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Abstract

Simultaneous Nonlinear Model Predictive Control and State Estimation: Theory and

Applications

by

David A. Copp

As computational power increases, online optimization is becoming a ubiquitous ap-

proach for solving control and estimation problems in both academia and industry. This

widespread popularity of online optimization techniques is largely due to their abilities to

solve complex problems in real time and to explicitly accommodate hard constraints. In

this dissertation, we discuss an especially popular online optimization control technique

called model predictive control (MPC). Specifically, we present a novel output-feedback

approach to nonlinear MPC, which combines the problems of state estimation and control

into a single min-max optimization. In this way, the control and estimation problems are

solved simultaneously providing an output-feedback controller that is robust to worst-case

system disturbances and noise. This min-max optimization is subject to the nonlinear

system dynamics as well as constraints that come from practical considerations such as

actuator limits. Furthermore, we introduce a novel primal-dual interior-point method

that can be used to efficiently solve the min-max optimization problem numerically and

present several examples showing that the method succeeds even for severely nonlinear

and non-convex problems.

Unlike other output-feedback nonlinear optimal control approaches that solve the esti-

mation and control problems separately, this combined estimation and control approach

facilitates straightforward analysis of the resulting constrained, nonlinear, closed-loop

system and yields improved performance over other standard approaches. Under appro-

vii



priate assumptions that encode controllability and observability of the nonlinear process

to be controlled, we show that this approach ensures that the state of the closed-loop

system remains bounded. Finally, we investigate the use of this approach in several

applications including the coordination of multiple unmanned aerial vehicles for vision-

based target tracking of a moving ground vehicle and feedback control of an artificial

pancreas system for the treatment of Type 1 Diabetes. We discuss why this novel com-

bined control and estimation approach is especially beneficial for these applications and

show promising simulation results for the eventual implementation of this approach in

real-life scenarios.
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(denoted by *’s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.7 Inverted Pendulum: stabilization and disturbance rejection. The top plot

shows the output (denoted by *’s) converging to the unstable equilibrium
φ “ 0 (denoted by -’s). The second plot shows the control input û˚t that is
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Chapter 1

Introduction

Online optimization has become a ubiquitous approach for solving control and estimation

problems in both academia and industry. This is largely due to the ability of online

optimization techniques to explicitly accommodate nonlinear dynamics, sophisticated

disturbance and noise models, as well as hard constraints. Two paramount challenges

when considering online optimization techniques are ensuring stability/convergence as

well as developing efficient numerical solvers. In this thesis, we provide a new online

optimization technique for solving control and estimation problems and address both

of these challenges by proving stability of the resulting closed-loop system as well as

developing new efficient algorithms for numerically solving these optimizations. Our

new technique is motivated by two finite horizon online optimization approaches: model

predictive control (MPC) and moving horizon estimation (MHE). Next we give a brief

background on MPC and MHE.

1



Introduction Chapter 1

1.1 Model Predictive Control and Moving Horizon

Estimation

MPC is a particularly popular online optimization technique for solving control prob-

lems and involves the solution of an open-loop optimal control problem at each sampling

time [72]. This optimization is subject to the dynamics of the process to be controlled

as well as constraints on the states and inputs. Classical MPC is formulated with full

state feedback. Given the current state of the system to be controlled, MPC results

in a sequence of future optimal control actions and a sequence of corresponding future

predicted states. The first control action in the sequence is applied to the process, and

then the optimization is solved again at each successive sampling time. MPC has his-

torically been popular for problems in which the process dynamics are sufficiently slow

so that the optimization can be solved between consecutive sampling times. However, as

available computational power increases and optimization algorithms improve in terms

of computational speed, MPC can be applied to broader application areas. More than

a decade ago MPC was being used in numerous industrial applications [84], and, conse-

quently, much effort has been devoted to developing a stability theory for MPC (see e.g.

[79, 16, 95, 43, 92]). Depictions of the MPC problem are shown in Figure 1.1 as a block

diagram and Figure 1.2 as a cartoon.

Figure 1.1: Block diagram of the MPC problem.

2
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t+Tt

x*(t+T)

u0:t-1

u*t:t+T-1

x(t)

Figure 1.2: Cartoon of the MPC problem. Given a model of the process to be con-
trolled and the current state xptq, a sequence of future control actions u˚t:t`T´1 is
computed and result in a sequence of future predicted states.

In many practical cases, the full state of the process to be controlled cannot be

measured. Therefore output-feedback MPC must be considered which involves the use

of additional algorithms for state estimation, including observers, filters, and moving

horizon estimation (MHE), several of which are discussed in [94]. MHE stands out among

these methods due to its ability to deal with constraints on the states. In fact, neglecting

these constraints may lead to increased estimation error or divergence of the estimator

[46]. MHE is especially attractive for use with MPC because it can be formulated as a

similar online optimization problem.

MHE involves the solution of a finite horizon online optimization problem which, given

a model of the process to be estimated, results in a state estimate that is compatible

with sets of past measurements and inputs that recede as the current time advances

[77, 96, 90]. This estimate is optimal in the sense that it maximizes a criterion that

captures the likelihood of the measurements. MHE enjoys desirable asymptotic stability
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properties [90], and in many ways is a dual problem to MPC. MHE is depicted in a block

diagram in Figure 1.3, where the process is subject to a disturbance d, and the output

measurements are subjected to noise n. Figure 1.4 shows a cartoon depiction of MHE.

Figure 1.3: Block diagram of the MHE problem.

tt-L

y(t-L)

y(t)

u0:t-L-1 ut-L:t-1

d0:t-L-1 d*t-L:t-1

Figure 1.4: Cartoon of the MHE problem. Given a model of the process to be es-
timated and a finite number of past measurements yt´L:t and past inputs ut´L:t´1,
sequences of past noises and disturbances d˚t´L:t´1 are computed in order to produce
an estimate of the state of the system.

1.2 Statement of Contributions

As noted in a recent survey of MPC and its future directions [72], output-feedback

MPC is a largely an open problem that has many possibilities for future work. The
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results presented in this thesis work towards this goal. In this thesis, we propose an

approach to combine MPC and MHE into a single optimization that is solved online

to construct an output-feedback controller. To account for the uncertainty that results

from unmeasured disturbances and measurement noise, we replace the minimization that

is used in classical MPC by a min-max optimization. In this case, the minimization is

carried out with respect to future control actions, and the maximization is taken with

respect to the variables that cannot be measured, namely the system’s initial state,

the unmeasured disturbances, and the output measurement noise. The criterion for

this min-max optimization combines a term that captures the control objective and

a term that captures the likelihood of the uncertain variables, resulting in essentially

the summation of an MPC criterion with an MHE criterion. A block diagram of this

MPC/MHE formulation is shown in Figure 1.5, and Figure 1.6 shows a cartoon depiction.

Figure 1.5: Block diagram of the combined MPC/MHE problem investigated in this thesis.

Contributions of this thesis include the theory and design of a new approach to solving

MHE and MPC problems simultaneously as a single min-max optimization problem

[22, 25, 23] as well as the investigation of using this approach in several applications (see,

e.g. [85, 21]). In particular, the contributions of each chapter are given as follows:

Chapter 2 provides the main theoretical contribution of this thesis which addresses

stability of the proposed combined MPC/MHE approach. We show that the proposed

output-feedback controller results in closed-loop trajectories along which the state of

5
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t+Ttt-L

yt-L

yt x*t+T

u0:t-L-1 ut-L:t-1

d0:t-L-1 d*t-L:t-1

u*t:t+T-1

d*t:t+T-1

Figure 1.6: Cartoon of the combined MPC/MHE problem. Given a model of the pro-
cess to be estimated and controlled as well as a finite number of past inputs ut´L:t´1

and past measurements yt´L:t, solving the combined MPC/MHE results in sequences
of past disturbances d˚t´L:t´1 and noise that produce a state estimate as well as fu-
ture sequences of disturbances d˚t:t`T´1 and control inputs u˚t:t`T´1 that produce a
predicted state trajectory x˚t:t`T into the future.

the process remains bounded, and, for tracking problems, our results provide explicit

bounds on the tracking error. These results rely on three key assumptions: The first

assumption requires the existence of saddle-point equilibria for the min-max optimization,

or equivalently, that the min and max commute. In practice, this assumption can be

viewed as a form of observability of the process. The second key assumption requires the

optimization criterion to include a terminal cost that is a control ISS-Lyapunov function

with respect to the disturbance input. This type of assumption is common in classical

state-feedback robust MPC. The third and final assumption involves observability of

the nonlinear process and essentially requires that the backwards horizon is sufficiently

large so that enough information about the initial state is obtained in order to find past

estimates that are compatible with the dynamics.

Chapter 3 addresses the first assumption invoked in Chapter 2, i.e., the existence of
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saddle-point equilibria. In this chapter, we derive conditions under which a saddle-point

solution to the min-max optimization is guaranteed to exist. For linear processes and

quadratic costs, these conditions boil down to observability of the linear process and the

appropriate choice of weights in the quadratic cost functions.

Chapter 4 presents two numerical algorithms that can be used to solve general min-

max optimization problems, including those introduced in Chapter 2. Both algorithms

involve primal-dual interior-point methods that rely on Newton’s method to solve a re-

laxed version of the Karush-Kuhn-Tucker (KKT) conditions associated with the coupled

optimizations that define a saddle-point equilibrium. The second algorithm specializes

this method for formulations with common latent variables. Several numerical examples

throughout this thesis demonstrate the capabilities of these algorithms.

Chapter 5 discusses the scenario where the process model includes uncertain or un-

known parameters. In this case, the uncertain parameters can be included as optimiza-

tion variables in the combined MPC/MHE approach and learned online. Furthermore,

we show that the results from Chapter 2 still hold. Several examples with parametric

uncertainty are considered, and in all of the examples the MPC/MHE approach provides

effective control.

This thesis also includes the investigation of this combined MPC/MHE approach for

multiple applications including the coordination of unmanned aerial vehicles for vision-

based target tracking of a moving ground vehicle, feedback control of an artificial pancreas

system for the treatment of Type 1 Diabetes, estimation and control of a DC motor, and

distributed control of multi-agents for achieving consensus.

In Chapter 6, we consider the coordination of multiple unmanned aerial vehicles

(UAVs) for vision-based target-tracking of a moving ground vehicle. This application

is conveniently formulated using the combined MPC/MHE approach because it can be

formulated as a nonlinear pursuit-evasion two-player game, and, therefore, is naturally
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solved using a min-max optimization where the ground vehicle acts as an evasive target

who tries to maximum the distance between itself and the UAVs, while the UAVs try to

minimize this distance. A novel cost function is used in order to achieve the best vision-

based estimate of the target’s location, and we show in simulations that the UAVs are

able to coordinate their motion to track the target even when the target acts evasively.

Chapter 7 explores the use of the MPC/MHE approach for the feedback control of

an artificial pancreas system for the treatment of Type 1 Diabetes. This is an inherently

asymmetric problem with many safety considerations due to the possibly serious con-

sequences of poorly regulated blood-glucose. Therefore, we design an asymmetric cost

function to facilitate appropriate controller response to high and low blood-glucose levels.

We show that the combined MPC/MHE approach is advantageous for this application

when compared to another approach using state-feedback MPC and a recursive state

estimator.

Finally, in Chapter 8, we discuss two additional applications which include output-

feedback control of a DC motor and distributed optimization for multi-agent consensus.

Armed with the computationally efficient algorithms described in Chapter 4, the com-

bined MPC/MHE approach can be applied to both of these problems in order to solve the

online optimizations in real-time. This is important for these two applications in partic-

ular because the DC motor exhibits fast dynamics, and the real-world implementation of

distributed control of multiple agents may require computation using low-power embed-

ded processors on-board robots, for instance. We show that this MPC/MHE approach

is an effective control approach for both of these applications.

8
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1.3 Organization

This thesis is organized into two parts. The first part includes Chapters 2, 3, 4, and

5 and covers the theoretical results and design of our novel simultaneous estimation and

control scheme as well as numerical optimization methods than can be used to solve the

resulting min-max optimization problem. The second part investigates the application

of this new MPC/MHE approach to several problems including: 1) the coordination of

multiple unmanned aerial vehicles (UAVs) for vision-based target tracking in Chapter 6,

2) control and estimation for an artificial pancreas system used in the treatment of Type

I Diabetes in Chapter 7, and 3) output-feedback control of a DC motor, as well as 4)

distributed optimization for multi-agent consensus, in Chapter 8.

Notation: Throughout this thesis, we denote by R the set of real numbers, by Rě0 the

set of non-negative real numbers, by R` the set of positive real numbers, by Z the set of

integers, by Zě0 the set of non-negative integers, by Z` the set of positive integers, and

by Zba the set of consecutive integers ta, ..., bu. Given a discrete-time signal z : Zě0 Ñ Rn

and two times t0, t P Zě0 with t0 ă t, we denote by zt0:t the sequence tzt0 , zt0`1, ..., ztu.

With a slight abuse of notation, we write zt0:t P Z to mean that each element of the

sequence zt0:t belongs to the set Z. Given a vector x P Rn, we denote by x1 the transpose

of x. Given a vector x P Rn and a scalar a P R, we denote by x 9ěa the proposition that

every entry of x is greater than or equal to a. Given an integer M , we denote by 0M and

by 1M the M -vectors with all entries equal to 0 and 1, respectively. Given two vectors

x, y P Rn we denote by xd y P Rn and by xm y P Rn the entry-wise product and division

of the two vectors, respectively.
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Theory and Design
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Chapter 2

Simultaneous Nonlinear Model

Predictive Control and State

Estimation

Parts of this chapter come from [22] and [25]:

2014 IEEE. Reprinted, with permission, from D. A. Copp and J. P. Hespanha, Nonlinear

output-feedback model predictive control and moving horizon estimation, 2014 IEEE

53rd Conference on Decision and Control (CDC), Dec. 2014.

In this chapter we introduce an output-feedback approach to nonlinear model predic-

tive control that combines state estimation and control into a single min-max optimiza-

tion. Specifically, a chosen criterion is minimized with respect to control input variables

and is maximized with respect to the unknown initial state as well as disturbance and

measurement noise variables. Under appropriate assumptions that encode controllabil-

ity and observability of the nonlinear process to be controlled, we prove that the state

of the closed-loop system remains bounded and establish bounds on the tracking error

for trajectory tracking problems. The results apply both to infinite and finite horizon
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optimizations, the latter requiring an additional observability assumption and the use of

a terminal cost that is an ISS-control Lyapunov function with respect to a disturbance

input. The combined MPC/MHE approach considered here was introduced in [22, 25].

2.1 Introduction

Online optimization has become a ubiquitous approach for solving control and esti-

mation problems in both academia and industry. This is largely due to the ability to

explicitly accommodate hard state and input constraints in online optimization tech-

niques. Because of this, an especially popular online optimization control technique

called model predictive control (MPC) is used in numerous industrial applications [84],

and, consequently, much effort has been devoted to developing a stability theory for MPC

(see e.g. [79, 16, 95, 43, 92]).

MPC involves the solution of an open-loop optimal control problem at each sampling

time. Each of these optimizations results in a sequence of future optimal control actions

and a sequence of corresponding future states. The first control action in the sequence

is applied to the plant, and then the optimization is solved again at the next sampling

time. MPC has historically been popular for problems in which the plant dynamics are

sufficiently slow so that the optimization can be solved between consecutive sampling

times. However, as available computational power increases and optimization algorithms

improve in terms of speed, MPC can be applied to broader application areas.

MPC is often formulated assuming that the full state of the process to be controlled

can be measured. However, this is not possible in many practical cases, so the use of inde-

pendent algorithms for state-estimation, including observers, filters, and moving horizon

estimation (MHE), as discussed, i.e., in [94], is required. Of these methods, MHE is

especially attractive for use with MPC because it can be formulated as a similar online
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optimization problem that explicitly handles constraints. Solving the MHE problem pro-

duces a state estimate that is compatible with a set of past measurements that recedes

as the current time advances. This estimate is optimal in the sense that it maximizes a

criterion that captures the likelihood of the measurements. By receding the set of mea-

surements considered in the MHE optimization, one maintains a constant computational

cost for the optimization.

In this chapter, we propose an approach to combine MPC and MHE into a single

optimization that is solved online to construct an output-feedback controller. To account

for the uncertainty that results from unmeasured disturbances and measurement noise,

we replace the minimization that is used in classical MPC by a min-max optimization. In

this case, the minimization is carried out with respect to future control actions, and the

maximization is taken with respect to the variables that cannot be measured, namely the

system’s initial state, the unmeasured disturbances, and the output measurement noise.

The criterion for this min-max optimization combines a term that captures the control

objective and a term that captures the likelihood of the uncertain variables, resulting in

essentially the summation of an MPC criterion with an MHE criterion.

The main technical contribution of this chapter addresses the stability of the proposed

combined MPC/MHE approach. We show that the proposed output-feedback controller

results in closed-loop trajectories along which the state of the process remains bounded,

and, for tracking problems, our results provide explicit bounds on the tracking error.

These results rely on three key assumptions: The first assumption requires the existence

of saddle-point equilibria for the min-max optimization, or equivalently, that the min

and max commute. In practice, this assumption can be viewed as a form of observability

of the process. The second key assumption requires the optimization criterion to include

a terminal cost that is a control ISS-Lyapunov function with respect to the disturbance

input. This type of assumption is common in classical state-feedback robust MPC.
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The final observability assumption essentially requires that the backwards horizon is

sufficiently large so that enough information about the initial state is obtained in order

to find past estimates that are compatible with the dynamics.

2.1.1 Related Work

State-feedback MPC is a mature field with numerous contributions. Particularly

relevant to the results in this thesis is the work on the so-called robust or min-max MPC,

which considers model uncertainty, input disturbances, and noise [17, 58, 9, 67]. Min-

max MPC for constrained linear systems was considered by [99] and [8], and a game

theoretic approach for robust constrained nonlinear MPC was proposed by [19]. More

recent studies of input-to-state stability of min-max MPC can be found in [57, 62, 88].

These works focused on state-feedback MPC and did not consider robustness with respect

to errors in state estimation. A novelty of the work presented in this thesis is the

reliance on saddle-point equilibria, rather than a simple min-max optimal, which we

found instrumental in establishing our stability results.

Fewer results are available for output-feedback MPC. An overview of nonlinear output-

feedback MPC is given by [34] and the references therein. Many of these output-feedback

approaches involve designing separate state estimator and MPC schemes. Several of the

observers, estimators, and filters that have been proposed for use with nonlinear output-

feedback MPC include an extended Kalman filter [49], optimization based moving horizon

observers [77], high gain observers [50], extended observers [97], and robust MHE [112]. In

contrast to solving the estimation and control problems separately, the formulation of our

combined MPC/MHE approach as a single optimization facilitates the stability analysis

of the closed-loop without the need for a separation principle for nonlinear systems.

Results on robust output-feedback MPC for constrained, linear, discrete-time systems
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with bounded disturbances and measurement noise can be found in [74, 75], where a stable

Luenberger observer is employed for state estimation and robustly stabilizing tube-based

MPC is performed to control the state of the observer. Alternatively, in [103], MHE is

employed for state estimation and is combined with a similar tube-based MPC approach.

These approaches first solve the estimation problem and show convergence of the state

estimate to a bounded set and then take the uncertainty of the state estimate into account

when solving the robust MPC problem. The work of [64] combines an estimation scheme,

which provides a guaranteed ellipsoidal error bound on the state estimate, with a min-

max MPC scheme for estimation and control of linear systems with bounded disturbances

and measurement noise.

During the same time that many important results on MPC were developed, parallel

work began on MHE. The work of [4] gives a tutorial overview and background of both

MPC and MHE as well as methods that can be used to solve these optimization problems.

Useful overviews of constrained linear and nonlinear MHE can be found in [89] and

[90] where, with appropriate assumptions regarding observability, continuity, and an

approximate arrival cost, the authors prove asymptotic stability as well as bounded

stability in the presence of bounded noise.

More recent results regarding MHE for discrete-time nonlinear systems are given by

[3], in which the authors minimize a quadratic cost that includes the standard output

error term as well as a term penalizing the distance of the current estimated state from

its prediction. The authors prove boundedness of the estimation error, when considering

bounded disturbances and measurement noise, and convergence of the state estimate to

the true value in the noiseless case. Even more recent work on robust MHE for nonlinear

systems appeared in [63], where first a high-gain observer is used to bound the estimation

error, and then that bound is used to design a constraint for incorporation in an MHE

problem. This formulation seems to reduce the sensitivity of the performance of MHE
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to the accuracy of the approximate arrival cost, and boundedness of the state estimate

is proven when the noise is bounded.

This chapter is organized as follows. In Section 2.2, we formulate the control problem

we would like to solve and discuss its relationship to MPC and MHE. In Sections 2.3

and 2.4 we state the main closed-loop stability results for the infinite horizon and finite

horizon cases, respectively. Several numerical examples are given in Section 2.5, and we

provide some conclusions in Section 2.6.

2.2 Problem Formulation

In this thesis, we consider the control of time-varying nonlinear discrete-time processes

of the form

xt`1 “ ftpxt, ut, dtq, yt “ gtpxtq ` nt, @t P Zě0 (2.1)

with state xt taking values in a set X Ă Rnx . The inputs to this system are the control

input ut that must be restricted to the set U Ă Rnu , the unmeasured disturbance dt that

is known to belong to the set D Ă Rnd , and the measurement noise nt belonging to the

set N Ă Rnn . The signal yt, belonging to the set Y Ă Rny , denotes the measured output

that is available for feedback. The control objective is to select the control signal ut P U ,

@t P Zě0 so as to minimize a criterion of the form

8
ÿ

t“0

ctpxt, ut, dtq ´
8
ÿ

t“0

ηtpntq ´
8
ÿ

t“0

ρtpdtq, (2.2)

for worst-case values of the unmeasured disturbance dt P D, @t P Zě0 and the measure-

ment noise nt P N , @t P Zě0. The functions ctp¨q, ηtp¨q, and ρtp¨q in (2.2) are all assumed

to take non-negative values. One can view the terms ρtp¨q and ηtp¨q as measures of the
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likelihood of specific values for dt and nt. Then, the negative signs in front of ρtp¨q and

ηtp¨q penalize the maximizer for using low likelihood values for the disturbances and noise

(low likelihood meaning very large values for ρtp¨q and ηtp¨q).

To better understand (2.2), it is also useful to note that boundedness of the criterion

(2.2) by a constant γ guarantees that

8
ÿ

t“0

ctpxt, ut, dtq ď γ `
8
ÿ

t“0

ηtpntq `
8
ÿ

t“0

ρtpdtq. (2.3)

In what follows, we allow the functions ηtp¨q and ρtp¨q in the criterion (2.2) to take

the value `8. This provides a convenient formalism to consider bounded disturbances

and noise while formally allowing nt and dt to take values in the whole spaces Rnn and

Rnd , respectively. Specifically, considering extended-value extensions [14] of the form

ρtpdtq–

$

’

’

&

’

’

%

ρ̄tpdtq dt P D

8 dt R D,
ηtpntq–

$

’

’

&

’

’

%

η̄tpntq nt P N

8 nt R N ,
(2.4)

with ρ̄t and η̄t bounded in D and N , respectively, the minimization of (2.2) with respect

to the control signal ut need not consider cases where dt and nt take values outside D

and N , respectively, as this would directly lead to the cost ´8 for any control signal ut

that keeps the positive term bounded.

Remark 1 While the results presented here are general, the reader is encouraged to

consider the quadratic case ctpxt, ut, dtq – }xt}
2 ` }ut}

2, ηtpntq – }nt}
2, ρtpdtq – }dt}

2

to gain intuition on the results. In this case, (2.3) would guarantee that the state xt and

input ut are `2, provided that the disturbance dt and noise nt are also `2. This would

mean that the closed-loop has a finite `2-induced gain. l
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2.3 Infinite Horizon Online Optimization

To overcome the conservativeness of an open-loop control, we use online optimization

to generate the control signals. Specifically, at each time t P Zě0, we compute the control

ut so as to minimize

8
ÿ

s“t

cspxs, us, dsq ´
t
ÿ

s“0

ηspnsq ´
8
ÿ

s“0

ρspdsq (2.5)

under worst-case assumptions on the unknown system’s initial condition x0, unmeasured

disturbances dt, and measurement noise nt, subject to the constraints imposed by the

system dynamics and the measurements yt collected up to the current time t. Since the

goal is to optimize this cost at the current time t to compute the control inputs at times

s ě t, there is no point in penalizing the running cost cspxs, us, dsq for past time instants

s ă t, which explains the fact that the first summation in (2.5) starts at time t. There

is also no point in considering the values of future measurement noise at times s ą t,

as they will not affect choices made at time t, which explains the fact that the second

summation in (2.5) stops at time t. However, we do need to consider all values for the

unmeasured disturbance ds because past values affect the (unknown) current state xt,

and future values affect the future values of the running cost.

The following notation facilitates formalizing the control law proposed: Given a

discrete-time signal z : Zě0 Ñ Rn and two times t0, t P Zě0 with t0 ď t, we denote

by zt0:t the sequence tzt0 , zt0`1, ..., ztu. This notation allows us to re-write (2.5) as

J8t px0, u0:8, d0:8, y0:tq–

8
ÿ

s“t

cspxs, us, dsq ´
t
ÿ

s“0

ηs
`

ys ´ gspxsq
˘

´

8
ÿ

s“0

ρspdsq, (2.6)

which emphasizes the dependence of (2.5) on the unknown initial state x0, the unknown

disturbance input sequence d0:8, the measured output sequence y0:t, and the control input
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sequence u0:8. Regarding the latter, one should recognize that u0:8 is composed of two

distinct sequences: the (known) past inputs u0:t´1 that have already been applied, and

the future inputs ut:8 that still need to be selected.

At a given time t P Zě0, we do not know the value of the variables x0 and d0:8 on

which the value of criterion (2.6) depends, so we optimize this criterion under worst-case

assumptions on these variables, leading to the following min-max optimization

min
ût:8|tPU

max
x̂0|tPX ,
d̂0:8|tPD

J8t px̂0|t, u0:t´1, ût:8|t, d̂0:8|t, y0:tq, (2.7)

where the arguments u0:t´1, ût:8|t to the function J8t p¨q in (2.7) correspond to the argu-

ment u0:8 in the definition of J8t p¨q in the left-hand side of (2.6). The subscript ¨|t in the

(dummy) optimization variables in (2.7) emphasizes that this optimization is repeated

at each time step t P Zě0. At different time steps, these optimizations typically lead to

different solutions, which generally do not coincide with the real control input, distur-

bances, and noise. We can view the optimization variables x̂0|t and d̂0:8|t as (worst-case)

estimates of the initial state and disturbances, respectively, based on the past inputs

u0:t´1 and outputs y0:t available at time t.

As is common in model predictive control, at each time t, we use as the control input

the first element of the sequence

û˚t:8|t “ tû
˚
t|t, û

˚
t`1|t, û

˚
t`2|t, . . . u P U

that minimizes (2.7), leading to the following control law:

ut “ û˚t|t, @t ě 0. (2.8)

19



Simultaneous Nonlinear Model Predictive Control and State Estimation Chapter 2

Relationship with Model Predictive Control

When the state of (2.1) can be measured exactly and the maps dt ÞÑ ftpxt, ut, dtq are

injective (for each fixed xt and ut), the initial state x0 and past values for the disturbance

d0:t´1 are uniquely defined by the “measurements” x0:t. In this case, the control law (2.8)

that minimizes (2.7) can also be determined by the optimization

min
ût:8|tPU

max
d̂t:8|tPD

J8t px0, u0:t´1, ût:8|t, d0:t´1, d̂t:8|tq,

with

J8t pxt, ut:8, dt:8q–
8
ÿ

s“t

cspxs, us, dsq ´
8
ÿ

s“t

ρspdsq,

which is essentially the robust model predictive control problem considered in [19, 70].

Remark 2 (Economic MPC) It is worth noting that our framework is more general

than standard forms of MPC where the minimal cost is achieved at the optimal feasible

state and input in order to ensure stability of the desired state. It can also apply to

economic MPC where the operating cost of the plant is used directly in the objective

function, and therefore the cost need not be zero or minimal at the optimal state and

input [93]. l

Relationship with Moving-Horizon Estimation

When setting both csp¨q and qt`T p¨q equal to zero in the criterion (2.6), this optimiza-

tion no longer depends on ut:8 and dt:8, so the optimization in (2.7) simply becomes

max
x̂0|tPX ,
d̂0:t´1|tPD

J8t px̂0|t, u0:t´1, d̂0:t´1|t, y0:tq,
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where now the optimization criterion only contains a finite number of terms that recede

as the current time t advances:

J8t px0, u0:t´1, d0:t´1, y0:tq– ´

t´1
ÿ

s“0

ρspdsq ´
t
ÿ

s“0

ηs
`

ys ´ gspxsq
˘

,

which is essentially the moving horizon estimation problem considered in [90, 3].

2.3.1 Closed-Loop Boundedness and Tracking

We now show that the control law (2.8) leads to boundedness of the state of the

closed-loop system under appropriate assumptions, which we discuss next.

A necessary condition for the implementation of the control law (2.8) is that the outer

minimizations in (2.7) lead to finite values for the optima that are achieved at specific

sequences û˚t:8|t P U , t P Zě0. However, for the stability results in this section we actually

ask for the existence of a saddle-point solution to the min-max optimizations in (2.7),

which is a common requirement in game theoretical approaches to control design [6]:

Assumption 1 (Saddle-point) The min-max optimization (2.7) always has a saddle-

point solution for which the min and max commute. Specifically, for every time t P Zě0,

past control input sequence u0:t´1 P U , and past measured output sequence y0:t P Y, there

exists a finite scalar J˚t pu0:t´1, y0:tq P R, an initial condition x̂˚0|t P X , and sequences

û˚t:8|t P U , d̂˚0:8|t P D such that

J8˚t pu0:t´1, y0:tq “ Jtpx̂
˚
0|t, u0:t´1, û

˚
t:8|t, d̂

˚
0:8|t, y0:tq

“ min
ût:8|tPU

max
x̂0|tPX ,
d̂0:8|tPD

J8t px̂0|t, u0:t´1, ût:8|t, d̂0:8|t, y0:tq

“ max
x̂0|tPX ,
d̂0:8|tPD

J8t px̂0|t, u0:t´1, û
˚
t:8|t, d̂0:8|t, y0:tq (2.9a)
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“ max
x̂0|tPX ,
d̂0:8|tPD

min
ût:8|tPU

J8t px̂0|t, u0:t´1, ût:8|t, d̂0:8|t, y0:tq

“ min
ût:8|tPU

J8t px̂
˚
0|t, u0:t´1, ût:8|t, d̂

˚
0:8|t, y0:tq (2.9b)

ă 8. (2.9c)

Assumption 1 presumes an appropriate form of observability/detectability adapted

to the criterion
ř8

s“t cspxs, us, dsq because (2.9a) implies that, for every initial condition

x̂0|t P X and disturbance sequence d̂0:8|t P D,

ctpx̂t|t, û
˚
t|t, d̂t|tq ď J8˚t pu0:t´1, y0:tq `

8
ÿ

s“0

ρspd̂s|tq `
t
ÿ

s“0

ηs
`

ys ´ gspx̂s|tq
˘

. (2.10)

This means that we can bound the size of the current state using past outputs and

past/future input disturbances. Assumption 1 also presumes an appropriate form of

controllability/stabilizability adapted to the criterion
ř8

s“t cspxs, us, dsq because (2.9a)

implies that the future control sequence û˚t:8|t P U is able to keep “small” the size of

future states as long as the noise and disturbance remain “small”.

The following theorem is the main result of this section and provides a bound that

can be used to prove boundedness of the state when the control signal is constructed

using the infinite horizon criterion (2.6).

Theorem 1 (Infinite horizon cost-to-go bound) Suppose that Assumption 1 holds.

Then, for every t P Zě0, the trajectories of the process (2.1) with control (2.8) defined by

the infinite-horizon optimization (2.7) satisfy

ctpxt, ut, dtq ď J8˚0 py0q `

t
ÿ

s“0

ηspnsq `
t
ÿ

s“0

ρspdsq. (2.11)

l
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Proof

Before proving Theorem 1, we introduce a key technical lemma that establishes the

monotonicity of the sequence tJ8˚t pu0:t´1, y0:tq : t P Zě0u.

Lemma 1 Under Assumption 1 and using the control law (2.8), we have that

J8˚t`1pu1:t, y1:t`1q ´ J
8˚
t pu0:t´1, y0:tq ď 0, @t P Zě0 (2.12)

and consequently

J8˚t pu0:t´1, y0:tq ď J8˚0 py0q, @t P Zě0. (2.13)

l

Proof of Lemma 1. We conclude from (2.9b) in Assumption 1 at time t` 1 that

J8˚t`1pu0:t, y0:t`1q “ min
ût`1:8|t`1PU

J8t`1px̂
˚
0|t`1, u0:t, ût`1:8|t`1, d̂

˚
0:8|t`1, y0:t`1q

ď J8t`1px̂
˚
0|t`1, u0:t, û

˚
t`1:8|t, d̂

˚
0:8|t`1, y0:t`1q, (2.14)

where the inequality results from the fact that the minimization with respect to ût`1:8|t`1 P

U must lead to a value no larger than what would be obtained by setting ût`1:8|t`1 “

û˚t`1:8|t.

Similarly, we can conclude from (2.9a) in Assumption 1 that

J8˚t pu0:t´1, y0:tq “ max
x̂0|tPX ,
d̂0:8|tPD

J8t px̂0|t, u0:t´1, û
˚
t:8|t, d̂0:8|t, y0:tq

ě J8t px̂
˚
0|t`1, u0:t´1, û

˚
t:8|t, d̂

˚
0:8|t`1, y0:tq
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“ J8t px̂
˚
0|t`1, u0:t, û

˚
t`1:8|t, d̂

˚
0:8|t`1, y0:tq, (2.15)

where the inequality results from the fact that the maximization with respect to x̂0|t and

d̂0:8|t must lead to a value no smaller than what would be obtained by setting x̂0|t “ x̂˚0|t`1,

d̂0:8|t “ d̂˚0:8|t`1. The last equality stems from the control law (2.8). Combining (2.14)

and (2.15) leads to

J8˚t`1pu0:t, y0:t`1q ´ J
8˚
t pu0:t´1, y0:tq ď

J8t`1px̂
˚
0|t`1, u0:t, û

˚
t`1:8|t, d̂

˚
0:8|t`1, y0:t`1q ´ J

8
t px̂

˚
0|t`1, u0:t, û

˚
t`1:8|t, d̂

˚
0:8|t`1, y0:tq. (2.16)

The crucial observation behind this inequality is that both terms J8t`1p¨q and Jtp¨q in the

right-hand side of (2.16) are computed along a trajectory initialized at time 0 with the

same initial state x̂˚0|t`1 and share the same control input sequence tu0:t, û
˚
t`1:8|tu and the

same disturbance input sequence d̂˚0:8|t`1 from time 0 to time8. Denoting such trajectory

by

x̃s`1 “ fspx̃s, ũs, d̃sq, s P t0 : 8u

where

x̃0 – x̂˚0|t`1,

d̃s – d̂˚s|t`1, @s P t0 : 8u,

ũs –

$

’

’

&

’

’

%

us s P t0 : tu

û˚s|t s P tt` 1 : 8u,

we can rewrite the inequality (2.16) and express both terms J8t`1p¨q and J8t p¨q in terms
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of this trajectory as follows:

J8˚t`1pu0:t, y0:t`1q ´ J
8˚
t pu0:t´1, y0:tq ď

8
ÿ

s“t`1

cspx̃s, ũs, d̃sq ´
t`1
ÿ

s“0

ηs
`

ys ´ gspx̃sq
˘

´

8
ÿ

s“0

ρspd̃sq

´

8
ÿ

s“t

cspx̃s, ũs, d̃sq `
t
ÿ

s“0

ηs
`

ys ´ gspx̃sq
˘

`

8
ÿ

s“0

ρspd̃sq

“ ´ctpx̃t, ũt, d̃tq ´ ηt`1

`

yt`1 ´ gt`1px̃t`1q
˘

.

Equation (2.12) follows from this and the fact that ctp¨q and ηt`1p¨q are both non-negative.

We are now ready to prove the main result of this section.

Proof of Theorem 1. Using (2.9a) in Assumption 1, we conclude that

J8˚t pu0:t´1, y0:tq “ max
x̂0|tPX ,
d̂0:8|tPD

J8t px̂0|t, u0:t´1, û
˚
t:8|t, d̂0:8|t, y0:tq

ě J8t px0, u0:t´1, û
˚
t:8|t, d0:8, y0:tq.

Using the definition of J8t p¨q in (2.6), this inequality becomes

J8˚t pu0:t´1, y0:tq ě

8
ÿ

s“t

cspxs, û
˚
s|t, dsq ´

t
ÿ

s“0

ηs
`

ys ´ gspxsq
˘

´

8
ÿ

s“0

ρspdsq.

Recalling that ns “ ys ´ gspxsq, we conclude that

8
ÿ

s“t

cspxs, û
˚
s|t, dsq ď J8˚t pu0:t´1, y0:tq `

t
ÿ

s“0

ηspnsq `
8
ÿ

s“0

ρspdsq. (2.17)
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Combining (2.17) and (2.13), we obtain

8
ÿ

s“t

cspxs, û
˚
s|t, dsq ď J8˚0 py0q `

t
ÿ

s“0

ηspnsq `
8
ÿ

s“0

ρspdsq.

Since all the terms in the left-hand side are positive, the first term in the left-hand side

summation (the one for s “ t) must also be upper bounded by the right-hand side,

leading to

ctpxt, ut, dtq “ ctpxt, û
˚
t|t, dtq ď J8˚0 py0q `

t
ÿ

s“0

ηspnsq `
8
ÿ

s“0

ρspdsq, (2.18)

where the left-hand side equality follows from (2.8). Since the left-hand side of (2.18)

does not depend on ds, @s ą t, this bound must hold for arbitrary choices of ds, @s ą t.

Equation (2.11) is obtained by picking ds “ 0, @s ą t.

Next we discuss the implications of Theorem 1 in terms of establishing bounds on the

state of the closed-loop system, asymptotic stability, and the ability of the closed-loop

to asymptotically track desired trajectories.

State boundedness and asymptotic stability

When we select criterion (2.6), for which there exists a class K8 function αp¨q and

class K functions1 βp¨q, δp¨q such that

ctpx, u, dq ě αp}x}q, ηtpnq ď βp}n}q, ρtpdq ď δp}d}q,

@x P Rnx , u P Rnu , d P Rnd , n P Rnn ,

1A function α : Rě0 Ñ Rě0 is said to belong to class K if it is continuous, zero at zero, and strictly
increasing and is said to belong to class K8 if it belongs to class K and is unbounded.
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we conclude from (2.11) that, along trajectories of the closed-loop system, the following

inequality holds for all t P Zě0:

αp}xt}q ď J8˚0 py0q `

t
ÿ

s“0

βp}ns}q `
t
ÿ

s“0

δp}ds}q. (2.19)

This provides a bound on the state provided that the noise and disturbances are “van-

ishing,” in the sense that

8
ÿ

s“0

βp}ns}q ă 8,
8
ÿ

s“0

δp}ds}q ă 8.

Theorem 1 also provides bounds on the state for non-vanishing noise and disturbances

when we use exponentially time-weighted functions ctp¨q, ηtp¨q, and ρtp¨q that satisfy

ctpx, u, dq ě λ´tαp}x}q, ηtpnq ď λ´tβp}n}q, ρtpdq ď λ´tδp}d}q, (2.20)

for all x P Rnx , u P Rnu , d P Rnd , n P Rnn and some λ P p0, 1q. In this case we conclude

from (2.11) that for all t P Zě0,

αp}xt}q ď λtJ8˚0 py0q `

t
ÿ

s“0

λt´sβp}ns}q `
t
ÿ

s“0

λt´sδp}ds}q.

Therefore, xt remains bounded provided that the measurement noise nt and the unmea-

sured disturbance dt are both uniformly bounded. Moreover, }xt} converges to zero as

t Ñ 8, when the noise and disturbances vanish asymptotically. We have proved the

following:

Corollary 1 Suppose that Assumption 1 holds and also that (2.20) holds for a class K8

function αp¨q, class K functions βp¨q, δp¨q, and λ P p0, 1q. Then, for every initial con-

dition x0, uniformly bounded measurement noise sequence n0:8, and uniformly bounded
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disturbance sequence d0:8, the state xt remains uniformly bounded along the trajectories

of the process (2.1) with control (2.8) defined by the infinite-horizon optimization (2.7).

Moreover, when dt and nt converge to zero as tÑ 8, the state xt also converges to zero.

l

Remark 3 (Time-weighted criteria) The exponentially time-weighted functions (2.20)

typically arise from a criterion of the form

8
ÿ

s“t

λ´scpxs, us, dsq ´
t
ÿ

s“0

λ´sηpnsq ´
8
ÿ

s“0

λ´sρpdsq

that weight the future more than the past. In this case, (2.20) holds for functions αp¨q,

βp¨q, and δp¨q such that cpx, u, dq ě αp}x}q, ηpnq ď βp}n}q, and ρpdq ď δp}d}q, @x, u, d, n.

l

Reference tracking

When the control objective is for the state xt to follow a given trajectory zt, the

optimization criterion can be selected of the form

8
ÿ

s“t

λ´scpxs ´ zs, us, dsq ´
t
ÿ

s“0

λ´sηpnsq ´
8
ÿ

s“0

λ´sρpdsq,

with cpx, u, dq ě αp}x}q, @x, u, d for some class K8 function α and λ P p0, 1q. In this

case, we conclude from (2.11) that, for all t P Zě0,

αp}xt ´ zt}q ď λtJ8˚0 py0q `

t
ÿ

s“0

λt´sηpnsq `
t
ÿ

s“0

λt´sρpdsq,

which allows us to conclude that xt converges to zt as t Ñ 8 when both nt and dt are

vanishing sequences, and also that, when these sequences are “ultimately small”, the
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tracking error xt ´ zt will converge to a small value.

2.4 Finite Horizon Online Optimization

To avoid solving the infinite-dimensional optimization in (2.7) that resulted from the

infinite horizon criterion (2.5), we also consider a finite horizon version of the criterion

(2.5) of the form

t`T´1
ÿ

s“t

cspxs, us, dsq ` qt`T pxt`T q ´
t
ÿ

s“t´L

ηspnsq ´
t`T´1
ÿ

s“t´L

ρspdsq (2.21)

Again, at each time t P Zě0, we compute the control ut so as to minimize the criterion

(2.21) under worst-case assumptions on the unknown system’s initial condition xt´L, un-

measured disturbances ds, and measurement noise ns, subject to the constraints imposed

by the system dynamics and the measurements ys collected up to the current time t.

For computational tractability, in (2.21) we have replaced the infinite summations

that appeared in (2.2) by finite forward and backward horizon lengths. In particular,

(2.21) includes T P Zě1 future terms of the running cost cspxs, us, dsq, which recede as

the current time t advances, and L`1 P Zě1 past terms of the noise penalty term ηspnsq.

The function qt`T pxt`T q acts as a terminal cost to penalize the “final” state at time t`T .

Since the goal is to optimize (2.21) at the current time t to compute the control

inputs at times s ě t, there is no point in penalizing the running cost cspxs, us, dsq for

past time instants s ă t, which explains the fact that the first summation in (2.21) starts

at time t. There is also no point in considering the values of future measurement noise

at times s ą t, as they will not affect choices made at time t, which explains the fact

that the second summation in (2.21) stops at time t. However, we do need to consider

all values for the unmeasured disturbance ds, because past values affect the (unknown)
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current state xt, and future values affect the future values of the running cost.

Therefore, we can define the finite horizon optimization criterion as

Jtpxt´L, ut´L:t`T´1, dt´L:t`T´1, yt´L:tq–

t`T´1
ÿ

s“t

cspxs, us, dsq ` qt`T pxt`T q ´
t
ÿ

s“t´L

ηs
`

ys ´ gspxsq
˘

´

t`T´1
ÿ

s“t´L

ρspdsq, (2.22)

which emphasizes the dependence of (2.22) on the unknown initial state xt´L, the

unknown disturbance input sequence dt´L:t`T´1, the measured output sequence yt´L:t,

and the control input sequence ut´L:t`T´1. Regarding the latter, one should note that

ut´L:t`T´1 is composed of two distinct sequences: the (known) past inputs ut´L:t´1 that

have already been applied and the future inputs ut:t`T´1 that still need to be selected.

At a given time t P ZěL, we do not know the value of the variables xt´L and dt´L:t`T´1

on which the value of the criterion (2.22) depends, so we optimize this criterion under

worst-case assumptions on these variables, leading to the following min-max optimization

min
ût:t`T´1|tPU

max
x̂t´L|tPX ,

d̂t´L:t`T´1|tPD

Jtpx̂t´L|t, ut´L:t´1, ût:t`T´1|t, d̂t´L:t`T´1|t, yt´L:tq, (2.23)

where the arguments ut´L:t´1, ût:t`T´1|t to the function Jtp¨q in (2.23) correspond to the

argument ut´L:t`T´1 in the definition of Jtp¨q in the left-hand side of (2.22). When

interpreting (2.23), one should view ût:t`T´1|t P U as the optimization variables for the

(outer) minimization, and x̂t´L|t P X , d̂t´L:t`T´1|t P D as the optimization variables for

the (inner) maximization. There are additional optimization variables n̂t´L:t, but they are

not independent optimization variables as they are uniquely determined by the remaining
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optimization variables and the output equation:

n̂s|t “ ys ´ gspx̂s|tq, @s P tt´ L, t´ L` 1, . . . , tu.

Consequently, a constraint on the noise, such as the condition n̂t´L:t|t P N , can simply

be regarded as a constraint on the remaining optimization variables for the (inner) maxi-

mization. Because of this, we do not include the sequence n̂t´L:t|t as explicit optimization

variables in (2.23).

The subscript ¨|t in the optimization variables that appear in (2.23) emphasizes that

this optimization is repeated at each time step t P Zě0. At different time steps these

optimizations typically lead to different solutions which generally do not coincide with

the real control input, disturbances, and noise. We can view the optimization variables

x̂t´L|t and d̂t´L:t`T´1|t as (worst-case) estimates of the initial state and disturbances,

respectively, based on the past inputs ut´L:t´1 and outputs yt´L:t available at time t.

As is common in MPC, at each time t, we use as the control input the first element

of the sequence

û˚t:t`T´1|t “ tû
˚
t|t, û

˚
t`1|t, û

˚
t`2|t, . . . û

˚
t`T´1|tu P U

that minimizes (2.23), leading to the following control law:

ut “ û˚t|t, @t ě 0. (2.24)

2.4.1 Closed-loop Boundedness and Tracking

To establish state boundedness under the control (2.24) defined by the finite horizon

optimization criterion (2.22), one requires the same saddle-point Assumption 1 modi-
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fied for finite horizon optimization (2.23) as well as additional assumptions regarding

observability of the nonlinear process (2.1) and the terminal cost qtp¨q.

Assumption 2 (Saddle-point) The finite horizon min-max optimization in (2.23) al-

ways has a saddle-point solution for which the min and max commute. Specifically, for

every time t P Zě0, past control input sequence ut´L:t´1 P U , and past measured output

sequence yt´L:t P Y, there exists a finite scalar J˚t P R, an initial condition x̂˚t´L|t P X ,

and sequences û˚t:t`T´1|t P U , d̂˚t´L:t`T´1|t P D, and n̂˚t´L:t|t P N such that

J˚t “ Jtpx̂
˚
t´L|t, ut´L:t´1, û

˚
t:t`T´1|t, d̂

˚
t´L:t`T´1|t, yt´L:tq

“ max
x̂t´L|tPX ,

d̂t´L:t`T´1|tPD

Jtpx̂t´L|t, ut´L:t´1, û
˚
t:t`T´1|t, d̂t´L:t`T´1|t, yt´L:tq (2.25a)

“ min
ût:t`T´1|tPU

Jtpx̂
˚
t´L|t, ut´L:t´1, ût:t`T´1|t, d̂

˚
t´L:t`T´1|t, yt´L:tq. (2.25b)

l

In general, J˚t depends on the past outputs and control inputs, so we sometimes write

J˚t put´L:t´1, yt´L:tq to emphasize this dependence.

As in the infinite horizon case, Assumption 2 presumes an appropriate form of observ-

ability/detectability adapted to the criterion
řt`T´1
s“t cspxs, us, dsq because (2.25a) implies

that, for every initial condition x̂t´L|t P X , disturbance sequence d̂t´L:t`T´1|t P D, and

resulting state trajectory x̂t´L:t`T ,

ctpx̂t, û
˚
t|t, d̂t|tq ď J˚t put´L:t´1, yt´L:tq `

t`T´1
ÿ

s“t´L

ρspd̂s|tq `
t
ÿ

s“t´L

ηs
`

ys ´ gspx̂sq
˘

.

This means that we can essentially bound the size of the current state using past outputs

and past/future input disturbances. In fact, for linear systems and quadratic costs,

Assumption 2 is satisfied if the system is observable and the weights in the cost function
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are chosen appropriately [24]. We prove this fact and discuss this assumption further in

Chapter 3.

Remark 4 (Alternating min and max) Assumption 2 also ensures that all of the

minimizations and maximizations commute even if (2.23) is written with alternating

min and max. Consider a two-dimensional example. The following inequality holds

min
u1

min
u2

max
d1

max
d2

Jpu1, u2, d1, d2q ě min
u1

max
d1

min
u2

max
d2

Jpu1, u2, d1, d2q

ě max
d1

min
u1

max
d2

min
u2

Jpu1, u2, d1, d2q ě max
d1

max
d2

min
u1

min
u2

Jpu1, u2, d1, d2q (2.26)

because of the fact that minp¨q maxp¨q J ě maxp¨q minp¨q J . Therefore, since Assumption 2

ensures that the left-hand-side of (2.26) equals the right-hand-side of (2.26), all of the

inequalities in between are also equal.

Assumption 3 (Observability) There exists a bounded set Npre Ă Rnn such that, for

every time t P Zě0, every state x̂t´L:t P X , and every disturbance and noise sequence,

d̂t´L:t P D and n̂t´L:t P N , that are compatible with the applied control input us, s P Zě0,

and the measured output ys, s P Zě0, in the sense that

x̂s`1 “ fspx̂s, us, d̂sq, ys “ gspx̂sq ` n̂s, (2.27)

@s P tt ´ L, t ´ L ` 1, . . . , tu, there exists a “predecessor” state estimate x̂t´L´1 P X ,

disturbance estimate d̂t´L´1 P D, and noise estimate n̂t´L´1 P Npre such that (5.11) also

holds for time s “ t´ L´ 1. l

In essence, Assumption 3 requires the past horizon length L to be sufficiently large so

that, by observing the system’s inputs and outputs over a past time interval tt ´ L, t ´

L ` 1, . . . , tu, one obtains enough information about the initial condition xt´L so that
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any estimate x̂t´L that is compatible with the observed input/output data is “precise”.

By “precise,” we mean that if one were to observe one additional past input/output pair

ut´L´1, yt´L´1 just before the original interval, it would be possible to find an estimate

x̂t´L´1 for the “predecessor” state xt´L´1 that would be compatible with the previous

estimate x̂t´L, that is,

x̂t´L “ ft´L´1px̂t´L´1, ut´L´1, d̂t´L´1q.

This “predecessor” state estimate x̂t´L´1 would also be compatible with the measured

output at time t´L´1 in the sense that the output estimation error lies in the bounded

set Npre:

yt´L´1 ´ gt´L´1px̂t´L´1q P Npre. (2.28)

Note that we do not require the bounded set Npre to be the same as the set N in which

the actual noise is known to lie. In fact, the set Npre where the “predecessor” output error

(2.28) should lie may have to be made larger than N to make sure that Assumption 3

holds. For linear systems, it is straightforward to argue that Assumption 3 holds provided

that the matrix

»

—

—

—

—

—

—

—

–

C

CA

...

CAL

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

is full column rank and the set Npre is chosen sufficiently large. For nonlinear systems,

computing the set Npre may be difficult, but fortunately we do not need to compute this
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set to implement the controller.

Remark 5 (Choosing length of L) Although computing the set Npre is not required,

how large Npre needs to be is essentially determined by the length of the backwards horizon

L. As the length of L is increased, equation (5.11) provides more constraints on the

estimates which leads to better estimates and, therefore, a necessarily smaller set Npre.

In addition, as is discussed later after (2.44), a smaller bound on the norm of the state x

may be achieved as L is increased. Therefore, larger L is generally better, but increasing

L also increases the computation required to solve (2.23) as the number of optimization

variables increases as well. Thus, a heuristic for choosing L is to make it as large as

possible given available computational resources.

Assumption 4 (ISS-control Lyapunov function) The terminal cost qtp¨q is an ISS-

control Lyapunov function, in the sense that, for every t P Zě0, x P X , there exists a

control u P U such that for all d P D

qt`1

`

ftpx, u, dq
˘

´ qtpxq ď ´ctpx, u, dq ` ρtpdq. (2.29)

l

Assumption 4 plays the role of the common assumption in MPC that the terminal

cost must be a control Lyapunov function for the closed-loop [76]. In the absence of

the disturbance d, (2.29) would mean that qtp¨q could be viewed as a control Lyapunov

function that decreases along system trajectories for an appropriate control input u [101].

With disturbances, qtp¨q needs to be viewed as an ISS-control Lyapunov function that

satisfies an ISS stability condition for the disturbance input d and an appropriate control

input u [61]. When, the dynamics are linear and the cost function is quadratic, a terminal
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cost qtp¨q satisfying Assumption 4 is typically found by solving a system of linear matrix

inequalities.

We are now ready to state the finite horizon counter-part to Theorem 1.

Theorem 2 (Finite horizon cost-to-go bound) Suppose that Assumptions 2, 3, and

4 hold. Along any trajectory of the closed-loop system defined by the process (2.1) and

the control law (2.24), we have that

ctpxt, ut, dtq ď J˚Lpu0:L´1, y0:Lq `

t´L´1
ÿ

s“0

ρspd̃sq `
t´L´1
ÿ

s“0

ηspñsq `
t
ÿ

s“t´L

ηspnsq `
t
ÿ

s“t´L

ρspdsq

@t P ZěL, (2.30)

for appropriate sequences d̃0:t´L´1 P D, ñ0:t´L´1 P Npre. l

The terms
řt´L´1
s“0 ηspñsq `

řt´L´1
s“0 ρspd̃sq in the right hand side of (5.13) can be

thought of as the arrival cost that appears in the MHE literature to capture the quality

of the estimate at the beginning of the current estimation window [90].

Proof

Before proving Theorem 2, we introduce a key technical lemma that establishes a

monotonicity-like property of the sequence tJ˚t put´L:t´1, yt´L:tq : t P Zě0u computed

along solutions to the closed loop.

Lemma 2 Suppose that Assumptions 2, 3, and 4 hold. Along any trajectory of the

closed-loop system defined by the process (2.1) and the control law (2.24), the sequence

tJ˚t put´L:t´1, yt´L:tq : t P Zě0u, whose existence is guaranteed by Assumption 2, satisfies

J˚t`1put´L`1:t, yt´L`1:t`1q ´ J
˚
t put´L:t´1, yt´L:tq ď ηt´Lpñt´Lq ` ρt´Lpd̃t´Lq, @t P ZěL

(2.31)
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for appropriate sequences d̃0:t´L´1 P D, ñ0:t´L´1 P Npre. l

The following notation will be used in the proof below to denote the solution to process

(2.1): given a control input sequence ut´L:t´1 and a disturbance input sequence dt´L:t´1,

we denote by

ϕpt; t´ L, xt´L, ut´L:t´1, dt´L:t´1q

the state xt of the system (2.1) at time t for the given inputs and initial condition xt´L.

Proof of Lemma 2. From (2.25b) in Assumption 2 at time t` 1, we conclude that there

exists an initial condition x̂˚t´L`1|t`1 P X and sequences d̂˚t´L`1:t`T |t`1 P D, n̂˚t´L`1:t`1|t`1 P

N such that

J˚t`1put´L`1:t, yt´L`1:t`1q “

min
ût`1:t`T |t`1PU

Jt`1px̂
˚
t´L`1|t`1, ut´L`1:t, ût`1:t`T |t`1, d̂

˚
t´L`1:t`T |t`1, yt´L`1:t`1q. (2.32)

On the other hand, from Assumption 4 at time t` T , with d “ d̂˚t`T |t`1 and

x “ x̂˚t`T |t`1 – ϕpt` T ; t´ L` 1, x̂˚t´L`1|t`1, û
˚
t`1:t`T |t`1, d̂

˚
t´L`1:t`T |t`1q,

we conclude that there exists a control ũt`T P U such that

qt`T`1

`

ft`T px̂
˚
t`T |t`1, ũt`T , d̂

˚
t`T |t`1q

˘

´ qt`T px̂
˚
t`T |t`1q

` ct`T px̂
˚
t`T |t`1, ũt`T , d̂

˚
t`T |t`1q ´ ρt`T pd̂

˚
t`T |t`1q ď 0. (2.33)

Moreover, we conclude from Assumption 3, that there exist vectors x̃t´L, d̃t´L P D,
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ñt´L P N such that

x̂˚t´L`1|t`1 “ ft´Lpx̃t´L, ut´L, d̃t´Lq, (2.34)

yt´L “ gt´Lpx̃t´Lq ` ñt´L,

Using now (2.25a) in Assumption 2 at time t, we conclude that there also exists a finite

scalar J˚t put´L:t´1, yt´L:tq P R and a sequence û˚t:t`T´1|t P U such that

J˚t put´L:t´1, yt´L:tq “ max
x̂t´L|tPX ,

d̂t´L:t`T´1|tPD

Jtpx̂t´L|t, ut´L:t´1, û
˚
t:t`T´1|t, d̂t´L:t`T´1|t, yt´L:tq.

(2.35)

Going back to (2.32), we then conclude that

J˚t`1put´L`1:t, yt´L`1:t`1q ď

Jt`1px̂
˚
t´L`1|t`1, ut´L`1:t, û

˚
t`1:t`T´1|t, ũt`T , d̂

˚
t´L`1:t`T |t`1, yt´L`1:t`1q (2.36)

because the minimization in (2.32) with respect to ût`1:t`T |t`1 P U must lead to a value no

larger than what would be obtained by setting ût`1:t`T´1|t`1 “ û˚t`1:t`T´1|t and ût`T |t`1 “

ũt`T .

Similarly, we can conclude from (2.35) that

J˚t put´L:t´1, yt´L:tq ě Jtpx̃t´L, ut´L:t´1, û
˚
t:t`T´1|t, d̃t´L, d̂

˚
t´L`1:t`T´1|t`1, yt´L:tq

“ Jtpx̃t´L, ut´L:t, û
˚
t`1:t`T´1|t, d̃t´L, d̂

˚
t´L`1:t`T´1|t`1, yt´L:tq,

(2.37)

because the maximization in (2.35) with respect to x̂t´L|t and d̂t´L:t`T´1|t must lead to

a value no smaller than what would be obtained by setting x̂t´L|t “ x̃t´L, d̂t´L|t “ d̃t´L
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and d̂t´L`1:t`T´1|t “ d̂˚t´L`1:t`T´1|t`1. The last equality in (2.37) is obtained by applying

the control law (2.24).

Combining (2.36), (2.37), and (2.34) leads to

J˚t`1put´L`1:t, yt´L`1:t`1q ´ J
˚
t put´L:t´1, yt´L:tq

ď Jt`1

`

ft´Lpx̃t´L, ut´L, d̃t´Lq, ut´L`1:t, û
˚
t`1:t`T´1|t, ũt`T , d̂

˚
t´L`1:t`T |t`1, yt´L`1:t`1

˘

´ Jtpx̃t´L, ut´L:t, û
˚
t`1:t`T´1|t, d̃t´L, d̂

˚
t´L`1:t`T´1|t`1, yt´L:tq. (2.38)

A crucial observation behind this inequality is that both terms Jt`1p¨q and Jtp¨q in the

right-hand side of (2.38) are computed along a trajectory initialized at time t´L with the

same initial state x̃t´L and share the same control input sequence ut´L:t, û
˚
t`1:t`T´1|t and

the same disturbance input sequence d̃t´L, d̂
˚
t´L`1:t`T´1|t`1. We shall denote this common

state trajectory by x̃s, s P tt ´ L, . . . , t ` T u, and the shared control and disturbance

sequences by

d̃s – d̂˚s|t`1, @s P tt´ L` 1, . . . , t` T ´ 1u,

ũs –

$

’

’

&

’

’

%

us s P tt´ L, . . . , tu

û˚s|t s P tt` 1, . . . , t` T ´ 1u.

The vectors ũt`T and d̃t´L have been previously defined, but we now also define d̃t`T –

d̂˚t`T |t`1, x̃t`T`1 – ft`T px̃t`T , ũt`T , d̃t`T q, and ñs – ys ´ gspx̃sq, s P tt´ L, . . . , tu. All of

these definitions enable us to express both terms Jt`1p¨q and Jtp¨q in the right-hand side

of (2.38) as follows:

J˚t`1put´L`1:t, yt´L`1:t`1q ´ J
˚
t put´L:t´1, yt´L:tq
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ď

t`T
ÿ

s“t`1

cspx̃s, ũs, d̃sq ` qt`T`1px̃t`T`1q ´

t`1
ÿ

s“t´L`1

ηspñsq ´
t`T
ÿ

s“t´L`1

ρspd̃sq

´

t`T´1
ÿ

s“t

cspx̃s, ũs, d̃sq ´ qt`T px̃t`T q `
t
ÿ

s“t´L

ηspñsq `
t`T´1
ÿ

s“t´L

ρspd̃sq

“ ct`T px̃t`T , ũt`T , d̃t`T q ` qt`T`1px̃t`T`1q ´ qt`T px̃t`T q ´ ρt`T pd̃t`T q

` ηt´Lpñt´Lq ` ρt´Lpd̃t´Lq ´ ctpx̃t, ũt, d̃tq ´ ηt`1pñt`1q.

Equation (2.31) follows from this, (2.33), and the fact that ctp¨q and ηt`1p¨q are both

non-negative.

With most of the hard work done, we are now ready to prove the main result of this

section.

Proof of Theorem 2. Using (2.25a) in Assumption 2, we conclude that

J˚t put´L:t´1, yt´L:tq “ max
x̂t´L|tPX ,

d̂t´L:t`T´1|tPD

Jtpx̂t´L|t, ut´L:t´1, û
˚
t:t`T´1|t, d̂t´L:t`T´1|t, yt´L:tq

ě Jtpxt´L, ut´L:t´1, û
˚
t:t`T´1|t, dt´L:t, 0t`1:t`T´1, yt´L:tq

“ Jtpxt´L, ut´L:t, û
˚
t`1:t`T´1|t, dt´L:t, 0t`1:t`T´1, yt´L:tq.

The first inequality is a consequence of the fact that the maximum must lead to a value

no smaller than what would have been obtained by setting x̂t´L|t equal to the true state

xt´L, setting d̂t´L:t equal to the true (past) disturbances dt´L:t and setting d̂t`1:t`T´1

equal to zero. The final equality is obtained simply from the use of the control law

(2.24).

To proceed, we replace Jtp¨q by its definition in (2.22), while dropping all “future” positive
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terms in csp¨q, s ą t and qt`T p¨q. This leads to

J˚t put´L:t´1, yt´L:tq ě ctpxt, ut, dtq ´
t
ÿ

s“t´L

ηspnsq ´
t
ÿ

s“t´L

ρspdsq. (2.39)

Note that the future controls û˚t`1:t`T´1|t disappeared because we dropped all the (posi-

tive) terms involving the value of the state past time t, and the summation over future

disturbances also disappeared since we set all the future d̂t`1:t`T´1 to zero.

Adding both sides of (2.31) in Lemma 2 from time L to time t´ 1, leads to

J˚t put´L:t´1, yt´L:tq ď J˚Lpu0:L´1, y0:Lq `

t´L´1
ÿ

s“0

ρspd̃sq `
t´L´1
ÿ

s“0

ηspñsq, @t P ZěL. (2.40)

The bound in (2.30) follows directly from (2.39) and (2.40).

Since (2.11) and (5.13) provide nearly identical bounds, the discussion presented

after Theorem 1 regarding state boundedness and reference tracking applies also to the

finite horizon case with a few minor modifications. In particular, we now discuss the

implications of Theorem 2 in terms of establishing bounds on the state of the closed-

loop system, practical stability, and the ability of the closed-loop to asymptotically track

desired trajectories.

State boundedness and practical stability

When we select penalty functions in the criterion (2.22), for which there exists a class

K8 function αp¨q and class K functions βp¨q, δp¨q such that

ctpx, u, dq ě αp}x}q, ηtpnq ď βp}n}q, ρtpdq ď δp}d}q,

@x P Rnx , u P Rnu , d P Rnd , n P Rnn ,
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we conclude from (5.13) that, along trajectories of the closed-loop system, the following

inequality holds for all t P ZěL:

αp}xt}q ď J˚Lpu0:L´1, y0:Lq `

t´L´1
ÿ

s“0

βp}ñs}q `
t´L´1
ÿ

s“0

δp}d̃s}q `
t
ÿ

s“t´L

βp}ns}q `
t
ÿ

s“t´L

δp}ds}q.

(2.41)

Formula (2.41) provides a bound on the state when the future noise and disturbance

signals are “vanishing,” in the sense that

8
ÿ

s“t´L

βp}ns}q ă 8,
8
ÿ

s“t´L

δp}ds}q ă 8.

Theorem 2 also provides bounds on the state for non-vanishing noise and disturbances

when we use exponentially time-weighted functions ctp¨q, ηtp¨q, and ρtp¨q that satisfy

ctpx, u, dq ě λ´tαp}x}q, (2.42a)

ηtpnq ď λ´tβp}n}q, (2.42b)

ρtpdq ď λ´tδp}d}q, (2.42c)

for all x P Rnx , u P Rnu , d P Rnd , n P Rnn and some λ P p0, 1q. In this case, we conclude

from (5.13) that for all t P ZěL,

αp}xt}q ď λtJ˚Lpu0:L´1, y0:Lq `

t´L´1
ÿ

s“0

λt´sβp}ñs}q `
t´L´1
ÿ

s“0

λt´sδp}d̃s}q

`

t
ÿ

s“t´L

λt´sβp}ns}q `
t
ÿ

s“t´L

λt´sδp}ds}q. (2.43)

Therefore, xt remains bounded because ns P N , ñs P Npre, ds P D, d̃s P D, and the three

sets N , Npre, and D are bounded. More specifically, if the noise and disturbances are
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uniformly bounded such that, for all s ě 0,

βp}ñs}q ď ã, βp}ns}q ď a, δp}d̃s}q ď b̃, δp}ds}q ď b,

where ã, a, b̃, and b are finite scalars, then an analytical upper bound can be computed

for αp}xt}q, using the formula for geometric series, and is given by

αp}xt}q ď λtJ˚Lpu0:L´1, y0:Lq ` pã` b̃q
´λL`1 ´ λt`1

1´ λ

¯

` pa` bq
´1´ λL`1

1´ λ

¯

. (2.44)

Moreover, the terms in the right-hand-side of (2.44) that depend on ñ and d̃ can be

made arbitrarily small by increasing L. The first term in the right-hand-side of (2.44)

may initially be large as L is increased, but it exponentially decays to a small value as

tÑ 8. Finally, if the true noise and disturbances vanish asymptotically, then the terms

in the right-hand-side of (2.43) that depend on ns and ds converge to zero as t Ñ 8.

Therefore, }xt} converges to a small value as tÑ 8 when the true noise and disturbances

vanish asymptotically and the backwards horizon is chosen arbitrarily large. We have

proved the following:

Corollary 2 Suppose that Assumptions 2, 3, and 4 hold and also that (2.42) holds for a

class K8 function αp¨q, class K functions βp¨q, δp¨q, and λ P p0, 1q. Then, for every initial

condition x0, uniformly bounded measurement noise sequence n0:t, and uniformly bounded

disturbance sequence d0:t, the state xt remains uniformly bounded along the trajectories

of the process (2.1) with control (2.24) defined by the finite-horizon optimization (2.23).

Moreover, when dt and nt converge to zero as t Ñ 8, the backwards horizon L can be

chosen sufficiently large to ensure that the state xt converges to an arbitrarily small value

as tÑ 8. l

Remark 6 (Time-weighted criteria) The exponentially time-weighted functions (2.42)
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typically arise from a criterion of the form

t`T´1
ÿ

s“t

λ´scpxs, us, dsq ` qt`T pxt`T q ´
t
ÿ

s“t´L

λ´sηpnsq ´
t`T´1
ÿ

s“t´L

λ´sρpdsq

that weight the future more than the past. In this case, (2.42) holds for functions αp¨q,

βp¨q, and δp¨q such that cpx, u, dq ě αp}x}q, ηpnq ď βp}n}q, and ρpdq ď δp}d}q, @x, u, d, n.

l

Reference tracking

When the control objective is for the state xt to follow a given trajectory zt, the

optimization criterion can be selected of the form

t`T´1
ÿ

s“t

λ´scpxs ´ zs, us, dsq ` qt`T pxt`T ´ zt`T q ´
t
ÿ

s“t´L

λ´sηpnsq ´
t`T´1
ÿ

s“t´L

λ´sρpdsq,

with cpx´ z, u, dq ě αp}x´ z}q, @x, u, d for some class K8 function α and λ P p0, 1q. In

this case, we conclude from (5.13) that, for all t P ZěL,

αp}xt ´ zt}q ď λtJ˚Lpu0:L´1, y0:Lq `

t´L´1
ÿ

s“0

λt´sηpñsq `
t´L´1
ÿ

s“0

λt´sρpd̃sq

`

t
ÿ

s“t´L

λt´sηpnsq `
t
ÿ

s“t´L

λt´sρpdsq,

which allows us to conclude, from Corollary 2, that xt converges arbitrarily close to zt as

t Ñ 8 when both nt and dt are vanishing sequences and L is chosen sufficiently large.

Similarly, if these noise and disturbance sequences are “ultimately small”, the tracking

error xt ´ zt will converge to a small value.

44



Simultaneous Nonlinear Model Predictive Control and State Estimation Chapter 2

2.5 Numerical Examples

In this section we discuss several numerical examples using the problem framework

introduced in Section 2.2 and the finite horizon estimation and control approach described

in Section 2.4. Solutions are found via numerical simulation using the interior-point

methods described later in Chapter 4.

Example 1 (Flexible beam) Consider a single-link flexible beam as depicted in Fig-

ure 2.1 similar to the one described in [98], where the control objective is to regulate

the mass on the tip of the beam to a desired reference trajectory. The control input is

the applied torque at the base, and the outputs are the tip’s position p “ lθptq ` wpx, tq

[m], the angle at the base θptq [rad], the angular velocity of the base 9θptq [rad/s], and a

strain gauge measurement w2px, tq [m´1] collected around the middle of the beam at x,

respectively.

x P r0, ls

base’s inertiap

l

l

wpx, tq displacement with respect to rigid
motion [m]

Figure 2.1: Diagram of the Flexible Beam considered in Example 1.

The system is modeled by the following partial differential equation

:wpx, tq `
EI

ρ
w4px, tq “ ´x:θptq, @t ě 0, x P r0, ls
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with boundary conditions

uptq “ Ibase:θptq ´ EIw
2
p0, tq,

wp0, tq “ w1p0, tq “ 0,

w2pl, tq “ w3pl, tq `
mtip

ρ
w3pl, tq “ 0, @t ě 0.

An approximate linearized discrete-time state-space model of the dynamics, with a

sampling time Ts – 1 second, is given by xt`1 “ Axt `Bput ` dtq, yt “ Cxt ` nt, where

dt is a disturbance, nt is measurement noise, and the system matrices are given by

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1.0 1.016 ´0.676 ´1.084 1.0 0.585 0.233 0.032

0 ´0.665 1.241 1.783 0 0.042 ´0.288 ´0.023

0 0.009 ´0.439 0.143 0 ´0.002 ´0.012 0.007

0 0.001 0.014 0.308 0 ´0.000 0.001 0.001

0 1.264 ´37.070 10.581 1.0 1.016 ´0.676 ´1.084

0 ´2.109 59.920 ´16.883 0 ´0.665 1.241 1.783

0 0.413 9.156 ´3.695 0 0.009 ´0.439 0.143

0 ´0.012 ´0.371 ´3.929 0 0.001 0.014 0.308

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.45)

B “

„

0.800 ´0.797 0.003 0.001 1.327 ´1.163 0.197 ´0.006

1

, (2.46)

C “

»

—

—

—

—

—

—

—

–

1.13 0.7225 ´0.2028 0.1220 0 0 0 0

1.0 0 0 0 0 0 0 0

0 0 0 0 1.0 0 0 0

0 0.9282 ´12.001 ´35.294 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.47)

This matrix A has a double eigenvalue at 1 with a single independent eigenvector. There-

fore this is an unstable system.
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The optimal control input is found by solving the following optimization problem

min
ut:t`T´1|tPU

max
xt´LPX ,dt´L:t`T´1|tPD

}pt:t`T ´ rt:t`T }
2
` λu}ut:t`T´1}

2
´ λd}dt´L:t`T´1}

2
´ λn}nt´L:t}

2,

where } ¨ } is the Euclidean norm, U – tut P R| ´ umax ď ut ď umaxu, X – R8, and

D – tdt P R| ´ dmax ď dt ď dmaxu.
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Figure 2.2: Simulation results of Flexible Beam example. The reference [m] is in
red, the measured position [m] in blue, the control sequence [Nm] in green, and the
disturbance sequence [Nm] in magenta.

The results depicted in Figure 2.2 show the response of the closed loop system under

the control law (2.24) when our goal is to regulate the position of the mass at the tip of

the beam p to a desired reference rptq – α sgnpsinpωtqq with α “ 0.5 and ω “ 0.1. The

other parameters in the optimization have values λu “ 1, λd “ 2, λn “ 100, L “ 5,

T “ 5, umax “ 0.8, dmax “ 0.8. The state of the system starts close to zero and evolves
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Table 2.1: Numerical Performance of the Flexible Beam Example 1.
# of optimization variables 103
# of inequality constraints 30

# of equality constraints 80
Mean time to compute 3.2 ms
Max. time to compute 8.3 ms
Min. time to compute 2.8 ms

with zero control input and small random disturbance input until time t “ 6, at which

time the optimal control input (2.24) started to be applied along with the optimal worst-

case disturbance d˚t|t obtained from the min-max optimization. It can be seen that the

optimal control input and disturbance initially hit their respective constraints. The noise

process nt was selected to be a zero-mean Gaussian independent and identically distributed

random process with standard deviation of 0.02.

This simulation was performed on a laptop with an Intel R©CoreTM i7 Processor and

used Algorithm 4.4.2 (given in Chapter 4) implemented in C code to compute solutions

at each time step. The resulting numerical performance is given in Table 2.1. Even with

over 100 optimization variables and 120 combined inequality and equality constraints,

the problem can be solved very efficiently using the numerical algorithms given later in

Chapter 4, on average in 3.2 ms. 4

Example 2 (Nonlinear Pursuit-Evasion) In this example a two-player pursuit-evasion

game is considered where the pursuer is modeled as a nonholonomic unicycle-type vehicle,

and the evader is modeled as a single-integrator. The measured output is the positions of

the pursuer and evader. The orientation of the pursuer is not measured. The models can
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be written in discrete-time as follows:

Pursuer :

x1
t`1 “ x1

t ` v cospθtq,

x2
t`1 “ x2

t ` v sinpθtq,

θt`1 “ θt ` ut,

(2.48a)

Evader :
z1
t`1 “ z1

t ` d
1
t ,

z2
t`1 “ z2

t ` d
2
t ,

(2.48b)

Output : yt “ rx
1
t z1ts

1
` nt. (2.48c)

The positions of the pursuer and the evader at time t are denoted by xt “ rx
1
t x

2
t s
1 P R2

and zt “ rz1
t z2

t s
1 P R2, respectively, and the orientation of the pursuer at time t is

denoted by θt. The inputs for the pursuer and evader at time t are denoted by ut P R and

dt “ rd
1
t d

2
t s
1 P R2, respectively, and are constrained to belong to the sets U – tut P R :

|ut| ď umaxu and D – tdt P R2 : }dt}8 ď dmaxu. The measurement noise is denoted by

nt P R4. In the context of the problem described in Section 2.2, we regard the input for

the pursuer as the control signal and the input to the evader as a disturbance.

The evader’s goal is to make the distance between its position zt and the position of

the pursuer xt as large as possible, so the evader wants to maximize the value of }zt´xt}2.

The pursuer’s goal is to do the opposite, namely, minimize the value of }zt ´ xt}2. The

pursuer and evader try to achieve these goals by choosing appropriate values for ut and

dt, respectively. This motivates considering a cost function of the form

Jtp¨q “
t`T´1
ÿ

s“t

}zs ´ xs}
2
2 ` λu

t`T´1
ÿ

s“t

}us}
2
2 ´ λn

t
ÿ

s“t´L

}ns}
2
2 ´ λd

t`T´1
ÿ

s“t´L

}ds}
2
2, (2.49)
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where λu, λn, and λd are positive weighting constants.

Figures 2.3 and 2.4 show simulation results from solving the optimization

min
utPU

max
xt´LPX ,dtPD

Jtp¨q (2.50)

at each time step t, where Jtp¨q is the cost function given in (2.49), and the optimization

is solved using Algorithm 4.3.1 given in Chapter 4. For this simulation, the parameters

for the model (2.48) and the cost function (2.49) are chosen as L “ 8, T “ 12, v “ 0.1,

umax “ 0.5, dmax “ 0.06, λu “ 8, λd “ 100, and λn “ 1000. The output measurements

are subjected to normally distributed random noise nt „ N p0, 0.0052q .

Figure 2.3 shows the estimates of the pursuer’s and evader’s positions computed

by solving the optimization (2.50) at every time t. The initial state of the pursuer is

rx10 θ0s
1 “ r0 0 0s1, and the initial state of the evader is z0 “ r0.5 0.5s1. The simulation is

initialized with zero input for the pursuer (i.e. ut “ 0) for the first L “ 8 time steps after

which time the optimization (2.50) is solved at every time step t, and the optimal input

u˚t is applied for the rest of the simulation. The evader applies an input of dt “ r0.05 0s1

until time t “ 55 after which time the optimal computed evader’s input d˚t is applied for

every successive time step t. The inputs that are applied are shown in Figure 2.4. We

see that several times throughout the simulation the input constraints for both the pursuer

and evader are active.

Because the maximum speed of the evader (dmax “ 0.06) is less than the speed of the

pursuer (v “ 0.1), the pursuer is always able to catch up to the evader, but the evader

takes advantage of its more agile (integrator) dynamics by making sharp turns and forcing

the unicycle-type pursuer to make loops at its maximum turning rate.

This simulation was performed on a laptop with an Intel R©CoreTM i7 Processor and

used Algorithm 4.4.2 (given in Chapter 4) implemented in C code to compute solutions
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Figure 2.3: Trajectories of the pursuer and evader from Example 2.

Table 2.2: Numerical Performance of the Pursuit-Evasion Example 2.
# of optimization variables 157
# of inequality constraints 104

# of equality constraints 100
Mean time to compute 0.54 ms
Max. time to compute 2.3 ms
Min. time to compute 0.45 ms

at each time step. The resulting numerical performance is given in Table 2.2. The opti-

mization involved 157 optimization variables, 100 equality constraints, and 104 inequality

constraints, and the average time to compute the solution at each time step was 0.54 ms.

Therefore, solutions can be computed extremely efficiently even for this nonlinear and

nonconvex example. 4

51



Simultaneous Nonlinear Model Predictive Control and State Estimation Chapter 2

t

0 20 40 60 80 100 120

u

-0.5

-0.25

0

0.25

0.5

t

0 20 40 60 80 100 120

d
1

-0.06

-0.03

0

0.03

0.06

t

0 20 40 60 80 100 120

d
2

-0.06

-0.03

0

0.03

0.06

Figure 2.4: Inputs for the pursuer and evader from Example 2.

2.6 Conclusions

We presented an output-feedback approach to nonlinear model predictive involving

the simultaneous solution of the corresponding estimation and control problems as a

single min-max optimization. Under the assumption that a saddle-point solution exists

for the min-max optimization (which presumes appropriate forms of observability and

controllability), Theorem 1 ensures bounds on the state of the system and the tracking

error for reference tracking problems for the infinite horizon case. Similar results are

derived from Theorem 2 for the finite horizon case under the additional assumptions of

a form of observability for nonlinear systems and a terminal cost that is an ISS-control

Lyapunov function with respect to the disturbance input.

We also presented two numerical examples of estimation and control problems that
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can be solved using this combined MPC/MHE approach. The examples included con-

strained, high-dimensional, nonlinear, and nonconvex problems that were easily formu-

lated as finite horizon min-max optimization problems as in (2.23). The resulting min-

max optimization problems were solved very efficiently using the numerical methods

described later in Chapter 4.
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Chapter 3

Existence of Saddle-Point Equilibria

Some of the content in this chapter comes from [24]:

2016 IEEE. Reprinted, with permission, from D. A. Copp, and J. P. Hespanha, Conditions

for saddle-point equilibria in output-feedback MPC with MHE, 2016 American Control

Conference (ACC), July 2016.

In Chapter 2, we showed that under the main assumption that a saddle-point solution

exists for the min-max optimization problem, in addition to standard observability and

controllability assumptions, practical stability of the combined MPC/MHE approach can

be established in the presence of noise and disturbances. In this chapter, we derive suffi-

cient conditions for the existence of a saddle-point solution to this min-max optimization

problem. For the specialized linear-quadratic case, we show that a saddle-point solution

exists if the system is observable and weights in the cost function are chosen appropri-

ately. A numerical example is given to illustrate the effectiveness of this combined control

and estimation approach.
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3.1 Introduction

Classical MPC has been a prominent control technique in academia and industrial

applications for decades because of its ability to handle complex multivariable systems

and hard constraints. MPC, which is classically formulated with state-feedback and

involves the repeated solution of an open-loop optimal control problem online in order

to find a sequence of future control inputs, has a well-developed theory as evidenced by

[79, 76, 95], and has been shown to be effective in practice [84]. However, with more

efficient methods and continued theoretical work, more recent advances in MPC include

the incorporation of disturbances, uncertainties, faster dynamics, distributed systems,

and output-feedback.

Related to these advances is the recent work combining nonlinear output-feedback

MPC with MHE into a single min-max optimization problem [22, 25] as described in

Chapter 2. This combined approach simultaneously solves an MHE problem, which

involves the repeated solution of a similar optimization problem over a finite-horizon of

past measurements in order to find an estimate of the current state [90, 3], and an MPC

problem. In order to be robust to “worst-case” disturbances and noise, this approach

involves the solution of a min-max optimization where an objective function is minimized

with respect to control input variables and maximized with respect to disturbance and

noise variables, similar to game-theoretic approaches to MPC considered in [19, 56].

The motivation for the combined MPC/MHE approach is proving joint stability of

the combined estimation and control problems, and the results in Chapter 2 guarantee

boundedness of the state, bounds on the tracking error for trajectory tracking problems,

and practical stability in the presence of noise and disturbances. Besides standard as-

sumptions regarding observability and controllability of the nonlinear process, the main

assumption required for these results to hold is that there exists a saddle-point solution
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to the min-max optimization problem at every time step.

The analysis of the min-max problem that appears in the forward horizon of the

combined MPC/MHE approach is closely related to the analysis of two-player zero-sum

dynamic games as in [6] and to the dynamic game approach to H8 optimal control as

in [7]. In these analyses the control is designed to guard against the worst-case unknown

disturbances and model uncertainties, and in both of these references, saddle-point equi-

libria and conditions under which they exist are analyzed. The problem proposed in

[22, 25] differs, however, in that a backwards finite horizon is also considered in order to

incorporate the simultaneous solution of an MHE problem, which also allows the control

to be robust to worst-case estimates of the initial state.

In this chapter we derive conditions under which a saddle-point solution exists for

the combined MPC/MHE min-max optimization problem proposed in [22] and specialize

those results for discrete linear time-invariant (DLTI) systems and quadratic cost func-

tions. We show that in the linear-quadratic case, if the system is observable, simply

choosing appropriate weights in the cost function is enough to ensure that a saddle-point

solution exists. A numerical example discussed at the end of the chapter shows that,

even for unconstrained linear-quadratic problems, better regulation performance may be

achieved using this MPC/MHE approach with shorter finite horizons.

The chapter is organized as follows. In Section 3.2, we formulate the control problem

and discuss the main stability assumption regarding the existence of a saddle-point. In

Section 3.3, we describe a method that can be used to compute a saddle-point solution

and give conditions under which this method succeeds. A numerical example is presented

in Section 3.4. Finally, we provide some conclusions in Section 3.5.

56



Existence of Saddle-Point Equilibria Chapter 3

3.2 Problem Formulation

As in the previous chapter, we consider the control of a time-varying discrete-time

process of the form

xt`1 “ ftpxt, ut, dtq, yt “ gtpxtq ` nt (3.1)

@t P Zě0, with state xt taking values in a set X Ă Rnx . The inputs to this system are the

control input ut that must be restricted to a set U Ă Rnu , the unmeasured disturbance

dt that is known to belong to a set D Ă Rnd , and the measurement noise nt P Rnn . The

signal yt P Y Ă Rny denotes the measured output that is available for feedback. The

control objective is to select the control signal ut P U , @t P Zě0, so as to minimize a

finite-horizon criterion of the form1

Jtpxt´L, ut´L:t`T´1, dt´L:t`T´1, yt´L:tq–

t`T´1
ÿ

k“t

ckpxk, ukq ` qt`T pxt`T q ´
t
ÿ

k“t´L

ηkpnkq ´
t`T´1
ÿ

k“t´L

ρkpdkq (3.2)

for worst-case values of the unmeasured disturbance dt P D, @t P Zě0 and the measure-

ment noise nt P Rnn , @t P Zě0. The functions ckp¨q, ηkp¨q, and ρkp¨q in (3.2) are all

assumed to take non-negative values. One can view the terms ρtp¨q and ηtp¨q as measures

of the likelihood of specific values for dt and nt. Then, the negative signs in front of ρtp¨q

and ηtp¨q penalize the maximizer for using low likelihood values for the disturbances and

noise (low likelihood meaning very large values for ρtp¨q and ηtp¨q).

The optimization criterion includes T P Zě1 terms of the running cost ctpxt, utq, which

recede as the current time t advances, L` 1 P Zą1 terms of the measurement cost ηtpntq,

1Given a discrete-time signal z : Zě0 Ñ Rn, and two times t0, t P Zě0 with t0 ď t, we denote by zt0:t
the sequence tzt0 , zt0`1, . . . , ztu.
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and L`T P Zą1 terms of the cost on the disturbances ρtpdtq. We also include a terminal

cost qt`T pxt`T q to penalize the “final” state at time t` T .

Just as in a two-player zero-sum dynamic game, player 1 (the controller) desires to

minimize this criterion while player 2 (the noise and disturbance) would like to maximize

it. This leads to a control input that is designed for the worst-case disturbance input,

measurement noise, and initial state. This motivates the following finite-dimensional

optimization

min
ût:t`T´1PU

max
x̂t´LPX ,

d̂t´L:t`T´1PD

Jtpx̂t´L, ut´L:t´1, ût:t`T´1, d̂t´L:t`T´1, yt´L:tq. (3.3)

The measurement noise variables nt´L:t do not explicitly show up in (3.3) because they

are not independent optimization variables as they are uniquely defined by the remaining

optimization variables and the output equation (3.1). In this formulation, we use a control

law of the form

ut “ û˚t , @t ě 0, (3.4)

where û˚t denotes the first element of the sequence û˚t:t`T´1 computed at each time t that

minimizes (3.3).

For the implementation of the control law (3.4), the outer minimizations in (3.3) must

lead to finite values for the optima that are achieved at specific sequences û˚t:t`T´1 P U ,

t P Zě0. However, for the stability results given in [22, 25], we actually ask for the

existence of a saddle-point solution to the min-max optimization in (3.3) as follows:

Assumption 5 (Saddle-point [Assumption 2, Chapter 2) The min-max optimiza-

tion (3.3) with cost given as in (3.2) always has a saddle-point solution for which the

min and max commute. Specifically, for every time t P Zě0, past control input sequence
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ut´L:t´1 P U , and past measured output sequence yt´L:t P Y, there exists a finite scalar

J˚t P R, an initial condition x̂˚t´L P X , and sequences û˚t:t`T´1 P U , d̂˚t´L:t`T´1 P D such

that

J˚t “ Jtpx̂
˚
t´L, ut´L:t´1, û

˚
t:t`T´1, d̂

˚
t´L:t`T´1, yt´L:tq

“ max
x̂t´LPX ,

d̂t´L:t`T´1PD

Jtpx̂t´L, ut´L:t´1, û
˚
t:t`T´1, d̂t´L:t`T´1, yt´L:tq (3.5a)

“ min
ût:t`T´1PU

Jtpx̂
˚
t´L, ut´L:t´1, ût:t`T´1, d̂

˚
t´L:t`T´1, yt´L:tq. (3.5b)

l

In general, J˚t depends on the past control and outputs, so we can alternatively write

J˚t put´L:t´1, yt´L:tq.

In the next section we derive conditions under which a saddle-point solution exists

for the general nonlinear case and then specialize those results for DLTI systems and

quadratic cost functions.

3.3 Main Results

Before presenting the main results, for convenience we define the following sets of time

sequences for the forward and backward horizons, respectively, T – tt, t`1, ..., t`T ´1u

and L– tt´ L, t´ L` 1, ..., t´ 1u and use them in the sequel.

3.3.1 Nonlinear systems

Theorem 3 (Existence of saddle-point)

Suppose there exist recursively computed functions Vkp¨q, for all k P T , and Vjp¨q, for
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all j P L, such that for all yt´L:t P Y, and ut´L:t´1 P U ,

Vt`T pxt`T q– qt`T pxt`T q, (3.6a)

Vkpxkq– min
ûkPU

max
d̂kPD

`

lkpxk, ûk, d̂kq ` Vk`1pxk`1q
˘

“ max
d̂kPD

min
ûkPU

`

lkpxk, ûk, d̂kq ` Vk`1pxk`1q
˘

, @k P T zt, (3.6b)

Vtpxt, ytq– min
ûtPU

max
d̂tPD

`

ltpxt, ût, d̂t, ytq ` Vt`1pxt`1q
˘

“ max
d̂tPD

min
ûtPU

`

ltpxt, ût, d̂t, ytq ` Vt`1pxt`1q
˘

, (3.6c)

Vjpxj, uj:t´1, yj:tq– max
d̂jPD

`

ljpxj, uj, d̂j, yjq ` Vj`1pxj`1, uj`1:t´1, yj`1:tq
˘

,

@j P Lzt´ L, (3.6d)

Vt´Lput´L:t´1, yt´L:tq– max
x̂t´LPX ,
d̂t´LPD

`

lt´Lpx̂t´L, ut´L, d̂t´L, yt´Lq

` Vt´L`1pxt´L`1, ut´L`1:t´1, yt´L`1:tq
˘

, (3.6e)

where

lkpxk, ûk, d̂kq– ckpxk, ûkq ´ ρkpd̂kq, k P T zt, (3.7a)

ltpxt, ût, d̂t, ytq– ctpxt, ûtq ´ ηtpntq ´ ρtpd̂tq, (3.7b)

ljpxj, uj, d̂j, yjq– ´ηjpnjq ´ ρjpd̂jq, j P L. (3.7c)

Then the solutions û˚k, d̂˚k, d̂˚j , and x̂˚t´L defined as follows, for all k P T and j P L,

satisfy the saddle-point Assumption 5.

û˚k – arg min
ûkPU

max
d̂kPD

`

lkpxk, ûk, d̂k, ykq ` Vk`1pxk`1q
˘

, (3.8a)

d̂˚k – arg max
d̂kPD

min
ûkPU

`

lkpxk, ûk, d̂k, ykq ` Vk`1pxk`1q
˘

, (3.8b)
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d̂˚j – arg max
d̂jPD

`

ljpxj, uj, d̂j, yjq ` Vj`1pxj`1, uj`1:t´1, yj`1:tq
˘

, (3.8c)

x̂˚t´L – arg max
x̂t´LPX

`

lt´Lpx̂t´L, ut´L, d̂t´L, yt´Lq ` Vt´L`1pxt´L`1, ut´L`1:t´1, yt´L`1:tq
˘

.

(3.8d)

Moreover, the saddle-point value is equal to J˚t put´L:t´1, yt´L:tq “ Vt´Lput´L:t´1, yt´L:tq.

l

Proof. We begin by proving equation (3.5b) in Assumption 5. Let û˚k be defined as in

(3.8a), and let ûk be another arbitrary control input. To prove optimality, we need to

show that the latter trajectory cannot lead to a cost lower than the former. Since Vkpxkq

satisfies (3.6b) and û˚k achieves the minimum in (3.6b), for every k P T zt,

Vkpxkq “ min
ûkPU

`

lkpxk, ûk, d̂
˚
kq ` Vk`1pxk`1q

˘

“ lkpxk, û
˚
k, d̂

˚
kq ` Vk`1pxk`1q. (3.9)

However, since ûk does not necessarily achieve the minimum, we also have that

Vkpxkq “ min
ûkPU

`

lkpxk, ûk, d̂
˚
kq ` Vk`1pxk`1q

˘

ď lkpxk, ûk, d̂
˚
kq ` Vk`1pxk`1q. (3.10)

Summing both sides of (3.9) from k “ t` 1 to k “ t` T ´ 1, we conclude that

t`T´1
ÿ

k“t`1

Vkpxkq “
t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂

˚
kq `

t`T´1
ÿ

k“t`1

Vk`1pxk`1q

ðñ

t`T´1
ÿ

k“t`1

Vkpxkq ´
t`T´1
ÿ

k“t`1

Vk`1pxk`1q “

t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂

˚
kq

ðñ Vt`1pxt`1q “

t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂

˚
kq.
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Next, summing both sides of (3.10) from k “ t` 1 to k “ t` T ´ 1, we conclude that

t`T´1
ÿ

k“t`1

Vkpxkq ď
t`T´1
ÿ

k“t`1

lkpxk, ûk, d̂
˚
kq `

t`T´1
ÿ

k“t`1

Vk`1pxk`1q

ðñ

t`T´1
ÿ

k“t`1

Vkpxkq ´
t`T´1
ÿ

k“t`1

Vk`1pxk`1q ď

t`T´1
ÿ

k“t`1

lkpxk, ûk, d̂
˚
kq

ðñ Vt`1pxt`1q ď

t`T´1
ÿ

k“t`1

lkpxk, ûk, d̂
˚
kq,

from which we conclude that

Vt`1pxt`1q “

t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂

˚
kq ď

t`T´1
ÿ

k“t`1

lkpxk, ûk, d
˚
kq. (3.11)

Similarly, since Vtpxt, ytq satisfies (3.6c) and û˚t achieves the minimum in (3.6c), we

can conclude that

Vtpxt, ytq “ ltpxt, û
˚
t , d̂

˚
t , ytq ` Vt`1pxt`1q ď ltpxt, ût, d̂

˚
t , ytq ` Vt`1pxt`1q. (3.12)

Then from (3.11) and (3.12), we conclude that

Vtpxt, ytq “ ltpxt, û
˚
t , d̂

˚
t , ytq `

t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂

˚
kq ď ltpxt, ût, d̂

˚
t , ytq `

t`T´1
ÿ

k“t`1

lkpxk, ûk, d
˚
kq.

(3.13)

Next, since Vjpxj, uj:t´1, yj:tq satisfies (3.6d) and d̂˚j achieves the maximum in (3.6d), we

can conclude that

Vjpxj, uj:t´1, yj:tq “ ljpxj, uj, d̂
˚
j , yjq ` Vj`1pxj`1, uj:t´1, yj:tq. (3.14)
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Summing both sides of (3.14) from j “ t ´ L ` 1 to j “ t ´ 1, and using (3.13), we

conclude that

t´1
ÿ

j“t´L`1

Vjpxj, uj:t´1, yj:tq “
t´1
ÿ

j“t´L`1

ljpxj, uj, d̂
˚
j , yjq `

t´1
ÿ

j“t´L`1

Vj`1pxj`1, uj:t´1, yj:tq

ðñ Vt´L`1pxt´L`1, ut´L`1:t´1, yt´L`1:tq “

t´1
ÿ

j“t´L`1

ljpxj, uj, d̂
˚
j , yjq ` Vtpxt, ytq

ðñ Vt´L`1pxt´L`1, ut´L`1:t´1, yt´L`1:tq “

t´1
ÿ

j“t´L`1

ljpxj, uj, d̂
˚
j , yjq ` ltpxt, û

˚
t , d̂

˚
t , ytq

`

t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂

˚
kq ď

t´1
ÿ

j“t´L`1

ljpxj, uj, d̂
˚
j , yjq ` ltpxt, ût, d̂

˚
t , ytq `

t`T´1
ÿ

k“t`1

lkpxk, ûk, d̂
˚
kq.

Finally, from this and the facts that Vt´Lput´L:t´1, yt´L:tq satisfies (3.6e) and d̂˚t´L and

x̂˚t´L achieve the maximum in (3.6e), we can conclude that

Vt´Lput´L:t´1, yt´L:tq “ lt´Lpx̂
˚
t´L, ut´L, d̂

˚
t´L, yt´Lq ` Vt´L`1pxt´L`1, ut´L`1:t´1, yt´L`1:tq

“

t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂

˚
kq`ltpxt, û

˚
t , d̂

˚
t , ytq`

t´1
ÿ

j“t´L`1

ljpxj, uj, d̂
˚
j , yjq`lt´Lpx̂

˚
t´L, ut´L, d̂

˚
t´L, yt´Lq

ď

t`T´1
ÿ

k“t`1

lkpxk, ûk, d̂
˚
kq`ltpxt, ût, d̂

˚
t , ytq`

t´1
ÿ

j“t´L`1

ljpxj, uj, d̂
˚
j , yjq`lt´Lpx̂

˚
t´L, ut´L, d̂

˚
t´L, yt´Lq.

Therefore û˚k is a minimizing policy, for all k P T , and (3.5b) is satisfied with

J˚t put´L:t´1, yt´L:tq “ Vt´Lput´L:t´1, yt´L:tq.

To prove (3.5a), let d̂˚k be defined as in (3.8b), d̂˚j be defined as in (3.8c), and let d̂k

and d̂j be other arbitrary disturbance inputs. Similarly, let x̂˚t´L be defined as in (3.8d),

and let x̂t´L be another arbitrary initial condition. Then, since Vkpxkq satisfies (3.6b),

Vtpxt, ytq satisfies (3.6c), Vjpxj, uj:t´1, yj:tq satisfies (3.6d), and d̂˚k achieves the maximum

in (3.6b), d̂˚t achieves the maximum in (3.6c), and d̂˚j achieves the maximum in (3.6d),
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we can use a similar argument as in the proof of (3.5b) to conclude that

Vt´L`1pxt´L`1, ut´L`1:t´1, yt´L`1:tq “

t´1
ÿ

j“t´L`1

ljpxj, uj, d̂
˚
j , yjq ` ltpxt, û

˚
t , d̂

˚
t , ytq

`

t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂

˚
kq ě

t´1
ÿ

j“t´L`1

ljpxj, uj, d̂j, yjq ` ltpxt, û
˚
t , d̂t, ytq `

t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂kq.

Finally, from (3.6e), (3.8c), and (3.8d), we have

Vt´Lput´L:t´1, yt´L:tq “ max
x̂t´LPX

max
d̂t´LPD

`

lt´Lpx̂t´L, ut´L, d̂t´L, yt´Lq

` Vt´L`1pxt´L`1, ut´L:t´1, yt´L:tq
˘

“ lt´Lpx̂
˚
t´L, ut´L, d̂

˚
t´L, yt´Lq ` Vt´L`1pxt´L`1, ut´L:t´1, yt´L:tq

ě lt´Lpx̂t´L, ut´L, d̂
˚
t´L, yt´Lq ` Vt´L`1pxt´L`1, ut´L:t´1, yt´L:tq,

and

Vt´Lput´L:t´1, yt´L:tq “ lt´Lpx̂
˚
t´L, ut´L, d̂

˚
t´L, yt´Lq ` Vt´L`1pxt´L`1, ut´L:t´1, yt´L:tq

ě lt´Lpx̂
˚
t´L, ut´L, d̂t´L, yt´Lq ` Vt´L`1pxt´L`1, ut´L:t´1, yt´L:tq.

Then, (3.5a) follows because

Vt´Lput´L:t´1, yt´L:tq “ lt´Lpx̂
˚
t´L, ut´L, d̂

˚
t´L, yt´Lq ` Vt´L`1pxt´L`1, ut´L`1:t´1, yt´L`1:tq

“

t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂

˚
kq`ltpxt, û

˚
t , d̂

˚
t , ytq`

t´1
ÿ

j“t´L

ljpxj, uj, d̂
˚
j , yjq`lt´Lpx̂

˚
t´L, ut´L, d̂

˚
t´L, yt´Lq

ě

t`T´1
ÿ

k“t`1

lkpxk, û
˚
k, d̂kq`ltpxt, û

˚
t , d̂t, ytq`

t´1
ÿ

j“t´L`1

ljpxj, uj, d̂j, yjq`lt´Lpx̂t´L, ut´L, d̂t´L, yt´Lq.

Therefore d̂˚k, for all k P T , and d̂˚j , for all j P L, are maximizing policies, x̂˚t´L is a
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maximizing policy, and (3.5a) is satisfied with J˚t put´L:t´1, yt´L:tq “ Vt´Lput´L:t´1, yt´L:tq.

Thus, Assumption 5 is satisfied.

Next we specialize these results for DLTI systems and quadratic cost functions.

3.3.2 LTI systems and quadratic costs

Consider the following discrete linear time-invariant system, for all t P Zě0,

xt`1 “ Axt `But `Ddt, yt “ Cxt ` nt, (3.15)

with xt P X “ Rnx , ut P U “ Rnu , dt P D “ Rnd , nt P N “ Rnn , and yt P Y “ Rny . Also

consider the quadratic cost function

Jtpxt´L, ut´L:t`T´1, dt´L:t`T´1, yt´L:tq–

t`T´1
ÿ

k“t

`

x1kQxk ` λuu
1
kuk

˘

` x1t`TQxt`T ´
t
ÿ

k“t´L

λnpyk ´ Cxkq
1
pyk ´ Cxkq ´

t`T´1
ÿ

k“t´L

λdd
1
kdk

(3.16)

where Q “ Q1 ě 0 is a weighting matrix, and λu, λd, λn are positive constants that can

be tuned to impose “soft” constraints on the variables xk, uk, dk, and nk, respectively, or

to increase or decrease the penalty for choosing low likelihood values for the disturbances

and noise. The positive scalar weights λu, λd, and λn could be replaced with positive-

definite matrices, and the following results would still hold with minor adjustments. We

use λu, λd, and λn here for simplicity.

Again, the control objective is to solve for a control input u˚t that minimizes the

criterion (3.16) in the presence of the worst-case disturbance d˚t and initial state x˚t´L.

This motivates solving the optimization problem (3.3) with the cost given as in (3.16)
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subject to the dynamics given in (3.15). Then the control input as defined in (3.4) is

selected and applied to the plant.

The following Theorem gives conditions under which a saddle-point solution exists for

problem (3.3) with cost (3.16), thereby satisfying Assumption 5, as well as a description

of the resulting saddle-point solution.

Theorem 4 (Existence of saddle-point for linear systems with quadratic costs) Let Mk

and Λk, for all k P T , and Pj and Zj, for all j P L, be matrices of appropriate dimensions

defined by2

Mk “ Q` A1Mk`1Λ´1
k A; Mt`T “ Q, (3.17a)

Λk – I `
´ 1

λu
BB1 ´

1

λd
DD1

¯

Mk`1, (3.17b)

Pj “ A1Pj`1A` A
1Pj`1DZ

´1
j D1Pj`1A´ λnC

1C;

Pt “Mt ´ λnC
1C, (3.17c)

Zj – λdI ´D
1Pj`1D. (3.17d)

Then, if the following conditions are satisfied,

λuI `B
1Mk`1B ą 0, (3.18a)

λdI ´D
1Mk`1D ą 0, (3.18b)

λdI ´D
1Pj`1D ą 0, (3.18c)

»

—

–

λnC
1C ´ A1Pt´L`1A ´A1Pt´L`1D

´D1Pt´L`1A λdI ´D
1Pt´L`1D

fi

ffi

fl

ą 0, (3.18d)

the min-max optimization (3.3) with quadratic costs (3.16) subject to the linear dynamics

2I denotes the identity matrix with appropriate dimensions.
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(3.15) admits a unique saddle-point solution that satisfies Assumption 5. l

Proof. This proof shows that for the linear system (3.15) and quadratic cost function

(3.16), there exist solutions as in (3.8) that satisfy functions as in (3.6), and therefore, a

saddle-point exists by Theorem 3.

In this linear-quadratic case, the functions (3.6) can be solved for explicitly, beginning

with Vt`T´1p¨q, then Vt`T´2p¨q, etc., and continuing recursively backwards in time until

Vt´L, by recognizing that, for all k P T and j P L,

qt`T pxt`T q– x1t`TQxt`T ,

ckpxk, ûkq– x1kQxk ` λuû
1
kûk,

ρkpd̂kq– ´λdd̂
1
kd̂k,

ρjpd̂jq– ´λdd̂
1
j d̂j,

ηjpnjq– ´λnpy ´ Cxjq
1
py ´ Cxjq

and then computing the solutions to (3.6). This results in functions Vkp¨q and Vjp¨q, for

all k P T and j P L, given as follows

Vt`T pxt`T q “ x1t`TQxt`T , (3.19a)

Vkpxkq “ x1kMkxk, @k P T zt, (3.19b)

Vtpxt, ytq “ x1tPtxt, (3.19c)

Vjpxj, yj:t, uj:t´1q “ x1jPjxj ` 2w1jxj ` cj, @j P Lzt´ L, (3.19d)

Vt´Lpyt´L:t, ut´L:t´1q “ w1t´LP
´1
t´Lwt´L ´ 2w1t´LP

´1
t´Lwt´L ` ct´L, (3.19e)
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where the vectors wj, for all j P L, are defined by

wj “ A1R1jpPj`1Buj ` wj`1q ` λnC
1yj;

wt “ λnC
1yt,

with the matrices Rj and scalars cj defined by

Rj – I `DZ´1
j D1Pj`1,

cj “ w1j`1DZ
´1
j D1wj`1 ´ λny

1
jyj ` cj`1 ` pu

1
jB

1Pj`1 ` 2w1j`1qRjBuj;

ct “ ´λny
1
tyt.

Then conditions (3.18) come directly from the second-order conditions for strict-

convexity/concavity of a quadratic function. Specifically, for the quadratic cost (3.16),

the costs lkp¨q, ltp¨q, and ljp¨q in (3.6) are given as

lkpxk, ûk, d̂kq– x1kQxk ` λuû
1
kûk ´ λdd̂

1
kd̂k, k P T zt, (3.20a)

ltpxt, ût, d̂t, ytq– x1tQxt ` λuû
1
tût ´ λnn

1
tnt ´ λdd̂

1
td̂t, (3.20b)

ljpxj, uj, d̂j, yjq– ´λnn
1
jnj ´ λdd̂

1
j d̂j, j P L, (3.20c)

and condition (3.18a) comes from computing the Hessian matrix (the matrix of second-

order partial derivatives) of lkpxk, ûk, d̂kq ` Vk`1pfpxk, ûk, d̂kqq with respect to ûk as well

as the Hessian matrix of ltpxt, ût, d̂tq ` Vt`1pfpxt, ût, d̂tqq with respect to ût and requiring

these Hessian matrices to be positive definite. Similarly, condition (3.18b) comes from

computing the Hessian matrix of lkpxk, ûk, d̂kq ` Vk`1pfpxk, ûk, d̂kqq with respect to d̂k as

well as the Hessian matrix of ltpxtût, d̂tq`Vt`1pfpxt, ût, d̂tqq with respect to d̂t and requir-

ing these Hessian matrices to be negative definite. Condition (3.18c) comes from comput-
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ing the Hessian matrix of ljpxj, uj, d̂jq ` Vj`1pfpxj, uj, d̂jq, uj:t´1, yj:tq with respect to d̂j

and requiring it to be negative definite. Finally, condition (3.18d) comes from computing

the Hessian matrix of lt´Lpx̂t´L, ut´L, d̂t´Lq ` Vt´L`1pfpx̂t´L, ut´L, d̂t´Lq, ut´L:t´1, yt´L:tq

with respect to rx̂1t´L d̂
1
t´Ls

1 and requiring it to be negative definite. Therefore, if condi-

tions (3.18) are satisfied, the optimization (3.3) with cost (3.16) is strictly convex with

respect to ût:t`T´1 and is strictly concave with respect to d̂t´L:t`T´1 and x̂t´L, and there-

fore, the functions (3.19) satisfy the equations in (3.6). Thus a saddle point solution

exists because of Theorem 3.

In this case, the solutions (3.8) can be found analytically and are given by

û˚k “ ´
1

λu
B1Mk`1Λ´1

k Ax˚k, (3.21a)

d̂˚k “
1

λd
D1Mk`1Λ´1

k Ax˚k, (3.21b)

d̂˚j “ Z´1
j D1pPj`1pAxj `Bujq ` wj`1q, (3.21c)

x̂˚t´L “ ´P
´1
t´Lwt´L, (3.21d)

where the corresponding state trajectory is determined from

x˚k`1 “ Λ´1
k Ax˚k, (3.22a)

x˚j`1 “ RjpAx
˚
j `Bujq `DZ

´1
j D1wj`1, (3.22b)

x˚t´L “ x̂˚t´L. (3.22c)

The state trajectory (3.22) is found by plugging the saddle-point solutions (3.21) into

the dynamics (3.15). Finally, as a consequence of the argument in the proof of Theorem
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3, the corresponding saddle-point value is

J˚t pyt´L:t, ut´L:t´1q “ Vt´Lpyt´L:t, ut´L:t´1q.

Remark 7 For times k P T zt, the result given in Theorem 4 is very close to the result

derived in [6] for the affine-quadratic two-person zero-sum game because the equations

(3.6a) and (3.6b) equivalently describe a linear-quadratic two-person zero-sum game.

Corollary 3 If the discrete-time linear time-invariant system given in (3.15) is observ-

able, then the scalar weights λn and λd can be chosen sufficiently large such that the

conditions (3.18a)-(3.18d) are satisfied. Therefore, according to Theorem 4, there exists

a saddle-point solution for the optimization problem (3.3) with cost (3.16). Therefore,

also, Assumption 5 is satisfied. l

Proof. Condition (3.18a) is trivially satisfied for all k P T as long as we choose λu ą 0

and weighting matrix Q ě 0 because Q ě 0 ùñ Mk ě 0, @k P T . 3

Condition (3.18b) is satisfied if the scalar weight λd is chosen sufficiently large. To

show this, we take the limit of the sequence of matrices Mk, as given in (3.17a), as

λd Ñ 8 and notice that Mk Ñ M̄k, where M̄k is described by

M̄k “ Q` A1pM̄k`1rI `
1

λu
BB1M̄k`1s

´1
qA;

M̄t`T “Mt`T ,

for all k P T . Then, as λd Ñ 8, λd is greater than the largest eigenvalue of D1M̄t`1D,

and therefore, condition (3.18b) is satisfied when λd is chosen sufficiently large.

3Note that Mk “ M 1
k due to the fact that Q “ Q1 and the matrix identity in [100] which says that

ApI `BAq´1 “ pI `ABq´1A.
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Next we prove that conditions (3.18c) and (3.18d) are satisfied, for all j P L, when

λn and λd are chosen sufficiently large and the system (3.15) is observable. We first take

the limit of the sequence of matrices Pj, as given in (3.17c), as λd Ñ 8 and notice that

Pj Ñ P̄j where P̄j is described by

P̄j “ ´λnΘ1
jΘj ` A

1t´jM̄tA
t´j,

for all j P LY t, and Θj is defined as

Θj – rC 1 A1C 1 A
12C 1 . . . A

1t´jC 1s1.

The matrix Θj looks similar to the observability matrix, and therefore, Θ1
jΘj ą 0 if the

system given in (3.15) is observable.

Then, the scalar weight λn can be chosen large enough to ensure that λnΘ1
jΘj ą

A
1t´jM̄tA

t´j, for all j P L. It then follows that P̄j ă 0 for all j P L. Therefore, condition

(3.18c) becomes λdI ´ D1P̄j`1D ą 0 in the limit as λd Ñ 8 and is trivially satisfied if

system (3.15) is observable and λn is chosen sufficiently large.

Finally, consider condition (3.18d). Using the Schur Complement, condition (3.18d)

is satisfied if, and only if,

λdI ´D
1Pt´L`1D ą 0

and

λnC
1C ´ A1Pt´L`1A´ A

1Pt´L`1DpλdI ´D
1Pt´L`1Dq

´1D1Pt´L`1A ą 0.

We just proved that λdI ´ D1Pt´L`1D ą 0 if the system (3.15) is observable and the
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weights λd and λn are chosen sufficiently large. Then, in the limit as λd Ñ 8, the second

inequality becomes

λnC
1C ´ A1P̄t´L`1A ą 0.

Therefore, if the system (3.15) is observable, λn can be chosen sufficiently large such that

this inequality is satisfied, and therefore, condition (3.18d) is satisfied.

3.4 Simulation

Various choices for the parameters in the cost function (3.16) lead to different control

inputs that may all satisfy the saddle-point assumption but that produce very different

closed-loop performance. For instance, there are examples for which a short finite-horizon

approach performs better than a quasi-infinite-horizon approach even for unconstrained

linear-quadratic problems. Specifically, better disturbance attenuation can be achieved

for the following unconstrained linear-quadratic example, where the system is subjected

to impulsive disturbances, using the combined MPC/MHE approach with shorter finite-

horizon lengths.

The following example can be solved numerically using the methods described in

Chapter 4.

Example 3 (Stabilizing a riderless bicycle.) Consider the following second order continuous-

time linearized bicycle model in state-space form:

9xt “ Axt `Bput ` dtq, yt “ Cxt ` nt (3.23)

The state is given by xt “

„

φ δ 9φ 9δ

1

where φ is the roll angle of the bicycle, δ is the
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steering angle of the handlebars, and 9φ and 9δ are the corresponding angular velocities.

The control input ut is the steering torque applied to the handlebars. The matrices defining

the linearized dynamics are, as described in [18],

A “

»

—

—

—

—

—

—

—

–

0 0 1 0

0 0 0 1

13.67 0.225´ 1.319v2 ´0.164v ´0.552v

4.857 10.81´ 1.125v2 3.621v ´2.388v

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

B “

»

—

—

—

—

—

—

—

–

0

0

´0.339

7.457

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, C “

»

—

–

1 0 0 0

0 1 0 0

fi

ffi

fl

,

where v is the bicycle’s forward velocity. Only the roll and steering angles (and not

their corresponding angular velocities) are measured and available for feedback. In this

example, we fix the forward velocity at v “ 2 m/s, which results in an unstable system,

and discretize the system using a 0.1 second zero-order-hold.

The control objective is to stabilize the bicycle in the upright position, i.e. around a

zero roll angle (φ “ 0), by applying a steering torque to the handlebars. The disturbance

dt acts on the input and can be thought of as jolting the steering due to sharp bumps in the

bicycle’s path or similar environmental perturbations. We solve this problem by solving

the optimization given in (3.3) with cost (3.16) at each time t and apply the resulting û˚t

as the control input. The measurement noise is a random variable nt „ N p0, 0.0012q.

The disturbance dt is nominally a random variable dt „ N p0, 0.012q but with occasional

large, impulsive values.

Because the system (3.23) is observable, we are able to choose λd and λn so that
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conditions (3.18) are satisfied. Therefore, a saddle-point solution to (3.3) with cost (3.16)

exists for the riderless bicycle example according to Theorem 4. However, conditions

(3.18) are only sufficient conditions and may lead to unnecessarily conservative weights.

In this example, it is possible to achieve better performance by choosing weights that do

not satisfy conditions (3.18) but that still ensure the existence of a saddle-point which

can be verified numerically.

In this example, we compare results for long horizon lengths (L “ T “ 200) to

results for short horizon lengths (L “ 2, T “ 7) and tune the weights λd and λn in

order to achieve the best performance as determined by minimizing the tracking error

}φ}. Table 3.1 shows four simulation scenarios. Rows #1 and #2 of Table 3.1 show

the weights λd and λn that satisfy the conditions (3.18) and provide the best performance

for both the long and short horizon lengths. Rows #3 and #4 of Table 3.1 show the best

possible weights λd and λn for performance that still ensure the existence of a saddle-point

(verified numerically) but that do not satisfy the conditions (3.18). For all four scenarios,

the weighting matrix Q in the cost (3.16) is chosen as a 4x4 matrix with the element in

upper left corner equal to one and all other elements equal to zero, and λu is chosen as

0.001.

Table 3.1: Tuning Parameters and Performance
L T λd λn }φ} [deg] }u} [Nm]

#1 200 200 1500 107 29.0 19.3
#2 2 7 90 107 27.1 19.2
#3 200 200 0.02 15000 22.1 18.0
#4 2 7 0.002 15000 14.6 35.5

Figures 3.1 and 3.2 show results for the scenarios given in Table 3.1. The top plot of

each figure shows the measured output φ, the middle plot shows the measured output δ,

and the bottom plot shows the applied control input u˚ as well as the true disturbance d

that is the same for all four of the scenarios in Table 3.1. In this case, the disturbance
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is impulsive which means that it is usually zero but occasionally becomes a fairly large

nonzero value as shown in the bottom plots of Figures 3.1 and 3.2.
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Figure 3.1: Comparing results for longer horizons (red o’s) versus shorter horizons
(blue *’s) with weights given in rows #1 and #2 of Table 3.1.

The control input computed using the shorter horizons is able to regulate the roll angle

φ back to zero without as much oscillation as the control input computed using the longer

horizons. This is because a larger λd is required with long horizons to satisfy the saddle-

point assumption while a smaller λd can be used with short horizons. In this case, a

smaller λd results in a less conservative control input that better attenuates the large im-

pulsive disturbances. Therefore, it may be beneficial to use the finite-horizon MPC/MHE

approach over other standard infinite-horizon control techniques for particular types of

unconstrained linear-quadratic problems.
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Figure 3.2: Comparing results for longer horizons (red o’s) versus shorter horizons
(blue *’s) with weights given in rows #3 and #4 of Table 3.1.

3.5 Conclusions

In this chapter, we discussed the main assumption of our combined MPC/MHE ap-

proach that a saddle-point solution exists for the min-max optimization problem formu-

lated in Chapter 2. First we gave conditions for the existence of a saddle-point solution

when considering a general discrete-time nonlinear system and a general cost function.

Next we specialized those results for DLTI systems and quadratic cost functions. For

this case, we showed that observability of the linear system and large weights λd and λn

in the cost function are sufficient conditions for a saddle-point solution to exist.

In a numerical example of a linearized riderless bicycle system subjected to impulsive

disturbances, we showed results for four different scenarios. We first considered cost

function weights that satisfy the derived sufficient conditions for a saddle-point solution
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and then considered cost function weights that still result in a saddle-point, but do not

satisfy the sufficient conditions, and result in better performance. For each choice of cost

function weights, we considered long and short horizon lengths. The results showed that

it is straightforward to satisfy the sufficient conditions for the existence of a saddle-point

solution and illustrated the importance of carefully choosing tuning parameters in order

to achieve desirable performance.

Future work may involve relaxing the requirement of a saddle-point solution to that

of being ε-close to a saddle-point solution. This could be related to results for ε-Nash

equilibria.
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Chapter 4

Numerical Optimization

In this chapter, we discuss numerical optimization methods for solving the min-max

optimization problem formulated in Chapter 2. Specifically, we develop new primal-dual

interior-point algorithms that can be used to compute the saddle-point equilibrium that

needs to be solved for online at each sampling time. These algorithms rely on the use of

Newton’s method to solve a relaxed version of the Karush-Kuhn-Tucker (KKT) conditions

associated with the coupled optimizations that define the saddle-point equilibrium. As

in classical primal-dual methods, we replace the equality to zero of the complementary

slackness conditions by equality to a positive constant µ that we force to converge to zero

as the Newton iterations progress. In practice, the algorithms will stop with a positive

value for µ, but we show that this still leads to an ε-saddle-point, where ε can be explicitly

computed and made arbitrarily small through the selection of an appropriate stopping

criterion.

The optimization algorithms proposed here are heavily inspired by primal-dual interior-

point methods [111] that have been very successful in solving convex optimizations [14].

The use of interior-point algorithms to solve MPC problems is discussed in [91], and

additional early work on efficient numerical methods for solving MPC problems can be
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found in [12, 11, 110]. An overview of the numerical methods available for solving the

optimization problems that arise in nonlinear MPC and MHE is given by [29], whereas

the more recent work [109] is focused on the development of fast dedicated solvers for

MPC problems. In [80], the authors specifically consider numerical methods for solving

min-max MPC as a quadratic program, and robust dynamic programming for min-max

MPC of constrained uncertain systems is considered in [28]. Finally, the methods that are

described in Sections 4.3 and 4.4 are directly inspired by the primal-dual interior-point

method for a single optimization described in [107].

4.1 Review of Chapter 2

To keep this chapter self-contained, we recall some details about the problem formu-

lation from Chapter 2.

We consider time-varying nonlinear discrete-time processes of the form

xt`1 “ ftpxt, ut, dtq, yt “ gtpxtq ` nt, @t P Zě0 (4.1)

At each time t P ZěL, our objective is to compute the control ut so as to minimize

a desired criterion Jtpxt´L, ut´L:t`T´1, dt´L:t`T´1, yt´L:tq which depends on the unknown

initial state xt´L P X and a finite number of past inputs ut´L:t´1, past output mea-

surements yt´L:t, future control inputs ut:t`T´1 constrained to belong to the set U , and

past and future disturbances dt´L:t`T´1 constrained to belong to the set D. Since we do

not know the value of the variables xt´L and dt´L:t`T´1, we also optimize this criterion

under worst-case assumptions on these variables, leading to the following finite horizon
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min-max optimization

min
ût:t`T´1|tPU

max
x̂t´L|tPX ,

d̂t´L:t`T´1|tPD

Jtpx̂t´L|t, ut´L:t´1, ût:t`T´1|t, d̂t´L:t`T´1|t, yt´L:tq. (4.2)

which is subject to the process dynamics (4.1). At each time t, we use as the control

input the first element of the sequence

û˚t:t`T´1|t “ tû
˚
t|t, û

˚
t`1|t, û

˚
t`2|t, . . . û

˚
t`T´1|tu P U

that minimizes (4.2), leading to the following control law:

ut “ û˚t|t, @t ě 0. (4.3)

For the theoretical results given in Chapter 2 for this combined estimation and control

approach, we require the following assumption:

Assumption 6 (Saddle-point [Assumption 2, Chapter 2]) The min-max optimiza-

tion (4.2) always has a saddle-point solution for which the min and max commute. Specif-

ically, for every time t P Zě0, past control input sequence ut´L:t´1 P U , and past mea-

sured output sequence yt´L:t P Y, there exists a finite scalar J˚t P R, an initial condition

x̂˚t´L|t P X , and sequences û˚t:t`T´1|t P U , d̂˚t´L:t`T´1|t P D such that

J˚t “ Jtpx̂
˚
t´L|t, ut´L:t´1, û

˚
t:t`T´1|t, d̂

˚
t´L:t`T´1|t, yt´L:tq

“ max
x̂t´L|tPX ,

d̂t´L:t`T´1|tPD

Jtpx̂t´L|t, ut´L:t´1, û
˚
t:t`T´1|t, d̂t´L:t`T´1|t, yt´L:tq (4.4a)

“ min
ût:t`T´1PU

Jtpx̂
˚
t´L|t, ut´L:t´1, ût:t`T´1|t, d̂

˚
t´L:t`T´1|t, yt´L:tq. (4.4b)
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l

The remainder of this chapter discusses numerical approaches for computing a saddle-

point solution to the min-max optimization (4.2).

4.2 Computation of Control by Solving a Pair of

Coupled Optimizations

To implement the control law (4.3) we need to find the control sequence û˚t:t`T´1|t P U

that achieves the outer minimization in (4.2). In view of Assumption 6, the desired

control sequence must be part of the saddle-point defined by (4.4a)–(4.4b). From the

perspective of numerically computing this saddle-point, it is more convenient to use the

following equivalent characterization of the saddle-point:

´J˚t put´L:t´1, yt´L:tq “ min
x̂t´L|tPX ,

d̂t´L:t`T´1|tPD

´Jtpx̂t´L|t, ut´L:t´1, û
˚
t:t`T´1|t, d̂t´L:t`T´1|t, yt´L:tq

(4.5a)

J˚t put´L:t´1, yt´L:tq “ min
ût:t`T´1|tPU

Jtpx̂
˚
t´L|t, ut´L:t´1, ût:t`T´1|t, d̂

˚
t´L:t`T´1|t, yt´L:tq (4.5b)

where we introduce the “´” sign in (4.5a) simply to obtain two minimizations, instead

of a maximization and one minimization, which will somewhat simplify the presentation.

Since the process dynamics (4.1) has a unique solution for any given initial condition,

control input, and unmeasured disturbance, the coupled optimizations in (4.5) can be

re-written as

´ J˚t put´L:t´1, yt´L:tq “ min
pd̂t´L:t`T´1|t,x̄t´L:t`T |tqPD̄rut´L:t´1,û

˚
t:t`T´1s
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´

t`T´1
ÿ

s“t

cspx̄s, û
˚
s , d̂sq ´ qt`T px̄t`T q `

t
ÿ

s“t´L

ηs
`

ys ´ gspx̄sq
˘

`

t`T´1
ÿ

s“t´L

ρspd̂sq, (4.6a)

J˚t put´L:t´1, yt´L:tq “ min
pût:t`T´1|t,x̃t´L`1:t`T |tqPŪrx̄˚t´L,d̂

˚
t´L:t`T´1s

t`T´1
ÿ

s“t

cspx̃s, ûs, d̂
˚
s q ` qt`T px̃t`T q ´

t
ÿ

s“t´L

ηs
`

ys ´ gspx̃sq
˘

´

t`T´1
ÿ

s“t´L

ρspd̂
˚
s q (4.6b)

where

D̄rut´L:t´1, û
˚
t:t`T´1s–

!

pd̂t´L:t`T´1|t, x̄t´L:t`T |tq :

d̂t´L:t`T´1|t P D, x̄t´L:t`T |t P X ,

x̄s`1 “ fspx̄s, us, d̂sq, @s P tt´ L, ..., t´ 1u,

x̄s`1 “ fspx̄s, û
˚
s , d̂sq, @s P tt, ..., t` T ´ 1u

)

(4.7a)

Ūrx̄˚t´L, d̂˚t´L:t`T´1s–

!

pût:t`T´1|t, x̃t´L`1:t`T |tq :

ût:t`T´1|t P U , x̃t´L`1:t`T |t P X ,

x̃t´L`1 “ ft´Lpx̄
˚
t´L, ut´L, d̂

˚
t´Lq,

x̃s`1 “ fspx̃s, us, d̂
˚
s q, @s P tt´ L` 1, ..., t´ 1u,

x̃s`1 “ fspx̃s, ûs, d̂
˚
s q, @s P tt, ..., t` T ´ 1u

)

. (4.7b)

To obtain the optimizations in (4.6), we introduce the values of the state from time

t ´ L ` 1 to time t ` T , that are constrained by the system dynamics, as additional

optimization variables in each of the optimizations in (4.5). While this introduces ad-

ditional optimization variables, it avoids the need to explicitly evaluate the solution

ϕpt; t ´ L, xt´L, ut´L:t´1, dt´L:t´1q that appears in the original optimizations (4.5) and

that can be numerically poorly conditioned, e.g., for systems with unstable dynamics.

While the numerical method discussed in the next section can be used to solve either
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(4.5) or (4.6), we prefer the latter because it generally leads to simpler optimization

problems. Therefore we focus our discussion on that approach.

4.3 Interior-Point Method for Minimax Problems

The coupled optimizations in (4.5) or (4.6) can be viewed as a special case of the

following more general problem: Find a pair pu˚, d˚q P Urd˚sˆDru˚s that simultaneously

solves the two coupled optimizations

fpu˚, d˚q “ min
uPUrd˚s

fpu, d˚q, (4.8a)

gpu˚, d˚q “ min
dPDru˚s

gpu˚, dq, (4.8b)

with

Urds– tu P RNu : Fupu, dq ě 0, Gupu, dq “ 0u, (4.9a)

Drus– td P RNd : Fdpu, dq ě 0, Gdpu, dq “ 0u, (4.9b)

for given functions f : RNu ˆ RNd P R, g : RNu ˆ RNd P R, Fu : RNu ˆ RNd Ñ RMu ,

Fd : RNu ˆ RNd Ñ RMd , Gu : RNu ˆ RNd Ñ RKu , Gd : RNu ˆ RNd Ñ RKd . To map

(4.6) to (4.8), one would associate the vectors u P RNu and d P RNd in (4.8) with the

sequences in the sets D̄r¨s and Ūr¨s in (4.7). In this case, the equality constraints in (4.9)

would typically correspond to the system dynamics, and the inequality constraints in

(4.9) would enforce that the state, control, and disturbance signals belong, respectively,

to the sets X , U , and D.

Remark 8 The optimization in (4.8) is more general than the one in (4.6) in that the

function being minimized in (4.6a) is the symmetric of the function being minimized
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in (4.6b), whereas in (4.8), f and g need not be the symmetric of each other. While

this generalization does not appear to be particularly useful for our output-feedback MPC

application, all the results that follow do apply to general functions f and g and can be

useful for other applications. l

The following duality-like result provides the motivation for a primal-dual-like method

to solve the coupled minimizations in (4.8). It provides a set of conditions, involving an

unconstrained optimization, that provide an approximation to the solution of (4.8).

Lemma 3 (Approximate equilibrium) Suppose that we have found primal variables

û P RNu , d̂ P RNd and dual variables λ̂fu P RMu , λ̂gd P RMd, ν̂fu P RKu , ν̂gd P RKd that

simultaneously satisfy all of the following conditions1

Gupû, d̂q “ 0, Gdpû, d̂q “ 0, (4.10a)

λ̂fu 9ě0, λ̂gd 9ě0, Fupû, d̂q ě 0, Fdpû, d̂q ě 0, (4.10b)

Lf pû, d̂, λ̂fu, ν̂fuq “ min
uPRNu

Lf pu, d̂, λ̂fu, ν̂fuq,

Lgpû, d̂, λ̂gd, ν̂gdq “ min
dPRNd

Lgpû, d, λ̂gd, ν̂gdq

(4.10c)

where, for all u, d, λ, and ν,

Lf pu, d, λfu, νfuq– fpu, dq ´ λ1fuFupu, dq ` ν
1
fuGupu, dq,

Lgpu, d, λgd, νgdq– gpu, dq ´ λ1gdFdpu, dq ` ν
1
gdGdpu, dq.

Then pû, d̂q approximately satisfy (4.8) in the sense that

fpû, d̂q ď εf ` min
uPUrd̂s

fpu, d̂q, (4.11a)

1Given a vector x P Rn and a scalar a P R, we denote by x 9ěa the proposition that every entry of x
is greater than or equal to a.
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gpû, d̂q ď εg ` min
dPDrûs

gpû, dq, (4.11b)

with

εf – λ̂fuFupû, d̂q, εg – λ̂gdFdpû, d̂q. (4.12)

l

Proof of Lemma 3. The proof is a direct consequence of the following sequence of in-

equalities that start from the equalities in (4.10c) and use the conditions (4.10a)-(4.10b),

and the definitions (4.12) to arrive at (4.11):

fpû, d̂q ´ εf “ Lf pû, d̂, λ̂fu, ν̂fuq ´ ν̂
1
fuGupû, d̂q

“ min
uPRNu

Lf pu, d̂, λ̂fu, ν̂fuq

“ min
uPRNu

fpu, d̂q ´ λ̂1fuFupu, d̂q ` ν̂
1
fuGupu, d̂q

ď max
λfu 9ě0,
νfu

min
uPRNu

fpu, d̂q ´ λ1fuFupu, d̂q ` ν
1
fuGupu, d̂q

ď max
λfu 9ě0,
νfu

min
uPUrd̂s

fpu, d̂q ´ λ1fuFupu, d̂q ` ν
1
fuGupu, d̂q

“ min
uPUrd̂s

fpu, d̂q,

gpû, d̂q ´ εg “ Lgpû, d̂, λ̂gd, ν̂gdq ´ ν̂
1
gdGdpû, d̂q

“ min
dPRNd

Lgpû, d, λ̂gd, ν̂gdq

“ min
dPRNd

gpû, dq ´ λ̂1gdFdpû, dq ` ν̂
1
gdGdpû, dq

ď max
λgd 9ě0,
νgd

min
dPRNd

gpû, dq ´ λ1gdFdpû, dq ` ν
1
gdGdpû, dq
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ď max
λgd 9ě0,
νgd

min
dPDrûs

gpû, dq ´ λ1gdFdpû, dq ` ν
1
gdGdpû, dq

“ min
dPDrûs

gpû, dq.

4.3.1 Interior-point primal-dual equilibria algorithm

The proposed method consists of using Newton iterations to solve a system of non-

linear equations on the primal variables û P RNu , d̂ P RNd and dual variables λ̂fu P

RMu , λ̂gd P RMd , ν̂fu P RKu , ν̂gd P RKd introduced in Lemma 3. Throughout this section,

we ask that Lf and Lg are continuously differentiable with respect to u and d, respectively

(see Remark 9 below). The specific system of equations consists of:

1. the first-order optimality conditions for the unconstrained minimizations in (4.10c)2:

∇uLf pû, d̂, λ̂fu, ν̂fuq “ 0Nu , (4.13a)

∇dLgpû, d̂, λ̂gd, ν̂gdq “ 0Nd ; (4.13b)

2. the equality conditions (4.10a); and

3. the equations3

Fupû, d̂q d λ̂fu “ µ1Mu , (4.14a)

Fdpû, d̂q d λ̂gd “ µ1Md
, (4.14b)

2Given an integer M , we denote by 0M and by 1M the M -vectors with all entries equal to 0 and 1,
respectively.

3Given two vectors x, y P Rn we denote by xd y P Rn and by xm y P Rn the entry-wise product and
division of the two vectors, respectively.
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for some µ ą 0, which leads to

εf “Muµ, εg “Mdµ.

Since our goal is to find primal variables û, d̂ for which (4.11) holds with εf “ εg “ 0,

we shall make the variable µ converge to zero as the Newton iterations progress. This is

done in the context of an interior-point method, meaning that all variables are initialized

so that the inequality constraints (4.10b) hold, and the progression along the Newton

direction at each iteration is selected so that these constraints are never violated.

The specific steps of the algorithm that follows are based on the primal-dual interior-

point method for a single optimization, as described in [107]. To describe this algorithm,

we define

z – rû1 d̂1s1, λ– rλ̂1fu λ̂
1
gds

1, ν – rν̂ 1fu ν̂
1
gds

1,

Gpzq–

»

—

–

Gupû, d̂q

Gdpû, d̂q

fi

ffi

fl

, F pzq–

»

—

–

Fupû, d̂q

Fdpû, d̂q

fi

ffi

fl

,

which allows us to re-write (4.13), (4.10a), and (4.14) as

∇uLf pz, λ, νq “ 0Nu , ∇dLgpz, λ, νq “ 0Nd , (4.15a)

Gpzq “ 0Ku`Kd , λd F pzq “ µ1Mu`Md
, (4.15b)

and (4.10b) as

λ ě 0Mu`Md
, F pzq ě 0Mu`Md

. (4.15c)
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Primal-dual optimization algorithm:

Step 1. Start with estimates z0, λ0, ν0 that satisfy the inequalities λ0 ě 0Mu`Md
, F pz0q ě

0Mu`Md
in (4.15c), and set µ0 “ 1 and k “ 0. It is often a good idea to start with estimates

that also satisfy the equality constraint Gpz0q “ 0Ku`Kd , and λ0 “ µ01Mu`Md
m F pz0q,

which guarantees that we initially have λ0 d F pz0q “ µ01Mu`Md
.

Step 2. Linearize the equations in (4.15a) around a current estimate zk, λk, νk, and µk

leading to

»

—

—

—

—

—

—

—

–

∇uzLf pzk, λk, νkq ∇uνLf pzk, λk, νkq ∇uλLf pzk, λk, νkq

∇dzLgpzk, λk, νkq ∇dνLgpzk, λk, νkq ∇dλLgpzk, λk, νkq

∇zGpzkq 0 0

diagpλkq∇zF pzkq 0 diagrF pzkqs

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

∆z

∆ν

∆λ

fi

ffi

ffi

ffi

ffi

fl

“ ´

»

—

—

—

—

—

—

—

–

∇uLf pzk, λk, νkq

∇dLgpzk, λk, νkq

Gpzkq

F pzkq d λk ´ µk1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (4.16)

Since the vectors F pzkq and λk have positive entries, we can solve this system of equations

by first eliminating

diagpλkq∇zF pzkq∆z ` diagrF pzkqs∆λ “ ´F pzkq d λk ` µk1 ô

∆λ “ ´λk ´ diagrλk m F pzkqs∇zF pzkq∆z ` µk1m F pzkq (4.17a)

which leads to
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»

—

—

—

—

–

∇uzLf pzk, λk, νkq ∇uνLf pzkq

∇dzLgpzk, λk, νkq ∇dνLgpzkq

∇zGpzkq 0

fi

ffi

ffi

ffi

ffi

fl

»

—

–

∆z

∆ν

fi

ffi

fl

“ ´

»

—

—

—

—

–

∇uLf pzk, λk, νkq `∇uλLf pzkq∆λ

∇dLgpzk, λk, νkq `∇dλLgpzkq∆λ

Gpzkq

fi

ffi

ffi

ffi

ffi

fl

.

(4.17b)

Step 3. For additional computational efficiency, find an affine scaling direction r∆z1a ∆ν1a ∆λ1a s
1

by solving (4.17) for µk “ 0:

∆λa “ ´λk ´ diagrλk m F pzkqs∇zF pzkq∆za,

»

—

—

—

—

–

∇uzLf pzk, λk, νkq ∇uνLf pzkq

∇dzLgpzk, λk, νkq ∇dνLgpzkq

∇zGpzkq 0

fi

ffi

ffi

ffi

ffi

fl

»

—

–

∆za

∆νa

fi

ffi

fl

“ ´

»

—

—

—

—

–

∇uLf pzk, λk, νkq `∇uλLf pzkq∆λa

∇dLgpzk, λk, νkq `∇dλLgpzkq∆λa

Gpzkq

fi

ffi

ffi

ffi

ffi

fl

.

Step 4. Select scalings so that the inequalities in (4.15c) are not violated along the affine

scaling direction:

αa – mintαaprimal, α
a
dualu,

where

αaprimal – max
 

α P r0, 1s : F pzk ` α∆zaq ě 0
(

,

αadual – max
 

α P r0, 1s : λk ` α∆λa ě 0
(

.
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Define the following estimate for the “quality” of the affine scaling direction

σ –

´F pzk ` αa∆zaq d pλk ` αa∆λaq

F pzkq d λk

¯δ

,

where δ is a parameter typically selected equal to 2 or 3. Note that the numerator

F pzk ` αa∆zaq d pλk ` αa∆λaq is the value one would obtain for F pzq d λ by moving

purely along the affine scaling directions. A small value for σ thus indicates that a

significant reduction in µk is possible.

Step 5. Find the search direction r∆z1s ∆ν1s ∆λ1s s
1 by solving (4.16) for µk “ σ F pzkqdλk

Mu`Md
:

»

—

—

—

—

—

—

—

–

∇uzLf pzk, λk, νkq ∇uνLf pzkq ∇uλLf pzkq

∇dzLgpzk, λk, νkq ∇dνLgpzkq ∇dλLgpzkq

∇zGpzkq 0 0

diagpλkq∇zF pzkq 0 diagrF pzkqs

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

∆zs

∆νs

∆λs

fi

ffi

ffi

ffi

ffi

fl

“ ´

»

—

—

—

—

—

—

—

–

∇uLf pzk, λk, νkq

∇dLgpzk, λk, νkq

Gpzkq

F pzkq d λk ` p∇zF pzkq∆zaq d∆λa ´ σ
F pzkqdλk
Mu`Md

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where the additional term p∇zF pzkq∆zaqd∆λa comes from a 2nd order expansion of the

left-hand side of the last equality in (4.15a) [65]. Since the vectors F pzkq and λk have

positive entries, we can solve this system of equations by first eliminating

diagpλkq∇zF pzkq∆zs ` diagrF pzkqs∆λs

“ ´F pzkq d λk ´ p∇zF pzkq∆zaq d∆λa ` σ
F pzkq d λk
Mu `Md

1 ô
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∆λs “ ´λk ´ p∇zF pzkq∆zaq d∆λa m F pzkq ´ diagrλk m F pzkqs∇zF pzkq∆zs

` σ
F pzkq d λk
Mu `Md

1m F pzkq

which leads to

»

—

—

—

—

–

∇uzLf pzk, λk, νkq ∇uνLf pzkq

∇dzLgpzk, λk, νkq ∇dνLgpzkq

∇zGpzkq 0

fi

ffi

ffi

ffi

ffi

fl

»

—

–

∆zs

∆νs

fi

ffi

fl

“ ´

»

—

—

—

—

–

∇uLf pzk, λk, νkq `∇uλLf pzkq∆λs

∇dLgpzk, λk, νkq `∇dλLgpzkq∆λs

Gpzkq

fi

ffi

ffi

ffi

ffi

fl

.

Step 6. Update the estimates along the search direction so that the inequalities in (4.15c)

hold strictly:

zk`1 “ zk ` αs∆zs, νk`1 “ νk ` αs∆νs, λk`1 “ λk ` αs∆λs

where αs – 0.99ˆmintαprimal, αdualu, and

αprimal – max
 

α P r0, 1s : F pzk ` α∆zsq ě 0
(

,

αdual – max
 

α P r0, 1s : λk ` α∆λs ě 0
(

.

Step 7. Repeat from Step 2 with an incremented value for k until

}∇uLf pzk, λk, νkq} ď εu, }∇dLgpzk, λk, νkq} ď εd, (4.18a)

}Gpzkq} ď εG, λk d F pzkq ď εgap, (4.18b)

for sufficiently small tolerances εu, εd, εG, εgap. l
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When the functions Lf and Lg that appear in the unconstrained minimizations in

(4.10c) have a single stationary point that corresponds to their global minimum, termi-

nation of the Algorithm 4.3.1 guarantees that the assumptions of Lemma 3 hold [up to

the tolerances in (4.18)], and we obtain the desired solution to (4.8).

The desired uniqueness of the stationary point holds, e.g., when the function fpu, dq

is convex in u, gpu, dq is convex in d, Fupu, dq is concave in u, Fdpu, dq is concave in

d, and Gupu, dq is linear in u, and Gdpu, dq is linear in d. However, in practice the

Algorithm 4.3.1 can find solutions to (4.8) even when these convexity assumptions do not

hold. For problems for which one cannot be sure whether the Algorithm 4.3.1 terminated

at a global minimum of the unconstrained problem, one may run several instances of the

algorithm with random initial conditions. Consistent results for the optimizations across

multiple initializations provides an indication that a global minimum has been found.

Remark 9 (Smoothness) Algorithm 4.3.1 requires all the functions f, g, Fu, Fd, Gu, Gd

to be twice differentiable for the computation of the matrices that appear in (4.16). How-

ever, this does not preclude the use of this algorithm in many problems where these

functions are not differentiable because it is often possible to re-formulate non-smooth

optimizations into smooth ones by appropriate transformations that often introduce ad-

ditional optimization variables. Common examples of these transformations include the

minimization of criteria involving `p norms, such as the “non-differentiable `1 optimiza-

tion”

min
 

}Amˆnx´ b}`1 ` ¨ ¨ ¨ : x P Rn, . . .
(

which is equivalent to the following constrained smooth optimization

min
 

v11m ` ¨ ¨ ¨ : x P Rn, v P Rm,´v ď Ax´ b ď v, . . .
(

;
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and the “non-differentiable `2 optimization”

min
 

}Amˆnx´ b}`2 ` ¨ ¨ ¨ : x P Rn, . . .
(

which is equivalent to

min
 

v ` ¨ ¨ ¨ : x P Rn, v ě 0, v2
ě pAx´ bq1pAx´ bq, . . .

(

.

More examples of such transformations can be found, e.g., in [41, 81, 33, 55, 36]. l

4.4 Interior-Point Method for Minimax Problems with

Common Latent Variables

In this section, we develop an algorithm very similar to Algorithm 4.3.1 that takes

advantage of the fact that the equality constraints in (4.2), ensuring that the dynamics

(4.1) are satisfied, are repeated for both the minimizer and the maximizer. More gen-

erally, we consider the case where the minimization and the maximization in minimax

problems both contain common optimization variables that can instead be incorporated

as latent variables.

Like in Section 4.3, our goal is to find a pair pu˚, d˚q P Ūrd˚s ˆ D̄ru˚s that simultane-

ously solves two coupled optimizations

f̄pu˚, d˚q “ min
uPŪrd˚s

f̄pu, d˚q, ḡpu˚, d˚q “ min
dPD̄ru˚s

ḡpu˚, dq, (4.19)
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with

Ūrds– tu P RNu : F̄upu, dq ě 0, Ḡupu, dq “ 0u, (4.20a)

D̄rus– td P RNd : F̄dpu, dq ě 0, Ḡdpu, dq “ 0u, (4.20b)

for given functions f̄ : RNu ˆ RNd P R, ḡ : RNu ˆ RNd P R, F̄u : RNu ˆ RNd Ñ RMu ,

F̄d : RNu ˆ RNd Ñ RMd , Ḡu : RNu ˆ RNd Ñ RKu , Ḡd : RNu ˆ RNd Ñ RKd . However, we

are now interested in cases where these functions can be expressed in terms of common

latent variables. Specifically, these functions can be expressed as

f̄pu, dq “ f
`

u, d, χpu, dq
˘

, ḡpu, dq “ g
`

u, d, χpu, dq
˘

,

F̄upu, dq “ Fu
`

u, d, χpu, dq
˘

, Ḡupu, dq “ Gu

`

u, d, χpu, dq
˘

,

F̄dpu, dq “ Fd
`

u, d, χpu, dq
˘

, Ḡdpu, dq “ Gd

`

u, d, χpu, dq
˘

,

@u P RNu , d P RNd , for a function χ : RNu ˆ RNd Ñ RNx whose value χpu, dq is defined

implicitly by a function H : RNu ˆ RNd ˆ RNx Ñ RKx and an equation of the form

Hpu, d, xq “ 0. (4.21)

The function H is assumed to be such that (4.21) has a unique solution x for every

u P RNu , d P RNd . Corollary 4 (a corollary of Lemma 3) given below is useful in situations

where it is difficult (or impossible) to find an explicit form for χ.

4.4.1 Primal-dual method

The following duality-like result provides the motivation for a primal-dual-like method

to solve the coupled minimizations in (4.19). It provides a set of conditions, involving two
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unconstrained optimizations, that provide an approximation to the solution of (4.19). It

improves upon a direct application of Lemma 3 to (4.19), in that the implictely defined

function χ does not appear in the conditions.

Corollary 4 (Approximate equilibrium) Consider the coupled optimizations in (4.19)

and assume that for every u P RNu, d P RNd, the equation (4.21) has a unique solution

x. Suppose that we have found primal variables û P RNu , d̂ P RNd , x̂ P RNx and dual

variables ν̂fu P RKu , ν̂fx P RKx , ν̂gd P RKd , ν̂gx P RKx that simultaneously satisfy all of the

following conditions

Gupû, d̂, x̂q “ 0, Gdpû, d̂, x̂q “ 0, Hpû, d̂, x̂q “ 0, (4.22a)

λ̂fu 9ě0, λ̂gd 9ě0, Fupû, d̂, x̂q ě 0, Fdpû, d̂, x̂q ě 0, (4.22b)

Lf pû, d̂, x̂, λ̂fu, ν̂fu, ν̂fxq “ min
uPRNu ,
xPRNx

Lf pu, d̂, x, λ̂fu, ν̂fu, ν̂fxq, (4.22c)

Lgpû, d̂, x̂, λ̂gd, ν̂gd, ν̂gxq “ min
dPRNd ,
xPRNx

Lgpû, d, x, λ̂gd, ν̂gd, ν̂gxq (4.22d)

where

Lf pu, d, x, λfu, νfu, νfxq– fpu, d, xq ´ λ1fuFupu, d, xq ` ν
1
fuGupu, d, xq ` ν

1
fxHpu, d, xq,

Lgpu, d, x, λgd, νgd, νgxq– gpu, d, xq ´ λ1gdFdpu, d, xq ` ν
1
gdGdpu, d, xq ` ν

1
gxHpu, d, xq.

Then pû, d̂q approximately satisfy (4.19) in the sense that

f̄pû, d̂q ď εf ` min
uPŪrd̂s

f̄pu, d̂q, ḡpû, d̂q ď εg ` min
dPD̄rûs

ḡpû, dq, (4.23)
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with

εf – λ̂1fuFupû, d̂, x̂q, εg – λ̂1gdFdpû, d̂, x̂q. l

Note that while Corollary 4 utilizes a single primal (latent) variable x̂, it requires two

dual variables ν̂fx, ν̂gx P RKx associated with the equality constraint Hpû, d̂, x̂q “ 0.

Proof of Corollary 4. Since the equation in (4.21) has a unique solution x, the optimiza-

tions in (4.19), can be re-written as

f̄pu˚, d˚q “ min
pu,xqPUrd˚s

fpu, d˚, xq, ḡpu˚, d˚q “ min
pd,zqPDru˚s

gpu˚, d, zq, (4.24)

with

Urds– tpu, xq P RNu ˆ RNx : Fupu, d, xq ě 0, Gupu, d, xq “ 0, Hpu, d, xq “ 0u, (4.25)

Drus– tpd, zq P RNd ˆ RNx : Fdpu, d, zq ě 0, Gdpu, d, zq “ 0, Hpu, d, zq “ 0u, (4.26)

which is again of the form considered in Section 4.3, but for optimization variables pu, xq

and pd, zq in higher dimensional spaces.

Applying Lemma 3 to the new formulation in (4.24), we conclude that if we find primal

variables û P RN , x̂ P RN , d̂ P RNd , ẑ P RNx and dual variables λ̂fu P RMu , λ̂gd P RMd ,

ν̂fu P RKu , ν̂fx P RKx , ν̂gd P RKd , ν̂gx P RKx that simultaneously satisfy all of the following

conditions

Gupû, d̂, x̂q “ 0, Hpû, d̂, x̂q “ 0, Gdpû, d̂, ẑq “ 0, Hpû, d̂, ẑq “ 0, (4.27a)

λ̂fu 9ě0, λ̂gd 9ě0, Fupû, d̂, x̂q ě 0, Fdpû, d̂, ẑq ě 0, (4.27b)
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Lf pû, x̂, d̂, ẑ, λ̂fu, ν̂fu, ν̂fxq “ min
uPRNu ,
xPRNx

Lf pu, x, d̂, ẑ, λ̂fu, ν̂fu, ν̂fxq, (4.27c)

Lgpû, x̂, d̂, ẑ, λ̂gd, ν̂gd, ν̂gxq “ min
dPRNd ,zPRNx

Lgpû, x̂, d, z, λ̂gd, ν̂gd, ν̂gxq (4.27d)

where

Lf pu, x, d, z, λfu, νfu, νfxq– fpu, d, xq ´ λ1fuFupu, d, xq ` ν
1
fuGupu, d, xq ` ν

1
fxHpu, d, xq,

Lgpu, x, d, z, λgd, νgd, νgxq– gpu, d, zq ´ λ1gdFdpu, d, zq ` ν
1
gdGdpu, d, zq ` ν

1
gxHpu, d, zq;

then

f̄pû, d̂q “ fpû, d̂, x̂q ď εf ` min
pu,xqPUrd̂s

fpu, d̂, xq “ εf ` min
uPŪrd̂s

f̄pu, d̂q,

ḡpû, d̂q “ gpû, d̂, ẑq ď εg ` min
pd,zqPDrûs

gpû, d, zq “ εg ` min
dPD̄rûs

ḡpû, dq

with

εf – λ̂1fuFupû, d̂, x̂q, εg – λ̂1gdFdpû, d̂, ẑq.

The result follows from this, together with the observation that x̂ “ ẑ because the

equations Hpû, d̂, x̂q “ 0 and Hpû, d̂, ẑq “ 0 in (4.27a) must have exactly the same

solution x̂ “ ẑ.

4.4.2 Interior-point primal-dual equilibria algorithm

As before, this new proposed method consists of using Newton iterations to solve a

system of nonlinear equations on the primal variables û P RNu , d̂ P RNd , x̂ P RNx and dual

variables λ̂fu P RMu , λ̂gd P RMd , ν̂fu P RKu , ν̂gd P RKd , ν̂fx P RKx , ν̂gx P RKx introduced in
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Corollary 4. The specific system of equations consists of:

1. the first-order optimality conditions for the unconstrained minimizations in (4.22c)–

(4.22d):

∇uLf pû, d̂, x̂, λ̂fu, ν̂fu, ν̂fxq “ 0Nu , ∇xLf pû, d̂, x̂, λ̂fu, ν̂fu, ν̂fxq “ 0Nu , (4.28a)

∇dLgpû, d̂, x̂, λ̂gd, ν̂gd, ν̂gxq “ 0Nd , ∇xLgpû, d̂, x̂, λ̂gd, ν̂gd, ν̂gxq “ 0Nd ; (4.28b)

2. the equality conditions (4.22a); and

3. the equations

Fupû, d̂, x̂q d λ̂fu “ µ1Mu , Fdpû, d̂, x̂q d λ̂gd “ µ1Md
, (4.29)

for some µ ą 0, which leads to

εf “Muµ, εg “Mdµ.

Since our goal is to find primal variables û, d̂, x̂ for which (4.23) holds with εf “ εg “ 0,

we shall make the variable µ converge to zero as the Newton iterations progress. This is

done in the context of an interior-point method, meaning that all variables are initialized

so that the inequality constraints (4.27b) hold and the progression along the Newton

direction at each iteration are selected so that these constraints are never violated.

The specific steps of the algorithm that follows are also inspired by the primal-dual

interior-point method for a single optimization, as described in [107]. To describe this
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algorithm, we define

z –

»

—

—

—

—

–

û

d̂

x̂

fi

ffi

ffi

ffi

ffi

fl

, λ–

»

—

–

λ̂fu

λ̂gd

fi

ffi

fl

, ν –

»

—

—

—

—

—

—

—

–

ν̂fu

ν̂fx

ν̂gd

ν̂gx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Gpzq–

»

—

—

—

—

–

Gupû, d̂, x̂q

Gdpû, d̂, x̂q

Hpû, d̂, x̂q

fi

ffi

ffi

ffi

ffi

fl

, F pzq–

»

—

–

Fupû, d̂q

Fdpû, d̂q

fi

ffi

fl

,

which allows us to re-write (4.28), (4.22a), and (4.29) as

∇uLf pz, λ, νq “ 0Nu , ∇xLf pz, λ, νq “ 0Nx , (4.30a)

∇dLgpz, λ, νq “ 0Nd , ∇xLgpz, λ, νq “ 0Nx , (4.30b)

Gpzq “ 0Ku`Kd`Kx , λd F pzq “ µ1Mu`Md
, (4.30c)

and (4.22b) as

λ ě 0Mu`Md
, F pzq ě 0Mu`Md

. (4.30d)

Primal-dual optimization algorithm with common latent variables:

Step 1. Start with estimates z0, λ0, ν0 that satisfy the inequalities λ0 ě 0Mu`Md
, F pz0q ě

0Mu`Md
in (4.30d), and set µ0 “ 1 and k “ 0. It is often a good idea to start with a value

for z0 that satisfies the equality constraint Gpz0q “ 0Ku`Kd`Kx , and λ0 “ µ01Mu`Md
m

F pz0q, which guarantees that we initially have λ0 d F pu0q “ µ01Mu`Md
.

Step 2. Linearize the equations in (4.30a)–(4.30c) around a current estimate zk, λk, νk,
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and µk leading to

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

∇uzLf pzk, λk, νkq ∇uνLf pzkq ∇uλLf pzkq

∇xzLf pzk, λk, νkq ∇xνLf pzkq ∇xλLf pzkq

∇dzLgpzk, λk, νkq ∇dνLgpzkq ∇dλLgpzkq

∇xzLgpzk, λk, νkq ∇xνLgpzkq ∇xλLgpzkq

∇zGpzkq 0 0

∇zF pzkq 0 diagrF pzkq m λks

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

∆z

∆ν

∆λ

fi

ffi

ffi

ffi

ffi

fl

“ ´

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

∇uLf pzk, λk, νkq

∇xLf pzk, λk, νkq

∇dLgpzk, λk, νkq

∇xLgpzk, λk, νkq

Gpzkq

F pzkq ´ µk1m λk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Since the vectors F pzkq and λk have positive entries, we can solve this system of equations

by first eliminating

∇zF pzkq∆z ` diagrF pzkq m λks∆λ “ ´F pzkq ` µk1m λk ô

∆λ “ ´λk ´ diagrλk m F pzkqs∇zF pzkq∆z ` µk1m F pzkq

which leads to

»

—

—

—

—

—

—

—

—

—

—

–

∇uzLf pzk, λk, νkq ∇uνLf pzkq

∇xzLf pzk, λk, νkq ∇xνLf pzkq

∇dzLgpzk, λk, νkq ∇dνLgpzkq

∇xzLgpzk, λk, νkq ∇xνLgpzkq

∇zGpzkq 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

–

∆z

∆ν

fi

ffi

fl

“ ´

»

—

—

—

—

—

—

—

—

—

—

–

∇uLf pzk, λk, νkq `∇uλLf pzkq∆λ

∇xLf pzk, λk, νkq `∇xλLf pzkq∆λ

∇dLgpzk, λk, νkq `∇dλLgpzkq∆λ

∇xLgpzk, λk, νkq `∇xλLgpzkq∆λ

Gpzkq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

We omit the remaining steps as they are identical to those in Algorithm 4.3.1. Simi-

larly, the discussions regarding finding a global solution and considering non-differentiable

functions that follow Algorithm 4.3.1 also apply here. Algorithm 4.4.2 works very well

in practice, and it is used for solving all of the numerical examples in this thesis.
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4.5 Conclusions and Future Work

In this chapter we presented two primal-dual interior-point algorithms that can be

used to solve min-max optimization problems by solving two coupled optimizations. The

first algorithm includes values of the state as optimization variables so as to not require

the solution of the potentially poorly conditioned nonlinear dynamics (4.1) and can be

used to solve general nonlinear min-max optimization problems. The second algorithm

utilizes latent variables that are present in both of the coupled optimizations in order

to reduce the total number of optimization variables and solve min-max problems with

common latent variables more efficiently. This second algorithm is particularly useful

when considering min-max problems as formulated in Chapter 2 as the state variables

can be included as latent variables.

Future work may involve a convergence analysis of Algorithms 4.3.1 and 4.4.2. The

development of similar algorithms to solve these types of optimization problems and

trade offs between methods should be investigated. For example, a Barrier interior-point

algorithm could be developed which may be more robust than the primal-dual algorithm

for non-convex poorly conditioned problems.
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Chapter 5

Adaptation and Learning

This chapter considers the estimation and control of systems with parametric uncertainty.

An approach that combines moving horizon estimation and model predictive control into

a single min-max optimization is employed to estimate past and current values of the

state, compute a sequence of optimal future control inputs, predict future values of the

state, as well as estimate current values of uncertain parameters. This is done by includ-

ing the state, inputs, and uncertain parameters as optimization variables. Learning the

true values of the uncertain parameters requires a sufficiently large number of past mea-

surements and that the system is persistently excited. The true values of the uncertain

parameters may change over time, and the optimization computes future control inputs

that adapt to changing estimates of the uncertain parameters in order to better control

the uncertain system. Several linear and nonlinear examples with parametric uncertainty

are discussed and effectively controlled using this combined moving horizon estimation

and model predictive control approach. Some of the content in this chapter comes from

[23].
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5.1 Introduction

Having an accurate model of a system to be controlled is often vital for effective con-

trol of that system. This is certainly true for a model predictive control (MPC) approach

in which a finite-horizon online optimization problem is solved in order to determine an

optimal control input given the system’s dynamics and a desired control objective [95].

However, in most practical applications, there are unknown parameters in the model of

a system or, at least, uncertain parameters that are known only to be within some set

of values. These uncertainties may include uncertain model parameters, input distur-

bances, and measurement noise. Because of this, much work on MPC approaches have

involved investigating robustness to model parameter uncertainty, input disturbances,

and measurement noise. This work is known as robust MPC [9, 67] which also includes

worst-case, or min-max MPC [58].

An attractive, and perhaps less conservative, approach to controlling systems with

parameter uncertainties is to update the model of the system with new estimates of

the parameters as they become available, which is the underlying idea behind indirect

adaptive control (see, e.g. [51, 5]). Very little work has been done on adaptive MPC,

but there are a few proposed approaches. The authors of [73] propose an adaptive MPC

scheme that uses a standard estimator and certainty equivalence to update the model

with the current estimates of the parameters. The authors of [2] investigate nonlinear

systems that are affine with respect to unknown parameters and perform adaptive control

by combining a parameter adjustment mechanism with robust MPC algorithms such as

min-max MPC. A cost function is minimized with respect to feedback control policies and

maximized with respect to the unknown parameters so that the MPC approach is robust

to the worst-case values of the unknown parameters. For both of these approaches,

it is assumed that the full state is available for feedback. This is often the case for
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MPC approaches in order to alleviate issues that arise from uncertainties, noise, and

disturbances.

Unfortunately, in most practical applications, the full state is not known or necessarily

available for feedback. Because of this, output-feedback MPC should be considered, and

an independent algorithm for estimating the state is needed. A convenient estimation

algorithm for use with MPC is moving-horizon estimation (MHE). MHE can be used for

estimating the state of constrained nonlinear systems and similarly involves the solution

of a finite-horizon online optimization problem where a criterion based on a finite number

of past output measurements is minimized in order to find the best estimate of the state

[90, 3]. It is straightforward to also incorporate parameter estimation into the formulation

of MHE, so the state and parameters can both be estimated using the same estimator

[96].

In [22, 25], a framework for solving the output-feedback MPC problem with MHE

is presented that solves both the control and estimation problems as a single min-max

optimization problem. This framework already incorporates input disturbances and mea-

surement noise. In this chapter, we further incorporate uncertain model parameters into

this framework and obtain parameter estimates by including the uncertain parameters

as optimization variables. In this way, we solve simultaneously the control problem and

the state and parameter estimation problems, resulting in effective control of uncertain

systems. Our approach can be likened to an indirect model reference adaptive control

approach as described in the adaptive control literature [51, 5] in that, at each time step,

new estimates of the uncertain parameters are computed and used to update the model

while a new sequence of future control inputs that minimize an objective criterion is also

simultaneously computed.

Because MPC and MHE involve the solution of an online optimization problem,

this approach lends itself to adapting to both constant and time-varying parameters
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because, at each time step, a new estimate is computed, and the model can be updated

accordingly. We show in examples that when the system is sufficiently excited, this MPC

with MHE approach is able to learn the true values of the uncertain parameters, but even

if the system is not sufficiently excited to learn the true values of the parameters, this

approach finds estimates that are consistent with the dynamics and often still enables

effective control and disturbance rejection.

The main assumption for this work is that a saddle-point solution exists for the

min-max optimization problem at each sampling time. This assumption presumes an

appropriate form of observability for the closed-loop system and is a common requirement

in game theoretical approaches to control design [6]. For controllability, we additionally

require that there exists a terminal cost that is an ISS-control Lyapunov function with

respect to a disturbance input, which is a common assumption in MPC [76].

The rest of the chapter is organized as follows. In Section 5.2 we formulate the

adaptive MPC with MHE problem that we would like to solve. Stability results that can

be used to prove state boundedness and reference tracking are given in Section 5.3. In

Section 5.4 we discuss several linear and nonlinear systems with parameter uncertainty

and show that using our MPC with MHE scheme we are able to not only stabilize the

system, but also estimate the correct values of the uncertain parameters. Finally, we

provide some conclusions and directions for future work in Section 5.5.

5.2 Problem Formulation

In the formulation of standard MPC and MHE problems, a time-varying nonlinear

discrete-time process of the form

xt`1 “ ftpxt, ut, dtq, yt “ gtpxtq ` nt, @t P Zě0 (5.1)
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Figure 5.1: Block diagram of the process given in (5.2).

is considered with state xt taking values in a set X Ă Rnx . The inputs to this system

are the control input ut that must be restricted to the set U Ă Rnu , the unmeasured

disturbance dt that is assumed to belong to the set D Ă Rnd , and the measurement noise

nt P Rnn . The signal yt P Rny denotes the measured output that is available for feedback.

In this chapter, we investigate MPC and MHE of processes with uncertain model

parameters. These uncertain parameters are denoted by the vector θ whose elements are

known to belong to the set Θ Ă Rnθ . In this formulation, the process dynamics depend

explicitly on the uncertain parameter θ, so we redefine the process dynamics in (5.1) to

include the uncertain parameters as

xt`1 “ ftpxt, θ, ut, dtq, yt “ gtpxt, θq ` nt, @t P Zě0. (5.2)

We assume that θ is a constant parameter, i.e. θ “ θt for all t P Zě0, but as will be

shown later, we are still able to adapt to and learn changing parameter values.

A block diagram depicting the process (5.2) is shown in Figure 5.1.
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5.2.1 Moving Horizon Estimation

In MHE, the current state of the system xt at time t is estimated by solving a finite-

horizon online optimization problem using a finite number of past measurements [90]. If

we consider a finite horizon of L time steps, then the objective of the MHE problem is

to find an estimate of the current state xt so as to minimize a criterion of the form

t
ÿ

s“t´L

ηs
`

ys ´ gspxsq
˘

`

t´1
ÿ

s“t´L

ρspdsq, (5.3)

given the system dynamics (5.1). The functions ηsp¨q and ρsp¨q are assumed to take

non-negative values. This is similar to the MHE criterion considered in [90, 3].

If the system dynamics also include uncertain model parameters, as in (5.2), the MHE

problem can be formulated so as to estimate both the current state xt and the uncertain

parameter θ. Then the MHE problem can be written as

min
x̂t´LPX ,

d̂t´L:t´1PD,
θ̂PΘ

t
ÿ

s“t´L

ηs
`

ys ´ gspx̂s, θ̂q
˘

`

t´1
ÿ

s“t´L

ρspd̂sq, (5.4)

where the initial state xt´L is constrained to belong to the set X , each element of the

input disturbance sequence dt´L:t´1 is assumed to belong to the set D, and the un-

certain parameter θ is known to belong to the set Θ. Throughout the chapter, given

two times t1 and t2 with t1 ă t2, we use the notation xt1:t2 to denote the time series

xt1 , xt1`1, . . . , xt2´1, xt2 . An estimate of the current state is then determined from the

dynamics (5.2) given the known past control inputs applied ut´L:t´1 and estimates of the

initial state x̂t´L, the input disturbance sequence d̂t´L:t´1, and the uncertain parameter

θ̂. The optimization (5.4) is re-solved at each time t in a receding horizon fashion.
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5.2.2 Model Predictive Control

In MPC, a sequence of future control inputs that achieve a desired control objective

is computed by solving a finite-horizon online optimization problem using an estimate of

the current state x̂t and the system dynamics [95]. If we consider a finite-horizon of T

time steps, then the objective of the MPC problem is to find a sequence of future control

inputs ut:t`T´1 that minimizes a criterion of the form

t`T´1
ÿ

s“t

`

cspxs, us, dsq ´ ρspdsq
˘

` qt`T pxt`T q, (5.5)

given the system dynamics (5.1). The functions csp¨q, ρsp¨q, and qt`T p¨q are all assumed

to take non-negative values. The negative sign in front of ρtp¨q penalizes the maximizer

for using large values of dt. The function qt`T pxt`T q is a terminal cost that penalizes

the “final” state xt`T and is needed for proving stability (see Assumption 9 below). The

criterion (5.5) is similar to the closed-loop min-max MPC criterion considered in [70, 88].

If the system dynamics also include uncertain model parameters, as in (5.2), the

MPC criterion (5.5) can be reformulated in order to incorporate worst-case values of the

uncertain parameters θ, and the MPC problem can be written as

min
ût:t`T´1PU

max
d̂t:t`T´1PD,

θ̂PΘ

t`T´1
ÿ

s“t

`

cspxs, ûs, d̂sq ´ ρspd̂sq
˘

` qt`T pxt`T q, (5.6)

where each element of the future control input sequence ut:t`T´1 is constrained to belong

to the set U , each element of the future disturbance sequence dt:t`T´1 is assumed to

belong to the set D, and the uncertain parameter θ is known to belong to the set Θ. In

order to overcome the conservativeness of open-loop control, at each time step t, the first

element û˚t of the future control input sequence û˚t:t`T´1 that is the solution to (5.6) is

applied to the system, and the optimization (5.6) is solved again at each time step in a
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receding horizon fashion. This is similar to the adaptive MPC problem with exogenous

inputs considered in [27].

5.2.3 Adaptive MPC combined with MHE

Next we show how both the MPC problem (5.6) and MHE problem (5.4) can be

formulated and solved simultaneously as a single min-max optimization problem.

Taking the criterion (5.5) and subtracting the criterion (5.3) gives a criterion of the

form

Jt –
t`T´1
ÿ

s“t

cspxs, us, dsq ` qt`T pxt`T q ´
t
ÿ

s“t´L

ηspnsq ´
t`T´1
ÿ

s“t´L

ρspdsq, (5.7)

which contains T P Zě1 terms of the running cost cspxs, us, dsq, which recede as the

current time t advances, L` 1 P Zě1 terms of the measurement cost ηspnsq, and L` T P

Zě1 terms of the cost on the input disturbance ρspdsq. Again, the function qt`T pxt`T q

acts as a terminal cost in order to penalize the “final” state at time t`T . The functions

ctp¨q, qt`T p¨q, ηtp¨q, and ρtp¨q in (5.7) are all assumed to take non-negative values. We use

finite-horizons into the past and into the future in order to decrease the computational

complexity of the optimization problem, and we use online optimization to generate

closed-loop solutions.

The control objective is to select the control signal ut P U , @t P Zě0, so as to minimize

the criterion defined in (5.7) under worst-case assumptions on the unknown system’s

initial condition xt´L P X , unmeasured disturbances dt P D, measurement noise nt P Rnn ,

and uncertain parameter θ P Θ, for all t P Zě0, subject to the constraints imposed by the

system dynamics (5.2) and the measurements yt´L:t collected up to the current time t.

Because the objective is to optimize the criterion (5.7) at the current time t in order to

compute control inputs us for times s ě t, there is no reason to penalize other irrelevant
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terms. For instance, the first summation in (5.7) starts at time t because there is no

reason to penalize the running cost cspxs, us, dsq for past time instants s ă t. There is

also no reason to consider the values of future measurement noise at times s ą t as they

will not affect choices made at time t. Thus, the second summation in (5.7) ends at time

t. However, all values of the unmeasured disturbance ds for t ´ L ď s ď t ` T ´ 1 need

to be considered because past values affect the (unknown) current state xt, and future

values affect the future values of the running cost.

Boundedness of (5.7) by a constant γ guarantees that

t`T´1
ÿ

s“t

cspxs, us, dsq ` qt`T pxt`T q ď γ `
t
ÿ

s“t´L

ηspnsq `
t`T´1
ÿ

s“t´L

ρspdsq. (5.8)

This shows that we can bound the running and final costs involving the future states

xt:t`T in terms of bounds on the noise and disturbance.

Remark 10 (Quadratic case) While the results presented here are general, it may be

easier to gain intuition on the results when considering a quadratic criterion for (5.7)

such as ctpxt, ut, dtq– }xt}
2`}ut}

2, ηtpntq– }nt}
2, ρtpdtq– }dt}

2. For this choice of the

criterion, boundedness of (5.7) guarantees that the state xt and input ut are `2 provided

that the disturbance dt and noise nt are also `2 [c.f. (5.8)]. l

With the objective of optimizing the criterion (5.7) at a given time t P Zě0 for the

future control inputs ut:t`T´1 and worst-case estimates of xt´L, dt´L:t`T´1, and θ, the

combined adaptive MPC with MHE problem amounts to solving the following min-max

optimization

J˚t “ min
ût:t`T´1PU

max
x̂t´LPX ,

d̂t´L:t`T´1PD,
θ̂PΘ
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t`T´1
ÿ

s“t

cspx̂s, ûs, d̂sq ` qt`T px̂t`T q ´
t
ÿ

s“t´L

ηs
`

ys ´ gspx̂s, θ̂q
˘

´

t`T´1
ÿ

s“t´L

ρspd̂sq, (5.9)

with the understanding that

x̂s`1 “

$

’

’

&

’

’

%

fspx̂s, θ̂, us, d̂sq for t´ L ď s ă t,

fspx̂s, θ̂, ûs, d̂sq for t ď s ă t` T.

We can view the optimization variables x̂t´L, d̂t´L:t`T´1, and θ̂ as (worst-case) estimates

of the initial state, disturbances, and uncertain parameter, respectively, based on the

past inputs ut´L:t´1 and outputs yt´L:t available at time t.

Just as in the MPC problem, after solving this optimization problem at each time t,

we use as the control input the first element of the sequence

û˚t:t`T´1 “ tû
˚
t , û

˚
t`1, û

˚
t`2, . . . , û

˚
t`T´1u P U

that minimizes (5.9), leading to the control law

ut “ û˚t , @t ě 0. (5.10)

A depiction of an example solution to the combined finite-horizon control and estimation

problem is shown in Figure 5.2.

5.3 Stability Results

Next we discuss under what appropriate assumptions the control law (5.10) leads

to boundedness of the state of the closed-loop system resulting from the finite-horizon

optimization introduced in Section 5.2.3.

111



Adaptation and Learning Chapter 5

t+Ttt-L

y(t-L)

y(t) x*(t+T)

u0:t-L-1 ut-L:t-1

d0:t-L-1 d*t-L:t-1

u*t:t+T-1

d*t:t+T-1

Figure 5.2: Example solution to the combined finite-horizon control and estimation
problem. The elements from t ´ L to t correspond to the MHE problem, and the
elements from t to t ` T correspond to the MPC problem. The variables denoted
as ˆ̈ are optimization variables, the variables denoted as ˜̈ are not relevant for the
optimization, and the other variables are known.

In order to implement the control law (5.10), the outer minimization in (5.9) must

lead to a finite value for the optimum. For the stability results in this section, we require

the existence of a finite-valued saddle-point solution to the min-max optimization in (5.9),

which is a common requirement in game theoretical approaches to control design [6]. The

following assumptions are the same as those in Chapter 2 just augmented to include the

unknown parameters θ.

Assumption 7 (Saddle-point) The min-max optimization (5.9) always has a finite-

valued saddle-point solution for which the min and max commute. Specifically, for all

t P Zě0, ut´L:t´1 P U , yt´L:t, there exists J˚t P R, x̂˚t´L P X , û˚t:t`T´1 P U , d̂˚t´L:t`T´1 P D,
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and θ̂˚ P Θ such that

J˚t “ min
ût:t`T´1PU

max
x̂t´LPX ,

d̂t´L:t`T´1PD,
θ̂PΘ

Jt “ max
x̂t´LPX ,

d̂t´L:t`T´1PD,
θ̂PΘ

min
ût:t`T´1PU

Jt ă 8.

l

Assumption 7 presumes an appropriate form of observability/detectability adapted to

the criterion
řt`T´1
s“t cspxs, us, dsq. In particular, it implies that the size of the current

state can be bounded using past outputs and past/future input disturbances, regardless

of the value of θ P Θ.

To ensure controllability and to establish state boundedness under the control (5.10)

defined by the finite-horizon optimization (5.9), we require additional assumptions re-

garding the dynamics and the terminal cost qtp¨q.

Assumption 8 (Observability) There exists a bounded set Npre Ă Rnn such that, for

every time t P Zě0, every state x̂t´L:t P X , every uncertain parameter θ̂ P Θ, and every

disturbance and noise sequence, d̂t´L:t P D and n̂t´L:t P N , that are compatible with the

applied control input us, s P Zě0, and the measured output ys, s P Zě0, in the sense that

x̂s`1 “ fspx̂s, θ̂, us, d̂sq, ys “ gspx̂s, θ̂q ` n̂s, (5.11)

@s P tt ´ L, t ´ L ` 1, . . . , tu, there exists a “predecessor” state estimate x̂t´L´1 P X ,

disturbance estimate d̂t´L´1 P D, and noise estimate n̂t´L´1 P Npre such that (5.11) also

holds for time s “ t´ L´ 1. l

In essence, Assumption 8 requires the past horizon length L to be sufficiently large.

The discussion following Assumption 3 in Chapter 2 is also relevant as a further discussion

of this assumption.
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Assumption 9 (ISS-control Lyapunov function) The terminal cost qtp¨q is an ISS-

control Lyapunov function, in the sense that, for every t P Zě0, x P X , d P D, and θ P Θ,

there exists a control u P U such that

qt`1

`

ftpx, θ, u, dq
˘

´ qtpxq ď ´ctpx, u, dq ` ρtpdq. (5.12)

l

Assumption 9 plays the role of the common assumption in MPC that the terminal cost

must be a control Lyapunov function for the closed-loop [76]. Without the disturbance

dt, (5.12) would imply that qtp¨q could be viewed as a control Lyapunov function that

decreases along system trajectories for an appropriate control input ut [101]. With the

disturbance dt, qtp¨q should be viewed as an ISS-control Lyapunov function that satisfies

an ISS stability condition for the disturbance input dt and an appropriate control input

ut [61]. In the case of linear dynamics and a quadratic cost function, a terminal cost qtp¨q

can typically be found by solving a system of linear matrix inequalities.

5.3.1 State Boundedness

The following theorem provides a bound that can be used to prove boundedness of

the state when the control signal is computed by solving the finite-horizon optimization

(5.9).

Theorem 5 (Finite horizon cost-to-go bound) Suppose that Assumptions 7, 8, and

9 hold. Along any trajectory of the closed-loop system defined by the process (5.2) and

the control law (5.10), we have that

ctpxt, ut, dtq ď J˚Lpu0:L´1, y0:Lq `

t´L´1
ÿ

s“0

ρspd̃sq `
t´L´1
ÿ

s“0

ηspñsq `
t
ÿ

s“t´L

ηspnsq `
t
ÿ

s“t´L

ρspdsq
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@t P ZěL, (5.13)

for appropriate sequences d̃0:t´L´1 P D, ñ0:t´L´1 P Npre. l

Proof. This result is an extension of Theorem 2 presented in Chapter 2. If the state is

augmented such that x̄t “ rxt θs
1, and the process is defined as x̄t`1 “ rf̄tpx̄t, ut, dtq θs

1,

then the same proof used for Theorem 2 in Chapter 2 can be applied here using x̄t in

place of xt. l

The discussion after Theorem 2 presented in Chapter 2 regarding state boundedness,

practical stability, and reference tracking can be applied here as well.

5.4 Simulation Study

In this section we consider several examples of systems with parametric uncertainty

and present closed-loop simulations using the control approach described in Section 5.2.

For all of the following examples, we use a cost function of the form

Jt “
t`T´1
ÿ

s“t

}hspxsq}
2
2 ` λu

t`T´1
ÿ

s“t

}us}
2
2 ´ λn

t
ÿ

s“t´L

}ns}
2
2 ´ λd

t`T´1
ÿ

s“t´L

}ds}
2
2. (5.14)

where hspxsq is a function of the state xs that is especially relevant for the example under

consideration, and λu, λn, and λd are positive weighting constants.

Given the optimization criterion (5.14), the following examples involve optimizing this

criterion with respect to the future control inputs ut:t`T´1 under worst-case assumptions

on xt´L, dt´L:t`T´1, and θ by solving the following min-max optimization problem:

min
ût:t`T´1PU

max
x̂t´LPX ,

d̂t´L:t`T´1,

θ̂PΘ

Jt. (5.15)
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The first time this optimization is solved, guesses for the initial values of the uncertain

parameter θ, initial state xt´L, past control inputs ut´L:t´1 and input disturbances dt´L:t´1

need to be made. Then values for the past states xt´L`1:t that are consistent with the

dynamics are picked. These states can be used to determine the output measurements

yt´L:t, and then the optimization (5.15) can be solved for the first time. At subsequent

times, all of the variables from the solution of (5.15) at the previous time step (after

moving away from the constraints) can be used as a “warm start” for solving (5.15) at

the current time step. In order to solve the optimization (5.15), the primal-dual-like

interior-point method described in Chapter 4 can again be used.

Example 4 (Linear System - uncertain gain and poles) Consider a discrete-time

linear system described by the transfer function

Gpzq “
b

pz ´ p1qpz ´ p2q
, (5.16)

where p “ rp1 p2s
J denotes the uncertain pole locations p1 and p2 that are assumed to

belong to the set P – tp P R2 : 0 ď pi ď 2, i “ 1, 2u, so they may be stable or unstable.

The parameter b is an uncertain gain assumed to belong in the interval B – tb P R : 1 ď

b ď 5u.

The transfer function (5.16) can be rewritten in state space controllable canonical

form as

xt`1 “

»

—

–

p1 ` p2 ´p1p2

1 0

fi

ffi

fl

xt `

»

—

–

1

0

fi

ffi

fl

put ` dtq,

yt “

„

0 b



xt ` nt, @t P Zě0,

(5.17)

where yt is the measured output at time t with noise nt, and dt is an additive input
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disturbance. For all t P Zě0, the control input ut is constrained to belong in the set

U – tut P R : }ut}8 ď 8u, and the input disturbance dt is assumed to belong to the set

D – tdt P R : }dt}8 ď 0.1u.

By defining a1 “ p1`p2 and a2 “ p1p2, the state space model (5.17) can be reparametrized

as

xt`1 “

»

—

–

a1 ´a2

1 0

fi

ffi

fl

xt `

»

—

–

1

0

fi

ffi

fl

put ` dtq,

yt “

„

0 b



xt ` nt, @t P Zě0.

(5.18)

Letting a “ ra1 a2s
J, the uncertain parameter a is assumed to belong to A – ta P R2 :

0 ď ai ď 4, i “ 1, 2u. This set A is conservative, and a tighter non-convex set could be

used. Now the model (5.18) is linear in the uncertain parameters. This is a standard

problem that can be solved using classical adaptive control techniques. We will show that

our MPC with MHE approach can solve this problem, and in following examples, we will

see that our approach does not require reparametrization such that the system is linear in

the uncertain parameters.

The uncertain parameters (a and b) can be estimated by including them as optimiza-

tion variables in the following problem

min
ût:t`T´1PU

max
x̂t´LPX ,

d̂t´L:t`T´1PD,
âPA,
b̂PB

t`T
ÿ

s“t

}ys ´ rs}
2
2 ` λu

t`T´1
ÿ

s“t

}ûs}
2
2 ´ λn

t
ÿ

s“t´L

}ns}
2
2 ´ λd

t`T´1
ÿ

s“t´L

}d̂s}
2
2,

(5.19)

where rt is a desired reference signal for the output of the system to follow. Figures 5.3

and 5.4 show simulations of the resulting closed-loop system for a square-wave reference
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defined as rt “ 10 sgnpsinp0.4tqq and the backward and forward horizon lengths chosen

as L “ 10, and T “ 10, respectively. The weights in the cost function are chosen to be

λu “ 0.1, λn “ 1000, and λd “ 1000. In this simulation, the actual input disturbance

dt and measurement noise nt are unmeasured Gaussian independently and identically

distributed (i.i.d.) random variables with zero mean and standard deviations of 0.001

and 0.005, respectively.
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Figure 5.3: Linear System: output and inputs. The top plot shows the measured
output (denoted by o’s) and the reference signal (denoted by -’s). The second plot
shows the input û˚t applied to the system, and the third plot shows the unmeasured
disturbance input dt that the system is subjected to.

Figure 5.3 shows the output of the system successfully following the given square-wave

reference trajectory. The system is initialized with incorrect guesses for the initial values
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Figure 5.4: Linear System: parameters. The top two plots show the true values of a1

and a2 (denoted by +’s) and their estimated values (denoted by *’s). The third plot
shows the true value of the gain b (denoted by +’s) and its estimated value (denoted
by *’s). The bottom plot shows the true values of the poles p1 and p2 (denoted by
+’s) and their estimated values (denoted by *’s) computed from â˚1 and â˚2 .

of the uncertain parameters, and zero control input (i.e. ut “ 0) is applied for the first

L “ 10 time steps. After that point, starting at time t “ 11, the optimization problem

(5.19) is solved at each time step, and the computed control input û˚t is applied in a

receding horizon fashion.

At several times throughout the simulation, the true model of the system (5.17) is

altered by changing the value of the gain or the poles (which can be seen in Figure 5.4).
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The estimates of the gain and pole locations shown in Figure 4 are obtained from the

estimates of the uncertain parameters a and b from the solution of the optimization (5.19).

Figure 5.4 shows that the estimates of the gain and pole locations converge to their true

values. Even after the true values of the gain and pole locations are changed during the

simulation, the combined MPC and MHE scheme is able to adapt to the changing system,

effectively regulating the system to the reference trajectory and correctly learning the new

parameters of the model. l

Example 5 (Inverted Pendulum - uncertain mass and friction) Consider an in-

verted pendulum actuated by a torque at the base as shown in Figure 5.5 and described

by the model

ml2 :φ “ mgl sinpφq ´ b 9φ` τ,

where m is the mass at the end of the pendulum, l is the length of the link, φ is the angle

from vertical, g is the gravitational constant, b is the coefficient of friction, and τ is the

torque applied at the base.

Figure 5.5: Diagram of the pendulum considered in Examples 5 and 6.
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We can rewrite this model in state space form as

9x1 “ x2,

9x2 “
g

l
sinpx1q ´

b

ml2
x2 `

1

ml2
u,

(5.20)

where x1 “ φ, x2 “
9φ, and u “ τ .

By letting l “ 1, g “ 9.81, and a “ 1{m, adding an input disturbance d, and dis-

cretizing using Euler’s Method with time step ∆t, the system (5.20) becomes

x1,t`1 “ x1,t `∆t x2,t,

x2,t`1 “ x2,t `∆t
`

9.81 sinpx1,tq ´ abx2,t ` aput ` dtq
˘

,

yt “ x1,t ` nt, @t P Zě0,

(5.21)

where yt is the measurement available at time t with noise nt. According to this model,

a noisy measurement of the angle x1 is available at each time t.

The inverse of the mass and the coefficient of friction (a and b, respectively) are

uncertain but assumed to belong to the sets A – ta P R : 1{2 ď a ď 1u and B –

tb P R : 0.2 ď b ď 0.7u, respectively. The control input ut is constrained to the set

U – tut P R : }ut}8 ď 5u, and the disturbance input dt is assumed to belong to D –

tdt P R : }dt}8 ď 0.3u for all t P Zě0.

The control objective is to regulate the output (the noisy measurement of the angle φ)

to a desired reference. The uncertain mass and coefficient of friction can be determined

using estimates of the parameters a and b in (5.21). These parameters can be estimated
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by including them as optimization variables in the following problem.

min
ût:t`T´1PU

max
x̂t´LPX ,

d̂t´L:t`T´1PD,
âPA,
b̂PB

t`T
ÿ

s“t

}ys ´ rs}
2
2 ` λu

t`T´1
ÿ

s“t

}ûs}
2
2 ´ λn

t
ÿ

s“t´L

}ns}
2
2 ´ λd

t`T´1
ÿ

s“t´L

}d̂s}
2
2.

(5.22)

A noteworthy challenge in this nonlinear problem is that the unknown parameters a and

b appear multiplied by the unmeasurable state x2 in the system dynamics (5.21).

Figure 5.6 shows a simulation of the closed-loop system with the discrete time-step

chosen as ∆t “ 0.2 and a square-wave reference given as rt “ 5pπ{180q sgn
`

sinp0.5tq
˘

.

The backward and forward horizon lengths are chosen to be L “ 6, and T “ 7, respec-

tively. The weights in the cost function are chosen to be λu “ 0 (i.e. the control input is

not penalized), λn “ 1000, and λd “ 10. In this simulation, the actual input disturbance

dt and measurement noise nt are unmeasured Gaussian i.i.d. random variables with zero

mean and standard deviations of 0.001 and 0.0001, respectively. The system is initialized

with incorrect guesses for the initial values of the uncertain parameters, and zero control

input (i.e. ut “ 0) is applied for the first L “ 6 time steps. After that point, starting at

time t “ 7, the optimization problem (5.22) is solved at each time step, and the computed

control input û˚t is applied in a receding horizon fashion.

As in the previous example, the true values of the uncertain parameters (the mass and

coefficient of friction) are changed several times throughout the simulation. Even as the

true values of the mass and coefficient of friction change, the control input û˚t , computed

by solving the optimization (5.22), is able to successfully regulate the output of the system

to the reference trajectory, and the estimates of the uncertain mass m and coefficient of

friction b converge to their true values. l

Example 6 (Inverted Pendulum - stabilization and disturbance rejection) This
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Figure 5.6: Inverted Pendulum: uncertain mass and friction. The top plot shows the
measured output (denoted by *’s) tracking the square reference signal (denoted by
-’s). The second plot shows the control input û˚t that is applied. The third plot shows
the unmeasured input disturbance dt that the system is subjected to. The bottom two
plots show the true values of the mass and coefficient of friction (denoted by +’s) and
the estimated values of the mass m˚ (computed from â˚) and coefficient of friction b̂˚

(denoted by *’s).

example shows that this adaptive MPC with MHE approach can stabilize uncertain sys-

tems even when the systems are not persistently excited and the true values of the uncer-

tain parameters are not learned. Furthermore, the results of this example show that this
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estimation and control approach is not only robust to the model uncertainty but is also

able to reject large input disturbances.

Again we consider an inverted pendulum as depicted in Figure 5.5 and described

using a discretized model of the form (5.21). This time, rather than following a reference

trajectory, the control objective is to stabilize the system at the unstable equilibrium x1 “

0. This means that the same optimization given in (5.22) is solved but with rt “ 0.

Figure 5.7 shows a simulation of the resulting closed-loop system.

For this example, the parameters in the optimization (5.22) are chosen the same as in

Example 5 except with respect to the input disturbance dt. In this example, the unmeasured

disturbance dt is larger and assumed to belong to the set D – tdt P R : }dt}8 ď 0.5u.

The weight on the input disturbance in (5.22) is chosen as λd “ 1. The actual input

disturbance that the system is subjected to is a Gaussian i.i.d. random variable with zero

mean and a standard deviation of 0.15. Again, the system is initialized with guesses for

the initial values of the uncertain parameters, and zero control input (i.e. ut “ 0) is

applied for the first L “ 6 time steps. Starting at time t “ 7, the optimization problem

(5.22) is solved at each time step, and the computed control input û˚t is applied in a

receding horizon fashion.

Figure 5.7 shows that the system is not sufficiently excited in order to correctly learn

the true values of the mass m and coefficient of friction b. However, the control input

û˚t computed by solving the optimization (5.22) is nonetheless able to stabilize the sys-

tem (even as the true values of the uncertain parameters change) and reject the large

unmeasured disturbance input. l

Example 7 (Nonlinear Pursuit-Evasion - uncertain wind) In this example, we con-

sider a two-player pursuit-evasion game where the pursuer is modeled as a unicycle ve-

hicle, and the evader is modeled as a double-integrator. The pursuer is an aerial vehicle
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Figure 5.7: Inverted Pendulum: stabilization and disturbance rejection. The top
plot shows the output (denoted by *’s) converging to the unstable equilibrium φ “ 0
(denoted by -’s). The second plot shows the control input û˚t that is applied. The
third plot shows the large unknown input disturbance dt that the system is subjected
to. The fourth and fifth plots show the true values of the mass and coefficient of
friction (denoted by +’s) and the estimated values of the mass m˚ (computed from
â˚) and coefficient of friction b̂˚ (denoted by *’s).

that is subject to wind disturbances, and the evader is a ground vehicle that is not sus-

ceptible to the wind. A nonlinear discrete-time model of the overall system is given as

follows:
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xt`1 “ xt `

»

—

—

—

—

—

—

—

–

v cosφt ` w1

v sinφt ` w2

ut

dt

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, yt “ xt ` nt, @t P Zě0. (5.23)

The state of the system is denoted by xt “ rpt φt zts
J, where pt “ rp1 p2s

J
t denotes

the planar position of the pursuer, φt denotes the orientation of the pursuer, and zt “

rz1 z2s
J
t denotes the planar position of the evader. The planar wind speed is denoted

by w “ rw1 w2s
J where w1 is the component of the wind speed in the x-direction, w2 is

the component of the wind speed in the y-direction, and w is known to belong to the set

W – tw P R2 : }w}8 ď 0.05u. The control input ut is constrained to belong in the set

U – tut P R : }ut}8 ď 0.35u. The evader’s velocity is given by dt “

„

d1 d2

J

t

and is

constrained to the set D – tdt P R2 : }dt}8 ď 0.05u, and nt P Rnn is measurement noise.

The pursuer’s objective is to make the distance between its position pt and the position

of the evader zt as small as possible, so the pursuer wants to minimize the value of }pt´zt}.

The evader’s objective is to do the opposite, namely, maximize the value of }pt´zt}. The

pursuer and evader try to achieve these objectives by choosing appropriate values for ut

and dt, respectively. The wind speed is unknown, but both the pursuer and evader would

benefit from learning the wind speed. Therefore, the optimal solution will involve each

player adapting his or her action (choice of ut and dt) to the current estimate of the wind

speed. These considerations motivate solving the following problem

min
ût:t`T´1PU

max
x̂t´LPX ,

d̂t´L:t`T´1PD,
ŵPW

t`T
ÿ

s“t

}ps ´ zs}
2
2 ` λu

t`T´1
ÿ

s“t

}ûs}
2
2 ´ λn

t
ÿ

s“t´L

}ns}
2
2 ´ λd

t`T´1
ÿ

s“t´L

}d̂s}
2
2,

(5.24)
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where the pursuer’s future actions ut:t`T´1, the unknown evader’s actions dt´L:t`T´1, the

unknown initial state xt´L, and the unknown wind speed w are included as optimization

variables. A simulation of the resulting closed-loop system is shown in Figures 5.8, 5.9,

and 5.10.
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Figure 5.8: Pursuit-evasion: trajectories. The pursuer’s trajectory (denoted by +’s)
begins at (0,0), and the evader’s trajectory (denoted by o’s) begins at (1,1).

Parameters chosen for the model (5.23) and the optimization (5.24) are given as

follows. The pursuer moves with constant velocity v “ 0.1. The backward and forward

horizon lengths are chosen to be L “ 8, and T “ 12, respectively. The weights in the

cost function in (5.24) are chosen to be λu “ 10, λn “ 10000, and λd “ 100. The actual

measurement noise nt is an unmeasured Gaussian i.i.d. random variable with zero mean

and a standard deviation of 0.001.

The trajectories that each player follow are shown in Figure 5.8. The evader moves

with constant velocity in the positive x-direction until time t “ 40 when the optimal d̂˚t

begins to be applied. The pursuer applies û˚t throughout the entire simulation. Rapidly

the pursuer catches up to the evader and is forced to make a loop due to its nonholonomic
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Figure 5.9: Pursuit-evasion: inputs. The top plot shows the pursuer’s input û˚t that
is applied. The lower two plots show the evader’s input dt that is applied. The evader
applies constant velocity until time t “ 40 at which time the optimal d̂˚t is applied for
the remainder of the simulation.

dynamics. The evader, on the other hand, is able to make sharp maneuvers due to its

double-integrator dynamics. The inputs that each player applies are shown in Figure 5.9.

Figure 5.10 shows that the estimates of the uncertain wind speed converge to their true

values even as they change throughout the simulation. l

5.5 Conclusions

In this chapter, we addressed adaptation and learning in the context of output-

feedback MPC with MHE. Often the MPC and MHE problems are formulated with

a known model of the dynamics. However, in this chapter, we investigated solving the

MPC and MHE problems using a model with uncertain parameters. This was done by

simultaneously solving the MPC and MHE problems as a single min-max optimization
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Figure 5.10: Pursuit-evasion: wind. The top and bottom plots show the true values
of the wind speed (denoted by +’s) and the estimated values ŵ˚1 and ŵ˚2 of the wind
speed (denoted by *’s) in the x- and y-directions, respectively.

problem and including the uncertain model parameters as optimization variables to be

estimated. Under appropriate assumptions ensuring controllability and observability,

Theorem 5 provides bounds on the state of the system.

In a simulation study, we showed that the combined control and estimation ap-

proach effectively controls linear and nonlinear systems with model parameter uncer-

tainty, adapts to changing model parameters, and also learns the uncertain model pa-

rameters when the system is sufficiently excited. However, even when the system is

not sufficiently excited to learn the true values of the uncertain model parameters, the

computed control law is still able to effectively reject disturbances and stabilize the sys-

tem. Using a primal-dual-like interior point method, solutions to this MPC with MHE

approach can be found even for severely non-convex examples.

Future work may involve investigating under what specific conditions the estimates
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of the uncertain parameters are guaranteed to converge to their true values.
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Applications
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Chapter 6

UAV Coordination for Vision-Based

Target Tracking

Some of the content in this chapter comes from [85]:

2015 IEEE. Reprinted, with permission, from S. A. P. Quintero, D. A. Copp, and J. P.

Hespanha, Robust UAV coordination for target tracking using output-feedback model

predictive control with moving horizon estimation, 2015 American Control Conference

(ACC), July 2015.

In this chapter we consider the control of two UAVs tracking an evasive moving

ground vehicle. The UAVs are small fixed-wing aircraft equipped with gimbaled cameras

and must coordinate their control actions so that at least one UAV is always close to the

target. The control actions of the UAVs are computed based on noisy measurements of the

UAVs’ current state and vision-based measurements of the target’s position corrupted

by state-dependent noise. We propose a novel approach for solving this problem in

which the state estimate and optimal control are computed simultaneously online using

model predictive control with moving horizon estimation. The efficacy of this approach

is demonstrated in simulation results using realistic vision-based measurements of the
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target’s position. These results show that while using noisy, partial information about

the target state, the UAVs are able to coordinate their distances to the target in the

ideal case of constant target velocity as well as perform robustly when the target becomes

evasive.

6.1 Introduction

Small unmanned aerial vehicles (UAVs) are comparatively inexpensive mobile sensing

platforms that are becoming ubiquitous due to their ability to autonomously perform

tasks that would be either too demanding, dangerous, or mundane/repetitive for a human

operator. Such tasks include agricultural monitoring, exploration and mapping, search

and rescue, and surveillance and tracking, to name a few. One particularly challenging

problem of interest is that of performing vision-based target tracking with a small fixed-

wing UAV traveling at a constant airspeed and fixed altitude. In this problem, a camera-

equipped UAV is responsible for measuring and tracking the position of a vehicle moving

unpredictably in the ground plane.

In vision-based target tracking, image processing software is responsible for deter-

mining the centroid pixel coordinates of the ground target moving in the image frame.

Using these pixel coordinates, along with the intrinsic and extrinsic camera parameters

and terrain data, one can estimate the three-dimensional location of the target in inertial

coordinates and compute the associated error covariance [71]. This vision-based mea-

surement of the target’s position is also referred to as the geolocation estimate. The error

associated with the geolocation estimate is highly sensitive to the UAV’s position relative

to that of the target. As the UAV’s planar distance from the target increases, the associ-

ated error covariance grows and becomes significantly elongated in the viewing direction.

When a UAV is directly above the target, the measurement error is smallest, as the
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corresponding error ellipse is circular. Thus, a UAV would ideally hover directly above

the target, but the relative dynamics between a fixed-wing UAV and a moving ground

target typically preclude this viewing position from being maintained over a period of

time. To mitigate a single UAV’s inability to maintain close proximity to the target, one

can employ multiple UAVs to gather measurements, which are then fused to obtain an

improved geolocation estimate. This is referred to as cooperative (or coordinated) target

tracking.

Considerable work has been done in the general area of coordinated target tracking,

with coordinated standoff tracking comprising the greatest body of work in this area. In

standoff tracking, two UAVs orbit the target at a nominal standoff distance while main-

taining orthogonal viewing angles. This practice minimizes the joint/fused geolocation

error covariance at the fixed nominal standoff distance, as the individual measurement

error ellipses are orthogonal [35]. Standoff tracking with perfect knowledge of the tar-

get state has been studied in [66] and [53] where the most prevalent control strategies

involve the use of vector fields and nonlinear feedback. Approaches with only partial

information of the target state are presented in [83], [104], and [52]. The authors of these

works utilize observers, adaptive control, and extended Kalman filtering to estimate the

full target state. Note that [52] utilizes nonlinear model predictive control to achieve the

desired standoff configuration for a target that accelerates but is not necessarily evasive.

The preceding works have designed UAV coordination policies that attempt to im-

prove the estimate of the target state without directly solving a dynamic optimization

that minimizes some metric of the estimation error. However, a number of works have

employed optimal control to achieve this objective. Miller et al. utilize the framework of

partially observable Markov decision processes (POMDPs) in [78] to enable two UAVs

to track a moving ground target and present a new approximate solution, as nontrivial

POMDP problems are typically intractable to solve exactly [105]. Stachura et al. [102]
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employ online receding horizon control to enable two variable-airspeed UAVs to track a

stochastic ground target using bearing-only sensors in the presence of packet losses when

communicating with the base station where target state estimation takes place. In [30],

Ding et al. study the problem of optimally controlling two Dubins vehicles and their

pan-tilt-zoom cameras to maximize the geolocation information of a stochastic ground

target and show that maintaining orthogonal viewing angles is essential in the case of

terrestrial pursuit vehicles and less pronounced for airborne vehicles. While the preceding

optimization-based methods consider short planning horizons, e.g., 2´ 3 seconds, Quin-

tero et al. consider the optimal coordination of two Dubins vehicles to gather the best

joint vision-based measurements of a constant-velocity target over long planning hori-

zons of at least one minute [87], where no restrictions are placed on the vehicles other

than kinematics. The results show that coordination of the distances to target is more

effective for achieving the said goal than the traditional practice of solely coordinating

viewing angles.

In this work, there are a number of real-world conditions to which we wish to be

explicitly robust. First, we assume that the only information available for feedback

is noisy measurements of each full UAV state and noisy vision-based measurements of

the target’s position. Thus, the target’s velocity is unmeasured and must be estimated.

Second, unlike any of the previous approaches on cooperative target tracking, we consider

evasive target motion. Since the UAVs are fixed-wing aircraft, and are therefore subject

to a minimum turning radius, they must carefully consider the impact of current control

actions on future tracking performance in light of state estimation error and evasive

target maneuvers. Moreover, robustness to both measurement noise and evasive target

motion is crucial to the success of vision-based target tracking.

An output-feedback control approach that can be used to achieve the desired robust-

ness was recently introduced by Copp and Hespanha in [22, 25] and combines robust
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model predictive control (MPC) with moving horizon estimation (MHE). As described

in [9] and [19], robust MPC involves an online dynamic optimization aimed at minimizing

a cost function over a finite planning horizon in light of worst-case disturbances on a dy-

namical system. MHE also involves an online optimization problem but for the purpose

of state estimation of nonlinear systems, and it has been shown to have advantages over

state-of-the-art alternatives [94]. While the two optimizations have traditionally been

done separately, in the framework of [22, 25], the two are combined into a single min-

max optimization. More specifically, a desired cost function is maximized with respect

to disturbance and measurement noise variables and minimized with respect to control

input variables. The min-max optimization provides state estimates over a fixed, finite

window into the past and an optimal control input sequence into the future that is simul-

taneously robust to worst-case estimates of the state as well as worst-case disturbances

to the plant. This combined robust MPC/MHE approach is demonstrated here as a

viable, practical solution for the present particularly challenging nonlinear problem of

autonomous vehicle coordination.

The remainder of the chapter is organized as follows. Section 6.2 describes the dynam-

ics and measurement model that compose the problem of vision-based target tracking.

Section 6.3 discusses the cost function and the robust output-feedback MPC/MHE solu-

tion. Section 6.4 presents and discusses simulation results for multiple scenarios. Finally,

Section 6.5 provides conclusions and plans for future work.

6.2 Problem Formulation

Consider two camera-equipped UAVs tasked with estimating the state of a target

vehicle moving evasively in the ground plane. The UAVs fly at a fixed airspeed and

constant altitude and are subject to a minimum turning radius. The target vehicle moves
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in the ground plane and is subject to a maximum acceleration and maximum speed that

is less than the UAVs’ groundspeed, which is the same as its airspeed in the ideal case of

no wind. Each UAV makes measurements of the target’s position using a gimbaled video

camera, and we assume that the target is detected at all times and kept in the center of

the camera’s field of view by onboard software. We first discuss the dynamical models

for each type of vehicle and then proceed to describe their measurement models.

6.2.1 UAV Dynamics

The Dubins vehicle is a planar vehicle that moves forward at a fixed speed and has a

bounded turning radius. It is commonly used to provide a simple model for UAVs flying

at a fixed altitude. We assume that UAV j, where j P t1, 2u, flies at a constant speed sj

and at a fixed altitude hj, and it has a bounded turning rate uj with maximum absolute

upper bound ū P Rą0, which we take to be the same for both UAVs. Accordingly,

u P U – r´ū, ūs ˆ r´ū, ūs. We denote by ξpjq “ rξ
pjq
1 ξ

pjq
2 ξ

pjq
3 s

J P R3 the state of UAV

j, which comprises its planar position pj – pξ
pjq
1 , ξ

pjq
2 q and its heading ψj – ξ

pjq
3 , all of

which are measured in a local East-North-Up coordinate frame. The kinematics of UAV

j are given by

dξpjqptq

dt
“ F pξpjq, ujq–

¨

˚

˚

˚

˚

˝

sj cos ξ
pjq
3

sj sin ξ
pjq
3

uj,

˛

‹

‹

‹

‹

‚

. (6.1)

While the majority of work on target tracking treats the problem in continuous time,

this work addresses the problem in discrete time since measurements of the target’s

position are available at discrete time instances t “ kTs seconds, where k P Zě0 and

Ts ą 0 is the measurement sampling period. Accordingly, we assume a zero-order hold
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(ZOH) of Ts seconds on each UAV’s control input. The discrete-time equations of motion

provided in [87] are given by

ξpjq
`
“ fapξ

pjq, ujq, (6.2)

where the subscript “a” refers to the fact that the discrete-time dynamics are those of

an air vehicle.

While the equations of motion for the Dubins vehicle in discrete time are readily

derived in [87], they involve a 1{uj term that becomes problematic for numerical opti-

mizations and is hence avoided. Instead, we approximate the Dubins vehicle model using

a second order Lie series:

fapξ
pjq, ujq « ξpjq ` TsF pξ

pjq, ujq ` ¨ ¨ ¨ `
T 2
s

2

BF

Bξpjq
F pξpjq, ujq, (6.3)

where BF {Bξpjq denotes the Jacobian of (6.1) that does not involve division by the control

input. The Lie series is a good approximation to the Dubins vehicle dynamics since the

heading dynamics are exact and, with the simulation parameters considered in this work,

the position error from (6.3) corresponding to uj “ ū is less than 4% of the total distance

traveled. In what follows, the approximation of (6.3) is used only in the numerical

optimization of Section 6.3 while the simulation results of Section 6.4 utilize (6.2) to

propagate the discrete-time dynamics forward in time.

6.2.2 Target Dynamics and Overall State Space

We place no nonholonomic constraints on the ground vehicle and simply model the

target as a double integrator moving in the ground plane. The state of the target is

denoted by η “ rη1 η2 η3 η4s
J P R4, where pg – pη1, η2q refers to the target’s planar posi-
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tion in the same local East-North-Up coordinate frame as the UAVs. The corresponding

target velocity is given by v – pη3, η4q, and the acceleration inputs of the target are

denoted by d P R2. We assume a Ts- second ZOH on the target’s acceleration input

synchronized with that of both UAVs, yielding the straightforward discrete-time linear

dynamics

η` “ fgpη, dq “ Aη `Bd, (6.4)

where

A “

»

—

–

I2 TsI2

0 ¨ I2 I2

fi

ffi

fl

and B “

»

—

–

pT 2
s {2qI2

TsI2

fi

ffi

fl

.

Here, In is an n ˆ n identity matrix. To keep the problem realistic and well-posed, we

take the target’s acceleration input d to belong to

D – td P R2
|}v` dTs}2 ď v̄, }d}8 ď d̄u, (6.5)

where v̄ is the maximum allowable target speed and d̄ is the maximum absolute acceler-

ation along either the East or North directions. Typically, we take v̄ to be less than the

smaller of the two UAV airspeeds so that the problem is well-posed.

Now that we have presented all vehicle models, we define the overall state as x –

pξp1q, ξp2q, ηq P R10. The overall dynamics are thus given by

x` “ fpx, u, dq–

¨

˚

˚

˚

˚

˝

fapξ
p1q, u1q

fapξ
p2q, u2q

fgpη, dq

˛

‹

‹

‹

‹

‚

. (6.6)
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6.2.3 Measurement Error Models

We turn our attention to the overall measurement model in vision-based target track-

ing. The measurement vector associated with the state of UAV j is denoted by y
pjq
a P R3

and is given by

ypjqa “ ξpjq ` wpjqa , wpjqa “ rw
pjq
a,1 w

pjq
a,2 w

pjq
a,3s

J, (6.7)

where pw
pjq
a,1, w

pjq
a,2q „ N p0, σ2

pI2q, w
pjq
a,3 „ N p0, σ2

ψq, σ
2
p is the variance of the uncorrelated

noise on the UAV’s North and East position coordinates, and σ2
ψ is the variance on the

UAV’s heading angle.

Each UAV’s camera makes image-plane measurements of the target. The dominant

source of geolocation error arises from the error in the sensor attitude matrix T TS pθjq

that relates the coordinates of the line-of-sight vector uSj from the UAV to the target in

the North-East-Down sensor frame (centered at UAV j’s position) to the coordinates of

the same vector in the local East-North-Up topographic coordinate frame. This trans-

formation is a nonlinear function of the 3-2-1 Euler-angle sequence of yaw, pitch, and roll

denoted by θj P R3. Image tracking software controls the camera’s gimbal platform to

keep the target in the center of the camera’s field of view and reports the Euler angles of

the camera sensor as well as the line-of-sight vector uSj . Here, a superscript “S” denotes

a quantity in the sensor coordinate frame while the absence thereof indicates a quantity

in the topographic coordinate frame.

The 3-dimensional target position measured by UAV j with 3D position sj “ rp
J
j , hjs

J

is denoted by oj. Its estimate is given by

ôj “ ŝj ` r̂jT
T
S pθ̂jqu

S
j “ ŝj ` r̂j ûj, (6.8)
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where

ŝj “ sj ` s̃, s̃ „ N p0, diagpσ2
pI2, σ

2
aqq,

θ̂j “ θj ` θ̃, θ̃ „ N p0, σ2
ψI3q,

(6.9)

and σ2
a denotes the variance of the measurement noise on the UAVs’ altitude hj. Also,

the 3D distance from UAV j to the target is denoted by rj “ }oj ´ sj}2, and its estimate

r̂j is provided by the flat-Earth approximation r̂j “ ph0´ ŝj,3q{ûj,3, where h0 is the height

of the ground plane in the topographic coordinate frame and is taken to be zero in this

work without loss of generality. Since all camera angles are measured with respect to the

UAV attitude, we take the noise on the estimate of the camera’s attitude to be the same

as that on the estimate of the UAV’s attitude. Thus, the noise on the estimate of UAV

j’s heading angle is the same as that on the estimate of its camera’s yaw angle, i.e., the

first element of θj.

From the preceding measurement equation, one can show that the covariance Po,j P

R3ˆ3 associated with the error õj – ôj ´ oj in the three dimensional position of the

target is proportional to the product of r2
j and the covariance of the Euler-angle sequence

estimate θ̂j given in (6.9). The exact analytic expression for Po,j is derived in [87] and is

omitted here for brevity. Since we are tracking in the ground plane, only the upper left

2ˆ 2 submatrix of Po,j is relevant and is denoted by Pj.

Since the UAVs collect independent measurements of the target, the fused measure-

ment yg of the target’s true position pg can be computed using the best linear unbiased

estimate, which is as follows:

yg “ PpP´1
1 p̂p1qg ` P´1

2 p̂p2qg q “ rI2 02ˆ2sη ` wg “ pg ` wg , (6.10)

where P “ pP´1
1 ` P´1

2 q´1, wg „ N p0,Pq, p̂
pjq
g “ rI2 02ˆ1sôj, and 0mˆn denotes the
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mˆ n zeros matrix. The confidence ellipse corresponding to the fused geolocation error

covariance (GEC) P has the property that it is small when at least one UAV is close

to the target and only slightly less when both aircraft are directly above the target.

Therefore, it is advantageous for at least one UAV to be near the target at any given

time.

Finally, the measurement model corresponding to the overall state x is given by

combining (6.7) and (6.10) as follows:

y – pyp1qa , yp2qa , ygq “ Cx` w, (6.11)

where w – pw
p1q
a , w

p2q
a , wgq and C – rI8 08ˆ2s. Since the target velocity is not measured

directly, the control law used in this framework will be based on output feedback.

6.3 Robust Output-Feedback MPC/MHE

When considering only one UAV, the target tracking problem can be regarded as a

two-player zero-sum game in which the UAV tries to minimize its 3D distance to the

target, r, and the target tries to maximize r. In the two-UAV case, the UAVs ideally

coordinate their movements in order to ensure that at least one UAV is close to the

target to keep the fused GEC comparatively low. Additionally, the UAVs should keep

their individual distances to the target sufficiently small to maintain adequate resolution

of the target in the camera’s image plane for effective visual detection. This motivates

us to choose the following criterion

gpxq– β1
r2

1r
2
2

r2
1 ` r

2
2

` β2pr
2
1 ` r

2
2q, (6.12)
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where β1 and β2 are positive weighting constants, that the UAVs (Player 1) would like

to minimize and the target (Player 2) would like to maximize. The first term in (6.12)

is motivated by noting that the size of the confidence ellipse associated with Pj is pro-

portional to r2
j and that the fused GEC has the form P “ pP´1

1 ` P´1
2 q´1. Moreover,

the previous matrix expression is simplified to one that is scalar and more compatible

with numerical optimization by replacing the individual covariances with the respective

3D distances. This term enforces distance coordination so that one UAV is always close

to the target to improve measurement quality, just as in [87]. The second term in (6.12)

penalizes the individual UAV distances to the target to ensure that the size of the target

in each UAV’s image plane is sufficiently large for reliable detection by image processing

software. While other optimality criterion may be considered, we aim to utilize a simpler

expression than those found in [30] and [87] that achieves similar behavior and lends

itself to efficient numerical computation. We shall see that the distance coordination of

[87] is indeed induced by choosing the criterion (6.12).

For our control approach, we use the output-feedback MPC with MHE approach

described in [22, 25]. This requires us to solve a finite-horizon online optimization problem

at each time k. Solving this online optimization problem uses output measurements from

the last L steps into the past in order to give us an estimate of the current state at time

k (the MHE problem), and from that, give us policies for both Players 1 and 2 to use for

the next K steps into the future (the MPC problem).

Specifically, the control objective is to select the control signal uk P U , @k P Zě0 so

as to minimize a criterion of the form

k`K
ÿ

`“k

gpx`q ´
k
ÿ

`“k´L

λn}w`}
2
2, (6.13)

where gpxq is given by (6.12) and λn is a positive scalar, for worst-case values of dk P D
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and measurement noise wk P Rnw , @k P Zě0.

Given a discrete-time signal z : Zě0 Ñ Rn and two times k0, k P Zě0 with k0 ď k, we

denote by zk0:k the sequence tzk0 , zk0`1, ..., zku. This notation allows us to re-write (6.13)

and define our cost function as

Jkpxk´L, uk´L:k`K´1, dk´L:k`K´1, yk´L:kq–

k`K
ÿ

`“k

gpx`q ´
k
ÿ

`“k´L

λn}y` ´ Cx`}
2
2 (6.14)

which emphasizes the dependence of (6.13) on the unknown initial state xk´L, the un-

known input sequence for the target dk´L:k`K´1, the measured output sequence yk´L:k,

and the control input sequence uk´L:k`K´1. This control input sequence uk´L:k`K´1 com-

prises two distinct sequences: the (known) past inputs uk´L:k´1 that have already been

applied and the future inputs uk:k`K´1 that still need to be selected.

At a given time k P Zě0, we do not know the values xk´L and dk´L:k`K´1 on which

the criterion (6.14) depends, so we optimize this criterion under worst-case assumptions

on these variables, leading to the following finite-dimensional min-max optimization

min
ûk:k`K´1|kPU

max
x̂k´L|kPX ,

d̂k´L:k`K´1|kPD

Jkpx̂k´L|k, uk´L:k´1, ûk:k`K´1|k, d̂k´L:k`K´1|k, yk´L:kq, (6.15)

where the arguments uk´L:k´1, ûk:k`K´1|k correspond to the sequence uk´L:k`K´1 in the

definition of Jkp¨q in (6.14). The subscript ¨|k in the (dummy) optimization variables

in (6.15) emphasizes that this optimization is repeated at each time step k P Zě0. At

different time steps, these optimizations typically lead to different solutions, which gen-

erally do not coincide with the real control input, target input, and noise. We can view

the optimization variables x̂k´L|k and d̂k´L:k`K´1|k as (worst-case) estimates of the initial

state and target input, respectively, based on the past inputs uk´L:k´1 and outputs yk´L:k

available at time k.
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Inspired by model predictive control, at each time k, we use as the control input the

first element of the sequence

û˚k:k`K´1|k “ tû
˚
k|k, û

˚
k`1|k, û

˚
k`2|k, . . . , û

˚
k`K´1|ku P U

that minimizes (6.15), leading to the following control law:

uk “ û˚k|k, @k ě 0. (6.16)

6.4 Simulation Results

We now demonstrate the effectiveness of the proposed robust MPC/MHE control

approach to the problem of vision-based target tracking with two UAVs. In particu-

lar, we simulate two scenarios with realistic levels of noise in the models presented in

Section 6.2. Firstly, we quantify the performance of the proposed approach in an ideal

scenario wherein the target is traveling at a constant velocity and secondly in a scenario

in which the target follows its worst-case strategy determined by (6.15).

The parameters pertaining to both simulation scenarios are provided in Table 6.1.

Given the maximum UAV turn rate, the total time it takes a UAV to make a full loop is

2π{ū « 13.66 seconds, and hence the future planning horizon of KTs “ 7 seconds allows

the UAVs to consider the impact of beginning to loop around the target. Additionally,

in the cost function (6.12), the coefficients β1 and β2 were chosen to place a greater

emphasis on distance coordination than on keeping individual distances small.

To solve the min-max optimization problem (6.15), we use Algorithm 4.4.2 described

in Chapter 4. Typical execution times for solving the optimization problem at each time

step using the C programming language on a laptop with a 2.3 GHz Intel R© CoreTM
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Table 6.1: Simulation Parameters
Parameter Description Value Units

ū Max UAV turn rate 0.46 rad./s
ps1, s2q UAV speeds p15, 15q m/s
d̄ Max target accel. 3{

?
2 m/s2

v̄ Max target speed 10 m/s
σ2
p N/E position variance 2.52 m2

σ2
a Altitude variance 42 m2

σ2
ψ Euler angle variance 32 deg.2

ph1, h2q UAV altitudes p40, 45q m
β1 Coord. coefficient 4 ¨ 10´2 -
β2 Dist. coefficient 4 ¨ 10´3 -
λn Noise coefficient 10 -
Ts Sampling period 1 s
L Backward horizon 7 -
K Forward horizon 7 -

i7 processor are near 5 milliseconds with a maximum execution time not exceeding 20

milliseconds. Since these execution times are much less than the Ts “ 1 second sampling

period, the approach presented here is suitable for online real-world implementation.

Because the simulations incorporate stochastic measurement noise, we quantify per-

formance based on M “ 1, 000 Monte Carlo simulations to determine the steady-state

tracking performance of each scenario. More specifically, 3 minutes of steady-state behav-

ior are considered, where the effects of initial conditions have been removed by discarding

30 seconds of initial data. We initialize the problem with the UAVs circling a stationary

target until the past measurement buffer is filled. Figure 6.1 depicts an instance of the

output of the optimization (6.15) at time k for the parameters given in Table 6.1. This

plot illustrates the past positions, measurements, and estimates of the UAVs and target

as well as the planned future trajectory for each agent generated at the current time

k. In this instance, we see that the target just executed a sharp turn in order to take

advantage of the UAVs’ minimum turning radius of r « 32.6 [m].
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Figure 6.1: The output of the robust MPC/MHE optimization. Red and blue markers
depict quantities related to the UAVs while black markers indicate quantities related
to the target. The “`” markers illustrate the vehicles’ noisy position measurements
while the “˚” markers depict ground truth. The “˝” markers indicate state estimates
from the min-max optimization while “˛” markers illustrate future positions corre-
sponding to the optimal control sequence determined by the same optimization. A
“¨” marker indicates the estimate of each vehicle’s current position. The target trajec-
tory begins near the center of the plot and ends heading Northwest while the leftmost
UAV markers indicate their starting positions.
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Figure 6.2: Actual trajectories of two UAVs tracking a constant-velocity target over
a 3-minute window. The starting positions of all vehicles are denoted by an “˝” while
the ending positions are indicated by an “ˆ”. In the legend, T corresponds to the
target while A1 and A2 refer to the UAVs.

We first consider a constant-velocity target, i.e., dk ” 0 in equation (6.4), and the

target travels at just over one third of the UAVs’ fixed speed. The UAVs are still per-

forming the min-max optimization of (6.15) and hence are planning for an evasive target.

The results for one of the Monte Carlo simulations are provided in Figures 6.2 and 6.3.

In Figure 6.2, one can see how the UAVs make loops and “S” turns so that their average

speed matches that of the target. Figure 6.3 indicates that this is done in a coordinated

fashion so that at least one UAV is never very far from the target, as indicated by the

dashed cyan curve depicting mintr1, r2u. We shall soon verify that coordination is consis-

tently achieved across all runs for a constant-velocity target using the robust MPC/MHE

approach with the given stage cost.

We now consider an evasive target, i.e., it is using the optimal worst-case d˚k computed

from the min-max optimization (6.15). Results for one of the Monte Carlo simulations

are provided in Figures 6.4 and 6.5. By observing the vehicle trajectories in Figure 6.4,

one can see that the optimal trajectory for the target is quite erratic. Indeed, the target

takes advantage of the UAVs’ kinematic constraints by making sharp turns and forcing

the UAVs to make loops at their maximum allowable turn rate. This is corroborated
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Figure 6.3: 3D distances rj and stage cost gpxq for two UAVs tracking a constant
velocity target.

by the fact that over the 1, 000 runs, the modes of the sample distributions (not shown)

of the absolute control input values for all vehicles are concentrated at their maximum

allowable values. From Figure 6.5, one can see that distance coordination has diminished,

and the stage cost peaks over 300 [m2] twice, whereas it never exceeded 200 [m2] in the

case of a constant-velocity target.

A quantitative summary of the M “ 1, 000 Monte Carlo runs is provided in Table 6.2,

where sample statistics are computed over both time and samples. From the data, one

should notice the detrimental effect that adversarial target motion has on the coordination

effort of the UAVs. This is indicated by the sample Pearson correlation coefficient % for

the UAV distance pairs r1 and r2, where % is in general a measure of the linear correlation

between two random variables and belongs to the interval r´1, 1s. A more negative value

for % indicates stronger anti-correlation, which in the present setting implies that when
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Figure 6.4: Actual trajectories of two UAVs tracking an evasive target over a 3-minute
window. The same notation as Figure 6.2 is employed here.

Table 6.2: Statistics for 1,000 3-minute Monte Carlo Simulations
Statistic Const.Vel. Evasive Units
avg gpxq 118.4 139.3 m2

var gpxq 1, 163.8 3, 439.4 m4

maxtr1, r2u 154.2 169.7 m
avg }pg ´ p̂g} 4.92 4.66 m

avg }wg} 4.72 5.24 m
% ´0.307 0.206 N/A

one UAV is relatively far from the target, the other is likely to be rather close. Thus, one

can see that the constant velocity scenario has substantial distance coordination across

all simulation runs; however, the evasive target is able to disrupt the UAV coordination

and induce positive correlation. Nonetheless, the average cost sees only a moderate

increase of nearly 18% when the target becomes evasive while the maximum value of the

individual UAV distances from the target only experiences an increase of about 10%.

Concerning estimation of the target ’s position, one should first observe that average
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Figure 6.5: 3D distances rj and stage cost gpxq for two UAVs tracking an evasive target.

measurement error (wg) on the target’s position increases when the target is evasive, as

the fused error covariance increases with the UAVs’ inability to keep at least one aircraft

close at all times. However, the estimation error becomes smaller, which shows that the

target’s deviation from its optimal worst-case evasion leads to a smaller cost for (6.14).

This means that in the evasive case, the first term of (6.14) that quantifies tracking

performance has increased and the magnitude of the second (negative) term regarding

state estimation has decreased, which can be observed in the first and fourth rows of

Table 6.2.

Overall, the target’s evasive maneuvers hinder UAV coordination efforts and thereby

increase measurement noise. Nonetheless, the UAVs are still able to robustly track the

target in the sense that their maximum 3D distance from the target is not only bounded,

but also only slightly larger than in the case of constant target velocity.
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6.5 Conclusion and Future Work

We considered two UAVs performing vision-based target tracking of a moving ground

vehicle. We showed that a novel approach based on min-max MPC combined with MHE

is viable for solving this high-dimensional, very nonlinear (non convex) problem. Using

this approach with the commonly assumed case of having a constant-velocity target, the

UAVs coordinate their distances from the target and achieve very small tracking cost,

even though only noisy, partial information about the target state is available. In practice,

not only is the full state of the target and UAVs not precisely known, but sharp changes

in target velocity occur when the target vehicle makes turns and moves erratically or

evasively. Though past work on UAV target tracking does not often consider this case,

we have shown that our approach is robust not only to evasive target motion, but also

to noisy measurements in the output-feedback setting of vision-based target tracking.

The interested reader can find further work on this problem in the book chapter

[86]. This reference includes the extension of this proposed approach utilizing a more

realistic UAV model that addresses roll dynamics. In addition, results from a high fidelity

flight simulator for the UAVs with actual target trajectories captured from real-world

tracking experiments are given. Finally, the extensions in [86] consider unmeasured wind

disturbances. These wind disturbances are included as optimization variables as in the

examples described in Chapter 5, so the controller adapts to and learns the unknown

wind disturbance online.
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Chapter 7

Asymmetric MPC/MHE for the

Treatment of Type 1 Diabetes

A new estimation and control approach for the feedback control of an Artificial Pan-

creas to treat Type 1 Diabetes Mellitus is proposed. In particular, we present a new

output feedback predictive control approach that simultaneously solves the state estima-

tion and control problems as a single min-max optimization. This involves optimizing

a cost function with both finite forward and backward horizons with respect to the un-

known initial state, unmeasured disturbances and noise, and future control inputs, and

is similar to simultaneously solving a Model Predictive Control (MPC) problem and a

Moving Horizon Estimation (MHE) problem. We incorporate a novel asymmetric out-

put cost in order to penalize dangerous low blood-glucose values more severely than less

harmful high blood-glucose values. We compare this combined MPC/MHE approach to

a control strategy that uses state-feedback MPC preceded by a Luenberger Observer for

state estimation. In-silico results showcase several advantages of this new simultaneous

MPC/MHE approach, including fewer hypoglycemic events without increasing the num-

ber of hyperglycemic events, faster insulin delivery in response to meal consumption,
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and fewer and shorter insulin pump suspensions, resulting in smoother blood-glucose

trajectories. The results in this chapter may also be found in [21].

7.1 Introduction

Type 1 Diabetes Mellitus (T1DM) is a metabolic auto-immune disease that destroys

pancreatic β-cells, making it impossible for the pancreas to produce insulin, a hormone

the body uses to regulate glucose levels in the blood stream and to facilitate the ab-

sorption of glucose into many types of cells. Because of this, people with T1DM require

monitoring of blood-glucose (BG) levels and delivery of insulin from an external source.

If BG levels are not regulated well, people with T1DM suffer from hyperglycemia and

hypoglycemia (high and low BG levels, respectively), which can cause severe health prob-

lems. An individual who experiences hyperglycemia over long periods of time may, for

example, eventually experience cardiovascular disease, kidney failure, and retinal dam-

age, possibly after many years. Hypoglycemia, on the other hand, may have immediate

consequences ranging from dizziness and unconsciousness to possibly even coma or death.

Much recent research has been devoted to the feedback control of an Artificial Pan-

creas (AP) in order to reduce the burden and improve the effectiveness of T1DM treat-

ment by automating the dosing and delivery of insulin [44, 20, 31]. In the AP, it is the

job of a feedback controller to determine appropriate amounts of insulin to be delivered

given measurements of BG levels. This work focuses on control of an AP that delivers

insulin using a Continuous Subcutaneous Insulin Infusion (CSII) pump and receives BG

measurements based on a Continuous Glucose Monitor (CGM) [47], as is the case with

AP units destined for outpatient use. Given the potentially severe consequences of ex-

cessive or insufficient insulin delivery, the algorithms for feedback control of an AP are

crucial for the successful treatment of T1DM [31, 10].
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One of the most popular control approaches for the delivery of insulin using an AP is

Model Predictive Control (MPC) [82, 48, 68]. Given a model of the plant to be controlled

and the current state of the plant, MPC involves solving an online optimization problem

over a future time horizon. This yields a sequence of optimal control inputs to be applied

to the plant in the future as well as predicted states of the plant based on these inputs

[79, 95]. Only the first element of the computed input sequence is applied as an input

to the plant, and at each sampling time, this technique is repeated. MPC has been

one of the most successful advanced control methods in many industries, including the

feedback control of an AP, because of its ability to explicitly handle hard state and input

constraints. For a survey of MPC applications in industry, see [84].

Classic MPC is formulated assuming full-state feedback. When considering an AP,

however, we only have noisy measurements of a person’s BG from a CGM, thus when

using a state-feedback control strategy one must implement a state-estimator prior to

invoking the control law. Examples of algorithms for state estimation include observers,

filters, and moving horizon estimation, some of which are discussed in [94]. Some of the

authors’ past work has involved the use of a Luenberger Observer for state estimation with

an AP [39, 37, 38, 40]. The performance of this Luenberger Observer was compared to

that of Moving Horizon Estimation (MHE) in [59], and it was found that MHE provided

better state estimates and allowed faster insulin delivery in response to meal consumption.

In a sense, MHE [90] is the dual of MPC and is attractive because it explicitly handles

constraints and computes estimates of the state by solving an online optimization problem

given a fixed number of past measurements and inputs.

In this work, we utilize a novel combination of MPC with MHE recently proposed in

[22, 25]. Specifically, we consider output feedback using a model that explicitly includes

additive measurement noise and input disturbances, and formulate the combined MPC

and MHE problem as a single min-max optimization over both control inputs (min) and
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the unknown initial state and input disturbances (max). In this way, we solve both the

MPC and MHE problems simultaneously, which gives us an optimal (in a certain sense)

control input sequence at each sampling time for worst-case (in a certain sense) estimates

of the current state, disturbances, and noise.

The BG regulation problem exhibits inherent asymmetry, which poses a challenge

when designing a controller. The asymmetry stems from the fact that hypoglycemia has

more immediate and dire consequences than hyperglycemia, insulin can only be deliv-

ered, not removed, and, in the single-hormone AP considered here, there is no control

action available for increasing BG. Therefore, responding assertively to hyperglycemia

and commanding corrective insulin, but not over-correcting and thereby inducing subse-

quent hypoglycemia, is a paramount and difficult challenge. Many AP controllers utilize

supervisory control or additional safety logic to address this challenge. In this work,

however, we propose an appropriate choice of the MPC cost function to address this

challenge without the need for additional ad hoc safeguards. Specifically, we consider an

asymmetric output cost that penalizes “riskier” low BG values more severely than high

BG values. Asymmetric output costs have been considered by others in works such as

[68, 13] but with different implementations.

Our proposed output cost function is not only asymmetric but also assigns very low

cost to BG values within a safe range in order to regulate BG values to be within that

range, rather than tracking a particular set-point, similar to the AP controllers deployed

in clinical trials [39, 42, 40]. In this way, our output cost function enforces a small penalty

for BG values within a desired range and sharply (asymmetrically) penalizes excursions

outside of that range. This approach has proven useful in AP applications as there exists

a set of BG values generally considered to be safe, and it is extremely difficult to obtain

accurate physiological models [106]. There is often large plant-model mismatch due to

the significant variability in the physiology of a single individual over time as well as of
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different individuals. It is also difficult to accurately model the noise and delays that are

present in the BG measurements provided by a CGM. Therefore, regulating to a range of

BG values is one method to prevent excessive response to changes in the measurements

when the measured BG level is safely within the desired range.

To demonstrate the differences and benefits of the combined MPC/MHE strategy,

in this paper the results are compared to results from a method that has performed

successfully in outpatient clinical trials. The method is a state-feedback MPC strategy

that utilizes asymmetric input costs and a Luenberger Observer for state estimation and

is described in [39]. Throughout the paper, we refer to this approach as the MPC/LO

method. Importantly, for simplicity and to more clearly demonstrate the utility of the

cost function within the novel MPC/MHE control law, in this work we do not include

many of the safety features necessary for a controller to be deployed in clinical trials. Thus

the results presented here are not representative of expected results in trials. Specifically,

we do not consider diurnal zones or constraints [39], feed-forward control action following

user-initiated meal announcement, nor do we consider insulin-on-board constraints [32].

The purpose of this work is to investigate the benefits of the proposed MPC/MHE method

with the simplest possible comparison to an existing successful AP control method. To

this end, we demonstrate the benefits of this MPC/MHE approach by presenting in-

silico studies based on the commercially available 10-subject UVA/Padova U.S. Food

and Drug Administration (FDA) accepted metabolic simulator [54]. The in-silico results

showcase several advantages of the MPC/MHE approach, including fewer hypoglycemic

events without increasing the number of hyperglycemic events, faster insulin delivery in

response to meal consumption, and fewer and shorter insulin pump suspensions, resulting

in smoother BG trajectories.

This chapter is organized as follows: We present the control-relevant model, desired

BG range, and input constraints in Section 7.2. In Section 7.3 we describe our combined
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MPC/MHE estimation and control approach, and compare it to a simplified version

of the approach from [39] utilizing state-feedback MPC with a Luenberger Observer as

state estimator. In Section 7.4 we compare the results of the two estimation and control

approaches and discuss the advantages of the MPC/MHE approach. Finally, we conclude

with closing remarks in Section 7.5.

7.2 Problem Formulation

7.2.1 Insulin-glucose transfer function

Because it is difficult to derive accurate models, and because there are long delays and

significant noise in the CGM measurements, accurate estimation and effective control for

an AP is exceptionally challenging. We use the control-relevant model proposed in [106],

which has successfully been employed in AP controller design in [39, 40]. The model is

a discrete-time linear time-invariant (LTI) system with sample period Ts “ 5 minutes.

Denoting the current time by t, the scalar plant input is the administered insulin bolus

uIN,t [U] delivered per sample-period, and the scalar plant output is the subject’s BG

value yBG,t [mg/dL]. The plant is linearized around a steady-state that is assumed to

result in a BG output ys “ 110 [mg/dL] when applying the subject-specific, basal input

rate uBASAL [U/hour].

The input ut and output yt of the LTI model are defined as

ut – uIN,t ´ uBASAL ˆ Ts, yt – yBG,t ´ ys.

Denoting z´1 as the backwards shift operator, we write Upz´1q and Ypz´1q for the

z-transforms of the time-domain signals of input ut and output yt, respectively. The
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transfer function from u to y is given by

Ypz´1q

Upz´1q
“

1800g

uTDI

ˆ
z´3

p1´ p1z´1qp1´ p2z´1q2
(7.1)

with poles p1 “ 0.98, p2 “ 0.965, the subject-specific total daily insulin amount uTDI [U],

and with the constant

g – ´90p1´ p1qp1´ p2q
2

employed to set the correct gain and for unit conversion. The number 1800 comes from

the “1800 rule” to estimate BG decrease with respect to delivering rapid-acting insulin

[108].

7.2.2 State-space model

For control, we utilize a state-space model of the form

xt`1 “ Axt `But `Ddt yt “ Cxt ` nt, (7.2)

with

A –

»

—

—

—

—

–

p1 ` 2p2 ´2p1p2 ´ p
2
2 p1p

2
2

1 0 0

0 1 0

fi

ffi

ffi

ffi

ffi

fl

P R3ˆ3

B –
1800g
uTDI

„

1 0 0

J

P R3

D – ´B{10 P R3

C –

„

0 0 1



P R1ˆ3.
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The state is xt P R3. The inputs are the control input ut that belongs to the set U Ă R,

and the unmeasured disturbance dt that is assumed to belong to a set D Ă R. The

measurement noise nt belongs to the set N Ă R. The nominal system ((7.2) without

dt and nt) is an equivalent realization of (7.1). We have included noise and disturbance

terms dt and nt, respectively, in order to explicitly account for model uncertainty, additive

disturbances, and sensor noise. The matrix D is chosen to allow the disturbance to

affect the state an order of magnitude smaller, and in the opposite way, than the insulin

delivered as the control input does. Therefore, a positive disturbance d induces a rise in

modeled BG output, akin to the consumption of carbohydrates.

7.2.3 Desired blood-glucose range

In the MPC/LO approach that we compare with, a range of desired BG values, i.e.,

the BG values generally considered safe and for which delivering the insulin basal rate

is appropriate, is considered. This range is rr, rs mg/dL, where r “ 80 and r “ 140, the

same as in [42, 106]. For simplicity, the range is time-invariant, in contrast to [39, 40].

In order to implement this range in the controller, BG values are penalized according to

the range excursion Z : RÑ R defined, as in [39], as

Zpyq– arg min
αPR

tα2
|y ` ys ´ α P rr, rsu. (7.3)

For the MPC/MHE approach, we do not strictly penalize BG values outside of the

desired range but rather approximate the range by penalizing BG values according to

the following functions h : RÑ R and c : RÑ R:

hpyq– parctanp0.1yq ` π{2qy ` 10, cpyq– λ̌hp´y ` rq ` λ̂hpy ´ r ` 20q (7.4)
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where cpyq is parameterized by λ̌, the weight on low BG, and λ̂, the weight on high BG.

These weights can be chosen to separately tune the control response to hypoglycemia

and hyperglycemia. In this work, we choose λ̌ “ 0.02 and λ̂ “ 0.005. The remaining

numbers in (7.4), such as 0.1, π{2, 10, and 20, are chosen to shift the nominal cost as

desired. Plots of these functions h and c are shown in Figures 7.1 and 7.2, respectively.

The output cost used in the MPC/MHE cost function (7.6) below is cpyq2. Therefore,

the output cost is asymmetric with respect to the desired BG range, roughly penalizing

lower BG values 42 times more heavily than higher BG values.

y
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Figure 7.1: arctan function h used in defining asymmetric output penalty as given in (7.4).

7.2.4 Insulin delivery constraints

At each time t the control input is restricted to the set U defined as

U – tut P R|0 ď ut ` uBASAL ˆ Ts ď uMAXu, (7.5)
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Figure 7.2: Asymmetric function c used in defining asymmetric output penalty as
given in (7.4).

where uMAX “ 25 [U] is the maximum bolus size the CSII pump is allowed to command,

and is selected in this work to be so large that it is practically impossible for the upper

bound to become active.

7.3 Estimation and Control Approach

In this section, we discuss our novel MPC/MHE estimation and control approach and

compare it to a control strategy that is based on state-feedback MPC with a Luenberger

Observer (MPC/LO). A more complicated version of this MPC/LO approach has been

used in clinical trials, but we have simplified it for use as a benchmark-controller in this

study. First we define some notation: We denote by Zě0 the set of non-negative integers,

by Z` the set of positive integers, and by Zba the set of consecutive integers ta, ..., bu.

Given a discrete-time signal w : Zě0 Ñ Rn and two times t0, t P Zě0 with t0 ă t, we

denote by wt0:t the sequence twt0 , wt0`1, ..., wtu. The prediction horizon is denoted by

T P Z`, the control horizon is denoted by M P ZT1 , and the estimation horizon is denoted
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by L P Z`. In this work, we choose T “ 9, M “ 5, and L “ 3 (where T and M are

chosen the same as in [39], and L was chosen based on experimentation).

7.3.1 Combined MPC and MHE

Our estimation and control approach combines MPC and MHE as discussed in [22, 25],

where the MPC and MHE optimization objectives are incorporated within a single min-

max optimization problem, the solution of which simultaneously characterizes solutions

to the MHE and MPC sub-problems. We formulate the MPC/MHE problem as a finite-

horizon min-max optimization problem, to be solved at each time t, of the form

min
ut:t`M´1

max
xt´L,

dt´L:t`T´1

Jtpxt´L, ut´L:t`M´1, dt´L:t`T´1, yt´L:tq (7.6)

with cost function

Jtp¨q–
t`T
ÿ

k“t`1

cpCxkq
2
`

t`M´1
ÿ

k“t

λuu
2
k ´

t`T´1
ÿ

k“t´L

λdd
2
k ´

t
ÿ

k“t´L

λnn
2
k, (7.7)

and subject to

xk`1 “ Axk `Buk `Ddk @k P Zt`T´1
t´L (7.8a)

yk “ Cxk ` nk @k P Ztt´L (7.8b)

dk P D @k P Zt`T´1
t´L (7.8c)

uk P U @k P Zt`M´1
t (7.8d)

uk “ 0 @k P Zt`T´1
t`M (7.8e)

where λu, λd, and λn are positive scalar weights on the control input u, disturbance d, and

measurement noise n, respectively. In this work, we choose these weights to be λu “ 2,
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λd “ 2, and λn “ 300. The running cost cpyq is given in (7.4) and shown in Figure 7.2.

Equations (7.8a)-(8.11d) enforce the dynamics of the model (7.2). Equations (8.11e)

and (7.8d) enforce that the input disturbance and control input belong to the constraint

sets D and U (as defined in (7.5)), respectively. In this work, we define the constraint

set D – td P R|0 ď d ď 0.5u. A disturbance of d “ 0.5 would counteract the effects

of delivering 0.05 [U] insulin (which turns out to be slightly more than the standard

deviation of the mean insulin delivered using the MPC/MHE approach shown later in

Figure 7.5). Lastly, equation (7.8e) ensures that, beyond the control horizon M , the

basal rate uBASAL is delivered.

The criterion defined in (7.7) depends on the unknown initial state xt´L, the unknown

disturbance input sequence dt´L:t`T´1, the measured output sequence yt´L:t via the cost

on nt´L:t, and the control input sequence ut´L:t`M´1. The control input sequence is

composed of two distinct sequences: the (known) past inputs ut´L:t´1 that have already

been applied, and the future inputs ut:t`M´1 that need to be characterized. To select the

future inputs ut:t`M´1, we optimize (minimize) the criterion (7.7) with respect to these

variables. At a given time t P Zě0, we do not know the values of xt´L and dt´L:t`T´1 (and

nt´L:t which depends on these), so we optimize the criterion under worst-case assumptions

on these variables (i.e., maximize (7.7)). The optimization (7.6) is repeated at each time

step, i.e., every Ts “ 5 minutes.

As is common in MPC, at each time t, we use as the control input the first element

of the sequence

u˚t:t`M´1 “ tu
˚
t , u

˚
t`1, u

˚
t`2, . . . , u

˚
t`M´1u

164



Asymmetric MPC/MHE for the Treatment of Type 1 Diabetes Chapter 7

that minimizes (7.6), leading to the following control law:

ut “ u˚t , @t P Zě0. (7.9)

At each time t, after the solution to (7.6) is computed, the control command given to

the pump is the value of u˚t rounded down to the nearest integer multiple of the CSII

pump-discretization of 0.05 [U] [39]. The portion that is removed when rounding down is

then added to the control command given at time t` 1 in a so-called carry-over scheme,

which is precisely described in [39].

More details and theoretical results regarding this approach to combine MPC with

MHE can be found in [22, 25]. A particular primal-dual-like interior-point method was

developed by the authors to numerically solve these optimization problems, and details

about this method can be found in [25].

7.3.2 State-feedback MPC and Luenberger Observer

For completeness, we now give a brief overview of the simplified asymmetric MPC/LO

approach that we use for comparison. The full MPC/LO approach used in clinical trials

is described in detail in [39]. The purpose of this work is to investigate the benefits of the

proposed MPC/MHE method with the simplest possible comparison to an existing AP

control method; therefore, the version of this MPC/LO approach with which we compare

does not include several important safety features that are included in [39] for implemen-

tation in clinical trials. These additional features are diurnal zones and constraints, feed-

forward control action following user-initiated meal-announcement, and insulin-on-board

constraints. For more details on these additional features of the MPC/LO approach and

its performance in trials, we refer the interested reader to [39, 26].

The main conceptual difference between this MPC/LO approach and the MPC/MHE
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approach described above is that the MPC/MHE approach employs output-feedback,

whereas the MPC/LO approach is based on state-feedback. State-feedback control is

dependent upon the state estimator whose function is independent of, and indifferent

to, the control design. In the MPC/MHE approach, the state estimate and control are

computed simultaneously, so they directly affect each other. Another difference is that the

asymmetric cost is on the control input rather than the predicted output. This is meant to

facilitate decoupled design of the control response to hypoglycemia and hyperglycemia,

whereas the asymmetry on the output in the MPC/MHE approach allows both the

minimizer and the maximizer to affect the result asymmetrically because the predicted

output depends on both u and d. Finally, neither disturbances nor noise are explicitly

considered in this MPC/LO approach.

The state estimate x̂t that is used for control in the MPC/LO approach is found using

a linear recursive state estimator known as a Luenberger Observer (see e.g. [60]). This

state estimator is given by

x̂t`1 “ Ax̂t `Kpyt ´ ŷtq `But, ŷt “ Cx̂t, (7.10)

where the gain K is designed as in [39].

We formulate the asymmetric MPC/LO problem as a finite-horizon optimization

problem, to be solved at each time t, of the form

min
ut:t`M´1

Jtpxt, ut:t`M´1q (7.11)

with cost function

Jtp¨q–
t`T
ÿ

k“t`1

z2
k `

t`M´1
ÿ

k“t

´

R̂û2
k ` Řǔ

2
k

¯

, (7.12)
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and subject to

xt “ x̂t (7.13a)

xk`1 “ Axk `Buk @k P Zt`T´1
t (7.13b)

yk “ Cxk @k P Zt`Tt (7.13c)

uk P U @k P Zt`M´1
t (7.13d)

uk “ 0 @k P Zt`T´1
t`M (7.13e)

ûk “ maxpuk, 0q @k P Zt`M´1
t (7.13f)

ǔk “ minpuk, 0q @k P Zt`M´1
t (7.13g)

zk “ Zpykq @k P ZTt`1, (7.13h)

where R̂ and Ř are positive scalar weights on the non-negative and non-positive control

inputs, respectively. As in [39], we choose the weights to be R̂ “ 7000 and Ř “ 100 in

order to conservatively respond to hyperglycemia while encouraging pump attenuation in

response to predicted hypoglycemia. As before, only the first element u˚t of the predicted

optimal insulin trajectory is commanded to the pump, and the optimization (7.11) is

repeated at each time step, i.e., every Ts “ 5 minutes.

Equation (7.13a) enforces that the initial state is defined as the state estimate from

the Luenberger Observer (7.10). Equations (7.13b)-(7.13c) enforce the dynamics of the

model (7.2) without considering disturbances or noise. Equation (7.13d) enforces that

the control input belongs to the constraint set U (as defined in (7.5)). Equation (7.13e)

ensures that, beyond the control horizon M , the basal rate uBASAL is delivered. Equations

(7.13f)-(7.13g) facilitate an asymmetric input cost and provide positive and negative

deviations of the input uk from uBASAL. Finally, (7.13h) provides the cost for output

excursions from the desired BG range, where Zpykq is defined in (7.3).
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Figures 7.3 and 7.4 show the input and output costs used in both the MPC/MHE

approach and the MPC/LO approach, respectively.
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Figure 7.3: Output costs for MPC/MHE and MPC/LO as given in the first terms
of (7.7) and (7.12), respectively. The blood-glucose target and admissible zones are
shown in green and yellow, respectively, for reference.
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Figure 7.4: Input costs for MPC/MHE and MPC/LO as given in the second terms
of (7.7) and (7.12), respectively. The MPC/MHE input cost is multiplied by 50 for
comparison because Ř{λu “ 50.
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7.4 Simulation Study

The efficacy of this combined MPC/MHE estimation and control approach is demon-

strated via in-silico trials of 10 subjects using the commercially available UVA/Padova

US Food and Drug Administration (FDA) accepted metabolic simulator [54]. Simula-

tions start at 14:00 and are 28 hours in duration. The simulations begin with two hours

of open-loop until 16:00 when the feedback controller is turned on, and simulations run

in closed-loop until 18:00 the next day. Every simulation includes three 90 gram car-

bohydrate (gCHO) meals consumed at 18:30, 07:00, and 13:00, respectively. For most

people, 90 gCHO constitutes a large meal, and it happens to be the largest meal allowed

in the clinical protocol of [26]. The parameters of both the simulator and controller are

time-invariant, so the time of day of meal consumption is irrelevant. We only consider

the most challenging case of unannounced meals, meaning the controller has no infor-

mation about when a meal will be consumed, or how large any consumed meal is, and

therefore the meal-disturbance is rejected based on CGM feedback only. To further stress

the controller, the UVA/Padova simulator includes subjects with parameter values that

may be considered slightly physiologically implausible.

We consider a total of 110 simulations. All 10 subjects in the commercially available

UVA/Padova metabolic simulator are simulated 11 times: 10 times with different seeds

for random CGM additive sensor noise, and 1 time with no additive sensor noise. Even

without additive sensor noise, the CGM measurements are subject to dynamics and delays

that cause it to differ from the true (simulated) BG values. For more details, see [54].

We make no assumptions on the CGM measurement noise, which is, in general, neither

zero-mean nor Gaussian. Therefore, we do not introduce constraints on the measurement

noise but simply penalize it according to the last term in (7.7).
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7.4.1 Comparison of MPC/MHE and MPC/LO

The aggregate results for all 110 simulations are shown in Figure 7.5. A zoomed ver-

sion of these results for the first meal is shown in Figure 7.6. To yield a meaningful com-

parison, the MPC/MHE approach is tuned specifically to achieve similar hyperglycemic

peaks after meal consumption as those achieved by the MPC/LO approach. This fa-

cilitates a comparison between the proposed MPC/MHE and benchmark MPC/LO ap-

proach, with respect to the other glucose control metrics. In particular, the aggregate

results in Figure 7.5 show that the MPC/MHE approach is able to prevent the extremely

low BG values that are within the min/max envelope of the MPC/LO approach. In

addition, the MPC/MHE approach does not cause a large rebound in BG just before

03:00 as the MPC/LO approach does. However, we see that, on average, BG values are

not regulated back to within the desired BG range as soon after a meal is consumed

using the MPC/MHE approach. Finally, the hyperglycemic peak after the third meal

is noticeably lower for the MPC/MHE approach; this is likely due to the fact that the

MPC/MHE approach enforces fewer and shorter pump suspensions, resulting in more

insulin-on-board, which helps to attenuate the BG response due to the meal. We discuss

this further later.

The insulin profiles, shown in the bottom plots of Figures 7.5 and 7.6, are significantly

different. The amount of insulin delivered using the MPC/MHE approach peaks at

a lower value after a meal is consumed, but it continues delivering insulin above the

basal rate for longer than the MPC/LO approach. Another significant difference is that,

after a meal is consumed, the MPC/MHE approach responds more quickly by delivering

insulin above the basal rate before the MPC/LO approach does. This is most easily

seen in Figure 7.6. This benefit is likely due to the difference in estimation schemes; the

Luenberger Observer is recursive, which may cause its state estimate to lag slightly when
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Figure 7.5: Aggregate results of all 110 simulations for the MPC/MHE approach
(blue) and the MPC/LO approach (red). The top plots show the mean blood-glu-
cose trajectory as well as its standard deviation and minimum/maximum envelope.
The bottom plots show the mean insulin delivered as well as its standard deviation
and minimum/maximum envelope. The red vertical bars at 18:30, 07:00, and 13:00
indicate times a 90 gCHO meal is consumed.

a rapid change in the state occurs. The advantage of this faster insulin delivery achieved

with MPC/MHE is quantified in Figure 7.12 below.

These features are also seen, perhaps more clearly, in Figure 7.7, which shows results

for an individual subject for both the MPC/MHE approach and the MPC/LO approach.

This individual plot was chosen to highlight the differences between the approaches for

a particularly challenging subject. For both the MPC/MHE and MPC/LO approaches,

Figure 7.7 shows the actual BG trajectories in the top plot and the insulin delivered in

the bottom plot. The MPC/MHE approach tends to keep BG levels slightly higher but

effectively mitigates the extreme hypoglycemia experienced using the MPC/LO approach.

The MPC/LO approach clearly suspends the pump (i.e., delivers 0 [U] of insulin) much

longer than the MPC/MHE approach in the face of impending hypoglycemia. This
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Figure 7.6: Only the first meal response of all 110 simulations for the MPC/MHE
approach (blue) and the MPC/LO approach (red). The top plots show the mean
blood-glucose trajectory as well as its standard deviation and minimum/maximum
envelope. The bottom plots show the mean insulin delivered as well as its standard
deviation and minimum/maximum envelope.

results in a larger rebound in the BG for the MPC/LO approach after 00:00 as well as

a higher peak after the third meal. Finally, the bottom plot shows that the MPC/MHE

approach commands insulin to be delivered above the basal rate earlier than the MPC/LO

approach after meal consumption.

Another way to present aggregate performance of a controller for the AP problem is

to consider Control-Variability Grid Analysis (CVGA) plots as described in [69]. Figures

7.8 and 7.9 show the CVGA plots for our MPC/MHE approach as well as the MPC/LO

approach, respectively, for all 110 simulations. The black dots represent each simulation’s

minimum (horizontal axis) and maximum (vertical axis) BG values with the highest and

lowest 2.5% removed. The large blue dot denotes the arithmetic mean of the individual

black dots, and the blue circle has a radius of the standard deviation of the distances of

each individual dot to the mean.

172



Asymmetric MPC/MHE for the Treatment of Type 1 Diabetes Chapter 7

B
lo
o
d
gl
u
co
se

[m
g/
d
L
]

80

160

240

320

400

[70,180] mg/dL [80,140] mg/dL Meal MPCMHE MPC/LO

Time of day [h]
18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00

In
su
li
n
d
el
iv
er
y
[U

/5
m
in
]

0

0.1

0.2

0.3

0.4

0.5

Figure 7.7: Results for Subject #7 with random additive noise seed 2. The top
plot shows the BG for both the MPC/MHE approach (blue solid) and the MPC/LO
approach (red dashed). Similarly, the bottom plot shows the insulin delivered for each
approach as well as the basal insulin rate (green solid).

The CVGA plots in Figures 7.8 and 7.9 show that our MPC/MHE approach has a

mean value that is shifted to the left and just slightly higher than the mean value of the

MPC/LO approach. In addition, the standard deviation for the MPC/MHE approach

is significantly smaller than the standard deviation for the MPC/LO approach. This

means that our MPC/MHE approach is effective at keeping subjects from experiencing

dangerously low BG levels with the caveat that they may experience slightly higher

glucose levels on average. This comparison is easy to see in Figure 7.7 for a single

subject. The resulting number of subjects in each of the CVGA zones, as well as the

mean and standard deviation values, are given in Table 7.1 below for both approaches.

These statistics are useful because they tell us things that the plots cannot; for instance,

the MPC/LO approach has 11 black dots in the upper right-hand corner superimposed.
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Figure 7.8: CVGA plot for MPC/MHE approach. Number of 110 simulations in each
zone (A,B,C,D,E)=(0,64,33,7,6). The circle is centered on the mean with radius equal
to the standard deviation. These values are given in Table 7.1.

7.4.2 Quantifying these results

In this section we quantify the advantages of using the MPC/MHE approach over

the MPC/LO approach. Specifically, the MPC/MHE approach results in: 1) fewer hypo-

glycemic events with the same number of hyperglycemic events, 2) fewer and shorter in-

sulin pump suspensions, resulting in smoother BG trajectories, and 3) accelerated insulin

delivery in response to meal consumption. The main drawback of using the MPC/MHE

approach is that the BG values are slightly higher on average.

Table 7.1 contains the aggregate results for both approaches. The first set of rows

shows the time-in-range percentages of two BG intervals and several thresholds. As we

noted before, the MPC/LO approach keeps the BG within the desired range a larger

percentage of the time and also results in less time above hyperglycemic values. The

MPC/MHE approach, on the other hand, results in significantly less time below hy-

poglycemic thresholds. Both approaches may be tuned to adjust these values, but in

this work, we tuned the MPC/MHE approach specifically to achieve comparable hy-
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Figure 7.9: CVGA plot for MPC/LO approach. Number of 110 simulations in each
zone (A,B,C,D,E)=(0,64,32,2,12). Several points are superimposed, e.g., in zone E.
The circle is centered on the mean with radius equal to the standard deviation. These
values are given in Table 7.1.

perglycemic peaks as the MPC/LO approach in order to contrast other features of the

controllers.

The second and third set of rows in Table 7.1 list the number of subjects and events,

respectively, for which BG values are above or below several thresholds. While the

MPC/MHE approach is tuned to achieve the same number of hyperglycemic events as

the MPC/LO approach, using the MPC/MHE approach results in half as many subjects

experiencing hypoglycemia of less than 60 [mg/dL] and far fewer hypoglycemic events.

Histograms for the number of hyperglycemic and hypoglycemic events are given in Figure

7.10.

The fourth set of rows in Table 7.1 shows the number of pump suspensions that last

longer than particular lengths of time. A histogram of these results is shown in Figure

7.11. The MPC/MHE approach results in fewer suspensions of lengths greater than 15

and 30 minutes and results in no pump suspensions longer than 60 minutes. This is

an advantage because, while suspending the pump is important in order to attenuate
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predicted hypoglycemic BG values and safeguard from dangerous outcomes, long pump

suspensions can deteriorate overall performance as less insulin is present in the body,

causing BG values to rebound or peak higher after a meal is consumed. Both of these

features can be seen in the aggregate results in Figure 7.5 and the individual results in

Figure 7.7 where a long pump suspension, as commanded by the MPC/LO approach,

causes BG values to rebound after the first meal and peak higher after the third meal.
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Figure 7.10: Histogram for the number of hyperglycemic and hypoglycemic events for
the MPC/MHE approach (blue) and the MPC/LO approach (red).

The fifth set of rows in Table 7.1 gives the number of UCSB Health Monitoring System

(HMS) alarms [45] and number of subjects who experience HMS alarms. The MPC/MHE

approach causes significantly fewer alarms than the MPC/LO approach. Minimizing the

number of alarms is important when implementing these controllers because if alarms go

off too frequently, subjects may experience “alarm fatigue” and ignore the alarms. The

sixth set of rows in Table 7.1 gives the numerical results corresponding to the CVGA

plots in Figures 7.8 and 7.9. The seventh set of rows gives the mean, minimum, and

maximum BG values for each approach. The MPC/MHE approach results in a slightly

higher mean BG but also a higher minimum BG. Interestingly, the MPC/MHE approach
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Figure 7.11: Histogram for the number of pump suspensions for the MPC/MHE
approach (blue) and the MPC/LO approach (red).

produces a very slightly lower maximum BG. The eighth set of rows gives the Low Blood

Glucose Index (LBGI) and High Blood Glucose Index (HGBI), as computed according to

[68]. As expected, the MPC/MHE approach results in a lower LBGI but a higher HBGI.

Finally, the last row gives the total amount of insulin delivered using each approach

averaged over all 110 simulations as well as the standard deviation and minimums and

maximums. The MPC/MHE approach delivers less insulin than the MPC/LO approach;

therefore, it is not surprising that the MPC/MHE results in slightly higher mean BG.

The last advantage, and one that is not quantified in Table 7.1, is that the MPC/MHE

approach delivers insulin more quickly after a meal. This was mentioned when discussing

the aggregate responses after the first meal shown in Figure 7.6 and is precisely quanti-

fied in Figure 7.12, which shows the cumulative insulin delivered as well as the mean BG

after a meal averaged over all three meals and all 110 simulations for both approaches.

For reference, the basal insulin rate is shown and increases at a rate of 0.1026 [U/5min].

On average, BG begins to rise about 10 minutes after a meal is consumed. After 20

minutes, the MPC/MHE approach begins to deliver insulin at a rate higher than the
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basal rate. The MPC/LO approach, on the other hand, does not deliver insulin at a

rate higher than the basal rate until 30 minutes after a meal is consumed. Consequently,

the MPC/MHE approach delivers more insulin compared to the MPC/LO approach for

the first 55 minutes after a meal is consumed, after which time the MPC/LO approach

continues delivering insulin at a higher rate. Moreover, the mean BG is lower for the

MPC/MHE approach until about 105 minutes after meal consumption even though it

starts out slightly higher than the BG for the MPC/LO approach before a meal. This

faster response to increasing BG values after a meal may be due to using an MHE-like

state estimator as opposed to a Luenberger Observer because the Luenberger Observer

computes the estimates recursively and, therefore, may produce a lagging state estimate

if the state is rapidly changing. This phenomenon is also found in [59] when specifi-

cally comparing the results of a state-feedback MPC strategy using both a Luenberger

Observer and an MHE for estimating BG. The MPC/MHE approach does not, how-

ever, cumulatively deliver as much insulin as the MPC/LO approach, so BG values stay

slightly higher for longer using the MPC/MHE approach.

7.5 Conclusions

We presented a new estimation and control approach for regulating BG in T1DM. This

approach simultaneously performs Model Predictive Control and Moving Horizon Estima-

tion in a single min-max optimization problem to form a feedback controller that results

in elevated cost-conservatism with respect to disturbances. This combined MPC/MHE

approach incorporated an asymmetric output cost penalizing “riskier” low BG values

more severely than high BG values. We compared this approach to a state-feedback

MPC approach that utilized a Luenberger Observer for state estimation and incorpo-

rated an asymmetric input cost in order to decouple the controller’s response to low
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Figure 7.12: Cumulative insulin delivered (blue) and mean BG (red) since a meal
consumption for both MPC/MHE and MPC/LO approaches averaged over all three
meals and 110 simulations.

versus high BG values. This MPC/LO approach is a simplified version of an estimation

and control approach that has been successfully tested in clinical and outpatient trials.

Both of these control and estimation approaches were evaluated by in-silico stud-

ies utilizing a metabolic simulator. In 110 simulations of 10 virtual subjects, we found

that while the MPC/MHE approach keeps BG values slightly higher on average, it suc-

cessfully reduces the number of hypoglycemic events without increasing the number of

hyperglycemic events, it delivers insulin sooner in response to meal consumption, and it

commands fewer and shorter insulin pump suspensions, which results in smoother BG

trajectories. Therefore, this MPC/MHE approach may be advantageous for the feedback

control of an AP for the treatment of T1DM.
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Table 7.1: Aggregate results for the two comparisons considered.

MPC/MHE MPC/LO

BG [mg/dL] % time

P r80, 140s 45.47 49.19
P r70, 180s 56.62 61.24
ă 80 1.05 1.85
ă 70 0.39 1.30
ă 60 0.13 0.99
ă 50 0.03 0.68
ă 40 0.00 0.34
ą 180 42.99 37.46
ą 250 20.84 17.53
ą 300 7.70 5.98
ą 350 1.93 1.43
ą 400 0.58 0.45

# Subjects BG
[mg/dL]

ă 80 21 20
ă 70 10 14
ă 60 6 12
ă 50 1 12
ă 40 0 12
ą 180 110 110
ą 250 109 108
ą 300 53 53
ą 350 11 11
ą 400 11 11

# Events BG [mg/dL]

ă 80 34 45
ă 70 15 36
ă 60 8 34
ă 50 2 30
ă 40 0 22
ą 180 330 332
ą 250 285 285
ą 300 131 128
ą 350 33 33
ą 400 21 14

# Pump Suspensions

ě 15 min 201 291
ě 30 min 28 111
ě 60 min 0 44
ě 90 min 0 26
ě 120 min 0 8
ě 150 min 0 0

# HMS Alarms 37 95
# Subjects with HMS Alarms 19 23

CVGA zone count: A 0 0
CVGA zone count: B 64 64
CVGA zone count: C 33 32
CVGA zone count: D 7 2
CVGA zone count: E 6 12
CVGA circle radius 8.31 12.26

BG mean: mean+-std [min,max] 180+-18.92 [152,219] 171+-14.90 [148,201]
BG min: mean+-std [min,max] 94+-16.72 [43,122] 89+-23.65 [22,121]
BG max: mean+-std [min,max] 307+-47.18 [247,427] 307+-53.62 [246,457]

LBGI: mean+-std [min,max] 0.17+-0.29 [0.00,1.97] 0.47+-1.08 [0.00,4.51]
HBGI: mean+-std [min,max] 10.87+-3.74 [5.47,19.47] 9.36+-2.95 [4.84,14.28]

Total Daily Insulin [U]: mean+-std [min,max] 41.4+-6.6 [32.7,57.3] 42.5+-7.1 [33.1,59.5]
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Additional examples

In this chapter we investigate two additional applications of the proposed MPC/MHE

estimation and control approach: 1) output feedback control of a DC motor, and 2)

distributed optimization for multi-agent consensus.

8.1 Output feedback control of a DC motor

In this section we discuss the use of the combined MPC/MHE method described in

Chapter 2 for the estimation and control of a DC motor. In particular, we investigate

three different formulations of the MPC/MHE approach for this problem and discuss the

results.

8.1.1 Modeling a DC Motor

Differential equations describing the dynamics of a DC motor are given as

LM 9iM “ ´RM iM ´Kb
9θ ` vM , JM :θ “ ´bM 9θ `KM iM ,
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where iM is the current that flows through the motor, vM is the voltage applied to the

motor, θ is the motor shaft angle, LM , is the electric inductance, RM is the electric

resistance, KM is the motor torque constant, Kb is the electromotive force constant,

JM is the moment of inertia of the motor’s rotor, and bM is the motor viscous friction

coefficient.

State-space model

A linear time-invariant model for the control of a DC motor can be formulated and

described by the following state-space model:

9x “ Ax`Bu`Dd

y “ Cx` n

(8.1)

where x “ riM 9θ θs1 P R3 is the system state, u “ vM P R1 is the control input, d P R1

is an unmeasured disturbance, y P R1 is the measured output, and n P R1 is unknown

measurement noise. The system matrices are given by

A “

»

—

—

—

—

–

´RM{LM ´Kb{LM 0

KM{JM ´bM{JM 0

0 1 0

fi

ffi

ffi

ffi

ffi

fl

, B “

»

—

—

—

—

–

1{LM

0

0

fi

ffi

ffi

ffi

ffi

fl

, D “

»

—

—

—

—

–

0

1{JM

0

fi

ffi

ffi

ffi

ffi

fl

, C “

„

0 0 1



.

Therefore, only noisy measurements of the motor shaft angle θ are available for feedback.

There are several features of a real motor that are not captured by this model. One

of these features is the fact that a real motor would experience a dead zone in which

the voltage applied does not cause the motor to move due to friction. We denote this

dead zone by the interval r´Vd, Vds. While the control input u is an applied voltage that

directly affects the current flowing through the motor, the disturbance d is an external
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torque that directly affects the angular velocity of the rotor 9θ. This is intended to

capture some of the unknown plant/model mismatch, such as the unknown dead zone of

the motor. The results we present later in Section 8.1.3 show the effects of including this

disturbance d.

8.1.2 Output Feedback MPC with MHE

For output feedback control of a DC motor, we consider the combined MPC/MHE

approach proposed in [22, 25] and presented in Chapter 2. This involves the solution of

a general finite-horizon min-max optimization problem

min
ut:t`T´1PU

max
xt´LPX ,

dt´L:t`T´1PD

Jtpxt´L, ut´L:t´1, ut:t`T´1, dt´L:t`T´1, yt´L:tq. (8.2)

This optimization depends on the last L` 1 output measurements yt´L:t, the past L in-

puts ut´L:t´1, and solves for the unknown initial state x`t´ L, past and future unknown

disturbances dt´L:t`T´1, and future control inputs ut:t`T´1. Optimization (8.2) is subject

to the system dynamics (8.1) as well as constraints on the motor voltage and the distur-

bance. These constraints are given by the sets U – tut P R1| ´ Vsupply ď ut ď Vsupplyu

and D – tdt P R1| ´ dmax ď dt ď dmaxu, respectively. Solution of the optimization (8.2)

results in a sequence of future control inputs to apply, a sequence of worst-case distur-

bance variables, as well as worst-case estimates of the past states and a future sequence

of predicted states. In order to numerically solve the optimization (8.2), we discretize

the dynamics (8.1) using a zero-order hold (ZOH) with time step Ts.

We formulate the optimization (8.2) in three different cases. Case #1 does not con-
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sider disturbances d and involves the solution of the following min-max optimization

min
ut:t`T´1PU

max
xt´LPX

Jtp¨q,

where

Jtp¨q–
t`T
ÿ

s“t`1

λr}θs ´ rs}
2
`

t`T´1
ÿ

s“t

λu}us}
2
´

t
ÿ

s“t´L

λn}ns}
2, (8.3)

and subject to the process dynamics (8.1) without the disturbance d. The first term in

the cost function (8.3) penalizes the difference between the future predicted value of the

angle θs and the desired reference trajectory rs in order to facilitate reference tracking.

The second term penalizes the control actions us, i.e. the applied voltages. The third

term facilitates state estimation by penalizing unlikely noise ns. The scalar weights λr,

λu, and λn are used to scale the penalties on the reference tracking, control action, and

measurement noise, respectively.

For Case #2, we consider the same problem as in Case #1 but with added distur-

bances. Therefore, we solve optimization (8.2), where

Jtp¨q–
t`T
ÿ

s“t`1

λr}θs ´ rs}
2
`

t`T´1
ÿ

s“t

λu}us}
2
´

t`T´1
ÿ

s“t´L

λd}ds}
2
´

t
ÿ

s“t´L

λn}ns}
2, (8.4)

and subject to the process dynamics (8.1). The only difference between (8.4) and (8.3)

is that (8.4) for Case #2 contains a term penalizing unlikely disturbances ds. The scalar

weight λd is used to scale this penalty.

In Case #3, we again solve optimization (8.2) but with a cost function that specifically

penalizes power consumption rather than simply the voltage applied. In particular, we
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consider the cost

Jtp¨q–
t`T
ÿ

s“t`1

λr}θs ´ rs}
2
`

t`T
ÿ

s“t`1

λupus ¨ iM,sq ´

t`T´1
ÿ

s“t´L

λd}ds}
2
´

t
ÿ

s“t´L

λn}ns}
2. (8.5)

Again, the optimization is subject to the process dynamics (8.1). The second term in

(8.5) penalizes the power consumed by penalizing the multiplication of the voltage ap-

plied us with the predicted value of the current iM,s. The scalar weight λu is used to

scale this penalty. Depending on how this weight is chosen, the controller may imple-

ment regenerative braking, where the applied voltage is switched quickly back and forth

between a positive and negative value in order to constantly switch the direction that

current flows so that it is flowing back into, and recharging, the battery powering the

motor. We see this behavior in the results presented in Figures 8.3 and 8.4 below.

8.1.3 Simulations

In this section we consider the three difference cases of the optimization (8.2) described

in Section 8.1.2. For all three cases, the control objective is for the angle θ to follow a

reference given by rt “ 2π sgnpsinpπtqq. Table 8.1 gives the values of the parameters in

the model (8.1). For our prediction model, we discretize (8.1) using a zero-order hold

(ZOH) with time step Ts. The time step Ts is also our sampling time for this problem.

The plant we simulate is also given by the model (8.1) but also includes a dead zone

of r´0.72, 0.72s V such that if the applied voltage is within this zone, it is as if 0 V is

applied. In other words, the motor voltage is given by

VM,t “

$

’

&

’

%

ut if |ut| ą 0.72V

0 V else.
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For simplicity and the sake of making a clear comparison between the three cases con-

sidered, the plant we simulate is not subject to any measurement noise or disturbances.

Table 8.1: Model Parameters

Parameter Description Value Units
Ts Sampling time 0.005 s

Vsupply Battery supply voltage 6 V
dmax Constraint on size of disturbance 6.9e´ 9 Nm
RM Resistance 2.62 Ω
LM Inductance 0.0259 H
Kb Electromotive force constant 0.01 V/rad/s
kM Motor torque constant 0.01 Nm/A
JM Moment of inertia 2.3e´ 6 kg m2

bM Viscous friction coefficient 1.35e´ 5 N m s
Vd Motor dead zone 0.72 V

Remark 11 (Model uncertainty) The DC motor model parameters in the dynamics

(8.1) were found by performing system identification on a real motor. We do not discuss

this procedure here but instead assume that the estimated parameter values are the true

values of the model parameters. In practice, these values are uncertain or maybe even

unknown. We could learn the values of these parameters online by including them as

optimization variables in (8.2) (as is done in Chapter 5), but we leave this for future

work. l

Results for the three considered cases are given below in Figures 8.1, 8.2, and 8.3-8.4,

respectively. The values for the horizon lengths L and T , and the scalar weights λr, λu,

λd, and λn for each case are given in Table 8.2.

All of the simulation results in this section were computed using Algorithm 4.4.2

given in Chapter 4 on a desktop computer with a 3.4 GHz Intel R©CoreTM i7 Processor.

The number of optimization variables, inequality constraints, equality constraints, and
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Table 8.2: Parameter values for the three cases considered.

Case #1 Case #2 Case #3
λr “ 10 10 10
λu “ 1e-5 2 1e-4
λd “ N/A 5 5
λn “ 1e6 1e6 1e6
L “ 10 10 10
T “ 20 20 20

mean, minimum, and maximum computation times for each of the three cases are given

in Table 8.3.

Table 8.3: Numerical performance for the three cases of the DC motor problem.

Case #1 Case #2 Case #3
# of optimization variables 113 143 143
# of inequality constraints 46 100 100

# of equality constraints 90 90 90
mean time to solve 0.344 ms 0.437 ms 0.517 ms
min. time to solve 0.168 ms 0.235 ms 0.345 ms
max. time to solve 0.764 ms 0.768 ms 1.00 ms

Case #1 considers quadratic penalty functions on the difference between the angle θ

and the reference r, the control input u, and the measurement noise n as given in the cost

function (8.3). Figure 8.1 shows results for Case #1. Due to the dead zone in the plant

that is not modeled in the prediction model, the angle θ gets close to the square-wave

reference but experiences steady-state error. This also results in the computed control

input to be nonzero to try to correct the steady state error.

Case #2 considers quadratic penalty functions on the difference between the angle θ

and the reference r, the control input u, the measurement noise n, and the unmeasured

disturbance d as given in the cost function (8.3). Figure 8.2 shows results for Case #2. In

this case, the optimizer is able to partially accommodate for the dead zone by estimating

that a disturbance (i.e. an external torque working against the controller) is present.
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Figure 8.1: Simulation results of DC motor example Case #1. In the top plot, the
reference is in red, the measured output in green, the control sequence in blue. In the
bottom plot, the actual current is shown in green, and the angular velocity (divided
by 50) is shown in black.

This still results in small steady state error but produces smoother trajectories for the

angle θ, the control input u, the current iM , and the angular velocity 9θ. It also results

in essentially zero control input when θ is close to the reference.

The third and final case considers quadratic penalty functions on the difference be-

tween the angle θ and the reference r, the measurement noise n, and the unmeasured

disturbance d as given in the cost function (8.3). Instead of penalizing the control input

with a quadratic cost function as in Case #2, in Case #3 we instead penalize the power

consumption by including a term multiplying us and iM,s in (8.5). Figure 8.3 shows

results for Case #3. Figure 8.4 shows a close-up of the beginning of the results shown in

Figure 8.3. In this case, the optimizer chooses a control input that quickly switches be-

tween large positive and negative voltages in order to force current back into the battery,
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Figure 8.2: Simulation results of DC motor example Case #2. In the top plot, the
reference is in red, the measured output in green, the control sequence in blue. In the
bottom plot, the actual current is shown in green, and the angular velocity (divided
by 50) is shown in black.

thereby recharging it. It does this while keeping the angle θ close to the reference r.

8.1.4 Conclusion

In this section, we discussed output-feedback control of a DC motor. We described a

linear time-invariant state space model of the DC motor and considered three different

formulations of the MPC/MHE estimation and control approach for estimating the state

of the motor and regulating its shaft angle to a desired reference trajectory. These three

formulations investigated the results of including a disturbance in the prediction model

to account for unknown plant/model mismatch as well as a term penalizing the power

consumption of the motor.
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Figure 8.3: Simulation results of DC motor example Case #3. The top plot shows
the reference in red, the measured output in green, and the control sequence in blue.
The bottom plot shows the actual current in green and the angular velocity (divided
by 50) in black.
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Figure 8.4: Close-up of the results at the beginning of the simulation of DC motor
example Case #3. The top plot shows the reference in red, the measured output in
green, and the control sequence in blue. The bottom plot shows the actual current in
green and the angular velocity (divided by 50) in black.
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8.2 Distributed optimization for multi-agent consen-

sus

Until this point, all of the examples we have considered have been centralized, i.e.

the computations have been performed serially by one processor with all information

available. In this section, we consider a distributed control problem where multiple agents

attempt to achieve consensus by solving independent optimization problems using only

local information. In particular, each agent only has access to a distance measurement

from itself to its neighbor (where neighbor is defined using some graph structure), and all

of the agents try to rendezvous, or achieve consensus, with a leader agent. For background

on distributed control and graph theory, we invite the reader to see, e.g., [15].

Formally, we consider the following linear discrete-time systems with state-space

model for every agent i P N :“ t1, 2, 3 ¨ ¨ ¨ , Nu given as

xit`1 “ Axit `Biu
i
t `Did

i
t, (8.6)

where xit P Rnx denotes the state of agent i at time t, uit denotes the control input of

agent i at time t and is constrained to belong to the set Ui Ă Rnu , and dit denotes the

unmeasured disturbance that agent i is subjected to at time t and belongs to the set

Di Ă Rnd . All of the agents have the same system matrix A, but they are heterogeneous

in that they all have different input and disturbance matrices, Bi and Di, respectively.

We assume that there is a leader agent with dynamics

x0
t`1 “ Ax0

t .

Using only local information, our objective is to design control inputs uit so that the state

193



Additional examples Chapter 8

of each agent achieves consensus with, or synchronizes with, the state of the leader agent

x0
t , i.e. limtÑ8 }x

i
t ´ x

0
t } “ 0 for all i P N .

8.2.1 Graphs and synchronization

Let G be a directed graph defined as the pair G “ pV, Eq with a nonempty finite set

of N vertices V “ tv1, v2, . . . , vNu and a set of edges E Ď V ˆV . The connectivity matrix

E is defined such that E “ reijs with eij ą 0 if pvj, viq P E and eij “ 0 otherwise. Each

agent in the set of agents i P N can be represented by a node vi in the graph, and the

set of neighbors of every node vi is Ni “ tvj : pvj, viq P Eu.

We define the local neighborhood tracking error εit P Rnx for each node i as [1]

εit “
ÿ

jPNi

eijpx
j
t ´ x

i
tq ` gipx

0
t ´ x

i
tq, (8.7)

where gi ě 0 is the pinning gain of node i P N , which is nonzero if node i is coupled to

the control (leader) node v0. The control node v0 is assumed to only be connected to a

small percentage of nodes in the graph.

8.2.2 Error dynamics

The dynamics of the local neighborhood tracking error for node i P N are given as

follows:

εit`1 “ Aεit ´ pwi ` giqpBiu
i
t `Did

i
tq `

ÿ

jPNi

eijpBju
j
t `Djd

j
tq

yit “ Ciε
i
t ` n

i
t

(8.8)
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where wi “
ř

jPNi
eij is the weighted in-degree of node i, and yit denotes the measured

output of agent i at time t subjected to the measurement noise nit which belongs to the set

Ni Ă Rnn . Therefore, each agent only has noisy measurements of its local neighborhood

tracking error for feedback. Our objective is to minimize the local neighborhood tracking

errors εit, which guarantees approximate synchronization of the agents [1].

8.2.3 Estimation and Control Approach

We formulate this problem using the combined MPC/MHE estimation and control

approach presented in Chapter 2. Each agent’s control objective is to select the control

signal uit P Ui, @t P Zě0 so as to minimize a finite-horizon criterion of the form

J it pε
i
t´L, u

i
t´L:t`T´1, d

i
t´L:t`T´1, y

i
t´L:tq–

t`T
ÿ

s“t

}Ciε
i
s}

2
`

t`T´1
ÿ

s“t

λiu}u
i
s}

2
´

t
ÿ

s“t´L

λin}n
i
s}

2
´

t`T´1
ÿ

s“t´L

λid}d
i
t}

2 (8.9)

where T P Z` is the forward prediction and control horizon, L P Z` is the backward

estimation horizon, and λiu, λ
i
n, and λid are positive scalar weights on the control input,

measurement noise, and input disturbance, respectively, for agent i.

The performance criterion (8.9) for every agent i P N depends on the unknown

initial local neighborhood tracking error εit´L, the unknown disturbance input sequence

dit´L:t`T´1, the measured output sequence yit´L:t, and the control input sequence uit´L:t`T´1.

The control input sequence is composed of two distinct sequences: the (known) past in-

puts uit´L:t´1 that have already been applied, and the future inputs uit:t`T´1 that still

need to be selected. To select the future inputs uit:t`T´1, each agent optimizes the crite-

rion (8.9) with respect to these variables. At a given time t P Zě0, we do not know the

value of the variables εit´L and dit´L:t`T´1, so we optimize the criterion under worst-case
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assumptions on these variables.

This motivates the solution of a finite-horizon min-max optimization problem, to be

solved at each time t for each agent i, of the form

min
ûi
t:t`T´1|t

max
ε̂i
t´L|t

,

d̂i
t´L:t`T´1|t

J it pε̂
i
t´L|t, u

i
t´L:t´1, û

i
t:t`T´1|t, d̂

i
t´L:t`T´1|t, y

i
t´L:tq (8.10)

with cost function J it p¨q as defined in (8.9) and subject to,

εis`1 “ Aε̂is|t ´ pwi ` giqpBiu
i
s `Did̂

i
s|tq `

ÿ

jPNi

eijBju
j
s s “ t´ L (8.11a)

εis`1 “ Aεis ´ pwi ` giqpBiu
i
s `Did̂

i
s|tq `

ÿ

jPNi

eijBju
j
s @s P Zt´1

t´L`1 (8.11b)

εis`1 “ Aεis ´ pwi ` giqpBiû
i
s|t `Did̂

i
s|tq @s P Zt`T´1

t (8.11c)

yis “ Ciε
i
s ` n

i
s @s P Ztt´L (8.11d)

d̂is P Di @s P Zt`T´1
t´L (8.11e)

ûis P Ui @s P Zt`T´1
t . (8.11f)

Equations (8.11a)-(8.11d) ensure that the local neighborhood tracking error dynamics

(8.8) are satisfied. Equations (8.11e)-(8.11f) ensure that the computed variables dis and

uis belong to their respective constraint sets.

The optimization (8.10) is repeated at each time step t, and we use as the control

input for every agent i, the first element of the sequence,

ûi˚t:t`T´1 “ tû
i˚
t , û

i˚
t`1, û

i˚
t`2, . . . , û

i˚
t`T´1u
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that minimizes (8.10), leading to the following control law:

uit “ ûi˚t , @t P Zě0. (8.12)

8.2.4 Simulations

Now we consider a simple example of this distributed control problem and provide

simulation results. Figure 8.5 depicts the graph that is considered in this example where

there are three agents and one leader.

3 2

1

0

Figure 8.5: Graph topology for neighborhood of agents. Agent 1 receives information
from the leader (agent 0) and agent 2, agent 2 receives information from agent 3, and
agent 3 receives information from agent 1.

Each agent’s dynamics and error dynamics are given as in (8.6) and (8.8), respectively,

with the matrices

A “

»

—

–

0 1

´1 0

fi

ffi

fl

, B1 “

»

—

–

2

1

fi

ffi

fl

, B2 “

»

—

–

1

´1

fi

ffi

fl

, B3 “

»

—

–

2

´2

fi

ffi

fl

,

D1 “ B1, D2 “ B2, D3 “ B3,

C1 “

„

0 1



, C2 “

„

1 0



, C3 “

„

0 1



,

and the weights g1 “ 2, g2 “ g3 “ 0, and wi “ 1 for all i, and eij “ 1 for all i and

j. The true noise and disturbances are normally distributed random variables given as

nit „ N p0.05, 0.12q and dit „ N p0, 0.032q, respectively, for all i P N and all t P Zě0. The

other parameters and constraint sets included in cost function (8.9) and optimization
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(8.10) are chosen as T “ 5, L “ 5, λu “ 1, λd “ 100, λn “ 1000, Ui – tuit P Rnu : ´0.5 ď

uit ď 0.5u, Di – tdit P Rnd : ´0.5 ď uit ď 0.5u, and Ni – Rnn for this example.

Simulation results are given in Figures 8.6, 8.7, 8.8, and 8.9, when the initial states

of the leader and agents are x0
1 “ r1, 1s1, x1

1 “ r5, 1s1, x2
1 “ r´4, 2s1, and x3

1 “ r4,´3s1.

Figure 8.6 shows the values of the state for the leader and all of the agents. Even though

their states begin in various locations, the states of each agent quickly converge to the

states of the leader, so the agents achieve consensus. Figure 8.7 shows a phase plot of

the results an again shows that the agents achieve consensus with the leader. Figure 8.8

shows the control inputs applied by each of the agents as well as the true disturbances

and noise that each of the agents was subjected to. Despite the fact that the disturbances

and noise are nonzero, the agents are able to compute control inputs that successfully

approximately synchronize their states. Finally, Figure 8.9 shows the estimated values

for the local neighborhood tracking errors εi for each of the agents. These errors converge

to small values, so the agents approximately achieve consensus.

8.2.5 Conclusions

In this section we considered the distributed control of multiple agents with the ob-

jective of synchronizing the state of each agent with the state of a leader agent using

only noisy local information. We defined a graph structure and dynamics for the local

neighborhood tracking error of each agent. We formulated this problem using the com-

bined MPC/MHE estimation and control approach described in Chapter 2 and simulated

a simple example. The simulation results show that the agents were successfully able to

compute control inputs that achieved approximate synchronization (consensus) even in

the presence of input disturbances and measurement noise.
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Figure 8.6: Consensus of all three agents with the leader: values for xp1q (top plot)
and xp2q (bottom plot) converge to those of the leader.
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Figure 8.7: Phase plot showing consensus. The starting locations are given as red circles.
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Figure 8.8: u˚ applied (top plot), actual d (middle plot), and actual n (bottom plot)
for each agent.
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Figure 8.9: Estimates of εp1q and εp2q showing that the local neighborhood tracking
errors converge to small values.

200



Chapter 9

Conclusion

9.1 Contributions of this thesis

As discussed in the Chapter 1, this thesis included the theory and design of a new

approach to solving MHE and MPC problems simultaneously as a single min-max opti-

mization problem [22, 25, 23] as well as the investigation of using this approach in several

applications (see, e.g. [85, 21]). As a recap, each of the chapters contained the following

material:

Chapter 2 provided the main theoretical contribution of this thesis addressing stabil-

ity of the proposed combined MPC/MHE approach. In particular, the proposed output-

feedback controller results in closed-loop trajectories along which the state of the process

remains bounded, and, for tracking problems, provides explicit bounds on the tracking er-

ror. These results relied on three assumptions: the existence of saddle-point equilibria for

the min-max optimization, a terminal cost that is a control ISS-Lyapunov function with

respect to the disturbance input, and observability of the nonlinear process essentially

requiring the backwards horizon to be sufficiently large.
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Chapter 3 addressed the first assumption invoked in Chapter 2, i.e., the existence

of saddle-point equilibria. We derived conditions under which a saddle-point solution to

the min-max optimization is guaranteed to exist and showed that for linear processes

and quadratic costs, these conditions boil down to observability of the linear process and

appropriately choosing weights in the quadratic cost functions.

Chapter 4 presented two numerical algorithms that can be used to solve general min-

max optimization problems, including those introduced in Chapter 2. Both algorithms

involve primal-dual interior-point methods that rely on Newton’s method to solve a re-

laxed version of the Karush-Kuhn-Tucker (KKT) conditions associated with the coupled

optimizations that define a saddle-point equilibrium. The second algorithm specialized

this method for formulations with common latent variables.

Chapter 5 discussed the scenario where the process model includes uncertain or

unknown parameters. We showed that the uncertain parameters can be included as

optimization variables in the combined MPC/MHE approach and learned online, and

the results from Chapter 2 still hold. Several examples with parametric uncertainty were

considered and solved effectively.

The second part of this thesis used this combined MPC/MHE approach for several ap-

plications including the coordination of unmanned aerial vehicles for vision-based target

tracking of a moving ground vehicle, feedback control of an artificial pancreas system for

the treatment of Type 1 Diabetes, estimation and control of a DC motor, and distributed

control of multi-agents for achieving consensus.

In Chapter 6, we considered the coordination of multiple unmanned aerial vehicles

(UAVs) for vision-based target-tracking of a moving ground vehicle. A novel cost function

was used in order to achieve the best vision-based estimate of the target’s location, and

we showed in simulations that the UAVs are able to coordinate their motion to track the

target even when the target acts evasively.
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Chapter 7 explored the use of the MPC/MHE approach for the feedback control

of an artificial pancreas system for the treatment of Type 1 Diabetes. We designed

an asymmetric cost function to facilitate appropriate controller response to high and low

blood-glucose levels and showed that the combined MPC/MHE approach is advantageous

for this application when compared to another approach using state-feedback MPC and

a recursive state estimator.

Finally, in Chapter 8, we discussed two additional applications which include output-

feedback control of a DC motor and distributed optimization for multi-agent consensus.

We showed that this MPC/MHE approach is an effective control approach for both of

these applications.

9.2 Future work

As discussed at the end of several chapters, there are many extensions that can be

made to the work in this thesis as well as other future work that may be considered.

Regarding the theoretical results given in Part I of this thesis, more specific stability

results could be derived when considering certain classes of systems or cost functions.

A study on recursive feasibility of this approach would also be useful. In some cases,

the requirement of a saddle-point solution to the min-max optimization may be too

restrictive, so relaxing this assumption to allow being ε-close to a saddle-point solution

may be useful. This could be related to results for ε-Nash equilibria.

There is certainly more work to be done regarding the numerical algorithms described

in Chapter 4. A convergence analysis of both Algorithms 4.3.1 and 4.4.2 should be done.

Furthermore, the development of similar algorithms to solve these types of optimization

problems and trade offs between methods could be investigated. For example, a Barrier

interior-point algorithm could be developed which may be more robust than the primal-
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dual algorithm for non-convex poorly conditioned problems.

Additional work could also be done regarding the adaptation to and learning of uncer-

tain parameters as discussed in Chapter 5. It would be interesting to study the particular

conditions for which the estimates of the uncertain parameters computed using the com-

bined MPC/MHE approach are guaranteed to converge to their true values. This may

require particular excitation signals or a sufficient number of measurements.

The simulation results for the applications in Part II show that this combined MPC/MHE

approach is promising and may be advantageous compared to other estimation and con-

trol approaches. This motivates the implementation of this combined MPC/MHE ap-

proach in several real-world experiments to validate these simulation results and truly

determine its potential.
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