
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

Increasing Predictive Accuracy through Limited Prefetching

Permalink

https://escholarship.org/uc/item/8dx4k5ph

Author

Yeh, Tsozen

Publication Date

2002

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8dx4k5ph
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Increasing Predictive Accuracy through Limited Prefetching

Tsozen Yeh, Darrell D. E. Long and Scott A. Brandt
Computer Science Department

University of California, Santa Cruz
�yeh,darrell,sbrandt�@cse.ucsc.edu

Keywords: file prediction, prefetching

Abstract

Prefetching multiple files per prediction can improve
the predictive accuracy. However, it comes with the cost
of using extra cache space and disk bandwidth. This pa-
per discusses the most Recent distinct � Successor (RnS)
model and uses it to demonstrate the effectiveness of our
earlier work, Program-based Last � Successor (PLnS)
model, a program-based prediction algorithm [21]. We
analyze the simulation results from different trace data
and show that PLnS can perform better than RnS while
it only predicts at most 59% of the number of files pre-
dicted by RnS when the � in PLnS equals to two. PLnS is
a good candidate when considering prefetching multiple
files per prediction to improve predictive accuracy.

1 INTRODUCTION

As disks operate significantly slower than CPUs,
prefetching files to cache memory before they are used
remains a promising way to mitigate the problem of
speed difference between them. While correct file pre-
diction is useful, incorrect prediction is to a certain de-
gree unavoidable. Incorrect prediction not only wastes
cache space and disk bandwidth, it also prolongs the time
required to bring needed data into the cache if a cache
miss occurs while the incorrectly predicted data is being
transferred from the disk. Consequently incorrect pre-
dictions can lower the overall performance of the system
regardless of the accuracy of correct prediction.

Prefetching multiple files for each prediction, on one
hand, could take advantage of available cache space and
disk bandwidth to potentially increase the predictive ac-
curacy. On the other hand it will consume extra cache
space and disk bandwidth, which can bring down the sys-
tem performance if it is not done wisely. Our goal is to
find the cost-effective performance between the number
of files predicted per event and the predictive accuracy

potentially could be increased.
The success of file prefetching depends on file pre-

diction accuracy – how accurately an operating system
can predict which files to load into memory. Probability
and the history of file access have been widely used to
perform file prediction [4, 5, 10–12, 16], as have hints or
help from programs and compilers [3, 17].

We extend the simple last-successor (LS) model to the
most Recent distinct � Successor (RnS) model, which
predicts multiple files each time to improve predictive
accuracy. Our simulation results show that RnS can im-
prove the predictive accuracy. However, the cost comes
with it is not negligible. The simulation results also
demonstrate that our earlier work, the Program-based
Last � Successor (PLnS) model [21], can perform as well
as RnS, while it predicts less than 59% of the number of
files predicted by RnS. Thus, PLnS can generate a bet-
ter cost-effective performance than RnS. The � in RnS
and PLnS indicates the maximum number of files both
models can predict per prediction.

Files are accessed by programs. Probability and re-
peated history of file accesses should not occur for no
reason. Our simulations confirm this surmise by show-
ing that the vast majority of files are accessed by one or
two programs, which indicates that consecutive accesses
of different files can be more predictable on a program-
based successor model. We also show that PL2S pro-
vides the best cost-effective performance in terms of the
number of files predicted each time and the predictive
accuracy improved in our simulations.

2 RELATED WORK

Most probability-based prediction algorithms use the
history of system-wide file access, which does not con-
sider and take advantage of the corresponding program
information like PLnS does.

Griffioen and Appleton use probability graphs to pre-
dict future file accesses [5]. The graph tracks file ac-
cesses observed within a certain window after the cur-

rent access. For each file access, the probability of its
different followers observed within the window is used
to make prefetching decisions. Their simulations show
that different combinations of window and threshold val-
ues could largely affect the performance.

Kroeger and Long predict next file based on probabil-
ity of files in contexts of FMOC [10]. Their research also
adopts the idea of data compression like Vitter et al. [20],
but they apply it to predicting the next file instead of the
next page.

Lei and Duchamp use pattern trees to record past ex-
ecution activities of each program [12]. They maintain
different pattern trees for each different accessing pattern
observed. A program could require multiple pattern trees
to store similar patterns of file accesses in its previous
execution. This imposes keeping duplicated information
on the system. Pattern trees of a running program are
compared with the current accessing pattern. If a match
found, files in that pattern tree are prefetched to memory.
One of the main differences between their algorithm and
PLnS is that PLnS makes the predicting decision for each
individual file, so it can adapts to different patterns of file
access more rapidly.

Vitter et al. adopt the technique of data compression
to predict next required page [4,20]. Their observation is
that data compressors assign a smaller code to the next
character with a higher predicted probability. Conse-
quently a good data compressing algorithm should also
be good at predicting the next page more accurately.

Patterson et al. develop TIP to do prediction using
hints provided from modified compilers [17]. Accord-
ingly, resources can be managed and allocated more ef-
ficiently. Extra coding in programs and language depen-
dence are disadvantages of this type of approach. In the
case of no access to source codes there is no way to
generate hints. Hints generated statically by compilers
sometimes may not be very useful if file accesses cannot
be decided until runtime.

Chang and Gibson design a tool which can transform
UNIX application binaries to perform speculative execu-
tion and issues hints [3]. Their algorithm can eliminate
the issue of language independence, but it can only be
applied to single-thread applications.

Mowry et al. use modified compiler to provide future
access patterns for out-of-core applications [14]. Kotz
and Ellis define representative parallel file access pat-
terns in parallel disk systems [9]. Cao et al. define four
properties that optimal predicting and caching model
should satisfy [2]. Palmer and Zdonik use unit pattern
to prefetch data in database applications [16]. Kimbrel
et al. examine four related algorithms to find out when a
prefetching algorithm should act aggressively or conser-
vatively [7].

Prefetching data between different levels of cache,
such as moving data from the off-chip cache to the on-
chip cache before the processor needs it, can also reduce
the latency of memory operations [6].

Probability-based predicting algorithms, in general,
respond to changes of reference pattern more dynami-
cally than those relying on help from compilers and ap-
plications. However, over a longer period of time, ac-
cumulated probability may not closely reflect the latest
accessing pattern and even may mislead predicting algo-
rithms sometimes.

In addition to file prefetching, many researchers have
proposed different ways of storing data on disk to im-
prove disk performance from a different angle [13, 18,
19].

3 LS, RnS, AND PLnS MODELS

We start with a brief description of LS, followed by a
detailed discussion of RnS and PLnS.

3.1 LS (Last Successor)

Given an access to a particular file �, LS predicts that
the next file accessed will be the same one that followed
the last access to file �. Thus if an access to file � fol-
lowed the last access to file �, LS predicts that an access
to file � will follow this access to file �. This can be
implemented by storing the successor information in the
metadata of each file. One potential problem with this
technique is that file access patterns rely on the tempo-
ral order of program execution, and scheduling the same
set of programs in different orders may generate totally
different file access patterns.

3.2 RnS (Most Recent Distinct � Successor)

RnS is a refinement of LS. Unlike LS tracking the
most recent one successor, RnS keeps track of the most
recent distinct � successors. In the case of � � �, R1S is
the same as LS. RnS differs from LS when n � 2. Take
� � � for example: If the current file access pattern is
“� , � , �, �, �, �, �, �, �, �, �”, R2S will predict
the most recent two distinct successors of file �, which
are � and �. LS (or R1S) only predicts � in this case.
However, if the current pattern is “�,�,�,�,�, � ,�”,
R2S only predicts file � because an access to � is never
followed by an access to files other than �. Building
RnS model is easy. It just keeps the most recent distinct
� successors for each file.

3.3 PLnS (Program-based Last � Successor)

Lacking a priori knowledge of file access patterns,
many file prediction algorithms use statistical analysis of

past file access patterns to generate predictions about fu-
ture access patterns. One problem with this approach is
that executing the same set of programs can produce dif-
ferent file access patterns even if the individual programs
always access the same files in the same order. Because
it is the individual programs that access files, probabil-
ities obtained from the past file accesses of the system
as a whole are ultimately unlikely to yield the highest
possible predictive accuracy. In particular, probabilities
obtained from a system-wide history of file accesses will
not necessarily reflect the access order for any individual
program or the future access patterns of the set of run-
ning programs. However, what could remain unchanged
is the order of files accessed by the individual programs.
In particular, file reference patterns can describe what has
happened more precisely if they are observed for each
individual program, and better knowledge about past ac-
cess patterns leads to better predictions of future access
patterns.

PLnS incorporates knowledge about the running pro-
grams to generate a better successor estimate [21, 22].
More precisely, PLnS records and predicts program-
specific successors for each file that is accessed. The �
in PLnS represents the number of the most recent dis-
tinct program-specific successors that PLnS could pre-
dict each time. For example, PL1S (� � �) means that
only the most recent program-specific successor is pre-
dicted after each file access. In other words, PL1S can be
viewed as a program-based last successor model. PL2S
(� � �) predicts the most recent two distinct program-
specific successors if a particular program accesses mul-
tiple different files after each access of a particular file.
However PL2S could still predict only one successor if
the program-specific successor for a given file has never
changed.

We will use PL1S as an example to explain PLnS.
Suppose a file trace at some time shows two different pat-
tern ��, and pattern �� after an access to �. If � and
� tend to alternate after �, then either the probability-
based prediction or the LS will do especially poorly. But
the reason that pattern �� and �� occur may be quite
different. For instance, in Figure 1, the file access pat-
tern �� is seen to be caused by program ��, while the
file access pattern �� is caused by program ��. In other
words, what is really behind these two patterns of con-
secutive file accesses is the execution of two different
applications, �� and ��. After we collect this informa-
tion (a set of pairs consisting of “program name” and
“successors”) for file �, next time it is accessed we can
predict either� or� depending on �� or �� is accessing
�, or provide no prediction if � is accessed by another
program.

Similarly, for PL2S (� � �), it predicts the most

recent two distinct program-specific successors if the
program-specific successor ever changed. For example
in Figure 2, if program �� accesses a different file, say
�, other than � after an access to �. PL1S will predict
� from now, while PL2S will predict both� and� since
they are the most recent two distinct successors that file
� keeps for program ��.

A

p

p

1

2 C

B

Figure 1. PL1S model

A

p

p

1

2

D B

C

Figure 2. PL2S model

Table 1. Metadata of files in Figure 1 kept under
PL1S model

File �program name, successor�
A ���, ��, ���, ��
B ���, 	
��
C ���, 	
��

One can argue that the same program may access dif-
ferent sets of files each time that it is executed, particu-
larly a system utility program such as a compiler. While
it is true that compiling different programs will result in
different files being accessed, compiling the same pro-
gram multiple times will result in many or all of the
same files being accessed in the same order. Thus PL1S
will make correct predictions for most of these files, even
when alternating compilations between two sets of files.

There are three issues that must be addressed. The
first issue is how to collect the metadata in terms of
�program name, successors� for each file. The solution
is simple: Programs are executed as processes, so we

Table 2. Metadata of files in Figure 2 kept under
PL2S model

File �program name, successor�
A ���, �, ��, ���, ��
B ���, 	
��
C ���, 	
��

can just store the program name in the process control
block (PCB). For each running program (say �), we also
need to keep track of the file (say �), which it has most
recently accessed. When � accesses the next file (say
�) after � , we update the metadata of the � with �� ,
� �, and the next time that � accesses � , file � will be
predicted under PL1S model. The metadata of the files
in Figure 1 is shown in Table 1. In the case of PL2S
(� � �), we keep the most recent two distinct program-
specific successors for each file. So the corresponding
metadata ���, �� now becomes ���, �, �� as seen in
Table 2.

The second issue is how large the metadata needs to
be in order to make accurate predictions, which is not
quite as simple as the first. Ideally, for each file we
would like to record the name of every program that has
accessed it before, along with the program-specific suc-
cessors to the file, so that we know which file (or files) to
predict when the same program accesses the file again. In
reality, this may be too expensive for files used by many
different programs. Consequently, we may need to limit
the number of �program name, successors� pairs kept for
each file. However, our simulation shows that the vast of
majority of files are accessed by five or fewer programs
and thus metadata storage is not a problem. The last issue
is that if a program (say �) eventually executes another
program (say �), the information of � is also added to
the metadata of � , and � will be predicted accordingly
in the future.

A few terms need to be clarified here. The first is that
when we use the term “program” we mean any running
executable file. Thus a driver program that launches dif-
ferent sub-programs at different times is considered by
PLnS to be a different program from the sub-programs,
each of which is also treated independently. The second
is that both “program name” and “file name” include the
entire pathname of the files. This is important because
different programs with the same name can access the
same file and different files with the same name can be
accessed by different programs, and these accesses must
all be handled correctly.

4 EXPERIMENTAL RESULTS

In the following sections, we first explain how we
conduct our experiments. We then discuss the perfor-
mance of RnS and PLnS, followed by the comparison
between these two models.

4.1 Simulation Trace and Experimental
Methodology

The key requirement of the file trace we need is the
information of corresponding programs for events of file
access recorded in the trace. However, the program in-
formation cannot be obtained either directly from the
traces, or incorrectly by re-processing the data in all the
file traces we have access to, except the DFSTrace from
the Coda project [8, 15]. As a result, we selected DF-
STrace to evaluate the performance differences between
RnS and PLnS.

These traces were collected from 33 machines dur-
ing the period between February of 1991 and March of
1993. Our earlier study shows that PLnS provides a sim-
ilar performance improvement over LS among different
types of workloads, such as servers and desktop worksta-
tions [21,22]. We used data from October 1992 to March
1993, roughly equal to the last quarter of the entire trace,
from three desktop workstations, Copland, Holst, and
Mozart in our experiments. Research has demonstrated
that the average life of a file is very short [1]. So instead
of tracking every READ or WRITE event, we track only
the OPEN and EXECVE events in our simulation.

One may question that the DFSTrace might not re-
flect the file access pattern we see today, particularly in
file or program sizes and the rate at which file requests
arrive. However, our simulation depends on neither of
these, so they won’t affect the results. Moreover, in the
case of large files, sequential read is the most common
activity. Modern operating systems can already identify
sequential read accesses and techniques such as prefetch-
ing the next several data blocks for sequential read have
been implemented. Therefore we believe the file traces
we used is still adequate to evaluate our algorithm.

As mentioned above, PLnS needs to know the name
of a program in order to generate its predictions. Be-
cause we cannot obtain the name of any program that
started executing before the beginning of the trace, we
exclude OPEN events initiated by any process identifier
(PID) which started before the beginning of our trace.
Intuitively this filtering has no effect on the results of
our experiments because the filtering is based only on the
time at which the program began. In a real system such
filtering is not necessary because all program names are
known. We used the filtered trace data to evaluate RnS
and PLnS. We are interested in how different values of

� in RnS and PLnS could affect the performance and the
cost comes with it. The experiments were conducted for
the cases when � in RnS and PLnS equals to one, two,
and three respectively. As a reminder, LS and R1S are
identical. There is no need to have separate results for
LS.

Both R1S and PL1S predict one file at a time. We
score R1S and PL1S by adding one for each correct pre-
diction and zero for each incorrect prediction. We nor-
malize the final scores of PL1S and R1S by the number
of predictions, not by the number of events, to obtain the
predictive accuracy. This is because the first time that a
file is accessed there is no previous successor to predict
and so the failure to make a prediction the first time can-
not be considered incorrect. We also score R2S, R3S,
PL2S, and PL3S the same way we score R1S and PL1S.
Of course their scores do not sit on the same ground as
those from R1S and PL1S because they could predict
more than one file per prediction in some cases. A more
detailed discussion of these four will follow later.

4.2 Performance of RnS and PLnS

We begin with RnS. Table 3 lists the average number
of files predicted per event (i.e. per file access) for RnS
and PLnS. Since we do not count the cases where no pre-
diction was made, the result is that the number of events
in the trace is larger than the number of cases where a
prediction was made. Because both R1S and PL1S pre-
dict one file at a time whenever a prediction was made,
so the number of files predicted per event is smaller than
one for R1S and PL1S.

Table 3. Average number of files predicted per
event in RnS and PLnS

Machines: Copland Holst Mozart
R1S 0.94 0.98 0.98

PL1S 0.88 0.93 0.95
R2S 1.83 1.89 1.90

PL2S 1.07 1.08 1.08
R3S 2.69 2.74 2.79

PL3S 1.19 1.18 1.16

Figure 3 displays the predictive accuracy of RnS for
the three machines. It shows that the improvement be-
tween R1S and R2S is more noticeable than the improve-
ment between R2S and R3S in all cases. Figure 4 dis-
plays the predictive accuracy of PLnS. Figure 5 provides
more details for the RnS performance. The upper part of
Figure 5 represents the percentage of correct prediction
(out of total prediction). The lower half of this figure

0

10

20

30

40

50

60

70

80

90

100

copland holst mozart

pr
ed

ic
tiv

e
ac

cu
ra

cy
 (

%
)

R1S
R2S
R3S

Figure 3. Predictive accuracy of RnS

0

10

20

30

40

50

60

70

80

90

100

copland holst mozart

pr
ed

ic
tiv

e
ac

cu
ra

cy
 (

%
)

PL1S
PL2S
PL3S

Figure 4. Predictive accuracy of PLnS

shows the percentage of incorrect prediction (out of to-
tal prediction). Because we do not count the case where
no prediction was made, so it is more informative to put
two parts (correct and incorrect) in the same figure to
compare the detailed performance among R1S, R2S, and
R3S. Figure 6 provides the same detailed performance
comparison for the PLnS family. Clearly, R2S and PL2S
have a noticeable improvement over R1S and PL1S re-
spectively in making more correct predictions and fewer
incorrect predictions. However, the number of files pre-
dicted in PL2S (���� or ����) is significantly smaller than
their counterparts (����, ����, or ����) in R2S as seen in
Table 3. Obviously PL2S is a better candidate than R2S
when considering prefetching multiple files to improve
predictive accuracy.

4.3 Comparison by Different Trace Files

There are two criteria used in comparing RnS and
PLnS. The first one is the average number of files pre-
dicted per event. The second is the predictive accu-
racy. As mentioned earlier, predicting multiple files each
time could increase the probability of correct prediction.
However, doing it unwisely could waste cache space and
disk bandwidth, which will eventually lower the overall
system performance. Another issue is that prefetching
files takes time. So prefetching too many files per pre-
diction won’t be a feasible way to improve predictive ac-
curacy in practice.

0

10

20

30

40

50

60

70

80

90

100

R1S R2S R3S

%
copland:
correct
holst:
correct
mozart:
correct
copland:
incorrect
holst:
incorrect
mozart-
incorrect

Figure 5. Percentage of correct (upper part) and
incorrect (lower part) prediction in RnS

0
10
20
30
40
50
60
70
80
90

100

PL1S PL2S PL3S

%

copland:
correct
holst:
correct
mozart:
correct
copland:
incorrect
holst:
incorrect
mozar:
incorrect

Figure 6. Percentage of correct (upper part) and
incorrect (lower part) prediction in PLnS

We will compare RnS and PLnS machine by machine.
Figure 7 plots the number of files predicted per event be-
tween RnS and PLnS for three traces from Table 3. The
-axis is the different values of � in RnS and PLnS. In
average PL2S and PL3S predict a significantly smaller
number of files per event than R2S and R3S respectively
in all cases. The predictive accuracy of RnS and PLnS
for Copland is displayed in Figure 8. PL2S delivers a
higher predictive accuracy than R2S. PL1S also outper-
forms R1S. PL3S is a little bit worse than R3S, but it only
predicts 1.19 files per event, instead of 2.69 files as in
R3S. Consequently PL2S provides a better cost-efficient
performance in terms of the number of files predicted
each time and the predictive accuracy increased in our
experiments. With predicting 1.07 files per event in aver-
age, PL2S can increase the predictive accuracy by 11%
over LS (R1S) as seen in Figure 8. The corresponding re-
sults for Holst and Mozart are shown in Figure 9 and Fig-
ure 10. It is worthy of pointing out that results from all
three file traces show the same pattern – PL2S performs
better than R2S and it also predicts a smaller number of
files per event than R2S. Besides, PL2S and R2S provide
a better cost-effective performance increased in the PLnS
and RnS family respectively. The good performance of
PL2S validates our observation that consecutive accesses

of different files can be more accurately predicted given
knowledge about which programs are accessing them.

To get a better understanding of the percentage of in-
correct prediction can be reduced in PLnS, we normalize
the percentage of incorrect prediction in PLnS by that
of LS and plot the results in Figure 11. It shows that
PL1S reduces the incorrect predictions done by LS ap-
proximately between 20% and 25%, PL2S can do about
40% to 45% less, and PL3S can do about 45% to 50%
less. Figure 12 shows the percentage of correct predic-
tions PLnS made normalized to those made by LS.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

n=1 n=2 n=3

o

f
fi

le
s

p
re

d
ic

te
d

 p
er

 e
ve

n
t

copland-RnS
copland-PLnS
holst-RnS
holst-PLnS
mozart-RnS
mozart-PLnS

Figure 7. Average number of files predicted per
event in RnS and PLnS for three trace files

0
10
20
30
40
50
60
70
80
90

100

n=1 n=2 n=3

machine: copland

pr
ed

ic
tiv

e
ac

cu
ra

cy
 (

 %
)

RnS
PLnS

Figure 8. Predictive accuracy of RnS and PLnS
for Copland

It is worthy of exploring a little more why, in gen-
eral, the program-based successor predicting algorithm
has a good performance while its cost remains relatively
lower than the non program-based successor predicting
algorithm. We stated earlier that files are accessed by
programs and therefore probability and repeated history
of file accesses should not occur for no reason, which im-
plies that a program-based successor model should per-
form better than non program-based successor models.
Table 4 shows the percentage of files which are accessed
by up to five different programs in our simulations.

0
10
20
30
40
50
60
70
80
90

100

n=1 n=2 n=3

machine: holst

pr
ed

ic
tiv

e
ac

cu
ra

cy
 (

 %
)

RnS
PLnS

Figure 9. Predictive accuracy of RnS and PLnS
for Holst

0
10
20
30
40
50
60
70
80
90

100

n=1 n=2 n=3

machine: mozart

pr
ed

ic
tiv

e
ac

cu
ra

cy
 (

%
)

RnS
PLnS

Figure 10. Predictive accuracy of RnS and PLnS
for Mozart

The percentage of files accessed by one program is the
highest in all three traces, especially for Copland. More
than 90% of files are accessed by only one program in
Copland, while 2.94% of files are accessed by two dif-
ferent programs. For both Holst and Mozart, the vast
majority of files are accessed by either one or two pro-
grams. As a result, the file accesses observed for each in-
dividual program will be more predictable, and therefore
the program-based successor predicting algorithm has a
better cost-effective performance than the non program-
based successor predicting algorithm.

0

10

20

30

40

50

60

70

80

90

100

copland holst mozart

%
 o

f
ev

en
ts

 in
co

rr
ec

tl
y

p
re

d
ic

te
d

(n

o
rm

al
iz

ed
 t

o
 L

S
)

PL1S
PL2S
PL3S

Figure 11. Incorrect predictions made by PLnS
(normalized to LS)

95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

copland holst mozart

%
 o

f
ev

en
ts

 c
o

rr
ec

tl
y

p
re

d
ic

te
d

(n

o
rm

al
iz

ed
 t

o
 L

S
)

PL1S
PL2S
PL3S

Figure 12. Correct predictions made by PLnS
(normalized to LS)

Table 4. Percentage of files accessed by up to
five different programs

of programs Copland Holst Mozart
1 90.5898% 64.5359% 54.9718%
2 2.9498% 19.0526% 26.7582%
3 2.7161% 4.1844% 5.8994%
4 1.3569% 7.8901% 2.0924%
5 0.2552% 1.3574% 2.1018%

5 CONCLUSIONS

As the speed gap between CPU and the secondary
storage continues to widen and is unlikely to narrow
in the near future, file prefetching will continue to re-
main a promising way to keep programs from stalling
while waiting for data from disk. Incorrect prediction
can be expensive. Prefetching multiple files per pre-
diction could increase the probability of correction pre-
diction. However, prefetching too many files each time
will likely lower the over system performance in prac-
tice. Finding the right balance between the number of
files predicted per prediction and the predictive accuracy
potentially could be increased is very important to the
system performance.

Our results demonstrate that R2S and PL2S deliver
better cost-effective performance in the RnS and PLnS
family respectively. By tracking programs initiating file
accesses, we successfully avoid many incorrect predic-
tions. We show that PLnS performs better than RnS
when the � is equal to one or two. R3S outperforms
PL3S a little, but it comes with the cost of prefetching
significantly more files than PL3S per event. On aver-
age, PL2S predicts only 1.07 or 1.08 files per event and
it delivers noticeably higher predictive accuracy than LS.
Compared with LS, about 40% to 45% of incorrect pre-
dictions can be reduced in PL2S as seen in Figure 11.

Therefore, PL2S can significantly reduce the overall per-
formance penalty in a system caused by incorrect pre-
dictions when considering prefetching multiple files to
improve the file predictive accuracy.

6 FUTURE WORK

The DFSTrace is almost 10 years old. We chose it
because it contains the program information, which is
absolutely necessary to the PLnS model. In the future,
we would like to collect our own traces that PLnS can
use, and examine how PLnS performs under more re-
cent traces. Ultimately, we will build the PLnS into the
filesystem and evaluate its performance in a real system.
We would also like to investigate how PLnS performs
in a system with multiple levels of cache, and what im-
provement needs to be made.

7 ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers
for their valuable comments. We are also grateful to
the Coda group for providing us access to their traces.
This research is supported in part by the National Sci-
ence Foundation award number PO-10152754 and CCR-
0073509, and by Lawrence Livermore National Labora-
tory under contract B513238.

References

[1] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and
J. Ousterhout. Measurements of a Distributed File Sys-
tem. In ACM 13th Symposium on Operating Systems
Principles, pages 198–212, 1991.

[2] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A study of
Integrated Prefetching and Caching Strategies. In ACM
SIGMETRICS, pages 188–197, 1995.

[3] F. Chang and G. Gibson. Automatic I/O Hint Generation
through Speculative Execution. In Third Symposium on
Operating Systems Design and Implementation, pages 1–
14, 1999.

[4] K. Curewitz, P. Krishnan, and J. S. Vitter. Practical
Prefetching via Data Compression. In ACM SIGMOD,
pages 257–266, 1993.

[5] J. Griffioen and R. Appleton. Reducing File System La-
tency Using a Predictive Approach. In Proceedings of
USENIX summer Technical Conference, pages 197–207,
1994.

[6] D. Joseph and D. Grunwald. Prefetching using Markov
Predictors. In Intl. Symposium on Computer Architecture
(ISCA), pages 252–263, 1997.

[7] T. Kimbrel, A. Tomkins, H. Patterson, B. Bershad,
P. Cao, E. W. Felten, G. A. Gibson, A. R. Karlin, and
K. Li. A Trace-Driven Comparison of Algorithms for
Parallel Prefetching and Caching. In Second Symposium

on Operating Systems Design and Implementation, pages
19–34, 1996.

[8] J. Kistler and M. Satyanarayanan. Disconnected Opera-
tion in the Coda File System. In ACM Transcations on
Computer Systems, pages 3–25, 1992.

[9] D. Kotz and C. S. Ellis. Practical Prefetching Techniques
for Parallel File Systems. In Proceedings of the first Par-
allel and Distributed Information Systems, IEEE, pages
182–189, 1991.

[10] T. Kroeger and D. D. E. Long. The Case for Efficient File
Access Pattern Modeling. In Proceedings of the Seventh
Workshop on Hot Topics in Operating Systems, pages 14–
19, 1999.

[11] G. H. Kuenning. The Design of the Seer Predictive
Caching System. In Workshop on Mobile Computing Sys-
tems and Applications, IEEE Computer Society, pages
37–43, 1994.

[12] H. Lei and D. Duchamp. An Analytical Approach to
File Prefetching. In Proceedings of the USENIX Annual
Techical Conference, pages 275–288, 1997.

[13] L. McVoy and S. Kleiman. Extent-Like Performance
from a Unix File System. In Proceedings of USENIX
Annual Technical Conference, pages 33–43, 1991.

[14] T. Mowry, A. Demke, and O. Krieger. Automatic
Compiler-Inserted I/O prefetching for Out-of-Core Ap-
plications. In The Second Symposium on Operating Sys-
tems Design and Implementation, pages 3–17, 1996.

[15] L. Mummert and M. Satyanarayanan. Long Term Dis-
tributed File Reference Tracing: Implementation and Ex-
perience. Technical report, CMU, 1994.

[16] M. Palmer and S. B. Zdonik. Fido: A Cache That Learns
to Fetch. In Proceedings of the 17th International Con-
ference on Very Large Data Base, pages 255–264, 1991.

[17] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed Prefetching and Caching. In
Proceedings of the 15th Symposium on Operating Sys-
tems Principles, pages 79–95, 1995.

[18] M. Rosenblum and J. Ousterhout. The LFS Storage Man-
ager. In Proceedings of USENIX Annual Technical Con-
ference, pages 315–324, 1990.

[19] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck. Scalability in the XFS File System. In
Proceedings of USENIX Annual Technical Conference,
pages 33–44, 1996.

[20] J. S. Vitter and P. Krishnan. Optimal Prefetching via Data
Compression. In Journal of the ACM, pages 771–793,
1996.

[21] T. Yeh, D. D. E. Long, and S. Brandt. Caching Files with
a Program-based Last n Successors Model”. In Proceed-
ings of the Workshop on Caching, Coherency and Con-
sistency (WC3 ’01), 2001.

[22] T. Yeh, D. D. E. Long, and S. Brandt. Performing File
Prediction with a Program-Based Successor Model. In
Proceedings of the Ninth International Symposium on
Modeling, Analysis, and Simulation on Computer and
Telecommunication Systems (MASCOTS), pages 193–
202, 2001.

