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Towards a whole-body systems [multi-organ] lipidomics in
Alzheimer's disease

Giuseppe Astarita and Daniele Piomelli
Department of Pharmacology (G.A., D.P.), the Department of Biological Chemistry (D.P.), the
University of Rome Tor Vergata, Rome, Italy (G.A.); the Unit of Drug Discovery and Development,
Italian Institute of Technology, Genova, Italy (D.P.)

SUMMARY
Preclinical and clinical evidence suggests that docosahexaenoic acid (DHA), an omega-3 fatty
acid derived from diet or synthesized in the liver, decreases the risk of developing Alzheimer's
disease (AD). DHA levels are reduced in the brain of subjects with AD, but it is still unclear
whether human dementias are associated with dysregulations of DHA metabolism. A systems
biological view of omega-3 fatty acid metabolism offered unexpected insights on the regulation of
DHA homeostasis in AD1. Results of multi-organ lipidomic analyses were integrated with clinical
and gene-expression data sets to develop testable hypotheses on the functional significance of lipid
abnormalities observed and on their possible mechanistic bases. One surprising outcome of this
integrative approach was the discovery that the liver of AD patients has a limited capacity to
convert shorter chain omega-3 fatty acids into DHA due to a deficit in the peroxisomal D-
bifunctional protein. This deficit may contribute to the decrease in brain DHA levels and
contribute to cognitive impairment.

Alzheimer's disease
Alzheimer's disease (AD) is the most common cause of adult dementia, affecting an
estimated 35 million of elderly people worldwide2. As life span increases, this number is
expected to climb to over 80 million by 2040. This neurodegenerative disorder is
characterized clinically by progressive memory impairment, deterioration of language, and
visuospatial deficits3. Age is the most important factor that predisposes to the non-familial
or sporadic form of the disease. How aging might interact with other pathogenic factors for
AD, such as abnormal accumulation of beta-amyloid (Aβ) peptides and
hyperphosphorylated tau protein in the brain4, is still unknown. It appears, however, that
obesity, diabetes, and atherosclerosis – age-related pathologies that are closely associated
with systemic dysfunctions in lipid metabolism – may be involved3, 5.

DHA in subjects with AD
Epidemiological studies and animal experiments have provided evidence that increased
docosahexaenoic acid (DHA) consumption decreases the risk of developing AD6–17. It is
still unclear, however, how the metabolism of DHA is affected in AD. A comprehensive
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description of the DHA metabolism in AD requires placing DHA in the context of the
interconnected network of its substrates and products. Thus, the development of a lipidomic
approach that considers the entire omega-3 fatty acids system, rather than its individual
components in isolation, is essential to elucidate a role for DHA in AD. Such an approach
cannot be limited to the brain. Indeed, in conditions of low dietary omega-3 fatty acids
intake (e.g. Western diets), DHA brain levels depend on the liver's capacity to metabolize
diet-derived omega-3 fatty acids18–20. Therefore, a systems biological approach that
includes the liver-brain axis is required to investigate DHA regulation in AD.

Biological roles of DHA
DHA is an omega-3 essential fatty acid that is highly enriched in the brain and the eyes,
where it accumulates during late fetal and early neonatal life. Because of its high degree of
unsaturation, the accumulation of DHA-containing phospholipids affects membrane
biophysical properties such as fluidity, permeability and compressibility, and alters the
function of many integral and membrane associated proteins21–23. High levels of DHA have
been found in growth cones24, synaptic plasma membranes and synaptic vesicles25;
however, the functional significance of this localization is still unclear. For example, it has
been suggested that the increased membrane fluidity may regulate the speed of signal
transduction26, neurotransmission27, and formation of lipid rafts28, mediating essential
processes for the neurodevelopment and functional synaptic plasticity of the brain. In
addition to altering the structural functionality of neural cell membranes, DHA can be
released from phospholipids due to PLA2 activation29, 30, acting as a signaling molecule.
Non-esterified DHA may bind Retinoid X Receptor, a ligand-activated transcription
factor31, or it may be oxygenated to produce various bioactive lipids. DHA oxygenation is
thought to proceed through two main pathways: i) a lipoxygenase-mediated pathway
converts DHA to resolvins and neuroprotectins such as neuroprotectin D132, two families of
lipid signals with marked antiinflammatory and neuroprotective effects33–35; and ii) free
radical-mediated peroxidation of DHA produces neuroprostanes, which are involved in
oxidative stress36. Both mechanisms may be relevant to the alterations in DHA levels
observed in aging and AD33–35, 37–40. It is likely, however, that the positive effects excited
by DHA are the result of multiple signaling events, many of which remain to be discovered.

For example, DHA is known to play important roles in the cardiovascular system, which in
turn may contribute to the clinical manifestation and the pathology of AD in the brain5, 41.
The roles of DHA on the vascular component and the cerebral parenchyma itself, however,
have not been systematically explored42. Therefore, the contribution of liver-derived DHA
in vascular dementia and, more generally in cardiovascular diseases, should be object of
further investigation.

DHA in brains of subjects with AD
Numerous studies indicates that DHA serves important neurotrophic functions during the
last trimester of fetal life and the first two years of childhood43, but it is still unclear whether
this fatty acid plays similar roles in aged subjects. Several, albeit not all, epidemiological
and clinical studies suggest that higher intake of DHA decreases the risk of cognitive decline
and dementia in elderly adults44. Animal experiments support this conclusion7, 8, 13 and
further indicate that DHA might exert these effects by promoting, directly or through
biologically active metabolites, the survival and repair of neuronal cells45, 46.

The cognate question of whether changes in brain DHA levels might accompany cognitive
decline has been addressed using post mortem brain tissue from AD patients and age-
matched control subjects34, 38, 47–52. With some inconsistency, deficits in DHA-containing
phospholipids have been reported in AD brains, but only as localized to selected brain
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regions38, 47, 48, 50, 51, 53. Discrepancies may be due to both 1) very small number of subjects
in each series (<10 per cohort); and 2) variations in sampling and methodology.
Furthermore, only one reports described the levels of non-esterified DHA, which was
reported to be lower in hippocampus of AD patients than control subjects34.

In conclusion, despite some disparities, the results of these investigations generally support
the possibility that AD is associated with lower than normal levels of DHA in the brain6. In
the following sections, we describe how we reexamined this possibility and searched for
supporting correlative evidence that a disruption in brain DHA integrity might result from
defective omega-3 fatty acid metabolism in liver.

DHA biosynthesis in human liver
Like other mammals, humans obtain DHA directly from dietary sources, especially fish, but
can also produce it in liver from omega-3 fatty acid precursors present in green plant
leaves20, 54, 55. When food does not provide a sufficient supply of these nutrients, the liver's
capacity to generate DHA may become critical to keep brain levels of this fatty acid within a
normal range19, 55.

A properly functioning liver synthesizes DHA from shorter-chain omega-3 precursors, such
as α-linolenic acid (C18:3 omega-3) and eicosapentaenoic acid (C20:5 omega-3). A cascade
of elongase and desaturase enzymes localized in the endoplasmic reticulum of the
hepatocyte progressively add carbon units and double bonds to shorter-chain omega-3 fatty
acids, producing the very-long-chain tetracosahexaenoic acid (C24:6 omega-3). This faty
acid is transported into peroxisomes and then converted to DHA by the sequential action of
acyl-coenzyme A oxidases, D-bifunctional protein (DBP) and peroxisomal thiolases56–59.
Liver-derived DHA reaches the brain through the general circulation, most likely as a
complex with lipid-binding proteins (e.g., albumin) that are also synthesized in the
hepatocyte20. Notably, whole-body β-oxidation of a single dose of 13C-DHA in healthy,
young adults is <5% in one-month period follow-up60, suggesting that the human body does
not rapidly catabolize DHA. Recent evidence also indicates that the half-life of DHA in the
human brain approximates 2.5 years18, with a consumption rate of 3.8 mg/day18. These
observations indicate that the need for DHA in humans might be covered by dietary α-
linolenic acid when liver metabolic conversion machinery is intact and the diet has a high α-
linolenic acid content19. For example, it has been calculated that assuming an average
ingestion of 1,400 mg/day of α-linolenic acid61, 62, and that 0.5–10% of ingested α-linolenic
acid is converted to DHA63–67, the liver is able to synthesize DHA at rates of 7–140 mg/day,
1.8–36-fold, respectively, the human brain requirement18. This evidence suggests that liver-
mediated DHA biosynthesis may be sufficient (and indeed essential) for normal brain
activity.

A lipidomic approach for the study of AD
Acquiring a broad view of lipid metabolic pathways in AD might offer unexpected insights
on the regulation of DHA homeostasis, which may contribute the pathogenesis of this
disease. Technical progress in lipid analysis has opened unprecedented opportunities for the
field of lipidomics – the branch of metabolomics that studies large-scale lipid profiles in
healthy and diseased tissues68. AD is an especially promising area of application for
lipidomics. Risk factors for AD – such as aging and genetic vulnerability – alter specific
lipid pathways in brain and peripheral tissues, and these alterations may influence in turn
AD progression (Fig. 1). In our studies, we used a functional lipidomic approach that has
two key features. First, biological specimens from clinically characterized AD patients and
closely matched controls were analyzed by liquid chromatography/mass spectrometry (LC/
MS). Second, the obtained information was integrated with clinical and molecular data to
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generate testable hypotheses on the functional significance of newly described lipid
abnormalities, and on the possible mechanistic bases for their development. The application
of this approach allowed us to uncover multiple lipid alterations in post mortem brain and
liver tissue from AD patients, some of which strongly correlate with AD clinical symptoms.

Functional lipidomic analyses in subjects with AD
A lipidomic analysis of DHA metabolism requires (i) to analyze structurally diverse classes
of lipids, and (ii) to achieve a high sensitivity of detection for low-abundance lipids. The
lipid work-up procedure utilized in our studies is illustrated schematically in Figure 269.
Organic solvent extraction and open-bed silica-gel chromatography were used to divide the
lipidome into 4 fractions: fraction 1, which contained water-extractable polyanionic
phospholipids (e.g., phosphatidylinositol-4,5-bisphosphate [PIP2]); fraction 2, which
included large cationic phospholipids (e.g., phosphatidylcholine [PC]); fraction 3a, which
comprised small amphipatic and non-polar lipids (e.g., fatty acids [FA] and diacylglycerols
[DAG]); and fraction 3b, which included large anionic phospholipids (e.g.,
phosphatidylethanolamine [PE]). Each lipid fraction was subjected to LC separation on
appropriate C18-based columns. Following these initial steps, lipid classes and individual
compounds of interest were characterized by LC/MSn and then quantified using non-
endogenous lipid standards. Finally, lipidomic results were integrated with clinical and gene
expression profile data sets.

Lipidomics of brain tissues from subjects with AD
Our lipidomic analyses have uncovered multiple lipid alterations in the brain of AD
patients1. Some of these changes have already been documented in the scientific literature.
For example, corroborating the work of Bazan and others45, 70, we found that levels of non-
esterified (free) DHA are reduced in brain tissues from AD patients compared to control
subjects1. Analyses of lipid fraction 3b also confirmed that levels of DHA-containing
phospholipids are decreased in AD (for review, see6). Our lipidome-wide search revealed,
however, two aspects of AD-associated DHA deficiency, which have not been previously
recognized. The first is that the positive statistical correlation between DHA content and
clinical measures of dementia, which was measured by the Mini-Mental Status Examination
(MMSE). Though these results do not clarify the putative role of DHA in the pathogenesis
of AD, they are consistent with epidemiological surveys and animal studies corroborating
the hypothesis of a link between dietary DHA intake and cognitive function (reviewed in6).

The second new element uncovered by our experiments is that the deficiency in DHA occurs
throughout the brain, including regions such as cerebellum, which are not generally regarded
as being directly involved in AD pathology. This led us to investigate a possible systemic
cause for the decline in DHA levels. Previous evidence indicates a peripheral decrease of
omega-3 fatty acids with AD, and suggests that increasing the levels of peripheral levels of
omega-3 fatty acids may have substantial benefits in reducing their risk of cognitive
decline7115, 72–76.

Functional lipidomics of liver tissues in AD
Although AD is conceptualized as a neurodegenerative disease of the brain, there is
increasing awareness that it may involve abnormalities in multiple peripheral
tissues34, 77, 7879–83. In this regard, several reports indicate that the liver may play an
important role in peripheral Aβ clearance from the central nervous system84–86. To identify
potential mechanisms responsible for the observed DHA deficit in AD brain, we focused our
attention on the liver because of the essential contribution of this organ in supplying DHA to
the brain1 (Fig. 3). Our analyses showed that liver tissue from AD patients contains reduced
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levels of DHA, but elevated levels of shorter chain omega-3 fatty acids precursors – from α-
linolenic to tetracosahexaenoic acid (24:6 omega-3). This profile cannot be caused by a
nutritional deficit in omega-3 fatty acids. Rather, the profile suggests a defect in the last step
of DHA biosynthesis – the β-oxidative conversion of tetracosahexaenoic acid into DHA,
which is catalyzed by DBP in liver peroxisomes. Two additional findings support this
interpretation. First, expression of the hydroxysteroid (17-β) dehydrogenase 4 (HSD17B4)
gene, which encodes for DBP58, 59, 87, is lower in AD. Second, pristanic acid and phytanic
acid, two substrates for liver DBP activity, accumulate in the liver of AD patients. Notably,
no other gene included in our panel was significantly altered in liver tissue from AD
patients, including those encoding for proteins involved in peroxisome biogenesis, such as
PEX13, PEX14 and PEX19. These results are consistent with those of previous studies,
which have shown that genetic mutations that selectively disrupt DBP activity reduce DHA
levels in human plasma and brain88, 89. The pathological changes that trigger the down-
regulation of liver DBP expression in AD are still unknown. One possible candidate is
oxidative stress, which is known to accelerate age-dependent damage to peroxisomes90, 91.
Additional studies should also evaluate the existence of other possible links between liver
peroxisomal function and cognition. Moreover, other aspects of DHA metabolism – such as
transport and ApoE genotype14, 92–94 – might contribute to the observed changes and await
further investigation.

Importantly, the functional significance of the peroxysomal liver dysfunction is underscored
by the identification of a strong positive correlation between liver DHA content and
cognitive status, indicating a previously unrecognized association between hepatic DHA
homeostasis and global cognition1. Although it is well established that patients with
advanced liver diseases (e.g., hepatitis C, non-alcoholic liver steatosis and end-stage liver
disease) show a decline in cognitive abilities (e.g., hepatic encephalophaty)95–97, our novel
findings reveal that, even in the absence of overt liver pathology, subtle molecular
dysfunctions in the liver can be associated with dementia and AD pathology.

It appears, however, that an overall healthy liver is required for optimal DHA biosynthesis.
It has been reported that during conditions of hepatic stress such as in chronic alcohol
intake98, 99, and liver steatosis and injury100, 101, the levels of hepatic DHA are
compromised. Supplementation of DHA has been suggested as a new therapeutic approach
in the treatment of these conditions102, 103. Further research will be required to determine
the contribution of a dysfunctional hepatic DHA biosynthesis to cognition in relation to liver
injury or impaired functioning.

Role of peroxisomal metabolism in DHA deficiency
Peroxisomes are essential for the last steps of the biosynthesis of DHA (Fig.3) and have
been involved in neurodevelopment104, and mental and visual health. These organelles are
particularly enriched in liver and kidneys, which are also the organs deputed to the DHA
biosynthesis105, 106. DHA levels are extremely low in brain of patients with severe
peroxisomal disorders, such as Zellweger syndrome and X-adrenoleukodystrophy, where
some clinical symptoms can be improved following the administration of DHA107. In
particular, previous reports suggest that DHA levels were reduced in plasma and brain tissue
of patients carrying DBP deficiency88, 89. In light of this evidence, we should consider
dietary interventions to include preformed DHA, rather than its precursors, to normalize
brain content of DHA in patients with AD. Moreover, it has been shown that administration
of shorter-chain omega-3 precursors of DHA, such as EPA (C20:5, omega-3), for 12 weeks
was ineffective in increasing the levels of DHA in AD patients, while increasing DPA
(C22:5 omega-3)108.
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These observations add to the accumulating evidence that only a small percent of the dietary
shorter-chain omega-3 fatty acids (0.5–10%) is fully converted into DHA63–67. Overall, it
appears that the peroxisomal step for the biosynthesis of DHA may work as a checkpoint for
the control of DHA homeostasis and it could be subject to fine regulatory mechanisms. In
addition, the general functionality of peroxisomes could affect DHA metabolism. Thus,
further investigation should focus on determining how the integrity and number of these
organelles is affected in the livers of AD patients.

Finally, because kidneys are rich in peroxisomes and together with liver contribute to DHA
biosynthesis, their contribution to the DHA biosynthesis in AD patients should be object of
further investigation.

A role for lived-derived DHA in cognitive aging?
Peroxisomal function is known to decline with age90 and this may explain the decrease in
the synthesis of plasmalogens37, 89, 109 and DHA54, 110, 111 observed in elderly people.
Indeed, it has been observed that DHA composition progressively declines in human and rat
frontal cortex with increasing age112, despite the availability of dietary short chain omega-3
PUFA37, 113, 114. In a recent clinical trial, supplementation of DHA as been shown to
provide a net benefit roughly equivalent to having the learning and memory skills of
someone 3 years younger115. Overall, this evidence supports the hypothesis that
peroxisomal DHA biosynthesis may have a significant role in aging and that AD is an
acceleration of the peroxisomal aging process.

A role for liver-derived DHA in neuropsychiatric disorders?
In addition to AD, DHA deficits may also occur in brain and peripheral tissues from patients
with neuropsychiatric illnesses, including bipolar disorder, major depressive disorder,
schizophrenia112, 116–121, attention deficit (hyperactivity) disorder, suicide122, dyslexia,
autism123, neuroticism124, stress disorders, and chronic fatigue (for review see125). It has
been suggested that deficits in peroxisomal metabolism may contribute to the DHA deficit
observed in some of these patients112. In particular, analogous to the AD treatment108,
shorter chain omega-3 precursors appear to be less efficacious than DHA in the treatment of
mood symptoms in bipolar disorder patients126. Furthermore, the symptoms of depression
are sometimes indistinguishable from early AD127 and it has been reported that depression
early in life may be a risk factor for the later development of AD128, 129. Similar to AD, it
has been suggested that the deficits in DHA observed in neuropsychiatric diseases may
contribute to (i) cognitive impairment and (ii) structural brain changes, such as reduced
cerebral volume, enlarged ventricles, cerebral atrophy, and frontotemporal-sulcal
widening130–135. In this context, peripheral DHA supplementation has been shown effective
in increasing cortical gray matter volume135136, which may explain some of the benefits of
this lipid on mood. In light of this evidence, the role for liver biosynthesis of DHA in the
development and progression of neuropsychiatric disorders that may accompany AD
requires further examination.

Conclusions and future perspective
The use of a multi-organ lipidomic approach allowed us to identify a dysfunction in the
liver's ability to synthesize DHA in subjects with AD, which possibly lessens the flux of this
neuroprotective fatty acid to the brain (Fig. 4). This systemic deficiency in DHA correlates
with the cognitive impairment observed in AD patients and has implications in two main
areas. First, interventions with omega-3 fatty acids – both dietary and supplement-
based9, 10, 14, 93 – should take into consideration the partial inability of AD patients to
complete DHA biosynthesis. For example, future clinical studies might consider using
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appropriate forms of purified DHA, DHA-delivering prodrugs, or routes of administration
that bypass the liver.. A similar approach was shown to improve clinical symptoms in
patients with severe peroxisomal disorders107, 137, and it has been previously suggested in
older individuals111 or individuals with end-stage liver disease138. Second, the altered
pattern in lipid metabolism in liver produced by DBP dysfunction might be exploited to
develop peripheral biomarker strategies for AD.
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Figure 1.
Scheme illustrating the core hypothesis of our study. Risk factors for AD (which include
genetic-predisposition, age and, possibly, nutritional deficits) influence interacting lipid
pathways throughout the body. Over time, accumulating lipid changes compound with those
factors to increase the risk for AD.
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Figure 2.
Schematic flow chart of our lipid work-up procedure. 1, extraction in acidic solvent; 2,
extraction in water; 3, fractionation by open-bed silica-gel chromatography; elution with 3a,
chloroform/methanol (9:1); 3b, chloroform/methanol (1:1). See text for details and
abbreviations.
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Figure 3.
Overview of DHA biosynthesis in liver. Liver transforms diet-derived α-linolenic acid (18:3
omega-3) into DHA (22:6 omega-3). In the endoplasmatic reticulum, the serial activities of
Δ6 and Δ5 desaturases (encoded by the FADS2 and FADS1 genes, respectively) and
elongases (such as that encoded by the HELO1 gene) convert alinolenic acid into
tetracosahexaenoic acid (24:6 omega-3). Proteins encoded by the ABCD1 or ABCD2 genes
transport tetracosahexaenoic acid into peroxisomes. The sequential action of acyl coenzyme-
A oxidase (encoded by the ACOX1 gene), D-bifunctional protein (encoded by the HSD17B4
gene), and various peroxisomal thiolases (not shown) convert tetracosahexaenoic acid into
DHA.
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Figure 4.
Hepatic DHA biosynthesis is linked to cognition. Diet-derived ALA (α-linolenic acid, 18:3
omega-3) is absorbed by the intestine and delivered to the liver where it serves as precursor
for DHA. A peroxisomal dysfunction impairs the conversion of tetracosahexaenoic acid
(24:6 omega-3) into DHA in the livers of subjects with AD. This systemic deficiency in
DHA possibly lessens the flux of this neuroprotective fatty acid to the brain leading to
cognitive impairment.
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