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An in silico method to assess antibody
fragment polyreactivity

EdwardP.Harvey1,7, Jung-EunShin2,7,MeredithA. Skiba1,7, GenevieveR. Nemeth1,
Joseph D. Hurley 1, Alon Wellner3,4,5, Ada Y. Shaw2, Victor G. Miranda 1,
Joseph K. Min2, Chang C. Liu 3,4,5, Debora S. Marks 2,6 &
Andrew C. Kruse 1

Antibodies are essential biological research tools and important therapeutic
agents, but some exhibit non-specific binding to off-target proteins and other
biomolecules. Such polyreactive antibodies compromise screening pipelines,
lead to incorrect and irreproducible experimental results, and are generally
intractable for clinical development. Here, we design a set of experiments
using a diverse naïve synthetic camelid antibody fragment (nanobody) library
to enable machine learning models to accurately assess polyreactivity from
protein sequence (AUC>0.8). Moreover, our models provide quantitative
scoring metrics that predict the effect of amino acid substitutions on poly-
reactivity. We experimentally test our models’ performance on three inde-
pendent nanobody scaffolds, where over 90% of predicted substitutions
successfully reduced polyreactivity. Importantly, the models allow us to
diminish the polyreactivity of an angiotensin II type I receptor antagonist
nanobody, without compromising its functional properties. We provide a
companion web-server that offers a straightforward means of predicting
polyreactivity and polyreactivity-reducing mutations for any given nanobody
sequence.

Due to their specificity and affinity, antibodies are an indispensable
class of biomedical research tools aswell as important therapeutics for
the treatment of cancer, autoimmune, and infectious diseases.
Although high target specificity is prioritized during the antibody
discovery process, some antibodies with desired functional properties
bind to off-target biomolecules with low-affinity. In clinical develop-
ment, these non-specific or polyreactive antibodies show poor phar-
macokinetics or other liabilities that limit clinical use1–3. Additionally,
polyreactive antibodies encountered in the basic research setting
cause misinterpretation of results, low reproducibility in routine
experiments, and wasted time and money4. Thus, there have been

several calls to standardize the quality and specificity of antibodies
used in research settings similar to those in the clinic5,6.

Synthetic antibody libraries facilitate antibody discovery for tar-
gets that are not readily amenable to traditional immunization-based
selection campaigns, such as those that are highly conserved across
species7–13. However, antibodies discovered through fully synthetic
approaches lack in vivo filtering for off-target reactivity. Developing
and improving methods to detect and quantify polyreactivity are
essential for improving our ability to obtain high quality antibodies
through fully synthetic means and enhancing the quality of antibodies
in both clinical development and basic research settings. Many
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experimental methods that evaluate polyreactivity14–21 are low-
throughput and require experimental screening with purified anti-
body. The degree of polyreactivity is highly method and reagent-
dependent and is often measured after antigen selection once lead
clones are already identified. Understanding sequence features of
polyreactive antibodies could provide an efficient avenue to quanti-
tatively assess antibodypolyreactivity basedon a standarddata set and
prioritize clones with the highest clinical and research potential. Pre-
vious studies22–29 have revealed determinants of polyreactivity in
antibodies, such as specific J- and V-chain usage24, high isoelectric
points23,25–32, longer CDR3s23,30, enrichment of arginine, glycine, valine,
and tryptophan containing motifs25, and glutamine residues30. Despite
these extensive analyses, the relative importance of many character-
istics is disputed28 and currently available software cannot predict
polyreactivity quantitatively24.

For broad utility, a computational method should accurately
predict the degree of polyreactivity of diverse sequences and generate
candidate rescuemutations fromsequence alone. To achieve this goal,
we designed experiments to learn features of high and low poly-
reactivity clones from a naïve synthetic yeast display library of heavy-
chain only camelid antibody fragments (nanobodies)7,33. Synthetic
nanobodies provide an ideal reductionist system to probe poly-
reactivity in the context of a fixed framework without the influence of
heavy and light chain pairing effects. Furthermore, nanobodies are
emerging therapeutic molecules that can target antigen surfaces and
tissue types not accessible to conventional antibodies34,35. One nano-
body is approved for clinical use and increasing numbers are advan-
cing through clinical stages35,36. Despite growing interest in
nanobodies as therapeutic tools, few developability studies focus on
single chain antibody fragments.

Here, we show that learned features of high and lowpolyreactivity
nanobodies result in generalizable software that quantifies nanobody
polyreactivity based on sequence alone andmost importantly designs
specific mutations to decrease polyreactivity. We demonstrate suc-
cessful use of our software on three polyreactive nanobodies, includ-
ing AT118i4h32, a nanobody antagonist of the angiotensin II type I
receptor (AT1R)37, where we reduce polyreactivity without compro-
mising binding affinity or target-specific pharmacology. This
sequence-based approach is a generally useful tool for prioritizing
nanobody clones identified in selection experiments and the approach
is in principle fully applicable to large libraries of conventional anti-
bodies as well.

Results
Enrichment of naïve library for polyreactive clones
Unlike previous analyses of antibody polyreactivity that primarily
focused on clinical candidates30–32, clones enriched for antigen
binding24, or primarily focused on the contribution of VH CDR3
to antibody polyreactivity25,28, we designed experiments to assess
polyreactivity of clones from a naïve synthetic yeast display library.
The yeast display library contains >2 × 109 unique nanobody clones
that mimic a naïve llama immune repertoire in CDR sequence com-
position and CDR3 length and possesses moderate diversity in the
CDR1 and CDR2 regions and extensive diversity in the CDR3 region7,33.
We identified polyreactive clones that bound to detergent-solubilized
Spodoptera frugiperda (Sf9) insect cellmembranes (Fig. 1)21. Thismixed
protein polyspecificity reagent (PSR) is compatible with sorting large
pools of antigen naïve clones to determine global contributions to
polyreactivity in an unbiased manner26 and is well validated against
other measures of polyreactivity for conventional antibodies2,21,22.
Notably, PSR binding correlates with poor pharmacokinetics, a liability
that is often discovered in late-stage clinical development and attrib-
uted to high polyreactivity2, and is commonly employed to detect
polyreactivity23,38–41. We used Magnetic-Activated Cell Sorting (MACS)
to enrich for polyreactive clones and deplete non-expressing clones
from the library. Following MACS, distinct populations of clones with
high and low polyreactivity were isolated by Fluorescence-Activated
Cell Sorting (FACS) (Supplementary Fig. 1a, b).

As PSR staining is typically used to analyze polyreactivity of
conventional antibodies rather than nanobodies, we validated PSR
performance on nanobodies. To ensure that we had not simply
selected for nanobodies that bound to highly abundant molecules in
insect cell PSR, we stained our low and high polyreactivity FACS
pools with PSR derived from human embryonic kidney (HEK293)
cells and observed comparable levels of staining for each
clone (Supplementary Fig. 1c–f). We then recombinantly expressed
six nanobodies with varying levels of polyreactivity from our FACS
sorted pools and assessed polyreactivity by conventional direct
ELISA assays against lysozyme, double-stranded DNA (dsDNA),
single-stranded DNA (ssDNA), insulin, lipopolysaccharide (LPS), and
bare plastic (Fig. 2, Supplementary Fig. 2a–f), which are commonly
employed to assess antibody polyreactivity15,16. ELISA polyreactivity
assays performed using different reagents correlated well with one
another (r2 values between 0.745 and 0.969, p < 0.05) with the
exception of lysozyme (r2 values between 0.003 and 0.016, p-values
between 0.8127 and 0.9230), which did not correlate with the other
reagents. Furthermore, direct ELISA assays strongly correlated with
insect cell PSR (r2 values between 0.616 and 0.859) except for lyso-
zyme which exhibited a very weak correlation (r2 = 0.035). The cor-
relations between insulin, LPS, and ssDNA direct ELISA assays to
insect cell PSR staining were highly significant (p < 0.05), while bare
plastic and dsDNA direct ELISA assays were modestly significant
(p < 0.10). Lysozyme direct ELISA assays did not significantly corre-
late with insect cell PSR staining (p = 0.7219). Overall, the ELISA
experiments support that the pools of nanobodies selected by PSR
staining possess high and low levels of polyreactivity. We then
employed Affinity-Capture Self-Interaction Nanoparticle Spectro-
scopy (AC-SINS) as a third orthogonal technique to validate PSR
performance at assessing nanobody polyreactivity (Supplementary
Fig. 2g). AC-SINS measures the tendency of antibodies to self-
associate and has previously been correlated to other polyreactivity
measures for antibodies22. We observe that three nanobodies with
low insect cell PSR staining do not self-associate in AC-SINS assays,
while four nanobodies that stain strongly with insect cell PSR exhibit
self-association and wavelength shifts greater than 5 nm, a previously
reported cutoff for antibody self-association causing developability
issues42. Given this validation, we deep-sequenced the two FACS
sorted pools and obtained 65,147 unique low polyreactivity
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Deep sequencing Model
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Polyreactive
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Fig. 1 | Development of a computational tool to assess and mitigate poly-
reactivity. Starting from a large, naïve synthetic nanobody library, pools of
nanobodies with low and high polyreactivity were isolated. Machine learning
models were trained on deep sequencing data from these pools to learn sequence
features of low and high polyreactive nanobodies. These algorithms were incor-
porated into software that quantitatively predicts polyreactivity levels and
recommends substitutions that reduce it. Created with BioRender.com.
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sequences and 69,155 unique highly polyreactive sequences that
contained 51,308 and 59,623 distinct CDR regions.

Development of computational method
We developed computational models trained on the sequences from
the FACS-sorted pools to classify nanobodies as possessing high or
low polyreactivity. We constructed a suite of supervised, dis-
criminative models that can separate high and low polyreactivity
sequences (Fig. 3a, b). These models include a logistic regression
model of a one-hot embedding of the CDR sequences, a logistic
regression model of a k-mer embedding (k = 3) of the CDR sequen-
ces, a convolutional neural network (CNN), and a recurrent neural
network (RNN). The one-hot logistic regressionmodel learns weights
for each amino acid type at each position in the CDR sequences that
are most predictive of polyreactivity; the k-mer logistic regression
learns weights for each motif (lengths 1, 2, and 3) that are most
predictive of polyreactivity, irrespective of where they occur within a

given CDR sequence. Convolutional neural networks use convolu-
tional filters to learn spatial information (e.g., an amino acid and its
neighboring residues). Recurrent neural networks capture sequential
information (e.g., the probability of a residue given the previous
residues). For the one-hot logistic regression and for the CNN, we
align the CDR sequences using the IMGT numbering scheme with
ANARCI43. The k-mer logistic regression and the RNNmethods do not
require aligned CDR sequences. In order to test the generalizability
of our models, we clustered the nanobody sequences using k-means
clustering to generate five clusters of sequences, which we used to
build train and test splits. These splits and careful selection
allowed us to avoid overly-optimistic prediction accuracies that
result from the test sets overlapping with or being similar to the
training sets44. Specifically, we ensured that all sequences in the test
sets were more than 10 edit distance (Levenshtein distance) and
possessed only ~75% sequence similarity in the CDR sequences from
each other (Fig. 3a).
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Fig. 2 | Properties of purified nanobodies exhibiting varying degrees of poly-
reactivity. a Spodoptera frugiperda (Sf9) insect cell PSR staining of single nano-
bodies isolated from FACS sorts. Data are mean +/− SEM of three independent
biological experiments performed in technical triplicate. Polyreactivity levels are
normalized with respect to the highest clone (Nb F02’). b CDR sequences of

isolated nanobodies. cDirect ELISA assaysmeasured the apparent EC50 (EC50APP) of
five index set members and nanobody AT118i4h32 to the specified reagents. Non-
specific binding, indicated by low EC50APP values, correlates with strong binding to
PSR. ELISA data are representative of two independent experiments, each per-
formed in technical triplicates.
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The one-hot logistic regression, k-mer logistic regression, and RNN
models performed well at classifying distant nanobody sequences as
high or low polyreactivity, achieving 0.85, 0.83, and 0.84 Area Under
Curve (AUC) respectively (Fig. 3b). Whereas, the CNN (AUC=0.78,
Fig. 3b) achieved similar performance to metrics as described pre-
viously in literature, such as isoelectric point23,29–31 and the number of
arginine residues25,27,28,32 (AUCs of 0.79 and 0.73, respectively, Fig. 3b).
Consistent with previous literature22,30, we found that hydrophobicity,
as described by the hydrophobicity index45, is not strongly predictive of
polyreactivity (AUC=0.57, Fig. 3b). However, CDR3 length, which is a
reported feature of polyreactive antibodies23,30 is not highly predictive
of nanobody polyreactivity (AUC of 0.58, Fig. 3b). Score and measure-
ment distributions of the nanobody sequences for each of these
metrics, separated by labeled class are displayed in Fig. 3e.

In addition to themodels’ robust performance, sequence features
learned by the logistic regression methods are easily interpretable. A
distinct advantage of the one-hot logistic regressionmodel is its ability
to produce a picture of amino acid contribution to polyreactivity at
eachposition of nanobody CDR sequences (Fig. 3c). In agreement with
previous findings, we find that acidic residues in CDRs 2 and 3 are
characteristic of low polyreactivity clones. The presence of arginine
residues across all CDRs, and lysine, tryptophan, or tyrosine in
CDR3 specifically contribute to higher polyreactivity. Despite the
overall enrichment of arginine and tryptophan in polyreactive clones,
the position-specific analysis provided by the one-hot model indicates
that low polyreactivity clones tolerate arginine in positions 30 and 38
of CDR1 and tryptophan in position 105 in CDR3. Furthermore, we
observe that acidic residues strongly contribute to polyreactivity at
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CDR1 positions 28 and 37, in contrast to their general polyreactivity-
lowering tendency. We also find that certain positions can accom-
modatemany amino acids without impacting polyreactivity (i.e., CDR2
position 58 and CDR3 position 106) while other positions only tolerate
a narrow subset of amino acids (i.e., CDR3 108 and 109). These results
inform future nanobody library design by suggesting which positions
should be fixed or broadly diversified.

The k-mer logistic regression model provides additional insight
into sequence dependencies on the local level in high or low poly-
reactivity clones (Fig. 3d). K-mer motifs containing negatively charged
residues such as glutamate and aspartate are highly associated with
low polyreactivity sequences, and positively charged residues such as
arginine and lysine are predicted to contribute to polyreactivity, in
concordance with the predictions of the one-hot logistic regression
model. These motifs differ from previously reported polyreactive
motifs that were enriched in glycine and the hydrophobic amino acids
valine and tryptophan25. However, these previously reported motifs
were derived from a library where only CDR3 was diversified. We
proceeded to use the one-hot and k-mer logistic regressionmodels for
further analysis based on their accuracy and interpretability.

Quantitative scoring of nanobody polyreactivity
In order to test if our model could go beyond predicting binary classi-
fication labels and quantitively score polyreactivity, we stained yeast
expressing 48 nanobodies isolated from MACS and FACS pools with
PSR to obtain an index set of sequenced clones with defined levels of
polyreactivity (Fig. 4a, Supplementary Fig. 3a, Supplementary Table 1).
Index set nanobodies were partitioned into three groups according to
their level of polyreactivity: minimal polyreactivity (light gray), moder-
ate polyreactivity (gray), and high polyreactivity (dark gray). Impor-
tantly, nanobodybinding intensity to PSR reagent didnot correlatewith
nanobody display level (r2 = 0.021, p =0.391), suggesting that nanobody
PSR binding intensities are directly comparable (Supplementary
Fig. 3b). Furthermore, to confirm that the rank order was not skewedby
PSR binding to unfolded nanobodies on the surface of yeast, the index
set was stained with an anti-VHH antibody, which recognizes the folded
nanobody framework region (Supplementary Fig. 3c). Levels of anti-VHH

antibody staining are not correlated to insect cell PSR staining
(r2 = 0.046, p =0.1446, Supplementary Fig. 3d), indicating that unfolded
clones do not confound our dataset. Finally, to verify that individual
nanobody clones are not recognizing a specific component of the insect
cell PSR reagent, we measured the polyreactivity of index set members
using PSR reagent derived from solubilized HEK293 cell membranes.
We found that insect cell and HEK293-derived PSR staining are highly
correlated (r2 = 0.895, p <0.0001), indicating that polyreactivity levels
do not vary with PSR reagent type and therefore we are not strongly
enriching for specific binders to one particular membrane component
(Supplementary Fig. 3e).

Biophysical characteristics of clones in our index set were reflec-
tive of the learned features in our high and low polyreactivity pools.
There is a modest but statistically significant correlation between PSR
staining of the index set and nanobody isoelectric point (r2 = 0.390,
p <0.0001, Supplementary Fig. 3f). While nanobodies with low iso-
electric points possess low polyreactivity, nanobodies with high pI
values demonstrate a range of polyreactivity levels. In contrast,
nanobody hydrophobicity index values are not correlated with poly-
reactivity (r2 = 0.036, p =0.195, Supplementary Fig. 3g).

Of the 48 nanobodies, four were previously seen in our training
set, sowe did not include these in our quantitative tests. Each of the 44
remaining nanobodies had at least six mutations from any single
nanobody sequence in the training set; the median of the minimum
edit distance (a proxy for the number of mutations) of each of these
index set nanobodies to the training set was 10 edit distance (the
maximum similarity to the training set was 75% sequence identity).
The correlation between the quantitative model predictions and

the experimental binding scores to PSR are strong - about 85% of the
maximumtheoretical correlation (Spearmanρof0.77 and0.79, for the
one-hot and k-mer logistic regressionmodels, respectively) (Fig. 4c, e).
For comparison, the Spearman correlations between the three inde-
pendent biological replicate experiments were 0.87, 0.87, and 0.95.
Thus, our models trained on sequence pools of high and low poly-
reactivity nanobody CDR sequences are highly accurate for both
classification and regression tasks for clones with distinct sequences.

Model performance at predicting polyreactivity of closely
related sequences
To determine if our computationalmodels could accurately assess the
influenceof pointmutations in single nanobody clones, we utilized the
autonomous hypermutation yeast surface display error-prone DNA
replication system (AHEAD)46 to rapidly evolve the four most poly-
reactive clones from our index set (Nb E05’, F02’, G09’, and F07’) to
have reduced binding to the PSR reagent. Over the course of four
AHEAD cycles involving nanobody hypermutation and FACS sorting,
global PSR staining of the evolved nanobody population decreased
(Supplementary Fig. 4). Deep sequencing analysis following the fourth
FACS round revealed variation in the CDR regions of each of the four
nanobodies.

A large proportionof the clones enriched byAHEAD are predicted
to have reduced polyreactivity by both the one-hot and 3-mer logistic
regression models. For the four clones, 97%, 67%, 69%, and 93% of the
observed mutations are predicted to decrease polyreactivity by the
one-hot logistic regressionmodel, with similar decreases predicted by
the k-mer logistic regression model (Supplementary Table 2). Fur-
thermore, K31E36, A50T55, and R57P64 substitutions that arose in
nanobody E05’ reflect the position-specific analysis provided by the
one-hot logistic regression model, where K, R, and A are characteristic
of polyreactive nanobodies at positions 36, 55, and 64 and all three
substitutions are characteristic of clones with reduced polyreactivity
(Fig. 3c). In a computational ranking of the polyreactivity of all
494 single amino acid substitutions using the one-hot logistic regres-
sionmodel in theCDR regions of E05’ found in ourAHEADexperiment,
from lowest to highest, R57P64 ranked 28th, K31E36 ranked 37th, and
A50T55 was 101st. Overall, the AHEAD-based directed evolution
experiment produced clones that our computational models predict
to have reduced polyreactivity which suggests that our models can
accurately score the polyreactivity of closely related sequences.

With confidence in our models’ performance on related clones,
we employed our computational model to independently predict
sequence substitutions to reduce polyreactivity of the highly poly-
reactive clone E10’ and moderately polyreactive clone D06 from our
index set. We performed a comprehensive in silico single and double
mutant scan, scored each sequence with both the one-hot logistic
regression model and the k-mer logistic regression model (Fig. 4d, f),
and ranked all the possible single and double mutants, including
insertions and deletions, surrounding the seed sequence. We sampled
the substitutions most likely to reduce polyreactivity (with the
exception of a cysteine substitution which could disrupt disulfide
bond formation) by selecting diverse mutations across residue types
and positions that are contained within a single CDR and span each of
the possible combinations of different CDR regions. Furthermore, if
therewas amutation indicated to decrease polyreactivity by the k-mer
logistic regression that scored similarly according to the one-hot
logistic regression model, we selected the sequence with a higher
k-mer logistic regression score to take into account local sequence
dependencies. We selected the three top-scoring single mutations for
each of the CDR regions, the top scoring double mutants within a
single CDR region, and the top scoring double mutants spanning two
CDR regions where at least one of the individual single mutations had
not already been tested in a different combination (Supplementary
Table 3).
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For the moderately polyreactive nanobody D06, 18 out of 21
variants that were computationally designed to decrease poly-
reactivity reduced levels of binding to insect cell PSR staining (Fig. 5a).
More stringently, 11 out of 21 mutations exhibited at least two-fold
reductions in polyreactivity. Although substitutions in eachof the CDR
regions were able to lower polyreactivity, CDR3 appeared to drive
polyreactivitymost strongly, as the largest reductions in polyreactivity

occurred from variations in the CDR3 region including A97H106 and
R98D107 R99H108.

For the highly polyreactive E10’ nanobody, 15 out of 16 compu-
tationally predicted single and double substitutions reduced binding
to PSR reagent (Fig. 5b). 9 out of the 16 substitutions reduced poly-
reactivity by at least 50%, including mutations in each of the three
CDR regions. Strikingly, the R99D107 Y102E110 clone, which was

Fig. 4 | Validation of computational model for quantitative predictions of
polyreactivity and generation of rescuemutations. a Generation of an index set
of polyreactivity mutants by Spodoptera frugiperda (Sf9) insect cell membrane
protein polyspecificity reagent (PSR) staining of yeast displaying 48 unique nano-
bodies isolated from MACS enrichment as well as non-reactive and polyreactive
FACS pools. Data are mean +/− SEM of three independent biological experiments
performed in technical triplicate. b New nanobody sequence(s) can be input into a
webserver, which will output computational predictions of polyreactivity and
biochemical properties of the sequence(s). It is also possible to input a nanobody
sequence to retrieve top scoring rescue mutations predicted to decrease poly-
reactivity. c, e The one-hot logistic regression model and k-mer logistic regression
model trained on the full NGS dataset from FACS sorts with PSR binding were used

to test quantitative predictions and rankings of the index set of clones spanning a
wide range of polyreactivity levels (as measured by PSR binding) (Spearman ρ of
0.77 and 0.79, respectively). A high score indicates low predicted polyreactivity,
whereas a low score indicates increased polyreactivity. d, f An in silico double
mutation scan (spanning substitutions, insertions, and deletions) was scored for
predicted polyreactivity using both the one-hot logistic regression model and
k-mer logistic regression model. From these in silico double mutation scans, a
diverse set (spanning each CDR and combinations of CDRs) of high scoring
mutations predicted to have low polyreactivity were selected as rescue mutations
for experimental testing from two-parent clones, E10’ and D06. Created with
BioRender.com.
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predicted to have the lowest polyreactivity value using the k-mer
logistic regression model has very low polyreactivity by experimental
PSR staining.

Polyreactivity reduction of a functional clone
We next tested if our model could be employed to decrease
the polyreactivity of a nanobody clone that was independently
selected for antigen specificity. AT118i4h32 is a nanobody antagonist
for the angiotensin II type 1 receptor (AT1R), a G protein-coupled
receptor (GPCR) that is a central regulator of blood pressure
and renal function. Importantly, AT118i4h32 was humanized
through the incorporation of eleven amino acid substitutions to
AT118 to make it resemble human VH3-23 and thus AT118i4h32 pos-
sesses a distinct framework compared to nanobodies in the synthetic
library. AT118i4h32 directly competes with the binding of small
molecule and peptide ligands to the AT1R and is active in vivo,
reducing mouse blood pressure to a comparable degree as the
clinically used angiotensin receptor blocker losartan37. Although
pharmacologically intriguing, AT118i4h32 is highly polyreactive
in the PSR assay and has a high pI value (9.6), which is characteristic
of polyreactive antibodies. Furthermore, a crystal structure of
AT118i4h32 displays large patches of positive charge on the protein
surface (Fig. 6a, Supplementary Table 4) and enrichment of both
solvent exposed arginine and hydrophobic residues in the CDR
regions (Fig. 6a).

We analyzed the sequence of AT118i4h32 and selected twelve
single amino acid substitutions scattered throughout each CDR pre-
dicted to reduce polyreactivity based on the one-hot logistic regres-
sion model (Supplementary Table 3). AT118i4h32 variants were
displayed on the surface of yeast and all showed reduced levels of PSR
binding (Fig. 6c). Neutralizing the highly basic patch composed of
R3035, R3136, and R99108 on the surface of AT118i4h32 (Fig. 6a) with
R31D36 and R99D108 substitutions substantially reduces AT118i4h32
polyreactivity. Notably, introduction of an additional arginine residue
with the Y29R30 substitution, which introduces a RRR sequence motif
into CDR1, reduces polyreactivity, further demonstrating that argi-
nine’s contribution to polyreactivity is position-dependent, which is
captured through our machine learning models.

To assess the effects of these substitutions on antigen binding,
AT118i4h32 variants were recombinantly expressed in E. coli and pur-
ified to evaluate AT1R binding by flow cytometry (Fig. 6d). Two
AT118i4h32 variants, G26D27 and T57I65, retained at least 80% of wild-
type binding levels to the AT1R. Combination of the G26D27 and T57I65

substitutions retained high levels of binding to the AT1R and yielded a
clone with a modest decrease in PSR binding compared to the G26D27

variant (Fig. 6c), bringing theoverall level ofpolyreactivity close to that
of the clinically approved nanobody drug Cablivi/caplacizumab47

(Supplementary Fig. 5a). Additionally, the G26D27 T57I65 variant has
reducedbinding to thepanel ofbioreagents compared to thewild-type
nanobody in ELISA assays (Supplementary Fig. 5b–g). AT118i4h32

Fig. 5 | In silico designed substitutions reduce nanobody polyreactivity.
a Polyspecificity reagent (PSR) staining of yeast displaying D06 variants. For the
moderately polyreactive D06 nanobody, 18 out of 21 variants that were computa-
tionally designed to decrease polyreactivity reduced levels of binding to insect cell
PSR staining. Data in a comprise the mean +/− SEM of at least three independent
experiments, each performed in technical triplicate. b PSR staining of yeast

displaying E10’ variants. For the highly polyreactive E10’ nanobody, 15 out of 16
computationally predicted single and double substitutions reduced binding to PSR
reagent. Data in b comprise the mean +/− SEM of at least three independent
experiments, each performed in technical triplicate. Substitutions to CDRs 1, 2, and
3 are colored in blue, green, and orange.
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variants containing G26D27 and T57I65 maintain affinity for AT1R
(Supplementary Fig. 5h, i) and the ability to act as receptor antagonists,
displacing small molecule orthosteric antagonists (Fig. 6e) and sup-
pressing receptor signaling upon angiotensin II (AngII) stimula-
tion (Fig. 6f).

To investigate how the G26D27 T57I65 substitutions alter
AT118i4h32’s structure and contribute to reduce polyreactivity, we
crystallized AT118i4h32 G26D27 T57I65 and solved the structure at 1.6 Å

resolution (Fig. 6b, Supplementary Table 4). The T57I65 substitution is
located at the end of CDR2. I5765 forms more favorable hydrophobic
interactionswith neighboring I5156 and I65 side chains thanT5765. In the
case of AT118i4h32, maintaining this hydrophobic interaction is
essential for antigen recognition, as the T57D65 substitution dimin-
ishedAT1Rbinding two-fold (Fig. 6d).While theT57I65mildly decreases
polyreactivity, AT118i4h32 variants containing the T57I65 substitutions
had slightly decreased thermal stability (Supplementary Table 5),
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Fig. 6 | Development of AT118i4h32 variants with reduced polyspecificity.
a Electrostatic surface of AT118i4h32. CDR1, CDR2, and CDR3 are colored blue,
green, and orange. All positions substituted to produce variants of AT118i4h32with
reduced polyreactivity are shown in sticks with atomic coloring
b AT118i4h32 structure as colored in a. G26D27 and T57I65 substitutions are boxed.
c PSR staining of yeast displaying AT118i4h32 variants. All amino acid substitutions
decrease polyreactivity. Data in c comprise the mean +/− SEM of four independent
experiments, each performed in technical triplicate. CDRs are colored as in a.
d Binding of AT118i4h32 variants to HEK293 suspension cells expressing FLAG-
AT1R. Cells were stained with AT118i4h32-V5-His variants, AlexaFlour-488 con-
jugated anti-FLAG, and AlexaFlour-647 conjugated anti-V5 antibodies, then ana-
lyzed by flow cytometry. Data in d is the average of three independent experiments

performed in technical triplicate, error bars are shown as SEM. e Radioligand
competition binding of AT118i4h32 variants or the small molecule antagonist
losartan and [3H]-olmesartan to AT1R in cell membranes. Like WT AT118i4h32, the
G26D27, T57I65, and G26D27 T57I65 variants compete with olmesartan for binding to
the AT1R. Data in e is the average of three independent experiments performed in
technical triplicate, error bars are shown as SEM. f Suppression of Gq-mediated
inositol monophosphate production by AT118i4h32 in response to AngII stimula-
tion. HEK293 suspension cells expressing FLAG-AT1R were treated with 5μM
AT118i4h32 or no nanobody prior to AngII stimulation. Data in d is the average of
three independent experiments performed in technical triplicate, error bars are
shown as SEM. Ki values are reported in Supplementary Table 6.

Article https://doi.org/10.1038/s41467-022-35276-4

Nature Communications |         (2022) 13:7554 8



indicating that reduced polyreactivity is not necessarily correlated
with thermal stability.

Residue D2627, found at the N-terminus of helical CDR1, forms a
hydrogen bond with the side chain of framework residue N76 in all
eight copies of the nanobody in the crystal structure’s asymmetric unit
(Fig. 6b). This hydrogen bond rigidifies the CDR1 position and may
reduce the flexibility of the nanobody’s CDR regions. Additionally, the
G26D27 substitution improves AT118i4h32’s stability; we observed a
five-fold increase in AT118i4h32 G26D27 yield from E. coli and a two-
degree increase in melting temperature of the G26D27 variant (Sup-
plementary Table 5) over wild-type levels. Corresponding G26D27

substitutions reduced the polyreactivity of nanobodies D06 and E10’.
Despite occurring in just 0.05%of sequences from the naïve repertoire
of seven llamas48 (1.12 million unique nanobody sequences), the
G26D27 substitution may be both beneficial and tolerated in many
sequence contexts andmay broadly reduce polyreactivity by reducing
the conformational flexibility of the CDR regions49.

Expansion of computational methods using deeper sequencing
Upon examination of corresponding substituted positions in D06,
E10’, and AT118i4h32 we observe some substitutions reduce poly-
reactivity in all clones, such as G26D27, whereas other mutations dra-
matically reducedpolyreactivity of somenanobodies (i.e., E10’A97W105

and AT118i4h32 A96W105) while having little to no effect in another
clone (i.e., D06 N96W105). This suggests that position dependency is
critical for polyreactivity, whichmay bemore accurately capturedwith
a larger data set. Therefore, we sought to improve our in silicomethod
using deeper sequencing data. Through additional rounds of FACS
selection, we collected 1,221,800 unique low polyreactivity clones and
1,058,842 unique high polyreactivity clones. We trained our suite of
supervised classification models on this extended dataset and inclu-
ded analysis of an extra position at the end of CDR2, which has some
variability in the synthetic nanobody library, but was not included in
the initial analysis.

To test classification accuracy, we clustered the sequences into 10
clusters using a k-means algorithm for train/test splits, and again lim-
ited our training dataset to sequences with at least 10 mutations as
compared to any sequence in the test sets. We achieved comparable
classification AUCs to the logistic regression and RNN models trained
on the original FACS sorts (one-hot logistic regression: 0.83, 3-mer
logistic regression: 0.83, RNN: 0.84) (Supplementary Fig. 6a). The
convolutional neural network model received a significant perfor-
mance boost (CNN: 0.83 compared to 0.78 AUC previously) (Supple-
mentary Fig. 6a). For the larger dataset, we see that the models that
capture more complexities in sequences, such as the CNN and RNN,
have higher accuracies, suggesting that there are meaningful depen-
dencies in nanobody sequences that contribute to polyreactivity
beyond site-specific amino acid contributions and/or 3-mermotifs and
would allow us to make more accurate predictions to reduce poly-
reactivity for individual sequences. Furthermore, for each of these
models we see an improved correlation (Spearman ρ) of polyreactivity
scores with the index set measurements (one-hot logistic regression:
0.87, 3-mer logistic regression: 0.86, CNN: 0.88, RNN: 0.88) (Supple-
mentary Fig. 6b–e). The majority of substitutions applied to clones
D06, E10’, andAT118i4h32 are still predicted to decrease polyreactivity
across the four models trained on the deeper FACS sequencing
experiments (37, 37, 41, and 23 out of 45mutations for one-hot logistic
regression, k-mer logistic regression, CNN, and RNN respectively; for
the RNN in particular, most mutations that were not predicted to
decrease polyreactivity had very small changes in predicted signal,
Supplementary Table 3).

As a resource to the field, we provide open-access use of our
polyreactivity prediction software on our webpage (http://18.224.60.
30:3000/). The webserver allows users to input a nanobody sequen-
ce(s) in FASTA format and outputs the aligned nanobody sequence

with IMGT numbering using ANARCI43, along with biochemical prop-
erties of the sequence, including isoelectric point, hydrophobicity,
CDR definitions (IMGT), CDR lengths, and computational predictions
of polyreactivity scores using the one-hot logistic regression models
that were trained for the design of rescue mutations. Polyreactivity
values predicted by the server are displayed in the context of our index
set (Fig. 4) and can be compared with clinical candidates (Supple-
mentary Table 7) to assess developability.

Discussion
Previous work has identified some biophysical characteristics of
polyreactivity, but these studies have generally been performed on
relatively small sets of antibody sequences and focusedon improving a
single antibody scaffold rather than providing a generalizable method
to mitigate polyreactivity. Here, we designed and conducted high-
throughput experiments to capture diverse clones that were not
influenced by other selection pressures, facilitating an unbiased ana-
lysis of nanobody polyreactivity. Starting with a large naïve synthetic
library mimicking the llama immunological repertoire, we isolated
large pools of high and low-polyreactivity nanobody clones based
upon binding to the mixed-protein PSR reagent. Our models are over
80% accurate in discriminating between clones with high and low
polyreactivity (Fig. 3b), rank levels of polyreactivity with high fidelity
(Fig. 4), and reliably identify amino acid substitutions that reduce
polyreactivity (Figs. 5 and 6c).

Since our models were built upon experiments that were inten-
tionally designed to interrogate sequence contributions to poly-
reactivity, they are highly accurate at measuring polyreactivity. In
accordance with previous studies, our results show that arginine
generally promotes nanobody polyreactivity while glutamate and
aspartate usually decrease polyreactivity. We also report unexpected
mutations that decrease polyreactivity including AT118i4h32 A96W105

and A97H106. We find that amino acid contributions to polyreactivity
are highly position-dependent and more nuanced than broad gen-
eralizations suggest. This finding is in agreement with a recent inde-
pendent study that analyzed polyreactivity of a subset of antibodies24.
Furthermore, our computationalmodels’ ability to accurately quantify
polyreactivity from sequence identity allows detection and reduction
of polyreactivity of existing clones. More complex models including
the CNN and RNNmodels also allowed us to evaluate dependencies of
amino acids in different locations in nanobodies to polyreactivity. We
find such dependencies contribute to polyreactivity, indicating that
both local and global characteristics of nanobodies influence their
degree of polyreactivity.

We provide to the community an easy-to-use webserver that
encapsulates our computational methods. These methods can guide
antibody discovery campaigns atmanypoints in the discovery pipeline
and are especially useful for evaluating polyreactivity in fully synthetic
antibody selections, which lack in vivo filtering for polyreactivity. For
instance, our software predicted amino acid substitutions to reduce
polyreactivity of the single clone AT118i4h32. In this case, the clone
rescue approach allowed us to retain strict pharmacological function
for this intriguing clone, which can be difficult to maintain during
experimental selection rounds.Moreover, the polyreactivity of a list of
antigen binders can be prospectively ranked to efficiently prioritize
clones from large pools of NGS sequencing data during selection
campaigns.Ourmethod is especially powerful in instanceswhere prior
structural information describing the nanobody antigen interaction is
available. We found that substitutions in each of the CDR regions of
D06, E10’, and AT118i4h32 reduce polyreactivity, suggesting that each
CDR region contributes to polyreactivity. Therefore, if a certain CDR
region is critical for antigen recognition, substitutions in alternative
CDR regions can potentially compensate in reducing polyreactivity. In
addition, our success in reducing polyreactivity of AT118i4h32, where
the humanized framework region differs from clones in the training
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set, indicates that our methods are applicable to nanobodies from a
range of sources and can be fully integrated with existing computa-
tional tools to reduce immunogenicity50.

As recently reported24,51,52, similar approaches could be applied to
fully characterize sequence features of polyreactive conventional
antibody clones. These methods can be expanded by analyzing large
antigen-naïve libraries and adding in the three light-chain CDRs and
germline gene choice as additional factors for polyreactivity predic-
tion and optimization. Learned sequence features can be applied to
future library design to create next-generation synthetic antibody and
antibody-fragment libraries containing clones with reduced poly-
reactivity. Overall, thesemodels, derived from a large sequence space,
can be combined with affinity data, gathered during the selection
process, to computationally predict antibodies with high antigen
specificity and low polyreactivity, without additional experimental
effort.

Methods
Generation of insect cell membrane polyreactivity reagent
Insect cellmembranepolyreactivity reagentwas generated as described
previously21. Briefly, 250mL of Sf9 insect cells at a density of 4 × 106

cells/mL were pelleted, washed in 100mL PBS+ 1% BSA followed by
30mL Buffer B (50mMHepes pH 7.2, 150mMNaCl, 2mM CaCl2, 5mM
KCl, 5mM MgCl2, 10% glycerol). The cell pellet was resuspended in 3x
pellet volume of Buffer B with a protease inhibitor tablet (Roche) and
lysedwith a dounce homogenizer. Themembrane fraction was pelleted
by centrifugation at 40,000x g for 1 hour, washed with 1mL Buffer B,
and resuspended in 3mL of Buffer B with dounce homogenization.
Total protein was quantified using the DC protein assay (Biorad) fol-
lowingmanufacturer’s instructions. Themembrane fractionwas diluted
to ~1mg/mL in Buffer B and biotinylatedwith 200μMNHS-LC-Biotin for
three hours at 4 °C. 20mMTris pH 8 was added to quench excess NHS-
LC-Biotin. The biotinylated membrane fraction was centrifuged at
40,000x g for 1 hour and the pellet was washed 5 times with Buffer B
and resuspended in 3mL Buffer B + 10% glycerol by dounce homo-
genization, and total protein was quantified by the DC protein assay
(Biorad). The membrane fraction was diluted to 1mg/mL in solubiliza-
tion buffer (50mMHepes pH 7.2, 150mMNaCl, 2mMCaCl2, 5mMKCl,
5mM MgCl2, 10% glycerol, 1% DDM, 1 x protease inhibitor pH 7.2) and
stirredovernight at 4 °C. Themixturewas centrifuged for 40,000x g for
1 hour. Total protein in the supernatant containing the solubilized
membrane fraction was quantified using the DC protein assay and ali-
quots were flash-frozen and stored at −80 °C.

Yeast sorting
A yeast surface display library containing >2 × 109 synthetic nanobody
sequences was used where each amino acid position is diversified
based on the natural llama immunological repertoire33. Nanobodies
are tethered to the yeast cell surface on a synthetic stalk7 from a vector
encoding nourseothricin resistance33 in Saccharomyces cerevisiae
BJ5465. Nanobody expressionwas induced for 36–48 hours in dropout
medium without tryptophan (-Trp) supplemented with galactose.
5 × 109 yeast cellswere stainedwith 10%PSR in selectionbuffer (20mM
Hepes pH 7.5, 100mM NaCl, 0.1% DDM, 0.01% CHS 0.05% BSA, 5mM
CaCl2, 10mM maltose) at 4 °C for 1 hour. Cells were spun down,
resuspended in 4.5mL selection buffer, and incubated with 500 µL
streptavidin conjugatedmicrobeads (Miltenyi) for 20min at 4 °C. Cells
were washed with 5mL selection buffer and applied to a LS column
(Miltenyi). The columnwaswashedwith 8mLselection buffer. 2.8 × 107

yeast clones were collected in the MACS elution and subjected to a
round of FACS. 5 × 107 yeast cells were stained with 10% PSR in selec-
tion buffer for 1 hour at 4 °C, washed with selection buffer, and stained
with a 1:100 dilution of Alexaflour-647 conjugated anti-HA antibody to
detect nanobody expression and Alexaflour-488 conjugated strepta-
vidin (Biolegend) to detect biotinylated PSR positive cells for 15min.

Cells were washed with selection buffer and resuspended in selection
buffer for FACS on a SONY SH800 cell sorter. Gates to detect low and
high polyreactivity clones were set based upon cells stained with
Alexaflour-647 conjugated anti-HA antibody and Alexaflour-488 con-
jugated streptavidin. For initial experiments 5 × 107 total yeast cells
were sorted. 3.7 × 106 low polyreactivity clones and the most poly-
reactive clones (top ~1% containing 3.2 × 106 clones) were collected. To
obtain additional sequencing data the MACS enriched library was
subjected to additional rounds of cell sorting to collect 4.6 × 107 highly
polyreactive clones and 9.8 × 105 low polyreactivity clones. Cells from
the MACS elution and low and high poyreactivity FACS sorted popu-
lations were plated on -Trp media to obtain single clones. Flow cyto-
metry gating figures were generated in FlowJo (10.8.1).

Deep sequencing
The nanobody sequences were amplified from the low and high
polyreactivity populations via colony PCR. Media was aspirated from
4× 106 pelleted yeast cells. Cells were microwaved for 1min on high
power twice. Cells were resuspended in 1x Q5High-Fidelitymastermix
containing 0.3mM forward (GTTCAATTGGACAAGAGAGAAGCT) and
reverse primers (GTAATCTGGAACATCGTATGGGTA). Cells were sub-
jected to a 4min incubation at 95 °C and DNA was amplified following
the manufacturer’s protocol. Amplified DNA was gel extracted and
evaluated via Illumina MiSeq in a 2 × 250 paired-end sequencing
reaction.

NGS analysis and sequence processing
Fastq sequences from deep sequencing were processed using the
FastQC, Trimmomatic, FASTX-Toolkit programs. Sequences were
translated to protein sequences using the Biopython package and only
nanobody sequences were retrieved by selecting for the highly con-
served final beta strand sequence. The nanobody sequences were
aligned using ANARCI with standard IMGT numbering to identify the
CDR regions. For our dataset of sequences to train the supervised
models, we limited nanobody sequences to sequences with a CDR1
length of 8, a CDR2 length of 8 or 9 (9 or 10 in the deeper sequencing
exploration,whenwe include anadditionalposition at the endofCDR2
to includemore variability), andCDR3 lengths between6and22.These
processing steps leave us with 65,147 unique low polyreactivity
sequences and 69,155 unique highly polyreactive sequences that
contained 51,308 and 59,623 distinct CDR regions.

Supervised model development
The CDR regions were used to build four different types of supervised
models: a one-hot logistic regression model, a k-mer logistic regres-
sion model, a CNN, and an RNN. The logistic regression models were
built using the scikit-learn python package. For the one-hot logistic
regression model and CNNmodel, the sequences were processed into
aligned one-hot encoding vectors of amino acids per position (via
IMGT numbering). For the RNN, sequences were processed into non-
aligned one-hot encoding vectors (padded at the ends of sequences to
the longest length). For the k-mer logistic regressionmodel, sequences
were processed into vectors of k-mers ranging from single amino acids
(1-mer) to 3-mer motifs. The CNN and RNN models were written in
pytorch. The CNN has three convolutional layers (first layer: 1D-
convolution (channel dimension size 20 → 32) with kernel size of 3,
BatchNorm, and ReLU; second layer: 1D-convolution (channel dimen-
sion size 32→ 64)with kernel size of 3, BatchNorm, ReLU, andMaxPool
with kernel size of 3, stride of 3; 1D-convolution (channel dimension
size 64 → 128) with kernel size of 3, BatchNorm, ReLU, and MaxPool
with kernel size of 3, stride of 1) followedby a fully connected layer and
a final sigmoid for binary classification andwas trained using the Adam
optimizer. The RNN has two layers and a hidden size of 128. For
splitting sequences by clusters and sequence identity sci-kit learn
KMeans clustering and python-levenshtein package was used.
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Yeast plasmid transformation
pYDS plasmids were transformed into yeast following standard
protocol53. 2x YPAD media was inoculated with Saccharomyces cere-
visiae BJ5465 and grown to a density of 2 × 107 cells/mL. Cells were
harvested by centrifugation and washed with water five times. 1E6 cells
were suspended in a 360uL transfection mix containing 33.3%
PEG3350, 100mM lithium acetate, 0.28mg/mL salmon sperm carrier
DNA, and 1μg of the pYDS plasmid encoding the nanobody, synthetic
stalk, and nourseothricin resistance cassette. The transformation
mixture was incubated at 42 °C for 40min. Yeast cells were isolated by
centrifugation, washedwithwater, and resuspended in YPAD. After a 1-
2 hour outgrowth at 30 °C without shaking, cells were plated on YPAD
supplemented with 100μg/mL nourseothricin.

Anti-VHH Antibody Staining
Polyreactivity indexpanel yeastweregrown in -Trp+Glumedia for two
days at 30 °C and induced in -Trp + Gal media at 25 °C for two days.
After induction, 1 × 106 yeast cells were washed with DDM selection
buffer and were stained with a 1:100 dilution of Alexafluor-488 con-
jugated Monorab Rabbit Anti-Camelid VHH Antibody (Genescript) and
1:100 dilution of Alexafluor-647 conjugated anti-HA antibody. Follow-
ing an additional wash, analytical staining was performed using a BD
Accuri C6 flow cytometer.

Recombinant nanobody expression and purification
Recombinant nanobodies containing a C-terminal V5 epitope and
hexahistidine tag were cloned into pET26b and amino acid substitu-
tions were introduced using the QuikChange lighting site-directed
mutagenesis kit (Agilent). Plasmids were transformed into E. coli
BL21(DE3) in Terrific Broth (RPI) supplemented with 4% glycerol and
50 ug/mL kanamycin to an OD600 of 1–2 at 37 °C and cooled to
17–20 °C for one hour. Protein expression was induced using 0.2mM
isopropyl β-D-1-thiogalactopyranoside (IPTG, Gold Biotechnology)
overnight. Bacterial pellets were resuspended in room temperature
SET lysis buffer (200mM Tris pH 8, 500mM sucrose, 500μM EDTA)
with gentle stirring for 20min, followed by addition of 2x volume ice
cold DI H2O, 5mMmagnesium chloride, and 1μL benzonase nuclease
(Sigma-Aldrich) for 1 hour. Cellular debris was removed by cen-
trifugation at 14,000 x g for 30minutes. Following centrifugation,
100mM sodium chloride was added to the supernatant with stirring
for 15min and the supernatant was filtered using glass microfiber fil-
ters (Fisher Scientific). Clarified lysate was passed over Protein A resin
(Gold Biotechnology) equilibrated with Protein A wash buffer (10mM
sodium phosphate pH 7.5, 100mM sodium chloride). Then, the col-
umn was washed with 10 column volumes Protein A wash buffer, and
nanobody was eluted using 10 columns Protein A elution buffer
(100mMsodium phosphate pH 2.5, 100mMsodium chloride) directly
into 1 column volume 2M Hepes pH 8. The Protein A column eluate
was passed over a Ni-NTA (Qiagen) column equilibrated with Ni-
column wash buffer (20mM Hepes pH 7.5, 150mM sodium chloride).
The column was then washed with 10 column volumes Ni-NTA wash
buffer and eluted using 10 column volumes Ni-NTA elution buffer
(20mM Hepes pH 7.4, 150mM sodium chloride, 200–400mM imi-
dazole). The eluate was then dialyzed overnight against SEC buffer
(20mM Hepes pH 7.5, 150mM sodium chloride, 10% glycerol) and
concentrated. Index set nanobodies were purified by size exclusion
chromatography using a Superdex S-75 10/300 GL column (GE
Healthcare) gel filtration system. Protein purity was assessed by
SDS-PAGE.

Nanobody polyreactivity ELISA assays
Direct ELISA assays were performed similarly to those reported pre-
viously. Briefly, high-binding Costar 96-well plates (Corning) were
coated with 0.5μg salmon sperm ssDNA (Abcam), calf thymus dsDNA
(Sigma-Aldrich), lipopolysaccharide from E. coli (Sigma-Aldrich),

chicken egg white lysozyme (Sigma-Aldrich), or 0.25 μg insulin (Fitz-
gerald) and incubatedovernight at 4 °C. The nextmorning, plateswere
washed three times using wash buffer (PBS pH 7.5, 0.001% Tween),
were blocked using blocking buffer (PBS pH 7.5, 0.1% Tween-20, 1mM
EDTA, 2% BSA) for two hours at room temperature, and then were
washed three times with wash buffer. Following blocking, nanobodies
(200μL) were incubated at the indicated concentrations at room
temperature in PBS pH 7.5 for two hours. After three more washes,
plates were incubated with HRP-anti V5 antibody (Abcam ab1325,
1:10,000 dilution) in PBS+ 2% BSA for one hour at room temperature.
Plates then were washed three times with wash buffer and 1-Step ABTS
substrate solution (100μL, ThermoScientific) was added to the plates,
which were then incubated in the dark for 20min. Stop solution (1%
SDS in PBS, 100μL) was added to each plate and absorbance at 405 nm
wasmeasured using a SpectromaxM5microplate reader. Results were
analyzed in GraphPad Prism.

AC-SINS experiments
AC-SINS experiments were performed as described previously42.
Briefly, AffiniPure Goat Anti-Human IgG, Fcy fragment capture anti-
body (Jackson ImmunoResearch) and ChromoPure Goat IgG whole
molecule non-capture antibody (Jackson ImmunoResearch) were dia-
lyzed overnight into 20mM sodium acetate pH= 4.3. Then, a 4:1 mass
ratio of capture to non-capture antibody was prepared. A 9:1 ratio of
gold nanoparticles to capture/non-capture antibody mixture was
incubated overnight at room temperature andwas treatedwith 0.1μM
PEGmethyl ether thiol to block empty sites on the gold nanoparticles.
Next, a 10x solution of gold nanoparticles was prepared by spinning
gold nanoparticles down at 20,000 x g for 5min and resuspending in a
tenth of the original volume. For each sample tested, 5μL of 10x gold
nanoparticles and 45μL of nanobody sample at 0.05mg/mL were
incubated together for 2 hours in the dark in a polypropylene plate.
Absorbance was read using an Envision I spectrophotometer in 1 nm
increments between 450 and 650nm. Amax values were calculated by
fitting experimental data with a 2nd order polynomial model and cal-
culating the wavelength where the slope is equal to zero.

AHEAD orthogonal replication
Nanobodies were amplified using primers PSR_Nb_F and PSR_Nb-R and
cloned into the AHEAD integration plasmid (pAW240). The plasmids
were linearized with ScaI and transformed into the AHEAD base strain
as previously described46. At each cycle, 5 × 107 cells were labeled with
biotinylated insect cell membrane polyreactivity reagent and a HA
epitope tag binding antibody as described above and subjected to
FACS selection applying a gate that enriches for cells with reduced
binding to PSR. The typical number of cells that were selected at each
round was 400 out of 2 × 107 sorted cells. The selected cells were
sorted into 3mL of SC – HLUW media and grown at 30 °C with 250
RPM shaking for 48 hours until saturation. Cells cultures were then
induced for nanobody display by diluting them at a 1:20 ratio into SC
-HLUW media containing 2% galactose instead of glucose and incu-
bated at 20 °C for 48 hours. In preparation of next-generation
sequencing, p1 plasmid was extracted, as previously described54,
from yeast cultures after the FACS step of each AHEAD cycle. PCRs
were performed with Q5 Master Mix (New England Biolabs Cat#
M0492S) and primers NGS_p1_F and NGS_p1_R. Following PCR reac-
tions, samples were PCR purified. Amplicon sequencing was per-
formed by the Genewiz and the resulting sequences were analyzed
using the methods described above.

Polyspecifity Reagent Analytical Staining
Mutations in D06, E10’, and AT118i4h32 were introduced using the
Quikchange Lightning mutagenesis kit (Agilent), and yeast were
transformed using a standard transformation protocol. Polyreactive
nanobody panel and mutant yeast were grown in -Trp +Glu media for
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twodays at 30 °C and induced in -Trp+Galmedia at 25 °C for twodays.
1 × 106 yeast were washed with DDM selection buffer, and were stained
with a 1:10 dilution of either insect cell PSR reagent or Expi cell PSR
reagent for 30min at 4 °Cwith shaking. Following incubation with PSR
reagent, yeast were washed with DDM selection buffer and were
stained with a 1:100 dilution of Alexafluor-647 conjugated anti-HA
antibody and 1:100 dilution of Alexafluor-488 conjugated streptavidin
(Biolegend) for 15min at 4 °C with shaking. Cells were washed once
morewith DDM selection buffer and analytical stainingwas performed
using a BD Accuri C6 flow cytometer.

AT118i4h32 AT1R binding assay
Expi293F cells stably expressing the tetracycline repressor55 were sta-
bly transfected with a wild-type human FLAG-AT1R containing plasmid
(pCDNA Zeo-TetO) to create an inducible cell line, as previously
described56. Expi293F TetR Zeo FLAG-AT1R cells were grown to
1.5–2 × 106 cells/mL induced with 0.4μg/mL doxycycline hyclate for
24 hours.

Cells were washed with cold flow assay buffer (20mM Hepes pH
7.4, 150mM NaCl, 0.1% BSA). 2.8 × 105 cells were plated and stained
with 20 nM of each AT118i4h32 variant with a C-terminal V5 epitope in
flow assay buffer in 100 µL reaction volumes for 1 hour at 4 °C with
gentle shaking. Cells were washed 2 times with flow assay buffer and
subsequently stained with 100nM of Alexaflour 488 conjugated M1-
anti FLAG antibody and 1:200 of Alexaflour 647 conjugated anti-V5
antibody (ThermoFisher) in flow assay buffer + 1mM CaCl2 for
20minutes at 4 °C. Cells were washed once and resuspended in flow
assay buffer + 1mM CaCl2. Samples were analyzed on an BD Accuri C6
flow cytometer. Cells were gated for M1-positive singlets. Data were
analyzed with BD Accuri C6 Plus software.

AT118i4h32 saturation-binding experiments
For saturation-binding experiments cells were harvested, washed, and
resuspended in flow assaybuffer. 1 × 105 cells were stainedwith varying
concentrations of AT118i4h32 or AT118i4h32 G26D27 T57I65 containing
a C-terminal V5 epitope tag for 1 hour at 30 rpmat 4 °C. Cellswere then
washed twice with flow assay buffer, supplemented with 1mM CaCl2,
and incubated with a 1:750 dilution of Alexa Fluor 647-labeled anti-V5
antibody (Invitrogen Thermo Fisher) and 100nM Alexa Fluor 488-
labeled M1 anti-FLAG for 20min at 30 rpm at 4 °C. Cells were washed,
resuspended in flow cytometry buffer with 1mM CaCl2, and analyzed
with a Cytoflex flow cytometer. AT1R expressing cells were gated for
M1-positive singlets. Data were analyzed with BD Accuri C6 Plus
software.

AT1R signaling assay
Expi293F cells stably expressing a tetracycline inducible wild-type
human FLAG-AT1R were diluted to 1.5–2 × 106 cells/mL and induced
with 0.4μg/mL doxycycline hyclate for 24–28 hours. 2 × 104 cells were
plated into a low-volume 96-well plate, treated with 5 μM of each
AT118i4h32 variant for 30min at 37 °C, and stimulated with AngII for
1 hour at 37 °C. IP1 was detected with the IP-One Gq kit (CisBio) and
read on a SpectraMax M5e plate reader (Molecular Devices).

Radioligand binding assays
Cell membranes for radioligand binding experiments were prepared
from Expi293F cells stably expressing tetracycline inducible wild-type
human FLAG-AT1R. AT1R expression was induced at 2 × 106 cells/mL
with 0.4μg/mL doxycycline hyclate for 30 hours. Cells were pelleted
andwashedwith coldHBS. Cells were resuspended in 2.5mLof 20mM
Tris pH 7.4 per gram of cell pellet with a protease inhibitor tablet and
lysed by dounce homogenization (100x). Membranes were isolated by
centrifugationat 50,000 x g for 20min.Membraneswere resuspended
in 2.5mL of 50mM Tris pH 7.4, 12.5mM MgCl2, 150mM NaCl, 0.2%

BSA +protease inhibitor table by douncehomogenization, flash frozen
in liquid N2, and stored at −80 °C.

Membranes were incubated with nanobodies and 2 nM [3H]-
olmesartan (American Radiolabeled Chemicals) in 50mM Tris pH 7.4,
12.5mM MgCl2, 150mM NaCl, 0.2% BSA for 90min at room tempera-
ture. Reactionswere harvested on aGF/Bfilter soaked inwater on a 96-
well Brandel harvester and washed three times with cold water. Radi-
oligand affinity wasmeasured by saturation binding of [3H]-olmesartan
in the presence and absence of 10μMcandesartan. Inhibitory constant
(Ki) values were determined through a one-site competition binding
model in GraphPad Prism. Data represents the mean and SE of three
independent biological replicates performed in triplicate.

Protein crystallization and structure determination
AT118i4h32 with a N-terminal methionine and alanine and C-terminal
His-tag was crystallized at 20 °C by sitting drop vapor diffusion from a
1:0.5 µL mixture of protein stock (10mg/mL AT118i4h32 in 20mM
Hepes pH 7.4, 100mM NaCl) and reservoir solution (16% PEG 4000,
10% isopropanol, 0.1M sodium citrate pH 5.6). Crystals were flash-
cooled directly from the drop in liquid N2.

Diffraction datawere collected at 100K onGM/CAbeamline 23ID-
D at the Advanced Photon Source (APS) at Argonne National Labora-
tory. Diffraction data were processed using XDS57. A camelid antibody
1YC7 was used to solve the structure of AT118i4h32 by molecular
replacement using Phaser in the Phenix software suite58. The model
was rebuilt using Autobuild and manually completed by iterative
rounds ofmodel building and refinement usingCoot and Phenix.refine
with 56 translation/liberation/screw groups. The structure was vali-
dated using Molprobity.

AT118i4h32 G26D27 T57I65 with a N-terminal methionine and ala-
nine and C-terminal His-tag was crystallized at 20 °C by sitting drop
vapor diffusion from a 0.5:1 µL mixture of protein stock (6.96mg/mL
AT118i4h32 G26D27, T57I65 in 20mM Hepes pH 7.4, 150mM NaCl) and
reservoir solution (30% PEG 3350, 280mM lithium citrate tribasic).
Crystals were cryoprotected in 25% PEG 3350, 280mM lithium citrate
tribasic, 15% glycerol and then flash cooled in liquid nitrogen.

Diffraction datawere collected at 100K onGM/CAbeamline 23ID-
D at the Advanced Photon Source (APS) at Argonne National Labora-
tory. Diffraction data were processed using XDS57. The structure of
AT118i4h32 was used to solve the AT118i4h32 G26D27 T57I65 crystal
structure by molecular replacement using Phaser in the Phenix soft-
ware suite58. Themodelwasmanually completed by iterative rounds of
model building and refinement using Coot and Phenix.refine with 69
translation/liberation/screw groups. The structure was validated using
Molprobity. Figures were prepared in PyMol59. All software was
accessed through SBGrid60.

Thermal shift assay
Differential scanning fluorimetry (DSF) experiments were carried out
using a Quant Studio 6 real-time PCR machine (Applied Biosystems).
0.1mg/mL of AT118i4h32 variants in HBS + 10% glycerol was mixed
with Protein Thermal Shift Dye (Applied Biosystem) in a 1:100 (v/v)
ratio of protein to dye. Samples were heated from 25–90 °C at a rate of
3 °C per minute. The fluorescence was detected with 470 +/−15 nm
excitation and 586 +/−10 nm emission filters. All samples were mea-
sured by three biological replicates of technical triplicates. Fluores-
cence values were fit to the Boltzman equation and melting
temperatures (Tm) were extracted from the inflection points of the
curves in the Protein Thermal Shift Software (Applied Biosystems).

Statistical methods
Prismsoftware (GraphPad)was used to analyze data and performerror
calculations. Data are expressed as arithmetic/geometric mean +/−
SEM or arithmetic/geometric mean± SD.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
author upon request. Coordinates and structure factors for the
AT118i4h32 structures are deposited in the Protein Data Bank under
accession codes 7T83 and 7T84. Source data are provided with
this paper.

Code availability
The code for scoring new sequences for polyreactivity, designing
rescue mutations, training polyreactivity models, and calculating bio-
chemical properties of a sequence can be found on github: https://
github.com/debbiemarkslab/nanobody-polyreactivity, and the web-
server is available here: (http://18.224.60.30:3000/).
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