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Using Ground Truths to Improve Wisdom of the Crowd Estimates
Andrew Whalen (aczw@st-andrews.ac.uk)

School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH UK

Saiwing Yeung† (saiwing.yeung@gmail.com)
Institute of Education, Beijing Institute of Technology, China

Abstract

In this paper we explore a cognitive modeling approach to ag-
gregating individuals’ estimates of unknown quantities without
natural bounds. We carried out two experiments that elicited
individuals’ estimates of the population of US metropolitan ar-
eas, and domestic box office returns for movies. We found
that the means of individuals’ responses correlate well with
the true sizes, but participants systematically underestimated
these values. We formulated a cognitive model that uses the
true values of known items to correct for individuals’ biases,
and demonstrated that this model can drastically improve pre-
dictive accuracy. Because our model quantitatively infers indi-
vidual’s biases on the estimation tasks we were able to examine
the distribution of individual biases, and found that there were
substantial between-individual differences in the magnitude of
the responses. This work demonstrates how individuals’ bi-
ases, whether over- or underestimation, can be corrected using
a cognitive model together with known ground truths.
Keywords: wisdom of the crowd; graphical model; hierarchi-
cal Bayesian model; human judgments; individual differences.

Introduction

Past research has found that the aggregate estimates or
predictions of multiple untrained individuals can outperform
experts in a wide variety of domains (e.g., Galton, 1907;
Clemen, 1989; Surowiecki, 2004). This effect has been called
the “wisdom of the crowd” and was shown to be an efficient
way to provide estimates for unknown quantities (Clemen,
1989) or solutions to technically challenging problems (Yi,
Steyvers, Lee, & Dry, 2012). One of the advantages of using
a wisdom of the crowd procedure over taking the advice of
a single individual is the reduction in individual biases: by
averaging over multiple individuals, their biases are likely to
cancel out each other, leaving the aggregate estimates less bi-
ased (Surowiecki, 2004).

Early work on the wisdom of the crowd effect found that
the mean or median of individuals’ responses could often pro-
duce good forecast for the likelihood of future events or good
estimates for unknown quantities (Armstrong, 2001; Larrick,
Mannes, & Soll, 2012). However, recent research has also
revealed a number of situations in which the simple aggre-
gations underperform. First, aggregate estimates can be dis-
torted by systematic group bias—if the majority of the crowd
over- or underestimate on a task, then the aggregate will tend
to be biased in the same direction as well (Simmons, Nelson,
Galak, & Frederick, 2011).

Second, a substantial body of psychological research has
found that individuals are biased in how they process num-
bers (Kahneman & Tversky, 1979; Dehaene, 2003). In par-
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ticular, the standard aggregation techniques of mean or me-
dian perform less well in unbounded estimation tasks—here
the values being estimated are not constrained between 0 and
1, and may lie across several different orders of magnitude.
Take the size of cities as an example. The smallest cities
have only dozens of people, but the largest cities can have
over 10 million. Recent research has found that crowd means
and medians performed less well for quantities with the large
variation in magnitude (Yeung, 2013).

Various techniques have been proposed to mitigate these
two problems. Budescu and Chen (2015) demonstrated a sta-
tistical approach to reduce systematic biases by using known
ground truths to identify experts in the crowd and overweight
their judgments. They showed that this approach can signif-
icantly improve the aggregate estimates. With respect to the
psychological biases, Lee and colleagues created cognitive
models that explicitly take into account individuals’ differ-
ences in calibration of probability. They showed that this
approach can create aggregate estimates better than taking
the crowd mean or median (Lee & Danileiko, 2014; Lee,
Steyvers, de Young, & Miller, 2012).

Building upon these findings, we explore in this paper how
to improve the aggregation of the responses of a crowd about
unbounded quantities using a Bayesian approach. The goal of
this work is twofold. On the one hand, we expand on previous
techniques for leveraging known ground truths in a wisdom of
the crowd framework, and provide a novel technique for ac-
counting for individuals’ biases in estimation of unbounded
quantities. On the other hand, we also seek insights into indi-
vidual biases in unbounded estimations. This can shine light
on the underlying psychological processes underlying estima-
tion of unknown quantities.

In the rest of this paper, we first present two experiments in
which individuals estimated unbounded quantities in two dif-
ferent domains, and examine the predictive accuracy based
on the standard wisdom of the crowd technique. Next we
present two Bayesian cognitive models that takes into ac-
count known truth values and individual biases. To exam-
ine the performance of the model predictions we carry out a
simulation study and compared the accuracy of our models
against those several other aggregation techniques. Finally,
we explore the distribution of biases among individuals, and
conclude by providing recommendations for future wisdom
of the crowd aggregation techniques.
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Experiments 1 and 2: Estimating Metropolitan
Populations and Box Office Returns

In these two experiments we collected data on how individ-
uals make estimates about unknown quantities and analyzed
the performance of various aggregation techniques. In Exper-
iment 1, participants estimated the sizes of 20 US metropoli-
tan areas, whereas in Experiment 2, the domestic box office
returns for the 20 highest-grossing movies of 2013.

Each experiment offers a place to better understand indi-
viduals’ judgments about unbounded quantities. Although
the underlying distributions of metropolitan populations and
movie returns are both log-normal (Eeckhout, 2004; Griffiths
& Tenenbaum, 2006), the distributions have different tail be-
haviors. In the case of box office returns figures, the val-
ues tend to be within the same order of magnitudes. For ex-
ample, the top grossing movie of 2013, The Hunger Games,
grossed $424 million while the third highest grossing movie,
Frozen, grossed a comparable figure of $401 million. In con-
trast, there is far more weight on the tail end of metropolitan
population sizes. The largest metropolitan area in the US,
New York, has 20 million inhabitants, while the third largest
metropolitan area, Chicago, has half the number of people at
10 million inhabitants. The contrast is similar for other mem-
bers of each list as well.

The difference in tails allows us to test the effectiveness of
wisdom of the crowd aggregation techniques for unbounded
estimation tasks, both when the quantities tend to be within
the same order of magnitude, and when they tend to be on
different orders of magnitude. The metropolitan population
data set was previously reported in Yeung (2014). We present
both experiments together.

Participants
Participants were recruited from Amazon’s Mechanical Turk
(http://mturk.com). There were 101 participants in the Ex-
periment 1, and 100 participants in Experiment 2. Because
Experiment 1 took participants slightly longer they were com-
pensated US$0.40 for their time, whereas participants in the
Experiment 2 were compensated US$0.30 for their time. Par-
ticipants were required to be 18 years or older, be residing in
the U.S., and have a lifetime acceptance rate on Mechanical
Turk of at least 95%.

Methods
The experiments were web-based and were administered us-
ing the Qualtrics survey service. Participants were instructed
to not use any external resources during the task. At the be-
ginning of the experiment, we asked participants to self-rate
on a seven-point scale (from “Very Good” to “Very Poor”)
their level of knowledge about geography or about movies
from 2013. In Experiment 1 participants were also given a
general geographic knowledge questionnaire. Performance
on this questionnaire did not correlate with the participants’
performance, similar to what was found by Lee and Danileiko
(2014), and so the questionnaire was dropped for Experiment
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Figure 1: The means individual responses compared to the true
values.

2.
Next participants were asked to estimate the size of 20

metropolitan areas in the year 2012, or the domestic box of-
fice returns for the top 20 grossing movies of 20131, by giving
their median estimates for either quantity. The language used
follows that of Soll and Klayman (2004). For example, in
Experiment 2, the estimates were elicited using: “I think it is
equally likely that the domestic ticket sales of this movie is
above or below (in millions): ”. In the metropolitan size
experiment, participants had the option to give their estimates
in either millions (i.e., “1.2m”) or thousands (e.g., “1,200k”).
In the box office returns experiment, participants gave esti-
mates in millions. In Experiment 2, after giving the estima-
tions, the participants were asked whether they had heard of
each movie before. At the end of each experiment, partici-
pants completed an optional short demographic survey.

The true data for the US metropolitan population were col-
lected from the U.S. Census (United States Census Bureau,
2013), and those for the box office returns were collected
from the web site Box Office Mojo (Box Office Mojo, 2014).

Basic Results and Discussion
We analyzed the performance of the mean and median esti-
mates of all individuals’ responses as compared to the true
population or box office figures. We found a high correlation
between the mean of individuals’ responses and the true val-
ues in both the metropolitan population, r = .97, and box of-
fice returns, r = .83 (Figure 1). The mean estimates were gen-
erally lower than the true values in both experiments (partic-
ularly Experiment 2), suggesting that on average individuals
underestimate the population of metropolitan areas and box
office returns. This effect was not significant in Experiment
1, based on a two-tailed paired t-test, t(19) = 1.61, p = 0.12,
although it was in Experiment 2, t(19) = 8.89, p < 0.01.

We also analyzed two measures of accuracy: the root
mean squared error (RMSE) and the root mean squared per-
cent error (RMSPE) (Makridakis, Wheelwright, & Hynd-
man, 2008). These metrics provide insights into the absolute
and proportional errors of these estimates with respect to the

1Experiment 1 was run in 2013 and Experiment 2 was run in
2014, so both sets of values were for the preceding year.
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Table 1: Performance of the crowd means and medians. For
RMSPE and RMSE, smaller values indicate better performance; for
correlation, higher is better.

Experiment 1: Metropolitan Population
Mean Median

RMSPE 33.42 58.73
RMSE 2300.85 3455.93

cor 0.97 0.99
Experiment 2: Box Office Returns

Mean Median

RMSPE 47.66 58.53
RMSE 123.89 147.70

cor 0.83 0.86

truths, respectively. The two measures are calculated as

RMSE =

√
1
n

n

∑
i=1

(ti − ei)2

RMSPE = 100

√
1
n

n

∑
i=1

(
ti − ei

ti
)2

where i is the index for the n questions, ti is the true value for
value i, and ei is the estimated value for ei. As these two met-
rics represent the amount of error in the estimates, lower val-
ues represent better performance. The results based on these
metrics for the crowd means and medians are given in Ta-
ble 1. We found that in both experiments the crowd mean
outperformed the crowd median. This is likely due to the
fact that, while most of the individuals underestimated the
true values, a small number of individuals drastically overes-
timated. These outliers increased the value of the means and
brought them closer to the truths, but had little impact on the
medians. We found that other performance metrics, includ-
ing the mean absolute distance (MAD), give similar pattern
of results—the mean estimates outperformed the median es-
timates.

The high correlation between mean responses and the true
values suggests that the crowd, as an aggregate, was highly
accurate in terms of judging the relative sizes of these quanti-
ties. It is possible that individuals have a poor sense of what
scale these quantities lie on: participants may not know if box
office returns are on the order of tens of millions or hundreds
of millions, or if high grossing movies make $200 million,
or $400 million. Because of this, they may over- or underes-
timate these quantities. Although in general it may be hard
to determine a priori if a group of individuals will over- or
underestimate a quantity, in both experiments we found the
overall estimates to be low.

The above finding suggests that correcting for individuals’
scaling biases might be useful in improving aggregate esti-
mates. If some of the true values are known before the elicita-
tion, we can use the technique of seeding—giving individuals
some ground truth data (e.g., the true box office figures for a
handful of movies), so that they can update their knowledge
concerning the distributional properties of the entities in that

xmnµmn

αm βm

σφn

Subject m

Quantity n

Figure 2: A graphical representation of the Bayesian cognitive
model used to aggregate participant responses. In the individual
level model, α and β were assumed to vary between individuals,
while in the group level model α and β were the same for all.

category and produce more accurate judgments in subsequent
trials. Brown and Siegler (1993) investigated this technique
(outside of the wisdom of the crowd context) and found that
knowledge of ground truths improved participants’ accuracy.
However, seeding often required a large number of known
truth values (in many cases over 20). Yeung (2013) found that
providing up to three seeds had a limited impact on improv-
ing estimates. Often times we may not have access to a large
number of ground truths, either because they are costly to
gather, or because they involve events that will happen in the
future. We instead take a different approach by constructing
a cognitive model that can take into account various amounts
of ground truths and estimate both individuals’ biases and the
quantities of interest.

Aggregating Estimates Using a Cognitive Model
Our model follows from previous Bayesian cognitive mod-
els used to correct for individual biases in creating wisdom
of the crowd aggregates (Lee & Danileiko, 2014; Yeung,
2014). These previous approaches relied on implicitly cor-
recting for individual differences in expertise and their prob-
ability weighting function. In contrast, our model focuses on
the assumption that individuals have good knowledge about
the relative magnitudes of each item, but also have individual-
level biases with respect to the scales of these values.

Informally, this model takes as input the judgments of each
individual and the partial ground truth. It then uses the known
ground truths to correct for the individual level biases by im-
plicitly estimating the degree of over- or underestimation of
each individual. Finally, it produces estimates on the items
without known ground truth based on each individual’s esti-
mates and the computed biases.

The model is formalized using a graphical model (Fig-
ure 2). The true values are represented by φn, where n indexes
a specific question. In the model we assume that individuals
are influenced by φn but their responses are subject to scal-
ing bias that they are not aware of. In the case of the box
office data set where each of the values are within an order of
magnitude of each other, we model the scaling using a linear
function, so that the estimate of participant m on question n is
given by xm,n = αm +βmφn + ε, where φn is the true value for
question n, αm and βm are individual parameters that account
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for the scaling biases of individual m, and ε is a normally
distributed error term. Because the values for metropolitan
populations lie across multiple orders of magnitude, we use
an exponential function instead, given by xm,n = αmφ

βm
n + ε,

which is equivalent to linear scaling on a log scale.
To evaluate the degree to which the scaling biases of indi-

viduals varied, we considered two forms of the model: in the
group level model, all αm and βm were assumed to be equal;
in the individual level model, αm and βm varied between in-
dividuals. The individual level model can be considered as a
general case of the group level model.

The goal of the model is to infer the true value of each
quantity φn, using participant responses xm,n while simulta-
neously estimating φn, αm, and βm. To do this we define the
following dependencies for the metropolitan population esti-
mate:

xm,n ∼ lognormal(logµm,n,σ)

µm,n = αmφ
βm
n

σ ∼ lognormal(0.37,0.12)
φn ∼ lognormal(6.73,3)
βm ∼ lognormal(0,1)
αm ∼ lognormal(0,1)

And similarly for the box office returns:

xm,n ∼ normal(µm,n,σ)

µm,n = αm +βmφn

σ ∼ normal(118.6,49.8)
φn ∼ lognormal(4.33,1.2)
βm ∼ lognormal(0,1)
αm ∼ normal(0,100)

The prior distributions were either chosen to be uninformative
(α and β), or computed using the empirical data (σ and φ). In
the case of φ, the prior distribution was created by examin-
ing the distribution of all participants’ responses. We found
this distribution to be approximately log-normal in both the
metropolitan size and the box office returns tasks, and used
the mean and variance of those distributions to create the pri-
ors. The prior on σ was constructed by taking the mean and
standard deviation of the standard deviation of participants’
responses.

One of the main advantages of our model is that it can natu-
rally incorporate ground truth data, making it straightforward
to improve the aggregate judgments and to provide estimates
of each individual’s scaling biases. Here the target values
φ’s, regardless of whether they are known, are represented as
nodes in the graphical model. To represent the known val-
ues in our model, we fixed the values of the known φn’s to
the known values, whereas the φn’s without known values re-

mained in the model as the unknown latent variables whose
values are to be inferred.

Bayesian inference of our models was performed using
Stan (Stan Development Team, 2014), which uses a No U-
Turn Sampling algorithm to estimate the posterior distribu-
tion (Hoffman & Gelman, 2011). α and β were initialized to
1, and φn to the means of all participants’ estimates. For each
model considered, we ran a single chain for 4,000 samples,
after a burn-in period of 4,000 samples. Pilot simulations
suggested that this was sufficient time to reach convergence.

For each model we used the mean value of φn in the poste-
rior distribution as the model’s estimate for each quantity. Es-
timates of each individual’s scaling biases, αm and βm, were
obtained similarly.

Simulation
To evaluate the performance of the models, we ran two sets of
simulations, one on the metropolitan population sizes (Exper-
iment 1) and the other on domestic box office returns (Exper-
iment 2). We varied the number of known ground truths from
1 to 19 (out of 20) to evaluate model performance with dif-
ferent numbers of known values. Because performance of the
models depend on which questions are chosen to be known,
we ran a series of simulations in which the questions with
known values were randomly sampled. For each number of
known truths we sampled 100 different combinations of ques-
tions with known values.2 We then fitted both the group and
individual level models to the data, and additionally, com-
puted the crowd means as our baseline measure. Model per-
formances were compared based on RMSPE and RMSE.

Results
Figure 3 gives the performance (in RMSPE) of both group
and individual level models and the crowd mean with 1 to 19
known data points, separately for the two experiments.3 In
Experiment 1, the individual level model had better perfor-
mance than both the group level model and the crowd mean
for all numbers of known truths. The poor performance of the
group level model with a small number of known data points
is likely due to difficulties in fitting the exponential scaling
function, which has the possibility of resulting in drastically
worse fits than the mean.

The performance of the crowd mean remained stable over
different numbers of known truths. This is expected because
it does not take into account of known truths. The perfor-
mance of both Bayesian models, however, improved as the
number of known truths increased. If all but one estimates
(19) are known, the individual level (20.60) and group level
(22.44) model had fairly similar performance, and both were
better than those of the crowd mean (26.20).

A similar pattern of result was found in Experiment 2. The
individual level model had the best performance across all

2For simulations with 1 or 19 ground truths, we performed only
20 simulations, one for each possible set of known data points.

3As the median estimates performed even worse than the mean
estimates, their performance figures are not reported here.
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Figure 3: Performance of Experiments 1 (top) and 2 (bottom). In
each chart, performances in RMSPE for all three models evaluated
are plotted in the order of numbers of known truths.

numbers of known truths. The group level model performed
poorly with only one known ground truth, but its performance
improved with higher numbers of known truths. The in-
dividual level model maintained its performance advantage
across different numbers of known ground truths. For ex-
ample, when all but one data point were known, the individ-
ual level model (19.59) had better performance than both the
group level model (23.50) and the crowd mean (45.68). For
both experiments, analysis based on RMSE yielded similar
results.

In both experiments, the individual level model outper-
formed the group level model, although the relative perfor-
mance of the group level model did improve substantially
as more data points were known. Such differences suggest
that there are meaningful individual differences in the scaling
biases. At the same time, the fact that the individual level
model was able to achieve good performance with relatively
few numbers of known data points suggests that the scaling
biases were largely consistent within the same individuals and
across different questions. Taken together, these results sug-
gest that there may be stable individual differences in the scal-
ing biases, at least within the same domain.

We can specifically analyze these differences by examin-
ing the inferred values of αm and βm. To do this, we ran an
additional model where all 20 of the ground truths were as-
sumed to be known. A histogram of the resulting mean values
for α and β is given in Figure 4. Consistent with the above
results, we find that there is a large variability among individ-
uals’ scaling bias parameters. Moreover, the results suggest
that many individuals underestimated these quantities while a
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Figure 4: Histogram of the inferred individual level scaling biases.

minority overestimated.4

General Discussion
In this paper we explore how to combine individuals’ judg-
ments to make accurate estimates for unknown and un-
bounded quantities. We used two experiments to elicit in-
dividuals’ estimates in two different domains. We found that
individuals systematically underestimate the populations of
metropolitan population and domestic box office returns. We
constructed an individual level and a group level cognitive
model that correct for individuals’ scaling biases and make
aggregate estimates. We found that the individual level model
outperformed the crowd mean, crowd median, and the group
level model. We also found substantial individual level dif-
ferences in terms of their scaling biases.

In our experiments there were no truly unknown values.
However, our models can be used in situations in which
we know the ground truths for only some of the questions,
and need to create accurate estimates for the unknown ones.
These situations could be results of a variety of reasons. For
example, we might only have the resources to determine the
truths for some of the questions; or, the judges were origi-
nally asked to make predictions on all events, and later the
outcomes for some of these events are known, and we want
to use these known outcomes to better estimate the ones not
yet finalized. Our findings will be useful in creating estimates
in these situations.

This work presents one approach to aggregating known
ground truths in a wisdom of the crowd framework. Budescu
and Chen (2015) demonstrated a different approach. They
used known ground truths to identify experts in the crowd
and overweight these experts’ judgments in order to create
more accurate aggregates. Future work is needed to evalu-
ate whether the current approach can be combined with the
identify-the-experts approach to further improve the aggre-
gate estimates.

Another alternative is to provide individuals with ground

4In Experiment 1, a value of α < 1 or β < 1 suggests under-
estimation; in Experiment 2, a value of α < 0 or β < 1 suggests
underestimation.
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truth data and so that they might recalibrate their own judg-
ments based on these data. Although this approach can work
well—Brown and Siegler (1993) found that providing ground
truths in one domain lead to increased accuracy in other ques-
tions on the same domain—it seems to require a high number
of known truths. Our model has the advantage of not requir-
ing the ground truths to be known at elicitation time and re-
quiring fewer known data points.

While a simple wisdom of the crowd setup may allow for
the estimation of some quantities even without ground truth
data, we demonstrated that in at least two domains, these es-
timates were biased, agreeing with the results of Simmons
et al. (2011). However, we found that, using an individual
level cognitive model, only a small number of known truths is
needed to correct for individual biases, and significantly boost
performance, suggesting that this approach may be useful in
cases where collecting ground truths is expensive.

One advantage of using a cognitive model to examine ag-
gregate judgments is that we can better understand the com-
putational principles underlying estimation of unknown quan-
tities. Although we found substantial variabilities among in-
dividuals’ scaling biases, the within-individual biases across
questions were found to be quite consistent. This result is
supported also by the high performance of the individual level
model with only a small number of known data points. This
suggests that scaling parameters may be linked to the under-
lying psychological processes of how individuals make these
estimates.

Overall this paper shines light on how individuals estimate
unknown, unbounded quantities, and provides a method for
correcting for over- or underestimation in individuals’ judg-
ments. We found that a cognitive model was able to account
for individuals’ scaling biases, and obtained better perfor-
mance than both the crowd means and the crowd medians.
This work demonstrates how to further improve wisdom of
the crowd aggregation techniques; this is a particularly impor-
tant finding as the crowd mean is already quite competitive
compared to experts’ judgments on a wide variety of tasks
(Surowiecki, 2004). By integrating known truth data with a
Bayesian cognitive model, we show that the performance of
aggregate judgments can be improved even further and may
provide an efficient way to obtain expert quality estimates in
a broader range of tasks.

Acknowledgments. This research was supported by John Temple-
ton Foundation Grant #40128.
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