin and the brokén eight
fold way‘are results of this approach. In atomlc physles the attempts
to merge the dynemical ﬁodel of the hy@rogen atom with the regularities
bbserved in all atomic spectra eventually led to‘thé discovery of

quantum mechanics and a complete thebry of atomic rhenomena., So here

. too it 1s hoped that advances in these two general directions as well

as attempts to merge them together wili bring about a more éomplete
understanding of strong interactions. The present investigation is
devoted to an attempt to improve the theory of =N écattering.
Histo;ically)'the attempts that have been made to understand
the nN system In a dynemical way have played a large role in the
development of the theory of strong interactions, and'have led to a
theoreticaliunderstanding of N phenomena at low energies which is.

satisfying 1h many ways. Among the first of these attempts was the



- ”_?;fiﬂN interaction, which contained some features which are- still ‘ figﬂ;?;”&

.11”UVWave amplitude 18 an analytic function in the energy variable ‘Whose ffij_-

" .cross channel. An important'result of their analysis wels a

Atfibasi¢ ingredientSfof-dynamical calculations. Nemely, that the partial:tvtfixﬁfei

”jf singularities are of two types; a right hand cut whose origin is the

"t‘fsubseqpent derivetion of relativistic partial wa.ve dispersion relations,

" Frautschi and Welecka

- suggestion was then made that one could generate the nucleon as a

B ,""‘bound state, with N,

‘ 'Pfffiwork of Chew and Low.l- They studied a simple static model of the:.-a»'f'”’53‘

'Jf{;requirement of unitarity in the direct cnannel, and a left hanicut y vaid: :f}

~""-""{‘-vvl‘vhzl.’ch’ represents the "force" and whose origin is the scattering in‘tnelf' -

" dynamical model for the N*,. wresonance, as due to theilaréegattractive = -

35

’ff force from exchange of the nucleon. Further progress awaited the . -
"fgw development of a relativistic franework'for dynemical calculationscf

ilfef This came with the discovery of the Mandelstam representation2 and the -  f'J

3,k

2 used the framework thus provided to study the .

‘vChew Low model of the ,N - resonance in a relativistic-context. Their T

33

- 'work ‘qualitatively confirmed the Chewvﬁow model in that & ’5/2, 3/?
resonance was found, but at an energy rather lower than experimentaily R P
..observed. Subsequent to this; Chew6 made an important observation,'

" .again using the static model. This was that the ‘N., resonance in

35

' the crossed channel resulted in a strong attraction in the 1/2 1/2

;. . state in the direct channel, in'which’the nucleon appears;' The

35' exchange as the dominant force. The solution_j‘v '”73}&

B :;Of the relativistic dispersion relations now required a high energy ; )
cutoff due to the high spin of the N35 resonance, Calculations = =

i



~

by Abers and Zemach,7'and by Ball and angs confirmed for an appropriate .
'_choice of cutoff?fhat‘the nucleon could indeed be_generated.as a bound

- state with approximately correct mass and coupling constant. Ball and

Wong's work 8lso showed that almost all the low angular moméntum waves

© could be understood at low energies in terms of the same forces that

. * '
produce the nucleon and the N,, . Thus on the basls of the above

33
9

‘calculations and many others,” it 1is fair to say that a dynamical

understanding of all low energy =N phenomena including the lowest

- bound staﬁe‘and'resonance hasvbeen achleved in a way that is reasonably

self consistent and in reasonable agreement with experiment.. On the

other hand the above calculations all contain cutoffs of one form or

another to which the solutiohs of the bootstrap equations are quite

sensitive. Nor has there beén any coﬁcerted effort to understand

{
the higher resonances in & quantitative way, particularly those at
900 and 1350 Mev which are thought to be Regge recurrences of the

nucleon and N'_ .
. 33 .
-"It 1s the purpose of the present investigation to develop

a theory which while incorporating in a broad way the ideas of the

‘calculations mentioned above, 1s fully Reggeized.. A parameter in

some ways analogbus to the cutoffs of previous calcﬁlations remeins

in the theory, but it now has a physical significence and the the&ry

depends on it in a much less sensitive,way. Furthermore, the set of

bootstrag'equations studied here will make 1%t possible to explore O

the conjecture that the nucleon and' N* lie on Regge trajectories,-

33
and to investigate the possibility that the two resonances mentioned

§ . ) .
above also 1ie on these trajectories. - The work is laild out as follows:




'=wfby Mac Dowell.5 A general discussion is given, which establishes it

ffIn Section I, the basic notions of the strip approximation on which this R
';work is based, are reviewed and discussed for the o case. Section II zgf_

+ is a digression on a symmetry important in #N. scattering, first. noted a.g, 3

fj.for the general spin case and also establishes clearly the origin of

...'the symmetry.. Section III considers the #N partial wave amplitude”;:}g_;[’iﬂ, '

';'in the complex angular momentum plane,and establishes some’ simple
:'fianalyticvproperties of Fermion Regge poles. Section IV contains a o
iv derivation’andvdiscussion of the basic dynamical equation as well as .,L' . ~é
';tsome further results on the behavior'of Fermion poles. xIn Section V;.‘ o
s the terms which play the role of forces in the dynamical equation
are constructed and their»qualitative'behavior discussed. Section VI
' treats the singular behavior of the basic: integral equation, leaving
an integral equation of standard type. Section'VII contains a brief o
 discussion of the asymptotic behavior-of the Regge parameters and

some. concluding remarks,

!

[
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SECTION I. THE STRTP APPROXIMATION

"In this section, we review and discuss briefly'for‘the N

case the basic ideas of the strip approximation developed by Chewlo

and applied by Chew and co-wérkersll to nxt scattering.

 The basis of this'apjroximation is en attempt to build into
a single theory the general features of two body reactions of strongly
interacting particles which are thought to be controlled by two body
dynamicé. These features fall into two ranges of energies. The

first of these is the low energy region. Here scattering is concentrated
}

in a few engular momentum states. In the most interesting cases,

prominent resonances occur. 'While_channels involving three or more

particles may be open in this region, most of the scattering into

such channels can be understood in terms of production of Quasi-two

body final states. The second energy region is very high energies.

Here the scattering 1s almost all forward and is mainly absorptive.

" Essentially an infinite number of angular momentum states are involved

and the variation of the amplitudes with angular momentum is extremely

slow, This behavior suggests attempting to understand the situation

- 1n terms of the nearest singularities in momentum transfer. These

singularities are controlled by two body dynamics in the cross
channel. The intervening region of energles consists of a gradual
transition between these two regimes and cannot be simply approx-

imated bf'tWO body dynamics in elther the direct or cross channels.

. The strip aﬂ%roximation attempts to Join the low energy region directly

[
%

e
K385



llf but it 1s hoped that this will still allow a good approximation in #;_E::’:ﬁ-”'

_the interior of the high and low energy regions.

. brilliant work of Regge

" on trajectorles of reasonable shape in the anguler momentum pl#ne is. -

~built in from the start, Tarticles and resonances -are then mani-

. right half anguler momentum plane. Thils range of energiles correspondsi' o

-to the low energy resonance region mentioned previously and in thié

@7’fonto-the'highvénefgy region. -The intérmédiate enérgy'region.willfkffjx*nf;ff? .

o éoufse'bé mutilated'to éome extent by this abrupt tranSition;":'_

e

Early attempts at a-theory of this type foundered because ;A

- of apparent inconsistencies Between resonant behavior in one éhannel "vf”i;;” -
1 » : e

i

. and reasonable high energy béhavior in the cross channel.> The |

15 confirmed that this inconsistency was only

an apparent one however, and reopened the possibility of a consistent

,,  strip approximation. In the Reggelzed version of the SFrip'approx-

,':.imation, the conjecture that particles and'resonances’aretp01es lying -

© festatlons of such polesfmoving through or near pnysical values of.
7‘angular momentum in the direct channel and the'high.energy'behavibr

- of two body amplitudes 1s contrblled'by polesvin:cross-channels. As

has been'emphasizedvby Chew,lo the point at which the low energy

 region is joined onto the high energy n%;bn in the strip approximatinn
‘also receives a rather natural'interprétation in terms of Regge poles. .ﬁ
; For example the rightmost Regge*pole in the s channel will dominate

the t and u discontinuities as well as the st and su double

spectral functions for t,u->o00- as‘long as thebpole is in the.
s fixed

range of ené%gies the behavior of the amplitude is controlled by the -v»-wfnv-w%-

! t q

'large t an& u reglons of the st and su “double spectral functions..,‘.'"



T

Beyohd the resonance region'the pdle curves back into the left half

plane and the 1arge t and u perts'of the double spectral functions

 begin to fad away and nearby singularities which are controlled by

cross channel poles begin to take over. This provides a natural place o

to joln the low energy region onto the high energy region. This

glves a significance to the strip width ., &as well as a way of

Sq |
roughly estimating it from experiment. As in,the nt  case treated

by Chew, 1n the =N case_studied here the above;ideas will be applied

. . g
in the following way: A dynamical equation basea on partial wave disper-

sion relations will be used to generate the amplitude 1n the low
energy region se€ [(M + u)e, sj] . The contributions of double
specfral funetions lying outside this:strip will be parameterized in
terms of Regge poles in'the crossed u and t channels. ‘These‘v
terms will éive the dominant contributions to the double spectral
functions in the low u and low t sfrip reglons. - The deep interior
regions of the double spectral functions which depend in an essential

way on many body dynamics will be ignored. Given the t channel

. x> NN pole parameters,_a bootstrap situation then exists in which

the output s channel =N poles'are reqﬁired to be consistent with

the poles in the ecrossed aN channel.




.later sections. The second is the'necessityvof working in the W'-”

| IT. PARTTAL VAVE AMPLITUDES AND THE MAC DOWELL SYMMETRY = . =

-‘nN ’partial‘wave dispersion relations differ from those f',"~l

for the simpler mx case in essentially two respects. The first =~

z

biy; of ‘these is the presence of unequal masses, which complicates the;;.i-\”'fvvé:

singularity structure. This will be discussed in more detail in

" plane rather than the s plane. This is the consequence of a symmetry

o first noted in nN scattering by Mac Dowell.3 In this section we

give this symmetry a more fundamental treatment than it has received

~in the past. While this will not result in any practical simpli-
_ .,fication of our treatment of =N partial wave dispersion relatlions

' relative to past treatments, it will clearly show the origin of the

symmetry and allow an extension to the arbitrary spin case ‘with no
extra effort. We consider. only physical J in this section. Let

us take first the N case.. The covariantvhelicity amplitude

~can be written:

n, - REaen) +Ee b)) seea)

b

vf”'This form is a consequence of paritylconseryation'and ILorentz invariance,

= From thils the partial wave amplitude is easily derived:



LRI L N E L )
o )Re P o | | |
= mar . |Agga(s) + (W-M) Broa(s) o II.2

327W

. .
L (M) [-AJt%(S) + (w4) BJ:,_.%_(S)]

, ] +1 ‘ : ,
where A&(s) = J dz Als, -2q2(l-'z)> Pz(z) ; ete. for B&(s)1 i
. -l B !

From this we easlly see that
V‘I';:F%(W)_ = T‘;t%(-w)_ g I3

which is the Mac Dowell symmetry. . The faét that amplitudes of opposite

| parity are coupled to each other in this way forces one to treat them

. together and to work in the W plane. The original paper of Mac Dowell

stated that the symmetry was a consequence of 'PT invariance. We
shall see that it depends oply on Lorentz invariance and a simple
property of rotations through angle . & Iin cases where J 1s a half
integer versus cases where J i1s an integer. Let us generalize our

discussion to any two body reaction:
1L+2 =+ 3+ L

where partidle 1 has spin Sy - We consider the covarlant hellclty




T—.X'i }\37\3

-"‘ Wigner rotation given by°» '

 ~where ' ~ . -

'and

o a‘111"31~11"11t3.e T}‘B )"1)‘ (P5ph 5 Plpe) . ,‘Loi'entgVi_inye.i'ienc:ew.reguinesi;_“;‘:;v.v.

N .

"37&;_,: NA P5P;; 1,2 R ', o I‘I.h_‘_

—z D' (R ) D

' -~‘where A is some real proper Lorentz transformation; R 'is the

i

) “;;W;f A .f°vf:e; .
. Ri = BAPi A Bpi e

R N

= takes particle i from rest to momentum p Given
1 i

*3* %‘:I-}‘?(pjp,+ ;. pl ) , we can construct 8 simpler qpantity.:

jwe introduce the spinor functions yx(p) which are 28+l dimensional '

: column_vectors whichhtransfcrm acccrdingvto the _(OS) representation_'.v

of the hcﬁogeneous.Lorentz group, -

)I

(R)-I-) T)37\-' "‘1)‘2 (AP AP)_'_.' APlApa) }\1)‘1 )\2)\2(]32) . o




-

B) = p%(,) ) N
I1.5

R ORNOIER I NORRIC)

We define T(X) as follows:

. | : 4""33 +S)+' Sl.' .Sé
T}\}M ; "_1"2(1)31)1* 3 pyP,) = %‘3 ‘(pj) WM (p)) T(x) w}.\l(pl) \[f)\2(p2) 1T.6

where K denotes the set of momenta {pi} . T(K) if 8 generalized
matrix with appropriate row and column indlces to match onto the
¥'s . Relativistic invariance of - T

. My 5 Ay (p5py, 5 2,7,)

»implieé
the simplef transformation fpr T(K)

0S

0 . '
T(K) = D 83(A)+ DOS”(A)+ T(AK) D °

‘wo 2wy 1T

Tﬁe function T(X) is essentially the same as the M . function.
introduced by Stapp.lh The unitarity condition for T(K) is free

‘of extraneous non-analytic factors and thus it is this function which
has only those singularities'determined by uwnitarity itself in any

| theory which uses unitarity to deter@ine singularity structure. '

Now let us extend (II.7) to the complex Lorentz group.

The transformation A in equation (II.7) can be parameterized

-

as follows:

A = e e 11.8



- T(K) as a function of 6,

The T and K are the usual h)(h matrices and therefore A is jﬂ B

o1 i
a holomorphic function of Gi and xi Similarly the DOS(A) are
v-_holomorphic in ei and xi The right hand side of the eqnation is |

‘,findependent_of the O, and A\ and is therefore trivially holomorphic_f-;

1 Ny

in 61 and A, . Therefore this equation provides an extension of -

1

1 ‘and K ~over the full complex planes of Ag,ﬂf."'

i{‘these variables. ' Thus the validity of (II.7) for real Lorentz

transformations implies its validity for complex! Lorentz transforma- '

- tions. This.extended_Lorentz invariance allows the calculation of

’,“T(Ki) -at any point XK' related to K by a real or complex Lorentz.rva
'"fvtransformation, if only T(X) is known. Furthermore it is easy torttlj :
- show that if T(X) is holomorphic.in the momenta in some original |

.,-domain, 1t 1s also holomorphic in the extended domain generated by = SR

the actlon of the complex Lorentz group.15 Our approach to the

Mac Dowell symmetry will Dbe to use this extended Lorentz invariance

to relate the partial wave helicity amplitude at values of W which

are negatives of each other. For this consider the set of complex

- Lorentz transformations AQY):

--1vJ -1(11#)1{3

e

AY). I1.9
vhere ¥ d1s real. If ¥ =gx", A(x) waps any four vector into
B M . .
1
|

its negatdve, i.e.-

e

Ak = -k



Furthermore, o _
OSQ\(n)Jf () \lr (-p) e o II.10

where ws(-p) e -ieJ i$J -i(xﬁi“)Kf

(m) -

- This equation follows because K; 1is the same matrix as i J5 in

' the 08 representation;' Now let us introduce partial wave helicilty

amplitudes: IT.11
W) = = d(R)D | )T . . (o.3m,0,)
™ T e s B
where TABN (p Ph 3 Plpé) 1s taken in the center of mass
)-I-,
frame, p3 = Rpl s and W =. El+ E2 = E3+.Eh Similarly,
II.12

}\5}"14 )‘_L}" "W) = ];(R) }\2 )\57\ (R) T)\ 7\1" )\1}\2 "PB' p)_'_.' Pl P2)

where :
II.13

s s Comoms o) = 0 a4 K B 1 ) 42,
Ty 3oi s =Px=P) 5 <Py=By) = ¥, “(-p,) ¥, "(-p)) T(-K) ¥, ~(~p,) ¥ ~(-p

Nghys MRst T3 TR TLTRT T N T Iy, R ML T2
: , _ 1
To get a relation between these two quantities, lre use equation

II.7 for A = A(x) and II.10 , From these it 1is easy to see that

" + A ‘- ( + )
Th:’,}\').;.; }\1K2 ("93 "Ph.: 'Pl'P2 ) ('1 )7\3 b Kl v )\2
II.1h4

T}‘B}"h; A (pp)5 P1P,)



C Now.the coMbinations e

b II. 15 above, we see that

‘ij.v . x ( R ) e o ;v _
('W)(l)xj " )\l«,)\g ﬁz"w "1"

II 15 e ’

ABK

. o E
r_.__'_\_i_'. ‘
NE ,_‘~4._. |
=
+
=,

’3% M" S
= T"s"h’ ’i" _ [r{_’ My "1" (W) B 7;‘T'J "u "‘1 h(W)J

{x}xh, -%1- (W)"'I;T\} Ay xlx (W)}

represent transitions between states of definite parity Using'felatioﬁi": R

_' Sy 7~3+M (M’”?\) L e, B
.:Tih Ny xlx ( W) f ? ( 1) s Tﬁskh’ klh (W)

B | F AR

e _(_l) | o [ﬁiz"h’ 'H'”éW) g;"“h’ Kl"z(W)}

" and therefore

>\3 A xl-x (W)J

’tL *2 ("‘3*' WT%M; 7‘17‘2 117 | - |

= (1)

™ W)
Ay 3‘1%‘2( W),

L7
[

HIRY
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_ for boson fermion scattering and

0, = ()Y 03”“) a0, T
Mg M | "31;”1
for boson boson or fermion fermion scattering. The same relations

'hold for the amplitudes T&;h ] xlkg(w)+ . The first case above is
y Mt -

the Mac Dowell symmetry generalized to arbitrary spins and parity non-
" conserving trensitions, if they occur. The difference in the two

cases follows from the fact that

2(k3+ Kh) -1 ' for the boson-fermion case
< - _
L1 o !" for the boson-boson and
\ }5fermion "~ fermion case. !

This factor arosevof course from the rotation e . 3 in A(x) .
So we have seen that the Mac Dowell symmetry is quite fundamental
and follows from extended Lorentz invariance which is itself a
consequence of ordlnary Lorentz Invariance. No use need be‘made of
P or T invariance.

Let us consider the meaning of our definition of

% o,

in more detail. In the usual treatment T(X) 1s expanded as |

2(K) = I Ags,t) ¥ (K) | i
. 1 :



. .one has an expression which 1s & sum of terms of the.form:s

the Mac Dowell symmetry holds., Note that one cannot’set s =W

ael

. The Ai are SCalar-amplitudes analogouS'to thé:'A 'and B -invthe'fwﬂff o
vlvnN ‘case, The Y, (X) are spinor basis functions which are -

.polynomials in.momentum components. Upon making the projection II ll » f 'w;,'

g(W) Az(s), wherei Ai(s)c = ‘[ dsz<s,t(z2)Pi(z) f-ijfhflﬁuglt“

-l

g(W) may in general have kinematic singularities at the points

'_W ; + (Mi Mé) s + (M3+ Mh) : | f , 0 ,.

One can always choose the cuts caused by these singularities to lie

" on straight_lines_connecting these:points.‘ Nowvconsidering the set '

of transformations A(W) actingcon'the set of momenta K and -

A3K ; K

defining W = E + E, = BBy, ( -W) - is gotten by

1" 2

'allowing“ ¥ to reach = starting from O ., In_a term of the form.

| above, this means of course s 1is constant all’along this path

while W moves from a point to the right of the kinematic singularities

to a point to the left of them on a path which does not cross any of
the kinematic cuts as defined above. At the beginning and end of the

path W = s 1s satisfied. This specifies the sheet in W on which

2

at the outset and continue directly to the Mac Dowell symmetric point
-W , since one in general alvays meets & cut of 5A (s) on the way.
Any two points related by the Mac DOWell symmetry are always on the .

physical sheet of the scalar amplitudes A (s) .jf ' e
[ N
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}_17_ .
ITT. CONTINUATION IN TOTAL J AND FERMION POLES

In this section we continue‘the N amplitude in total

" angular momentum and establish some simple properties of the Fermion:

Regge poles, assuming the amplitude is meromorphic in the region

considered., Continuation in total angular momenﬁum for =N

scattering has previously been considered by Singh.l6 Our

 ‘discussion of the properties of the Fermion poles is based on the

" method of Barut and Zwanzigerl7 who considered splnless particles.

From equation II.2 , the partial wave amplitude can be
!

' 2 2 |
T - - [AJ;%(S) + (Wm) BJ;—%(S)]

. e 2 :

We assume that as t(u) - o at fixed s that A and B are

bounded by some finite power of t(u) . : Therefore for Re {

_large enough:

(e

Als) = = at' A (s,') Q, (Li—2x) TII.1
e 2 _ £ ¢ 2’
_ nq hue : 2 -
0 '
\ R e o) 2 .
- Jﬁ au' A (s,u') @, {21 + 200+ y)-s-u
u ¢ 2
(M)

Qi



Coel
and \likewiée for BL(S) We seek a continuation of IIT.1 avay
: ‘f'rom integer values of & that é.ilows ’ché Sommerfeld-Wa.t.s.dn’vv
transforﬁation to be made. Such & continuation has the desiréd
. property that its singularities in L are directly related to the
asymptotic behavior of the amﬁlitude in t and u. For q2> 0,
the first term of III.1 is holomo‘rphic in ¢ for Re ¢+ >N and K
A L= ILI eiv t , it 1is nonincreasing as !Ll ~ o for |
-fzyés (b& sg- . The second term is holomorphic for Re £ >N ,
but is badly behaved as Li - oo_ and will not allow the Sonmerfeld-'
-»Wa.’cson fransformg.tibn to be made. The standard cure for this diffi- .

- culty 1s to define continuatiohs from even Integer & &nd odd.

. integer ‘4 separately. So we define:

o |
A,%(s) = -13 I at' A (s,'b )Q 1+ . III.2
N e hu . R

yi_ (/ du'A(s,u)Q,
M+u) o

. - ' e e
and similarly for B& (s)'. For q_2 >0 both AL°(s) end BL°(s)

2(M2+ u )- '’

2q

1-1

‘are well behaved and allow the Sommerfeld-Wé.tson tranSfbrmation to

N ﬂbe made., These quantities specii‘y the continuation of TJ_ (W)

1

away from physical values of J.
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Je 2 2 e e T
0 (WiM)“- U o _ o
TJ_%(W) s AJ_%(S) + (W-M) BJ_%(s) i III.3

2 2 o) ‘ o .
(W-M)"- u e e
+ " SEm AJ+%(s) + (W+M) 3J+%(s) ’
' - IIT.L

. Jdeg
vand TJ

’ : - Je Jeg
& (W) 1s glven by : TJ+%(W) = TJ_%GWO

The e amplitude agrees with the physical ampllitude at values of

J given by J = h2+l , n an integer, the o anmplitude at

hnal

J =3 . | | : . !

So far our discussidn has been restricted to high valﬁes of
J . The only assumption made so far ié the Mandelstam representatidn '
with et most.a‘finite number of subtractions nécessary. At this
point we make some further hypotheses. First; we assume that the
amplitude can be analyfiéally continued_in J to the'léft to some
éoint below ail physical values of J and that the continued amplitude
agrees wilth the physical amplitude at all physical values of J .
Second, we assume that the only singularities in J +to the right of
fhis point are simple poles. These assumptions requlre some
comment,

Even in theories which allow a continuation to & point
below all physical values of J ,‘ the assumptlon that only poles
appear will not hold in‘general. For example, Mandelstam18 has

-

. considered & case in which if polés occur, so do cuts 1f account is



“taken of:certain-complicated'processes involving three and four'particle”‘”
‘:intermediate states. More'complicated singularities mey also'oocur.'
‘in higher order processes. The motivaﬁion for attempting to ignore

" these singularities is based mainly on a desire to see if a sensible

approximation scheme can be built in the order of processes. That is,

-one attempts to handle explicitly reactions involving say at most

- N particles'and to ignore the complications of W + 1 and higher

particle systems. The strip epproximation, with which we are dealing,

. represents- the lowest order approximation in such a scheme: in that

only two particle systems are involved. If the scheme hakes sense,

.vthen meaningful results can be obtained ignoring such intrinsically
'lthree particle effects as cuts. Two particle systems with reasonable
_forces.generally‘give rise to amplitudes meromorphic.in J - in the B
- right half plane. Since there are no nonsenée states in elastic

P scattering and wevdo not introduce CDD poles, the continued

‘amplitude will be the same as the physical amplitude in this theory.

Now under these assumptions, let us establish some simple

properties of the Fermion poles. For definiteness, let us consider

“the amplitude Tg 1 (W) - We can break the quantities A (s) s

e ¥
QJgL(s) into two parts. For example:
2 N



AJ'__l_(s) = == at! At(s,t') QG ill+—5 |
2 g~ h'_? - 2. . 2q .- -

| | ', o _ o
+f at' Ac(s,t') Qa1 + t2> + (/ au! Au(s, u') Qy_1\-1- 2(M2+“2)'s°u_
2 M+p.) 2q

e .

1;l
o o M2
|
.+[ au' A (s,u') Q, 1 2( + p’ )'S'u )
u J-g 2q
- 111 . .

- The finite integrals are holomorphic in the entire J p.lane'e'xcept

for fixed polesat J = .-_172, - 3/2 , etc. This allows us to break

'I"ge_;_ (W) d1into two terms, one coming from the finite int'egrals and the
-1 v

- other from the infinite integrals.

Tgf%(w) = b, (,W) +b2(J,_W)- | o | III.5

The Regge poles that exist must all be contained in the second term,
b, (F,W) . Let us consider the analytic prbperties of by, (F,Ww) .
First of all there are winding point singulerities at W = + (Mzu) .

et us divide them out and consider the function ﬁé (3,W) :

NG00
J-% (B+M)

ﬁé(J,w)' = IIT.6

_ C)

‘This function is real analytic and has various cuts from the A and

B ainplitudes and the Q functions on the T real and imaginary

-

"~ axes., (We choose tl> th “so the usual circula.'r ‘out d.oes not appear

in b, (J,W) .) The function b (3,W) 1is not the only real analytic

function ob’cainable from be(J sW) . One could imagire replacing



S eea

o

. D82 o N2 2
[s - (M) ] [s‘- (M = u) } ;
5 J=3 T ' : R
or |s - (M + 1) in the above definition. However for the
b . success of the argument which follows it is q_uite importa.n‘c that

~the function’ b (J,W) as we have defined 1t be used. The cuts

. of b (J,W) eare as follows: -

(a) W = *M+np, ooJ - o o
() w = ¢t :!._co, [t+u(t)-2(M2+u)]]
where u(ty)~ (1 + 1) as b > o

() W = % [100, [y t(w) - 20P+ 12)] EJ |

where t(ul) - lme as u:L - o

o~

-

1+

[t-e(mew)-[(t-em’f 22). -umz-u)]

@ W o

1
.v_‘ o .
(e) w = * ioo, [t-em%un (t-eme eu)-nmz-u)J
| vz [

L

(o) wos t |0,

-:”‘"v ul | _
@ v - tlie, 1 [ul- e(ﬁf)}i

14

|

(V]

[
[N

|
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cuts (a) , (b)' and (c) arise from fhe A end B amp;itudes;
. The rest are frém the Q functions. ﬁow.the Regge‘poles are
contained in g;(J}W) regardless of the values of w, %, . These
can be chosen to be arbltrarily large. If this 1s done, thén cuts
(d) and (f) shrink to zero, while cuts  (b), (é), (e) and (g)
- move infinitely far awaey. Therefdre the position and reduced
- residue of any pole which remains in the domain of merohorphy coﬁnected
.with high J for all energies are both analytic functions of W
with only cut (a) , as long as the pole does not intersect other
boles. We expect that these conditions will be met fof,the leading
trajectory. Of course the same results carry over for the poles and

| residues of the o amplitude. L
J-3

If & factor having a J dependence other than (qe)
is used in defining 5é(J,W) » & function having cuts in addition
to (a) ~ (g) is obtained. These cuts do not shrink to zero or
recede as u, tl -+ o and fhus-the reduced residue'of the function
so defined has cuts in addition to cut (a) . Thi$ result 1s quite
important for choosing the kinematic.factor in ﬁhé'N/b eqpationA
. |
which will be done in Section IV. |
"~ Let us now investigate thé properties of the poles and residﬁes
near W=1% (M+ p). . We firstvconsider the point W =-(M + u).
We define ’
. ) |
(T, W) = - e TII.7

T
(@) (& +m)




 This f‘unction is real analytic nee.r W (M+p.) a.nd has no zero a.t

(M+u) The generalized unitarity rela.tion is

| ‘ | . TII.8
. ( EJ,%- o _ o ;
biJ,W+ie) - b J,W-1¢€ : EM) & ; ~ xe
2 23 _ , ) = q(_q )w (E4) & (J,W+ie) (T, Ww-1€)
' Therefore we can write b(J,W) as follows: -
B(I,W) = — dn =l - Imm.9
o v 2y 2EM  ~in(J-5) |
YIW) - 1 q(e®) © I -inl-z
vhere Y(J,W) 1is real analytic and has no brenchpoint at W = (Mén) .
- The Regge poles é.re solutions of
/ - _
L iy s g2t E B (k) .
b : o Y(IW) - 1 q(gf) = ¢ 2/ = 0. . III.10
From this 1t is easily seen that i1f Re a(M+n) > O then
Im a(Mip) = 0 . Consequently, ‘ - . o
' | TIT.11
i : R - 2 Ol(Mﬂl) ~2. E+M - .
Ya(MﬂJ.) a(M+u), M+u-] Im oz(w+ie) ey . a(a®) = sinn Ol(M+p.)
o ! W (Mp) . ,
L
where . . “ '{ o o -
Y M), Mip) = 0 Y(J,M+u) /' , ' S
“or(M+u) ’ ST ’ J = a(M+u) LT
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This shows the nature of the branchpoint in (W) near this point.

The residue of the pole in  b(J,W) is

sin n c{M+p)

Ya(M+“) (or(M+|.L ), M+u>

and a glance at ITI.1l shows that this has the same sign as
Im a(W@ie) near W = M+p . Quite analogously the point
W= - (M) can‘be treated., Thls point refers to the (J,J+3)
amplitude. We will establish the convention of_associéting the right
hend physical cut with the (J,J-3) amplitude and the left hand
physical cut with the (J,J+3) emplitude. The physical amplitude
‘vis reached by approaching the cut from positive imaginary values
on the right and from negative imaginary values on the left. To
summarize, the pole position a(w) isireal analytic in the W
plane with only cut (a) . “if 1t passes through br near & physical
‘value of J for W }fO‘, it corresponds to a bound state or
resonence in the (J,J-3) state.‘ If it does so for W <O, it
corresponds to & bound state or resbnance in the (7,J3+3) state. If

Re a(M+u) > 0, then

a(W+ie) - a(W-ie) . qg )O‘(Mﬂl) E4M
4 -
& W (M) W




" and if Re oz(-M-u) > =1 , L B

a(W-ie)--va(W+i§i‘  - ‘;'1,( éjq(fm'“)‘gig
O

/"-
& W = ()

The fesidué B(W)‘ = [J-a(W)] %(d,w) /J _ a(W) is also reai enalytic -

" in the cut W plene with only the cut (2) and has the same sign as

Im q(W+le) near W = M+u and Im a(+W-i€) near W = - (M+u) .

¢

-
* f
i
¥ i
It . -
3 '
N i
')H f
N o
4
!
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SECTION IV. THE N/D EQUATION

~

In th;s section we cbnsider the basle N/b‘quation} The:
emplitude which we will eventually use for this 1s B (7,%) ,

defined in section III . However, before we proceed to the treafment.
of the 'N/b equation, the béhavior of the amplitude at

W =1 (M-p) needs some attention. Let us rewrite the amplitude

Jdo _
T30
J 2 e | e
) (W4M)~ - 0 o
T 1 (W) T A;1 + (W-M) Br 3
2 2 o) o)
. W=M) ~p e

e
-A‘ 1+ .(W+M) BJ+%_

The source of the compllications at W = : (M=p) is the integral -

Q

. e | o
over the u discontinuity in the amplitudes Ai s B&e‘ . Tor
. ' 0

example, the contribution of thils integral to ALe is :

] o] : :

e . 2 ' 1t

2,°(s) = * X5 au' A (syur) Q(-1- 2008 ) =5 - n
L,u . 2 5 u L o
() | | B

where

2 ‘[s ;?;(M+ul)Lg] [s - (M-p.)e} ‘

. '
- !

s
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If the integral started at a lower limit u_ > (M), the above

" . o\d o :
_emplitude would o (g=) near s = (M-p)= . This follows-from

the 1/z%Y : vehavior of q,(z) et large z . However in our

integral te rgln:rear u' = (M+)2 can cause the quantity 2(M2+ p@)es-u! .

to vanish near s = (M-u)® and this fact causes the behavior neer

s = (M-u)2 to be somewhat more complicated. To investigate this

.. in moré detail let us split the integral into two parts,' one . from

‘(M+p.)2 to u2 and the other from u. to o s wheré u, is

2 2
slightly above (M+u)2. Now the function Au(s,u’) is analytic

in the cut s plane with cuts (M+p)2, oo| and |

[- o, 2(M2+ W) - u - to(.u)] where to(u) > hp.e, Consequently |

for u near (M+u)2, Au(s,u) '1s “analytic in s - near (M-u)2

and can be expanded about thls point. This amounts to a rearrangement

‘of the Legendre expansion of Au(s,u') in the 7N u channel.

This expansion for Au(s,.u') can be expressed directly in terms of
the ;rN partial wave amplitudes in the u- chammel. The appropriaﬁe
formula for this is given in section V . Near u = (M+u) the
imaginary pal,rts of the' partial wave ainplitudes are analytic in

{u- (M+u)2}—2— aﬁd consequently we can expand Au(s,u') in a double

power series:

TS
e
-
[]
=
]
= B
~
| O ]
B
-
=
o

% @ Au 2
Au(s,u') = .5 u - (M+p.)]

-
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v ) . . . . " ‘ \ ‘
, 10 : 2M+u "E 2.
where for example .Au 2 <—-——-M +u) T

vhere & 1s the =N S wave scattering length. ILet us introduce

I

Yy = S.- (M-u)g , and denote the argument of the Q function by z.
Then & term from the expansion of Au(s,u') contributes the following
 term to ‘the integral from (M+p.)2 to u,

2
X = (M)

2 2 . , IV.3
n,m 2q 2q

az y" {2q2(z+1) - y]g q,(z)

>

(S
ST
=}
e
Bj

y
1+ =

2q

where

uMu -y ..

2 -1

(M-p )+ y

For small y the lower limit is always near the point -1- gMﬁ ’

and the upper limit is near the point

g 0e)?] [en)?]

-2y Mu

_ ) :
Now let us divide by (qg) s  keeping y >0 for the moment. Then

we have

R



~approached from above and:belcw. This gives: '

\:”'; .;36__‘ RE
o f_ '_E_ ‘-.(M+u) ' - ;
R -1+J2+u2 — C vk |
= 2q 2q
. A - Q (-z) -
e 2 Tu m 2 2 3 : o
ey “ dz y {Eq (z+1) - y] T
e L b(M-p)2+ y R
2q ‘ .
Now we can see the nature of the branchpoiht at y_ = 0 by taking -

;ﬁhe_discontinuity of this expression as the negativeb ¥y axis‘ is

b

¢ '_l. :
-~ J,m . n- . ' IA . S . S
AT 5= ¢ 2 -
- 2 u m 2 (M-p.) - : ‘ Lo 2Mu .
F= oo v () [_M?—] J sinnt dz[l_f = (1+z)]QL(-z) |
| B I I .5
v F f dz [1 +2M__L__l(l;-z J 2 p,(z) (
-1 ‘ (M'“-) '

/

- where we have kept the lowest power of y . The dominant behavior

near y =0 will come from the term A%? . Consequentiy, to lowest

order in y4; the discontinuity'is.contrblled by the S,Awéve scattering

. 1 | A
‘length and it Vvarles as (-y)? . The terms which vanish more

- rapldly near y = O will involve the scattering lengths of higher ‘ ST

-

. waves as well and can be calculated in a straightforward way.

e . . N ~
Similarly fot the BLO(S) amplitude, the discontinuity varies as R
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(-y)%h& and is proportional to 82, Now for L >3/2 .or J>1
the behavior (~y)%-& is not integrable. What this means is that
if dispersion relations dealing directly with the discontinulty near
| Yy = Ov(orkw =t (M-p) are being used, the confributions from
integrals on small circular céntours around the points W =.f (M=)
must be retalned. It is easily established by contihuation from the

region L < 3/2 that this does not introduce any arbitrary parameters

~ into the problem. The same information that determined the discontinuity

near y =0 for ¢ <3/2, i.e. 2 to lowest order in y , also
1s all that 1s needed to evaluatevthe small cirgu;ar in%egrals for
‘4 >3/2 . Therefore, although the amplitude does not vary as (q?)%
near yv= 0 as has often been claimed in the literature,h75- the
operation of diViding by thls factor causes no difficulty beyond the
computational one of evaluating the small circular integrals. 1In

6ur subsequent discussion we will avold this computétionél difficulty
by only dealing directly with the physicél cuts. These points
established, let us turh directiy to the consideration(f the
appropriate amplitude for use in setting up an N/b equation.

Let ﬁs start from the amplitude T?_Z?(w) . In order for the

‘ residues of the Regge poles to have the desired analyticity properties
guaranteed? the discussion of sectidﬁ II% requires that ﬁhe kinematic

J-3
)

factor which we uée must contain (q? . Then the requirement that

correct threshold behavior at W =% (M+u) be guaranteed and that
the possible kinematic pole at W = O be removed specifies the

iy

remaeining féptor to be (E + M) . The amplitude we propose to deal



.. with then is

":?value at the MacDowell symmetric points W;-W or in other words |
is o be regarded as a function of s . This follows from the
discussion at the end of section II and the fact that the behavior o

‘fvwe are dividing out originates in the amplitudes

real values of J . The resulting integral equation will then be-

continued to the left in the J ;ﬂane. we assume the'function

o is known and we seek to generate the amplitude using two body unitarity

"in the strip regions Woe [w , M+p,] ‘where W. = 8.2 . For I

large enough the amplitude has no poles in the physical sheet. In

°(J,w) = e S w.e o

TJ

T-% t
(q ) (Ban) ‘_
S 3 should be emphasized at this point tha.t (q2) ha.s the sa.me

e’_’ : e o .
ALO(AQ) ’B&o(s). ;Fv;,

To establish the N/b equation, we will start from high

(M) §~eo
Imb “(J,W')

WlewW

ey '~e6", g
Fo(z,w) = b (J,W)-_-;;:faw'

. =W

) . | 1
Wl 1m§°(Jw')
j Mﬂt : U S IS A

K
P!
[

-‘=Hl-'

) .L

1 1l N
that case the existence of an N/b decomposition is guaranteed by

_the Omnes representation for D(J,W) :



L fr 8 1(W')dW' Ly - (M) O(W’)dW' |
N R L AR © 0 1v.8
e, n . W'-W x W C(wr-w)
D (J,W)=ce R .' Wy
e

~ The requirement that ‘D'O(J}W)  have no pdes or zeroes at threshold
e ‘ N eq. .
implies the choice 5 1(M+u) = SJ:_l_(M+u) = 0. D 2(J,W) carries
: 2
the phase of the amplitude in the two strip regions; or in other words,

~e e ) \ ' )
Im [b °(,w) D °(J,W)] =0, Wwe t [M+;1, Wi]‘ Therefore in
e, ea .e§ : e, 'Neo éo “-'
N (W) = D (5,w) F “(IW) +|D (W) "-F “(J,W) s IV.9

the term in brackets is

S () '

| 1 Coaw o %o
.- ;I- : w-'—:-w Im D (J,W') F (J}W')
Wy _ : : ‘
Iv.1l0
- Wi : v  e e
IR &3 : !
- -];j o [ImD,‘-’(J,w')] FO(3,W)
S M . - '

where the definition of F °(J,w') ‘and the. fact that D (J,W) —_— 1
W= o0

‘have been used. Unitarity for S °(J,W) glves

e
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. L IV.1l
o ®o,n ) J . e
D “(J,W+ie) - D "(J,W=-1i€) 2y EM o
(Lite) =D (TW-Ae) . () B yogrw)
21 : .
for W e [M—Fu, Wl} ' R
" % - % Ly J . e ’ ‘
D (J,w+ie) - D "(I,W-ie) _ _ (qg) E+M N °@,W) V.12

o1 W.

for W e [- 19 "(M.+”)]
5 }
where as mentioned px_'eviéusly, qe. Is a func’ciqfn'g of s . Therefoz,e,
Woo =(M+p) [

s, 1)t aw' | e 1 |
D (J,W) = 1~ = ¥ , p(I, W) N “(J,w") T IV.13
' - W'- W :

E+M
W

has been denoted by p(J,W)
‘ e ' : '
and the fact that D °(J,W) is normalized to 1 eat infinite W ,

J

where the combination . (qe )
. eo

‘has been used. Substituting the above expression for D ~(J,W) into

IV.9 for N gives:

. eo eO
. i . A . . | _
Yy .. o )
+%f gt T ALW) = F LW o wry w O3, ) IV

. ' ’ .
b W'e W S S

1

-

,: = (M+) e , e
;ZQ. at E °(3,w') - F °(3,W)
v K CWe W

i i
’wlv i

e
o(T, W) ¥ °(3,w)
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" which is the basic 1ntégra'1"equat16n. e construction of Fe°(J,_W)'

will be éonsidered in section V and the difficulties éssocigted with ,
the logarithmic behaviérlnear. W = pa Wi will be considefed_in section VI .
The analysls in section VI shows that the equation is one of essentially
Fredholm character. That is, either the equation as written has a

unique solution or the homogeneous equation'has 2 solution; The

" result of section V will be to provide é function FFO(J,W) holomorphic

" in J +to the ;ight of some point below all physical values of J .

Thus except for certain iéolated‘values of J wﬁeré Fredholm poles

exist, the function Neo(J,W) 'is‘holomorphic in {J to the right of

this point. We assume there are no Fredholm poléé to the right of
‘some Jo < % » If this 1s so fhen the amplitudL is.me:omorphic in
Jd «+ The Regge poles that ¢xist are solutions of .Deo(J,W)'= 0.
This will mean in practice fhatvthe poie posiﬁion aeo(w)’ has only
" the cuts * [ M, le instead of the full physicel cut. The same

applies for the reduced residue given by:

L - (Mtp) N W, K -1 e, e, e, eo'
-;f +;Ej aw [w-w] " | %@, W) F %@, W)
e - . -W M | ‘
B °(w) = L

e
Dao o, W) ' ’
| Iv.15

Since the étrip width 1is supposed to be chosen at a value of Wl

sufficiently large that thé poles have turned back to the left half

plane, the absence of the hiéh energy cuts I {Wl, aﬂ may not
sériously aéfect the wvalues bf the positon and residue in the low
ol | o .

energy region. !



in the nN system.v We shall see in section V that the,forces due

'filwhere the force is strongly attractive in one . of the states (J,VJ 33),

_when it moVes'into the upper half plane continuing to movevto the

 W<O0 and decreasing, the pole would in the simblest case move to

ey
?

. o O T w ° o

Before turning to the construction of F (J}W) ,f'lef us j”'

-,make some remarks about’ the qualitative shape expected for trajectories

to exchanges of Regge poles will bear a qualitaetive similarity to the

forces treated in the'usual un-Reggeized way. If so then in cases

1

. then it 1s either weakly attractive or repulsive'in the MacDowell

' symmetric partner of this state. This behavior arises mainly becanse“-V

the dominant forces in the problem arise from the exchange of the

N particles in the u channel.i'The terms in such exchanges change .
sign in going from & to {2 1 and when they add to give attraction "“i"“':

:‘1 in one case, will add up to 8 much weaker attraction or a repulsion

.in the opposite parity case. It is easy to see from the definition-’

- of the,continued amplitude, that this behavior holds for unphysical

as well as physical values of 'J .' Consequently‘if'conditions are
favorable to a trajectory nhich rasses near physical values of J in;
the (J, 7 - 3) state for example, then we don't expect to see this
trajectory near any physical values of J in the .(J} J + %) state;
In this example we would have a trajectory function a(W) with the |
following behavior: For W > 0 and - increasing, ‘the pole in the J

plane will move to the right gtaying 1in the real axis until W = (M) ,

right for a time and then curving back to the left half plane. For o ,}-r‘

 the 1éft uﬁth W = - (M+n) at which point 1t could move either up - E



or down from the ?eall J- gxis;and continue its motion until the
endpoint of the ﬁrajectory;'_When the pole is in the right half‘plane;

the sign of Im a(W+i€) is determined by the requirement that

resonances correspond to poles on unphysical sheets and the centrifugal

" barrier argument that puts a resonance with'higher mass &t a higher
value. of 'J . Neither of these reqpiremehﬁs‘is operative in the case

~ discussed above at negative W and therefore Im a(W£kQ‘ cen have

either sign. Similarly if e Physically interesting trajectory occurs

in the (J,J+3) state, it will be in the right half plane for

. W<O0 and will move to the right as W decreases. Iﬂ'this case

Im c(W+ie) 1s negative for W < - (Mtp) . For W>O0 and
increasing the pole would move to the left. We will see in section V

that 1f this qualitative behavior holds true the construction of

force terms is simplified considerably.



- from all double spectral functions which are non-zero in regions =

poles, taking the crossed =nN channel first. For thls we need some '

| ;-.;v;--_CONSfIlRUCTION OF F 9(_J:_W)

[

In this section we consider ‘the’ term F (J}W) which must?,ﬁ‘?’nf

- :.-"be supplied as an- i.nput 'bo the integral equation for I\T (J,w)

The contributions to F (J}W) are of two types. The first is

- outside the interval E e [(M+H)2, le . These of course are never

known exactly. As stated in section I the basic approximation

scheme of this work is to parameterize these contributions in terms

of Regge poles in the Cross channels. The second contributions to

- F °(3,W) are from the regions - s € [(M+p)2, sl] themselves. _The‘_'t'
‘double spectral‘functions for s é[(M+p)2, sl] ‘contribute to the
.t and u discontinuities and thus to the force cuts of F °(3,w).

. These contributions are of course also unknowh and there is no

method available at present for reliably estimating them. They are
ignored here. Their influence is rredominately on the far away parts-h-

of the force cuts and thus may not have an appreciable effect on

~the low energy scattering., This difficulty is of course one which

" is always present when the N/D method is used. Let us turn then

e 4 .
to the construction of F °(J,W) in terms of cross channel .Regge

of the standard formulas for partial wave projections in =N scattering.;6i o



. -39~

| fi_'=v gf%f[A(u;s) + (W-M) B(u,s)}_.a

il . . o . . V.l

= gn% ['A(u’s) + (W+M) B(u, S)]
or . A
IF: £
B(u,5) = bn Ei—M +
( ) ( ) V.2
o (W+M f (WM
1 2 . |
A(u{s) - EM ~ TEN
where'
5 = % 7 5Tg;%(w) I3+%(zu) - ?§+%(W) Pl a(z )
V.3
1 .
£, 0= & § I‘L_;_( ) Pra(z ) - T‘;_%_(w) Pj_é(z )

-All energies in theee formulas are understood to apply to the u
channel. Our procedure is as follows. We first perform a
Somerfeld-waﬁson transformation on V.3 , and obtaln formulas for
fl and f2 in terms of wu channel Regge poles. From these ‘A

and B are gotten end the term F (J,W ) 1is calculated using

. ITI.3 . Now let us write f£. and f as integrals in the J plane:

1 . T2

-




_ _. + Tg }_(W) bP&‘_%(-zu.)' + P&_%('zu)]

RO ialom) - l<)

S N EIES )+ l(z )

c .

cos nJ
, C

LA EIER ---AP3+%‘Zu’] * Tﬁf%(‘” [Pi-%(fz@’ cnae)

cos nd ) J+3

TJ__%_(W)‘ [PJ-%(-ZU.) .QVPJ,’T']’_.'(Zu):I .

~ . -

N

Here C denotes the usual éontour.encircling'al; physical values of h
J . The contowr may now be opened ﬁp:to give‘thevuéuai’intégral

over g vertical line in the J plane plus contributions from Regge

"+ poles, The validity‘of‘this representation depends on the vanishing

. of the integrand at infinite values of J . This 1s Insured by the '

factor 1/cos nJ and the exponential decrease of the QJ;%(Z)‘

function in the J plane for fz real and positive. Thus the first

term In fl say, will be represented by the following eipression:'




el

| » ey
’% i oo+ Jr :
i .-—g'.J__.. e . ! ‘ L P! : )
- IL_W—‘;I I “JJ'I";_%(Wu) [PJ._,%_( z,) +.PJ+‘-§-(zu)}
' -1 oo+J
r
\ . J
e e
p(a”,w )8 (W )
o+ 2“ u - L P'e (-zu) + P'e (zu)
% cos m o+ a®+3

where welhave assumed only one Regge pole for'simplicit&. We assume
that‘ J}v lies to tbe left of any trajectory which emergies into the

riéht half plane to make a bound state or a resonance. The Regge pole
will dominate the expression faf values of Wﬁ‘ such that QF(Wﬁ) is
near J = 1/? ’ 5/% , etc, or for large values of Z, * So far we
have tacitly assumed thet W, 1s real andAabove threshold. If

this is so,_then the integral term above converges for all z2, °
However if one atteﬁpts to continue the expression to values of Wu
below threshold where ,qi 1s negativé, the domain in Z, for which
the integral converges shrinks to‘zero. This follows from the fact
that |

1 ~t(d)

q(z) — 0 e

L= o0 ’/zﬁ_

where 2z = cosh £ ,and the fact that Pi(z) ihcreases exponentially

as L -1 oo+ Lr « In an integral such as

o . . _
‘ { _E__ 1y
Jl—e dt! QJ;% G + 2a.2u> At(u,t)_

-

.
2




19 q2 <0, =4 "-'tf:m-;.' This’ will cause TJ (W) to e o(l"J)
" along the imaginary J a.xis and thus the integral will diverge.

" This might 1ead one to suspect that the Regge pole term no longer

g j“:gives the dominant betiavior at large z,, ©Or near of = 1/2, 5/2 2.

. ebtc. However one can easily establish that these results continue 72:;i_v R
"~ to hold by using a slightly modified continuation from physical

values of J » which essentially amounts to replacing -

which is a true eqpation at physical values of ,J This giVes a

ﬁl convergent background 1ntegral and a slightly modified Regge pole

term which agrees wilth the pole term above near the Places where the '
.pole dominates. Thus the failure of the backgronnd:integral to

. converge for qi < 0 does not cause the usua; features ascribed to
the pole‘terms to lose their validity. Now our approximation will

of course involve dropping the Integral term entiroly and kéeping

only the'pole term. We also nodify the pole term:somewhat to remove =

some unwanted cuts. For this we need the following formula:

‘ . P! oa(z") 1 , T
P&+,1_(Z) =" Sgi-lr—a-f f dz' 22 + . V.6
. c . . o) z'+ 2 z + 1 AR .

TR}
o7
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where the r:!.ghi: nend side is defined by continuation when the integral '

fails to converge. 1In the Regge pole term in V.5 , we make the

following replacements:

f P! 1+ 2 ag |
: el ® ae_,,é_ qu
P (-z) - ss.i;vr_a_zf r
o +3 _ b th-t _ _
_ . 1 B V. T
‘ "y
P, Q‘P —:‘)d‘t'
t e 2
. ' : t ‘ cos me l a + . 2 .
= P, o= )F
o +5 2q,/ o t'- t
3 . i
20,
S E [
J . é .

where the eq_uality ‘holds 'fo_

[;qi real and positive. Similarly

o

P! (z)-’?.?.s__’l.df.f p! 1 '2(M2+u3)-s'-u ds'
. =L = .
ae+-_§- u. n . ae%_ 2qu2 ‘ s s
1
”
.‘ ‘ Sl )

= P 1+ ﬂmz"' Ee)' s-u ) _ cos 0 ) -~ pr 1o 2(M2+}i2)-s'-u ds'
T T e 2 Xt - e 1 2 s'=8

o +3 - 2q, : M?22 o +3 2q, .

\ - o | u .
1
+ . . )
. v.8
o 2(M2+u2)- s=u ,
* B
- 2y . )

where again the equality holds for ‘q_ue real and pdsitive. What

- we have ddﬁe here 1s remove the cuts of the P& _*_’;_ which intrude
: 3
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v:“;on the '8 and t channel strip regions and defined the remaining

| cuts to be along the positive s and’ t axes as required by the -!ﬁ

'Mandelstam representation, Note that the modified expressions reduce -

to the original ones near <« := l/b, EV@, ete, or at large Z,

>v',‘ so that the modified term is accurate in any region where Regge poles
dominate. Our reason for removing these cuts 1s that in owr dynemical - -

-iischeme the s and t discontinuities in their respective strip

~ reglons are generated by two body unitarity in these channels. Removal
of the cuts from the u channel prole terms requires that the u

channel scattering provides a real potential in these two strip regioms.

o . Let us return to our expression for the wu channel pole term.

It now reads;

, o : <; - 2(M?+u2)-seni>
p(Z ) e 0 Tdt' T 2q ? o O 2q °
' t

%

st= s

o —

t,,e - . 8,,e
l) ) : l)
R 7 (Wu) t ) + R+ (Wu’ s) ‘

L]}

4

- L L o .
- where the subscript + denotes that IEH;_‘iS involved. If we
) - . ‘ 2 .

carry out g similar analysis on the remaining pole terms-in fl

Aand fa; the following expressions are obtalned:



1 : S0 € - o
£, = T R~ + (W, t)+R (Wﬁ’ s)| - V.10
1 all poles
[ tl, 0. sl, ) l,'e S_,
+|R- (W, t)-R> (W, s) +|R (W ,t) -RL (W, s)
_ i
< £,,0 5170 ]
+| R_ (-wu,t) +R (-wu, s)
L ’ J
J ' 'tl,e : s ,e ' :
£, = I - |R, (-Wu,t) + R,+1 (-wu, s) ' . v.1d
all poles : :
t.,0' \  s.,0 . t.,e 8. ,e
1’ 1’ 1’ ' v
- |R (Wt) RS (W8 - RS (W,t) -RT (W)

"

!l t,,0 8.,0
l) )
- R () + R_L W _,s)

. / .
where we have made use of the Mac Dowell symmetry in writing the terms

}1 evaluated at -Wﬁ « We keep here the convention established in,
section ITI of associating the physical cut in the right half Wuv
plane with the (J, J-3) amplitude and the physical cut in the left
helf W_ plane with the (3, Jf%) ramplitude., The sense of approach
to the physical cuts in the Wulvplane 1s as before from positive |
imaginary véiueé in the right half piane and from negatiye imaginary
values in the left half plane. Using V.10 and V.11 1in V.2 igivés.

the following formulas for A and B :

<




t

. "B (4s) =.Ur = < B, (w t) +R (Wu,_s)
co I all poles u ’ ,
. _ 4 e v , 0 - .0 . s
B LR ) v x, (-w,s R,, (pt) = RS (rp8)|
- : r ‘ B 5
- E—u_ﬁ R, (-w st) - R (;wu,s) + =7 | R, (-wu,tf) - R_ (-wu,s_) o
R N A T Sy 1 1° 512°
- E M (W ‘b) - R_ (W ,8) | + T R_ (-W 'b) +R_ (-Wu,s)
“Tu : u - - v J
t ,0 " g.,0 ! V.12
l 1) l} . . » ‘ ‘ ®
- E_W R_ _(wu,t) +R_ (Wu’s) :
Wu+M tl,e

Aws) = ke x fghm IRY G, t)+Rl (w,s)

~all poles} "u

WMt WM lt ) 5.,0
u 1’ € a 1’ S i
+ B LR+ , (-w 1:) + R (-wu,s)] + 7 {R+‘ (Wu,t.) - R, (wu,s) .
WM t,,0 Tsé : WM [ t,e S.,e
u i 1’ T 1’ 1’
E_ R, (-W ,t) - R, (-wu,s)} * F_ [R_ ('Wu’,t) -R_ (-wu,s)}
w-M[ %t ,e S.,€e WM b ,0 S.,0
- 1’ 1 u 1’ v’
+ 5 .R__ (w,t) =R~ (W ,s)] + T [R (W ,t) +R (-w ,s)]
u : u
W -M tl o S tl (o}
+ 53 |R (W,t)+R (W,s) V.13
u
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. These'fofmulas represent the contribution of the u channel poles

to the s channel potential. The way in whichAwe propose. to use

them 1s as follows: -

e 1 : 2 2 e €0
0 - (W+M)“ -y P
Fo@W) = (Bg,) " v | Ard (s) - (W M)B 1 (s)
(=)  (EM) |
o Vv.1lh
2 € &
SW-M?-u P P
Ml a el b AJ+% (s) ~ (wM) BJ+% (s)

Here (Bsu) is a symbolic notatlon for multiplying by*the I spin

crossing matrix
(By) I'T =

the AP ~and BP being understood to refer to a definite I spin
in the ‘u channel. F °(3,W) represents the part. of the potential
coming from the u channel Regge poles. The quantities

P %o PSo |
AJ_% » QJ;% are glven by :

e ‘ 2 '
Af °(s) = -- f au' Im(A (s,u ) Q [ 2(”’12"“2)' s-u }
-2q .
° ()2

V.15



o ~and similarly for | B o(s)

' (M%u) to ™ ,'“

- maximum value of u which may appear in such contributions is

i’ : .
L: In addition to the integral from

(s) contains a term

v. 16

%,-(2n)26N(-M) 1 é . 2(M?+u )as-M
T o) -

for'(Iu = %) » vwhich comes from the nucleon trajectory which contri-

' butes the usual pole term at .u = M . Tt will be noted that we have

not included any contribution to the t discontinuity of the u

‘ channel Regge poles. There are two reasons for this. First, the

(M-p. ) - t, , end since & will normally be several times (M-u)2 s

1 X
this will be a fairly large negative value of  u . Thus any Regge

pole in the u chamnel will be well to the left of J = % . Second, |

for s e [(M+u)2, sl] s 2, 1s e [-l,i] for such contributions.
Consequently, none of the criteria for dominancevof 8 Regge pole are -
satisfied. Keeping terms which are of the same order as terms already
ignored seems a dubious procedure, so we take the simpler course of

dropping these as well. These terms influence predominantly the

far away part of the force cut of F °(3,W) and just as the previously
* ignored s channel strip terms, should not appreciebly affect low

‘energy s -channel scattering.

Jet us examine some qualitative features of the force due to

the u channel poles. First of all the expressions V.12 and

V.13 will simplify considerably in practice. Let us take Wu'= +Vu .

73



’v-hg- _

Then suppose we are talking about'the eichange of the N* trajectory.

35
If the fermion poles behave as expected on the basis of the discussion

of section IV the terms evaluated at -Wu will correspond to a pole

to the left of any physical velue of J , and will be small compared.

to the +Wu terms and can be Iignored. Thus AP and BP will

contain only half as many terms as explicitly given in V.12 and
V.13 . A similiar result applies for exchange df the nucleon

" trajectory. We only keep the nucleon and N* ﬁrajectories in the

35

u chamnel since these are the only ones we can lexpect to generate
I

" * in a one channel approximation. The other reéonances.such as the
. !

600 MeV resonance probably require a multi channel treatment for
‘even a qualltative understanding and therefore are not included in
-the one channel case we are considering here,

The qualiltative features of the force can be understood if
we notice that the Legendre expansions of AP and ‘BP in the u

channel converge if s < s At low values of s , .. these

1
expansions will coﬁverge rapldly and will be dominated by the u
channel bound state and resonance terms. Thus at low values of s
the exchange.of a Regge pole'will look like the exchange of the
particles and resonances that lle on the trajectory, treated as
fixgd poles. At high values of s , the usual Regge béhavior will
takelover.f The high and 1ow§ 8 behaviors are not sensitive to the

value ofo s1

v.8 . Except for the weak logarithmic singularity near s = s

as was noted in the discussion following V.7 and

1 s
the transitfbn between these two regimes 1s smooth and therefore

K
S

§

]



we expect & force which is relatively insensitive to s, . The fact
that & reasonable high gnerg& behavior of the force is assured no

" matter what s, is,.iS'one of the major differehces between the

1
forcess as treated here and in previous urRegeized treatments. This

will allow the theory to depend on s, in a much less sensitive way

1
than the cutoffs of these previous un Reggeized treatments.

Before turning to the discussion of the force due to the
'_t channel poles, let us comment on an alternate procedure which

. 1is useful in the mx case. That is to make use of the dispersion

]

4

relation satisfied by the Qb(z) function.

-1 +1

! 1 ' '
Q>(Z) = sin nt QL( z') dz L1 , PL(Z )dz ,
L R . z'- 2 2 z - 2'
: -0 : A =1 : .
B
 Using'this in an expreSsion like
o : ' : o
‘ o 2
N ’ : 20 +°) -5
nqe J[ du' Au(s,u ) Qy |1~ . 5
o) o : Q '
(M+u) | |
l' ‘ r
lequ po £ L o - o
{ [ ez p) 06 20P i) s s 2d?(241)) *
-1 D ' | ‘
' S

=D

i
&7
PN

-

- zelna’ f dz Q, (-z) A" (s, 208+ 2) -5 + 2q2(2+19 v.18 j

/Nt
I
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V.18 1s usually known as the Wong formula. Here A'(s,u) is

given by:

@ A (s,u')
Ko = e i
‘ ()

If'ﬁhe u channel were & Boson channel; the residues and positions of

the Regge poles in this channel would be real for u < (M+u)2 and
V.18 is quite useful in this case since the integrals only involve
u < (M -i ) /é and one can deal with real quantitiés in evaluating
the potential. In our case the w channel is a Fermion channel
and for u<0, W =%1 Wu'| end o ), of-w), B ), and
B(-Wﬁ) are all compléx.v So from this'point of view the Wong form
1s no easier, Furthermore, in practiqe this would mean carrying
6ut the bootstrap on the part of the trajectories for which

W= u< (M?-u?)e/s . Nothing is known experimentally about the
traject&ries in N séattering for this range of energies. They
have so far not manifested themselves in high enefgy backward
scattering which is the only means of observing this range of
"energles, Finally, the presence of unequal masses makes it difficult
to construct forms for u channel Regge pole terms which have ‘
correct analyticity properties for wu < L—Z-“—L . Thus in the
. case-vusing the Frolssort~Gribov form as we have done seems to

be the best procedure.
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Now letiﬁs turn to %hh cohstfudtidn«offﬁhéxpérf 6f the

pdtéhtiﬁl that comes from the Regge polés in the -t‘ chanhel;. -

F:Q(J,w) . Thé»rélevént poles in this case are the p ‘and

Pomeranchuk. The positions and residues of these poles are of .

- course not determined by the solution to the =N problem and thus

there is no bootstrap for these parameters within the =N problem

.;  alone. The positions-of these poles are determined by the'solution1V: :
- of the = bootstrap equatiéns and we will imagine-that we have

‘ ‘ such & solution at hand. Given the solution to the =nx ﬁroblem,
- the residues of the poles as they couple to thev nN sygtem can be ..

calculated. We shall show below how to do this. It might also be

noted that a good deal 1s known about these parameters experimentally

and in a less ambitious program, this information could be employed. - 3 K

e
To proceed with the construction of Fto(J,W) we have to make use
of some of the standard formulas for partial wave pfojections and

I spin analysis in the =nx »gNﬁ system.lQ First we note that the

'I' spin decomposition of A and B .can be written as follows:

-+

A = A »5 4+ A'_% [T ’Ra}. . ' ‘V-l§ )

B,o ,

and similarly for B, where B refers to the final = in the

. + :
s channel and o to the initlal, The relations of the A~ to

definite I epin amplitude in the 5 and u channels are given by:
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sz N At +on”

i

:AB/E = at-n

- : | V.20
we AY2 oopt o R

VLN

and similarly for B . In the % channel, A+g, ?B+ couple only to
o - - | | -

I = 0 systems while B, A couple only to I =1 systems. Bose
‘ : I

statistics requires that

|
!

+
* A" (t, cos 8)

t
A~ (t,- cos 8)
V.21

+ | ' ’ ' o
B™(t,- cos 8) = 3 Bt(t, cos 8) ) -

[}

where cos © 1s defined as the angle between the final N and Ty -
If we define the total helicity with respect to the momentum of the

"N, then the helicity amplitudes are given by :

-l
+ 1z £ _
T 1 . EY +
£f = Tl {E [-A P +mg B cos 0]

o T q J
‘ V.22
v, i'.é_ .
' A | ;) R
f_l- e [q‘ Bq_EsinO.
|

Y2\



. de
an

. Partial wave dec

£5(%)

) = e e ) + 8 [(a) By, (8) 4
, o |
P | sin 6 Pf(cos ©) 4. .
and £7 () = < (2ra1) A O
| J [s(342)]® o
where ) |
) e LT
' I 1 ;o
20 = g wray [TEw) By (8-
Now |

ompositions are given by :

1 | oty
= = Z (27+1) P,(cos 8) T~ “(t)
4 3 ST o

(¢ ]

" where 2 = |f|2 R p is the three-mdmentum magnitude in the -

NN system and q-f '1s‘~'tﬁé three-momentum magnitudé in the :f:t ,'syst’em.

V.23
Uy
JBJ-l(t)]]
; o vk
V.25

+ :
BJ+l(t)> V.26

. . T ’ v i. ) .v
du' Au(t,u')

ds' A:(t,s') ' 1
—= 2 2 : — + n'f 2 2
B 1 - : 2 (
Mm)e s'+p +q ~2pq cos 8 u)2 u"f'P +q +2pq ‘cos‘ o

| V.27
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where from V.21, As(t,s’)_ = I Au(t',s') . A similar formule
+ : t t
holds for B~ , where Bs(t,s') = ¥ Bu(t,s')_. Therefore
| V.28
w . v m .
. 2 2 2 2
+ + . [] + t
S(t) = = v AT ' PHg4s! y _ 4 2 'oaT ' D +q +u'
(M+y) ' (M) .

. + )
This defines the continuation of A&(t) awey from the @gn) integers,

which allows the Sommerfeld-Watson transformation to be made for

t > hua . Similarly, !

*(t) 2 ds! LTI EEiﬂEiEL ) 0g
BJ = m g Bs<t,s ) Q'J( epq ) Vp 9
M+p)
| - 2 T . oE . 2 12!
= i d; B (t,u') @ (w_——2pq_ )
M)

defines the correct continuation of ‘B?(t) away from <§32%> integers.
It should be emphasized at this point that the continued amplitude
may not equal the ﬁhysical amplitu@e.at J =0 . This is due to the
rresence of the nonsense state J =_§ , total helicity eqpals 1.

A glance at V.26 for T-fi (t) shows that in the continued amplitude

this unphysical state is coupled in through the pole of at -

Q
1 J-1

J = O which more than cancels the LJ}Z factor, whereas in the
physical pgf%ial weve coupling'to this unphysical state should not

be includeé. The general problem of coupling to nonsense states
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has been considered by.Mandelstam?O who showed that the continued - -
dmplitude and the physical amplitude differ in general’by being

different 'CDD solutions to the same dispersion relations. So

- unless the coupling to the nonsense state happens to vanish in the - o

- continued amplitude, one may'éxpect in general that it will not be

equal to the physical amplitude at J = O . While this difficulty

. must be dealt with in any attempt to treat full =nn - NN problem, ' -

it may not cause trouble in constructing the force for =N scattering.

' The reason for this is that recent caiculationSEl indicate that

+the endpoints of both the P and Pomeranchuk trajectorles lie to the

right of J=0. If so then the above difficulty will cause no

' trouble in constructing F% (J,W) . We shall assume that this is the

case and not consider the J =0 behavior further.

Let us introduce two modifled partial wave amplitudes :

- L T-j:J . _
7 beW g2 1 1 -1 (t) : '
£30) = 5130 3 T-1 s V.50
) ‘ q 3 p2 X ‘ | .
£ (t) = hawv[p] e To.(t) V3L
" (pq) o
™ lity hM? 42 end
ese amplitudes have no zeroes at t or t = and are

real analytic Punctions of t whose cut§ for t;>hu originate
+ :
directly in the t cuts of A? and B , Using formulas V.22,

V.23 ana V.25, we have

.




p* A= z (23+1) Py(cos ) (pq)J-l 1(t) X V.32

< ven

S (2J+1) (pa)’ 'J(t) Byleos ) V.33
hel 2 .
. P g = ve?>
d
Iet us write theée quantities as integrals over the usual contour in

the J° plane.

’ .
B (5t) - Tl fsin o (83+1) [P,}(COS 8) ¥ Py(-cos 0)] (-pq)J'lfin(t)
c .

V.34

+ ,
A~(s,t) - %? cos © Bt(s,t) =

2 [(rar ozal., | 7 %7
Enifsin WP [PJ(°°S 8) + Pr(-cos 9)} (-pa)' (t)

V.35

Now in the case of the contributions of the t channel poles to the

~potential, it is much simpler to use the Wong formula rather than the

Froissart-Gribov formuwla., The positioﬁs and reduced residues of the

t channel poles are real throughout the negative - t reglon and the

-

‘ presence of unequal masses causes no difficulty in this case. So we

desire expréssions for t channel Regge poles valld in the negative

t region.m This has been anticipated in writing V.34 and V.35 which are
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’appfopriate for use in the negative + region where bpq {.O,,.’
'Opening up the contour and keepingvonly»the'Regge pole terms leéds-”"

%o the following results:

V.36
' t o _ + '
+ 20 +1 . o o ' a”-1 F,
5i(s,t) - 5 2L, [Paf(“s ) 3 21, (ocos )] (5l T e(6)
ot mg I 2o SR =l
A" - s eB = 5 ~— | P'(cos 8) % P' (cos 0) (-pq) 'B_l(t) ,
P 2p  sin mx” a” _ a” :
A V3T
 where ’ o )
Lo 22 202
7 eos e o Erats | _pHatu
L - 2pq | 2pq :

From now on we u;derstandvthe + ampl;tudé to fepresenﬁ the contri-
bution of the Pomeranchuk, while the - amplitude feﬁresents the
conﬁribution of the -p . Since we desiré e real potential from the
t channel poles we modify the above terms in“a way quite analogous.

to the already discussed u channel terms. We make the following

replacements:
[P,_»(cos e) tp (_cos e)] ""'"l_""!' . V.58
N . ok %! :
o a sin nc

o0

_ : 2. 2 , - . 2 2 ' r
" a -

. 2pq s'eg




P'__,_(cos e) ¥ P'i_(-cos O) .+ oo

o4 o - 1 P (- p?+q?+s' ) ds! -
in m:t- _ b4 at 2pq s'= s
1
V.59
00 _
. (- p2+q?+u' ) du!
‘+ ai‘ 2pa u'- u
o]

where as usual the Integrals are defined by continuation from reglons

where they converge., We denote the modified expressions obtained

t + |
for A and B™ as follows:

+ . . %
i B=(s,t) = s_lgs,t) + s_l(u,,t) _ V. 4o
7
|
+ m(Prirs) B(s,8) %
A-(s,t) - S2HD 5 2L = -5 (s,t) T 5 (wt)
2p '
or A : v.h1
t t | mfp2+32+sj t 5
A" (s,t) = So(s,t) + 5 S_l(s,t)
, 2p
16 (u,t) - m_ﬁ-tg——l(g Z48) gt (o)
.. o y » , 2p -1 u, .

Using V.20 to convert to amplitudes of definite ‘I spin in the s

-

channel, the contribution of the channel poles to the t channel

potential ié'given by:
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. vhere the T spin label is suppressed. Azt(s)v'is‘given by

‘e o ;1a1';'f4t . o ‘o 1P“1 '
7o) = i (O 1<s) + (w-m) 1<s>
@ w0 LT T
o P o '~“. . - T ... ‘Vtgf%‘
C L+ $H§%2;W:3 - l(s) + (W4M) 1(5) o : RERR "V.he | v o
P

a0 : , : -1

e ) p, v -
OISR ACOPRI L <1-z'>) estard fopi, (i S(a,21ua)
- . -1 . ‘ ) ‘ o -®

N B A
and similarly for BJ+ “.. We have not attempted to include any
' 2

contributions to_the u.-discontinuity from the + channel Regge

poles. The reasons for thils are Quite analogous to those given

- previously for dropping the contributions of the wu channel poles

to the t discontinuity. Before going on to calculate the residues
t T+ ’

B_l(t) and Bo(t) we take note fa subtlety associated with the
exchange of the Pbmeranchuk.ga In the case of‘the' u channel

contributions to the potential we argned that they could be well

. represented by the modified Regge‘pole terms. The reasoning wa.s

that these gave a good description of the wu discontinuity in ‘the

low s reglon where the u channel bound states end resonences

dominate and they match onto the correct Regge high energy behavior

- . at large' 5 . Altnough the same type of argument will'apply for the ; ‘.

H
case of th¢ "p , it does not for the Pomeranchuk, The Pomeranchuk

i - . o
[

Y

i

,,, s




bl

spends most of its time near J 1 ‘and consequently does not
dominate the low t discontinuity in the I =0 state in the.

low s reglon, until the region where the .f occurs is reachedﬂ
This could require a more elaborate treatment to be glven to the

low t region. We do not attempt to do so here, since as mentioned
earlier we expeét the cross channel Fermion poles to dominate the
force and thus this inaccuracy may not be serioﬁs. Now let us consider
the residﬁe functions Bfl and B: . We shall calculate these
using the strip approximation in the t’ channel. This consists of
assuming that the amplitudes f?{(t) and f:J(t) carry the phase of
nt  scattering over the entire interval [huz, £1] . This is exact

of course for t € [hue, l6p2] and probably represents a good

~approximation over the wider interval. As mentloned earlier we

imagine that we have the solution of the =nx .problem. In particular
we need the gx D function, which we denote by Dt(J,t) for

= () . Ve assume that Df(J,t) haes & cut from hue to ¢, end
is normaiized to 1 at infinite t . The phase condition implies:

'4 LN

Im<D (J,t) f O(1;) Y = 0 V. LL

 t e [hpe,-t'l]

- _
We agsume ’eh&t 81l the poles of £ -1, @(t) to the right ef J = 0

are also zeroes of D (J,t) Writing

;?“




S T ey e e s
- (N B ' - D (J)t) e e

and introducing - |

-l o(t) = --l o('t) - flm £ l,O(t') t Vh6 - s

we have

R , . , . | o
. n:l,o(t) = "D_(J,t)C_io(t-) o .._! | .‘: V.7
) ' B + - + | .
' : - ed e _
_ b R LA CA) [f_l,o(t) - C_l,o(t)]

The second quantity has no poles to the right of J.= O by

‘ assumption. It has a cut from hpe to tl and goes to zero as

t »+ oo . Therefore using the phase condition, we have:

N_l’o(t) = D (J}t) C_l’o(t) - ;!- J T - ¢ . V.

hp.g

+ - %
Im D*(J,t) ¢

If we knew C (t) ., We would have the answer for the residues

5-1,o(t) . For

,,.,.
) ey o
s

P ‘ . . d.r’
97
- &

e e L ..— . o o
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t

- -,1; 13»;’. [Im D#@f(t),tv)c’:’fét)(#r)] [t"_ t]-l.‘a‘
+ Iy | |
. V.49
" | Dtt (O‘i(t), t)
a .
‘'where

o t
D) = & (@),

The problem is then, to calculate cio(-t) . If we igriore the
contributions of the double spectral regions t € [hp?, tl] to the

_ left cuts of Cfg,o(t) » We can calculate }Cfi,b(t) in terms of the
Regge poles in the crossed =N channel. We have made this approxi-
mation in dealing with the =N system and we uéegit here as well.
Using V.12 , V.13 and V.24 V.26, V.30 and w.sl, this leads

to the following results:

+ 1 ot
J 1 1 P= Pt
c,l6) = z-—%F7 373 {BJ-l(t).' BJ+1(t)]' V.50
| o (pa)" T -
and
+ " + + +
= 1P _ P*  mg _ Pt _pt ]
Co (¢) = 3 (pq)J [ P AJ. + %) [(J+1) BJ'+J_+ J BJ-l] | V.51

Where using V.20 and V.28, A§Tﬂ)_ is given by :



e

A?(t) (a

Jdu' Im AP@ 2(NF+;L )-u! -1-,) o a::g+_u> o

tu’ 1oq 2 2pq
M+p) o
(=) S 23\ V.52 o
=) s s .
1/2. 3/2
the AF taken as before to refer to definite I 'spin'%n-the u
chemnel. Similarly - ’
o e,
Preey o -2 | aut Tm BEfat L2yt (P 4g +u'
B; (t) = (Btu el J(ld; Im B g f,2‘(M.2+u )fu _-'t:)Q,J opa
- ' | . (M) o -
V.53
R ON - I
t = . .( '
R O BANCS V5 T V2§
12 32
This completes the discussion of the potential. F °(7,W) 1s given
by :
e, . e, e, :
F (W) = F, (I, W) + F, (3,W) ‘ V.5k
5 s e, S
Given the soiution of the nx problem, F (J,W)"is glven entirely L

ﬁ

v:in terms of quantities which are outputs of the Tl problem and thus '

8 bootstrap situation exists.
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SECTION VI: SOLUTION OF THE INTEGRAL EQUATION

.Inithis section we consider the solution.of equation IV.lhv;
The integral equation as written is a singular eqpation; The kernel
is not square summable and standard techniques such as matrix inver-
sion cannot be directly applied. The purpose of this section is to.
split off the singular part of the kernel and:treat it explicitly, .
leaving a ﬁon-singular Fredholm equation. The technique we use is a
slight generalization of the Wiener-Hopf method as applied by Chew23
in the nn case, First, let us consider the singularity of the
" kernel of the equation for N(J,W)

S 4 : |
N(I,W) = F(3,W) + -,1;] agr HLI)= FEH o5,y ) w(a,w)

- W
M+

- M+p,) . :
. 'y .
+ _]; Coaw! F(JJ‘:I ) F(JJW) p(J',W') N(J,W')
T J - W= W .
-Wl :

(Wé drop the signature superscript in this section. All equations
aré'understood to be for a definite signature.) The singular behavior
of this equation is caused by logarithmic branchpoints in F(J,W)

near W= tw .

1
‘ ‘ 'F&(Wi+1e). ' '
WHWi



e

" Let us denote

CIf the generalized Fredholm theory: were to a.pply, the follcwing

 ;_ (1) dW’de IK w,w')l2

" to diverge, while (2) and (5) are finite. The fact that (2) and (3)

e e F (-wl+1e) o o
F@,W)—> Im L 1n {wl+ Wl o Ve

1 -F(J,W SR L

_integrals would have to be finite:

W

M+p. M

o mw) L

| (2) /de'j -aw IK (w, .)|2

M‘HJ. -W - " . i g

IS

| (M+u) L
(3) f fdw %, (w,w')l2
L. | |

+

", 3

Qi) (M)

() dW'f . dW:’VKJ(W:‘.f':)Ia,.;

=Wy T

The behavior of F(J,W) near W = % W . causes integrals (l) and (1+)

1

remain fini%ge is cruelsl to the success of the method we use here to

v._z‘.‘i-';’ Se : . . : -.':._
. treat the j’éé&‘ngular behavior. Before we attack the problem of treating .:

[
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the sinéular behavior of IV.1lk s We need to relate the behaviors

of N(I,W), D(I,W) and F(J,W) near W= % W to physicel require-

.ments. The physical amplitude g(J ,W) can have no singular behavior

‘near W= % W, . This requires that Im b(JI, W) be continuous near

W=1% Wl' . Using elastic unitarity, this implies that

2
sin 8J-’%(Wl)

= ImF(J,wl+1e) R VI.3

p(W, )
» apd. |
Cstn2 8 A y | .
p(-‘w ) Im F(J, ~Wl+ 16) ) . Woh
where
8.1 (W ) = _lim|3 (w)

Using equation IV.8 for D(J,W) , we also heve :

D(J,W+ie)-—--> (w W) J‘l(w )/ﬂ -18 1(w) R o ‘

W Wl

2(W.)/n 18 1 (W) - !
D(J,w+1<-:)_..._;.+ (w £ w) ?“7?-' L7 e, SRR ) o !

W—*-Wl

~ {% U éﬁ
e s = P . o g et e



e

' Unitarity ‘demands _N(J,"W)/D(J’,w) “be bounded. -Therefore_." '

N(J;W);e (w W)
W T

| N(J,W)——-——) (W) J‘“?(w )/ﬁ
e o

“.

' Now; let us turn directly to the treatment.ofneqnaﬁion N

Iv.1ih ., As 1t is written, 1t is an integral equation for

”We[M+u,Wi] = ;L and We -EN M+u] =1, , and & definitibn otherwise. ‘5

In the following we will be concerned only with We Il or 12 ..

consider the following<modif1ed quantities:_
: . B 4

WIW)  WeT,

N

W)

"
v\

0 otherwise <

N(T,W) . We 1:2’

|
.

| N, (W)

o o 'otherwiee.o

. v 1 o . : : " o
Kl(w,wv) ‘ ___,4
C ' o . »:_‘:»'otherwise';1
o) e

K1) =

0 [_ otherwise 7“

We 0

i
'
:
i
-
e ~
*
14

PP
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‘The last two definitions are understood to apply for Wel,

I

- becomes equivalent to the following two equationé:

. S ‘ Wl . .
_ ‘ Nl(W) = F(J,w) +j aw' Kl(W,W') Nl(w'}

- M+u

- (M+p) :
+f aw' K, (W, W) N, (W)
-Wi .

'
!
o

S o w:L | <! |
w00 < @+ [ aw <w,w)m(w')
M+u :
: o : -(M{ru) .
' : + aw'’ Kz(W,W') NE(W’)
_wl :

Let us consider equation VI.8 first. The singular term is

W

1 . , _
f aw! ml(w,w ) N, (W!) . Let us split off the singular part
M , : .
Kl(W,W' :

ity !
)

or

o + With these definitions, the integral equation for N{(J,W)

of



where .

E

. and we ‘defin;é e

ig - Owr equation for | 'Nl(W).

N (W) = FIW) +

. ' ' +fl d.W" -K-_L(W:W')

W
M

o

e

;xk"#&;w];nﬁ?ﬂ

J =5 1
2 WeW

1

R (1)

H

p(3,¥,) IQ[FQNJ_)] N

' sina [5 Ju—;—(Wi )]

   %“&9“4mh-wl;Mﬁ1ﬂ‘”w+f

1 1

now reads:

M)

oWy

o )\.J 2 -Wl |
0y L 3-
Nl(w ) —== f

' . M+

oL

R
H
i
i

N

W W —

(W) Ny)

aw" k;l(W,-W' ) 41\71 (W)

VI.1l0

VI.11

VI.12

VI.13 :
]



-'7]_“
Now let us write this as two coupled equations:-

- (M)

N(l)(w) = F(J,w‘),+f aw'! xz(w,w') N2(w')
..wl
VI.lh
Wl _
+f aw! xl(w,w') Nl(w')
M+ o
: 0y Nyl "o N
Nl(W) = Nl(w) - _'é'g_f aw! kl(W,W’) Nl(W') | VI.15 -
o M+p : )
Our first quective is to solve Vi.l5" for Nl in terms of 10 .
For this iet |
W, = M=-p-
1
X = 1In
Wl- W
. ,
0 ") = ()
VI.16
- 0(
4%) = m°W)
B then . s o o
s 1 t. ¥ :
nl+(x) = n O(x) + J22' dx (# ‘x) nl(x’) VI.1T"
: A 1 A ex'- x_l}

L

!

@



Bt

_and therefore is restricted to We I

" We introduce nl’(x) = 0 for xe[o,oo]e.nd. _

, 'In the case of physical interest, 0 < 8. 3 <
. . -2

..,_".72_ ;
As written this equation is just & transformation of equation VI.13

1

or xe€ [o,co] :. We can solve
this equation‘ by thev Wiener-Hopf technique if we extend it to

__'xve{-oo,o] . We define 'nlo(x) = n’l+(x) =0 for xe[-oo,o] .

- AL : t. , :
n"(x) = _J;élfdx, Xty . a8
. , ! .
rd 5 [ex x,] © , :

for xe [uco ) o]

- Therefore our-eq_uatioi_l now revavdsv: : ' : oo

: v119 .

+ - ... 0 L Tes R A +
n = XX 1
n, (x)+nl (x) ny (x)+-—ﬂ—22—fdx o .1.11 (x'-)

. o e -1 ’

Now referring back to equa,t_ion VI6 s b‘ we see that

: o) _;_(W ) x/zr ' _
rx‘l+(x)————) e dz 1 S
: X0

7 5 - Thgs ny (x) can
increase at ® no faster than ex/ 2 . Referring back to equation

VI.1l4 and ﬁsihg 0 < BJ 1<nf2, we ‘see that nlo(x) can grow
_ -z -

at most linearly in x at oo. Finally equation VI.18 above
shows that -nl‘ (x)——3>e® . fTnus we have an equation of exactly the
XD : ,



T3

same form as that considered by Chew and we can use his solution of

1t directly. Defining & 1 = 8, U )/t , we may take the Fourier
-2 -2 : :
transform of VI.1l9 anywhere in the strip 1 > Im k >'d3 1 .
J=3
Doing this, we get
' ’ : A2
+ - 0 J =5 +
' : | sin” (xik) _

glf(k) is holomorphic in Imk > 1
-3
gl'(k) .1s holomorphic in Imk <1 s

glo(k) is holomorphic in Im k >0 ,
and gl+(k) , gl'(k) , and glo(k) 'all vanish as k » o along
- any ray in their respective domains of holomorphy. Now let us

consider'the‘term

%J_% . 'sinz(ﬂik) - sin2<5J A(Wl)>
1l - = —=
sine(ﬂik) : sine(ﬂik)

This has zeroes at

-



The crucial step in the solution of VI.20 consists in writing

. where 1)2 (k) ‘is holomorphic and free of zeroes in Imk <1 - ® .

' ;_§;_';"w L

BN

" and X e:-ka- =-}i(l-'qb_%) e

A}

) TR
l - -—"é-g-—-' = - VI.21 St
sin” (rik) <bl(k) o

4

Nj

J

- and \J)z(k) is holomorphic and free of zeroces in Tm k > ® _; . As

J=3
shown by Chew, this is accomplished by
_ . |
‘- TP +ax) |
bpl) = — . VL2
. I‘(l+1k~wj_%_)‘P(l+ik+wJL%)

and U P(-fktw, 1) T(-ik-w 1) ..
: J-2 Jez’

e " vnes

I‘e(-aik)

&l(k) and 4:2 (k) eapproach constants at oo .  Using this

factorization and dividing by 4;2 (k) , we have :

|
,‘

e




TN

b, (x) b, (k) b, (%)

+1¢ 0 - +oo+1 (10, y-€ 0
) +oo+i€ e 80 . oo +1( o ) AL n
= é'vt—‘ff k'-k b (k') T ot k'-k b (x") VI.2% .
~oo+iE g -oo+i(lwa__é_-e) 2 .
]
or _
+ +co+ie 04y
gl(k)-lv Caxr & (&)
. eni k'=k . .
4’1(1‘) ~o+le by (")
g, (k) , OEae) e O -
& 1 2. gkt %1 VI.25
- T T 2ni k'K 3 .
b)) ) by (") .
: ---oo+:i.(:l.--c1)J 1~€)
S =2

The left hand side of the equation is holomorphic for Imk > w. 1 ,

J=3
‘the right hand side is holomorphic for Im .k <1l-~ mJ;%_ » they
agree for 1 = wJ 1>Imk > wJ 1 5. and both sldes epproach zero
-2 -2

at o . and their half planes of holomorphy. Thus we have an entire
function which vanishes at o0 and therefore it must be identically

zero, This gives ‘ . '



Ly otie
& (k)
- 2ni

-

gy (k)

' 'Conseq_uently,

1l

(en)/? f

 ,"1+(")

+oo+ik
1

11

(21r)2 1

- +1ik

_ . S
: where k_ g° wJ_é_

We define .

el(x,x')

Then _
. nl(x)

1
1

i : :._1kx d) (k)j

i..

L >k

= f .el(x,x'v_) ;;10(5:' ) dx' '

.’o-

Collree

dk-lr gl (k')

k'« k .
;-oo+ie d) (k

- V.Iv.26: |

“+oo+ik - o+ie
' =1kx
dk ‘e v ‘b, (k)
~=00+1k '

i

o
g & (')

‘k'=k-
~00+i€ .‘be(k')

vI.e1
!

.k'“k <b (k) ] o' n

\ +oo+ik'

- 1
.oo+iki

ik ex!
e

N

VI.28

fapt
O(X )eik x 3
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 Using the analyticity properties of &l(k) and ‘&2 x) -, in
particular the fact that 451(1{) has a simple pole at . '

k=do-; and 1/$ (k) hasa simple pole at k = 1(1-ay 3 ),

J-3
‘ we have
(o 1)x
- el(x,x' y—>e 2 VI.30
x>0
x! fixed
' '(J-“"DJ'_.L)X' ?
‘el(x,x')—_-—> e 2 VI.3L
X100 ' |
x fixed .
o ~ o, (x(W), x (")) :
Defining oJ__%(w,w') = T s _ - VI.32 |
h l . .o
we have
N,(W) = | o, ai(Www) N (W')aw . VI.33
1. J=5 1
© M4y : : ’ ‘

From equation VI.30 ebove Nl(W) clearly has the correct behavior .

i
VI.lk, we have:

~near W =W, . Substituting our solution for 'Nl(w) into equation



ey

R e

Nlo(w)‘*=f‘F(J,W)”4.j' .3é(wgw?) Ny(wr)aw .
o Cohw, . , _ :
S o S VIJHA '
+f ﬁl(w,w') NlO(W') aw.
C M a

._Ywhere. v w]_ | _ e

M (w,W') = f K (LW) op a (W, W)W VL3S

J=3 R » : o
. Mt | _
]

- Now we mus{: -tre_at_ equation VI9 vThe .a.naljs'is._ 6f “this _'equé..t‘ioh is
quite analogous to that just completed of VI.8 , and therefore we'
merely sketch. the details;_- The first step 1s to split off the

singuler part of KQ(W,W').' :

e - g Pofuw] -l
| v::‘.56* |

-+
.
N
=
-
N

where }"J-f-%» = sin [SJ%(WJ_)} .

- 1+ ) 1w ] R

I ' N : . ;

Setting * T SR TR
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-and . W o ) ‘ ;

: . i . al : Lol
0 L 1 'ty W (e :
N, (W) = F(J,W)ff aw' X (w, W) N, (W)
M+p I
VI.3T
. | ()
: : brd ' 9
| +f aw' KéW,W ) NE(W )
. | | ,.’% | :
we have.
. . © - (M) . .
N(W) = N O(w) + fgié | aw' ., (W,W') N_ (W) VI.38
2 - 2 ‘ Ky (W, 2 _J
.Wl |
Letting
W= M-p |
y = ln|=—nl,

2@“9 .

ny(y) = X
0 Y
n, (y) = N, (y(y{) »
and
: . Jx - T ’
. b4
’ we have : .



'i;ﬁeo;171=

dy (y -y) n, (y )

o | J+-—
() = n2 (y) + f
‘which is of. exactly the same form as II.17 . Thus

ne(y)._' = f@e(y,y.'_) ngo-(y") dy'
o , ,

where ) (y,y ) is gotten f‘rom 8. (y,y ) by replacing aoJ 1
=2

_'I_j-wJ% in d;(k) ‘end 4)(1{)

De fiﬁ;[ng ;

(Y(W); y(W'))
(Wl+W'

¥

J+ (WW)

we have

v v : "(M‘*'H-) _ o O
= Sl S IR

o

_ . _ o 1
: CoL S K : ] .
It 1s easily seen that Ne‘(W) has the correct behavior near

1 R
{ey y_l} Coet

VI.LO

by

| VI.hl'*

W=-W . Nowlet us summarize the results obtained so fa.r.'v.'

l.



0w -

N, (W)

N, (W)

m,°(w)

+

Mt
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W

L o
aw' 0 (W, W) NlO(W') VI. b3
=2
M+
- (M) o |
aw’ oJ+%_(w,w') N, (w*) aw' , VI.Lb
-wl‘ :
- (M)
F(I,W) + aw My (W, W) 1m0 )
_"Wl
1 VIS
W, _ _

aw'’ Mi’(w,w') ng(W')

W

F(J,W) +jl aw’ Mi'(w,w') Nlo(w')'

M+

- (M)

+

"Wl .

where as before Nl(w)' and NlO(W)' ‘vani;sh_except when We I

aw? Mz(w,wf'} NQO(W' )

1 ’

- and ‘Ne"(W) and Nzo(w)‘ venish except when We I, , and vhere



| e .

b
i .
|

| Ml'(W?W') j’ aw K._L(W,W‘") QJ-%(W;, W')

M+

| I"Zl(W,W' ) T aw” -K.l(W,W") OJ--%(W’" W ) . “;ﬁ_ .
i (M) L e
M (ww') = awm K, (W) 0p (0 W)
: -'Wl .
end Hywwr) = ] A R o 0w
. Wy

Now for the generalized Fredholm theory to be appliceble to the
coupled equations VI.US, VI.L6 , we must have: =
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all finite. Noting the behavior of Oyz (W,W') as given in equations
2
VI.30, VI.31, and recalling the behaviors of X, (w,wt), "Kl (W,W') we see
4 . 52 s2
that the integrals are indeed all finite. Thus the equations VI.L5,
VI.’+6 can be solved by any of the usual techniques. The solution of
the original equation IV.1lh for N(J,W) 1is accomplished as follows:
t & : ‘ t b7 '
Given F(J,W), one construc;ts the kernels Kl,Q(W’W ), Kl’e(w,w )
' -and from them and the transformations OJ;_I_(W,W') » the kernels
. ! ' 1
' M’.L 2(W,W' ),Iv-l'.:L 2(W,W') are calculated. The coupled equations for
N, 2(W) are solved and N 2(W) are computed using VI.43 and
34
VI.Uh. This gives N(J,W) in I, I, end therefore the D(J,W)
function for all energies can be calculated. Finally to get

N(J,W) for values of W outside I, I the original equation

e 2
for N(J,W) is used along with the known values of N(J,W) in

Il’ 12 . That such a serles of steps' is actually feasible numerically
‘.has been shownby Teplitz and 'I'eplitzll for the #x case. The labor
here wou.}.d be roughly quadrupled,-,but the procedure should still be
feasible, | . ‘

The kernels Ml 2(W,W ) and M1 2(W,W') are holomorphic
ind in the same domain as F(J,W) as long as 0O < 7‘-; 1 <1, and
thus Nl,e (W) and l’g(w) are holomorphic in the same domain
except for fixed (Fredholm)v poles. 'These Fredholm poles -will serve
as the high energy limits of Regge poles which are the zeroes of

D(I,w) .~



'VII. ASYMPTOTIC BEHAVIOR AND CONCLUSIONS

P

At the end of section VI 1t was stated that the fixed poles

of N(J,W) serve as the high energy limits of Regge poiés; This is
~ easily seen as follows: - Suppose N(J,W) has a simple pole at J

Consider & small circle sround 'JO, encircling no other singularities

or zeroes of N(J,W). For |W| large enough, |D(J,w)-1] can be made ;;v_.

- as small as desired on the circle. If we make the radius of the
"circie‘small enough,»lD(J,erll can‘be:madé stricély ipcfeasing'as
>-'§ne moves to the center of the circle and since the ph%se of
D(J,W)ml goes through 2x in encircling 'JO , 1t foilows that -
D(J,W) has one zero fqr some J Inside the circle at any fiked W
for which |[W| 18 large enough. Thus the point J, wil; be the
‘hiéh energy limit of a Regge pole; The émplitude of coursé, has no

pole at J In the theory we are consideringvhere, the poles of

0
‘N(J,W) are detérminéd by the.so;ution'of the integral equation and
thus thelr precise lbca#ion cannot be determined a priori. However,
it is quite likely that they will lie near the point J = -% .

‘This 1s because the kernel of the integral equation has poles at.
‘. J = -% and 1is holomorphic to thevright of J = ;% .‘.(We consider

- here the case where the residues an@:positions of the'Regge poles
.1in the. u chahnel havé finite cuts.) The residues of theiéoies
near J = -% are not of finite rank and thus we expect an infinité

F - .

number of eigenvalues of the kernel near this point, or in other

words+ N(J,W) will have an infinite number of poles near this point.

0 .-
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The rigﬁtmdst one of these will be the high enérgy limit of the leading
trajectory. It 1s of.cou;se quite desirable that this limit lie as
- far to the left as possible,:since this will tend to depress the
interior regions of the double spectral functions, which have.been
‘ignored here. The limit must: lie to the right of J = -3, . but

the theory should still allow all Regge poiés'to retreat to the

|

left of J = O at high energles.

Now let us make some brief remarks about the practical
implications of the theory presented here. Although the actual
-carrying out of the full solution of the sét of bootstgap equations
:presénted in sections IV, V, aﬁdeI 1s technically feasible, one : g
couid Imagine attacking the equations in a sqmewhat less ambitious
manner in a first attempt} Clearly the most essential new feature of
the scheme presented here 1s the Reggeized treatment of the forces
frdm the crossed =N channel. Keeping this featuré, one could "
ignore éqmpletely'the t channei.poles and sef 'SJ;%(Wl) = 0
in a first approximatioﬁ. This would eliminate thg’need for the
Wiener~Hopf transformation as well és simplify the calculation of .
F(J,W) . Only slightly more difficult would be retention of |
un -Reggeized' p4 exchange, which has turned out to be a good

..apprOXimation In the nx case. Thé'fully Reggelzed theéry with

8J$;(Wi) = 0 would represent the next level of approximation
>

and finally the complete set of equations with 8 ;%(Wl) 40" couwld

be attacked} The carrying out of any one of these approximations

oY é(:' .
would reprgéent'a substantial improvement over the simple un-Reggeilzed

.
]




" bootstrap calculations ddne‘éo}far..:The>mas5es%of the recurrences .

*

of the nucleon aﬁd N33 might be giveh in a semiquantitative way

' in the present one chamnel approximation although their widths

. certainly would not be. Going beyond the one chqnnel theory

- presented here 1s not possible even in principlF{at present until
. further insight is gailned into thevformulation!of bootstrap equations

for rarticles with high spin and the closely related question .of

the role of complex angular momentum in the three body problem.
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