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Abstract

We report the synthesis and photochemical and biological characterization of the first selective and 

potent metal-based inhibitors of cytochrome P450 3A4 (CYP3A4), the major human drug 
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metabolizing enzyme. Five Ru(II)-based derivatives were prepared from two analogs of the 

CYP3A4 inhibitor ritonavir, 4 and 6: [Ru(tpy)(L)(6)]Cl2 (tpy = 2,2′:6′,2″-terpyridine) with L = 

6,6′-dimethyl-2,2′-bipyridine (Me2bpy; 8), dimethylbenzo[i]dipyrido[3,2-a:2′,3′-c]phenazine 

(Me2dppn; 10) and 3,6-dimethyl-10,15-diphenylbenzo[i]dipyrido[3,2-a:2′,3′-c]phenazine 

(Me2Ph2dppn; 11), [Ru(tpy)(Me2bpy)(4)]Cl2 (7) and [Ru(tpy)(Me2dppn)(4)]Cl2 (9). 

Photochemical release of 4 or 6 from 7–11 was demonstrated, and the spectrophotometric 

evaluation of 7 showed that it behaves similarly to free 4 (type II heme ligation) after irradiation 

with visible light but not in the dark. Unexpectedly, the intact Ru(II) complexes 7 and 8 were 

found to inhibit CYP3A4 potently and specifically through direct binding to the active site without 

heme ligation. Caged inhibitors 9–11 showed dual action properties by combining photoactivated 

dissociation of 4 or 6 with efficient 1O2 production. In prostate adenocarcinoma DU-145 cells, 

compound 9 had the best synergistic effect with vinblastine, the anticancer drug primarily 

metabolized by CYP3A4 in vivo. Thus, our study establishes a new paradigm in CYP inhibition 

using metalated complexes and suggests possible utilization of photoactive CYP3A4 inhibitory 

compounds in clinical applications, such as enhancement of therapeutic efficacy of anticancer 

drugs.

Graphical Abstract

INTRODUCTION

Cytochrome P450s (CYPs) are heme-containing enzymes that play a crucial role in 

biosynthesis and metabolism. In addition to their activity in the liver, CYPs perform 

biosynthetic processing and drug oxidation in many other tissues, including the 

gastrointestinal tract and the brain. Extrahepatic CYP activity reduces local drug 

bioavailability and fuels resistance and progression of diseases, such as cancer, making 

CYPs attractive drug targets. Better understanding of the CYP inhibitory mechanism can 

also help lower the risk of dangerous drug–drug interactions. Genetic diversity of human 

CYPs leads to pharmacokinetic differences between people of different ethnic backgrounds 

that make drug responses highly varied. As a result, thorough characterization of small 

molecule interactions with CYPs is essential; in combination with genetic sequencing, these 

data will one day lead to better designed and personalized therapies.1

CYP3A4 is the most abundant liver and intestinal P450 isoform that oxidizes the majority of 

administered drugs and other xenobiotics relevant to human health.2–9 Fast and overly 

extensive drug metabolism can reduce treatment efficacy by requiring higher doses to 

achieve the full therapeutic effect. One way to overcome fast drug metabolism is the 
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inhibition of CYP3A4. Currently, two CYP3A4 inhibitors, ritonavir and cobicistat, are part 

of multidrug therapies for treating HIV and hepatitis C virus (HCV) infections, whereas 

ketoconazole is co-prescribed with the quickly metabolized immunosuppressants in organ 

transplant patients.10–14 Anticancer therapy is another field where targeted CYP3A4 

inhibition holds promise. CYP3A4 clears various types of anticancer drugs via both 

intestinal/hepatic metabolism and enhanced expression/in situ metabolism in solid tumors.
15–19 Targeted inhibition of CYP3A4 in tumors has been identified as a potential solution to 

improve efficacy of chemotherapy by restoring sensitivity of cancer cells.19,20 Since most 

anticancer drugs have a narrow therapeutic index, potent CYP3A4 inhibition (as part of drug 

cocktails) has great potential to improve outcomes, lower chemotherapeutic doses, and 

minimize adverse effects. Importantly, clinicians have already identified an urgent need for 

localized CYP3A4 inhibition in malignant tissues.21 Localized inhibition was postulated to 

be more effective than systemic inhibition in colorectal cancer because a widely prescribed 

class of chemotherapeutics that destabilize micro-tubules are metabolized by CYP3A4 in 

cancer cells but by other CYPs in the liver.21 Importantly, there are no current methods that 

achieve tissue-specific blockade of CYP activity. Moreover, unlike the thousands of organic 

small molecules characterized as CYP inhibitors, inducers, or substrates, only a small 

handful of metal complexes have been investigated for CYP targeting.22–24

With the potential benefits in mind, we identified photocaging as a viable strategy to achieve 

localized CYP inhibition. Photocaging is a powerful method for blocking the action of 

biologically active molecules and unleashing inhibitory compounds within desired tissues, 

through which highly controlled and localized CYP inhibition can be achieved.22,23 Toward 

this goal, Ru(II)-based photocaging can facilitate small molecule release in a noninvasive 

manner to provide spatial and temporal control over biological activity.25–27 Photocaging 

has been exploited in basic research and for drug activation during photochemotherapy 

(PCT),28–30 with recent in vivo validation of Ru(II)-PCT.31 In addition to PCT, Ru(II) 

complexes show attractive properties for photodynamic therapy (PDT) applications, 

including high stability and cell permeability,32,33 low inherent toxicity,34–37 and higher 

light-to-dark ratios for cell death compared to clinically approved PDT compounds.29,38 Due 

to their rich photochemistry and resistance to photobleaching,39 a common problem with 

current organic photosensitizers,40 ruthenium complexes are emerging as a promising new 

class of PDT agents,29,41–43 some of which have advanced to clinical trials.44–47 One recent 

example is the Ru(II) photosensitizer TLD-1433, which is currently in phase II clinical trials 

for the treatment of bladder cancer.48–50

Many small molecules that target CYPs contain N-donor heterocycles that coordinate to the 

heme iron in the active site (type II ligation) to create strong and stable enzyme–inhibitor 

complexes.51–53 Ru(II) photocaging is an effective strategy for blocking N-donor 

heterocycles from binding to their targets, including the hemes found in CYP enzymes, via 

strong and stable coordination between N-donors, such as imidazoyl and pyridyl groups, and 

the Ru(II) centers of the photocages.26 Examples include the photochemical release of the 

CYP17A1 inhibitor abiraterone in PC3 prostate adenocarcinoma cancer cells,23 CYP11B1 

inhibitors metyrapone and etomidate caged with the Ru(bpy)2 (bpy = 2,2′-bipyridine) 

fragment,22 and photocaged analogs of the pan-P450 inhibitor econazole that function as 
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photoactivated cytotoxic and emissive agents in DLD-1 colon adenocarcinoma cancer cells.
24

Herein, we report the design, synthesis, and biochemical characterization of a series of 

photocaged CYP3A4 inhibitors. Compounds were designed as Ru(II)-caged analogs of the 

antiretroviral drug ritonavir,54 which is a CYP3A4 inhibitor that binds tightly to the heme 

iron center via its thiazole ring.51,53 Two types of Ru(II) photocaging groups were employed 

that show either single action PCT or dual action PCT/PDT behaviors. All compounds were 

highly stable in solution in the dark but released CYP3A4 inhibitors readily upon irradiation 

with visible light, enabling type II heme iron ligation. While the main goal of the project 

was to design and employ light-activated CYP inhibitory molecules, one unexpected and 

significant finding was that, even without light activation, some Ru(II) compounds could 

potently inhibit CYP3A4 by binding to the active site without heme ligation. A direct 

inhibitory action between a large metal complex and a CYP target was verified by X-ray 

crystallography. Finally, we report that photocaged CYP3A4 inhibitors can function as dual 

action PDT and PCT agents that can both generate 1O2 and release the inhibitor upon 

irradiation, respectively. It is shown that these compounds work synergistically with the 

microtubule-destabilizing drug vinblastine, primarily metabolized by CYP3A4 in vivo. 

Thus, this work establishes a new paradigm in CYP inhibition and raises the possibility that 

photoactive CYP3A4 inhibitory compounds can be utilized in clinical applications, such as 

enhancement of therapeutic efficacy of anticancer drugs.

RESULTS AND DISCUSSION

Compound Design and Synthesis.

To begin our studies, we surveyed the literature for known type II inhibitors of CYP3A4. 

Clinical examples include ketoconazole (1), fluconazole (2), and ritonavir (3) that contain 

imidazole, triazole, or thiazole N-donors, respectively (Figure 1).51,55,56 Instead, we chose to 

focus our efforts on CYP3A4 inhibitors containing pyridyl groups that are analogs of 

ritonavir (4–6).57–59 Pyridine-containing compounds show more favorable properties for 

Ru(II) photocaging than other heterocyclic compounds, including strong and stable binding 

to Ru(II) in the dark and facile release when irradiated with low-energy light.23,60–62 

Compounds 4–6 inhibit CYP3A4 in the low μM to nM range in in vitro assays with a 

fluorogenic substrate (vide infra) and, as verified by spectroscopic and X-ray 

crystallography analyses, inhibit CYP3A4 by ligating directly to the heme iron via the 

pyridine nitrogen.57–59 Analogs 4 and 6 were chosen over 5, which showed the lowest IC50 

value of the series (90 nM) but had the potential to create solubility problems in Ru(II)-

caged complexes due to its hydrophobic nature. Compound 4 was obtained using a modified 

three-step synthetic route that used trityl protection of 3-thiopropanoic acid (Scheme S1).57 

Compound 6 was synthesized from S-2-mercapto-3-phenylpropanoic acid63 following a 

literature protocol.58

Five Ru(II) complexes containing the caged analogs of CYP3A4 inhibitors 4 and 6 were 

prepared as shown in Scheme 1. Complexes 7 and 8, coupled to the [Ru(tpy)(Me2bpy)] 

fragment as the caging group, were designed to demonstrate single action PCT behavior, 

similar to the pyridine model complex [Ru(tpy)(Me2bpy)(py)](PF6)2,60 as well as caged 
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inhibitors of cysteine proteases64,65 and CYP17A123 reported by us in prior studies. Analogs 

9–11, containing the [Ru(tpy)(L)] fragments as the photocaging groups, where L = 

dimethylbenzo[i]dipyrido[3,2-a:2′,3′-c]phenazine (Me2dppn) and 3,6-dimethyl-10,15-

diphenylbenzo[i]dipyrido-[3,2-a:2′,3′-c]phenazine (Me2Ph2dppn), were synthesized to 

provide dual action PCT/PDT capabilities. The reaction of 4 or 6 with [Ru(tpy)(Me2bpy)

(Cl)]Cl66 in a 1:1 mixture of EtOH and H2O at 80 °C gave the photocaged inhibitors 7 and 8 
in 75% and 63% yield, respectively, after chromatography over alumina. Complexes 9–11 
were obtained by treating 4 or 6 with [Ru(tpy)(Me2dppn)Cl]Cl67 or [Ru(tpy)

(Ph2Me2dppn)Cl]Cl68 in a 1:1 mixture of EtOH and H2O at 80 °C in 48–61% yield after 

chromatography over alumina. The ligands Me2dppn and Me2Ph2dppn found in complexes 

9–11 were included to promote ligand dissociation (PCT) from the triplet ligand field (3LF) 

state(s) and (1O2) generation (PDT) from the dppn-centered 3ππ* excited state(s). 

Importantly, we were motivated to use these ligands because our prior studies confirmed that 

dual action PCT/PDT behavior was necessary to achieve efficient death of triple negative 

breast cancer cells in 3D pathomimetic assays.65

Complexes 7–11 were characterized by multiple methods, including electronic absorption, 
1H NMR, COSY, and IR spectroscopies and electrospray ionization mass spectrometry (ESI-

MS). The electronic absorption spectra of 7 and 8 exhibit maxima at 474 nm (ε = 7700 M−1 

cm−1) and 470 nm (ε = 9700 M−1 cm−1), respectively, that are in good agreement with the 

corresponding pyridine model complex [Ru(tpy)(Me2bpy)(py)](PF6)2.60 Likewise, the 

electronic absorption spectra of 9 (λmax 485 nm, ε = 13 500 M−1 cm−1) and 10 (λmax 480 

nm, ε = 12 000 M−1 cm−1) show maxima consistent with [Ru(tpy)(Me2dppn)(py)](PF6)2.69 

The electronic absorption spectrum of 11 exhibits a maximum at 491 nm (ε = 13 500 M−1 

cm−1) that is slightly red-shifted compared to those of 9 and 10, which agrees well with data 

for [Ru(tpy)(Ph2Me2dppn)(py)](PF6)2.68 NMR spectra of complexes 7–11 show resonances 

ranging from 10 to 1 ppm that are consistent with the presence of the Ru(II)-caging groups, 

as well as peaks that are attributed to inhibitors 4 and 6 present in these structures. In 

particular, spectra for complexes 7–11 show singlets in the region of 2.5–1.0 ppm that are 

consistent with the two diasterotopic methyl groups present in the ligands Me2bpy, 

Me2dppn, and Ph2Me2dppn. Methyl groups on the same face of the Ru(tpy) plane as the 

monodentate pyridyl ring are shifted upfield by ~0.7 ppm relative to resonances below that 

plane due to the shielding effect of the pyridyl ring; these shifts are similar to other 

photocaged complexes we have characterized in the past.23,64,65 Mass spectra of the 

photocaged complexes show major peaks with suitable isotope patterns with m/z values 

consistent with that expected for parent molecular dications [Ru(tpy)(Me2bpy)(4)]2+ (7, m/z 
= 474) and [Ru(tpy)(Me2bpy)(6)]2+(8, m/z = 526) and the monocations ([Ru(tpy)(Me2dppn)

(4)]Cl)+ (9, m/z = 1159), ([Ru(tpy)(Me2dppn)(6)]Cl)+ (10, m/z = 1263), and ([Ru(tpy)

(Ph2Me2dppn)(6)]Cl)+ (11, m/z = 1415). Taken together, these data are consistent with the 

structural assignments shown in Scheme 1.

Photochemistry.

The irradiation of 7 effectively liberates 4, resulting in ligand exchange with a solvent 

molecule, generating the corresponding [Ru(tpy)(Me2bpy)(L)]2+ (L = H2O or CH3CN) 

product in H2O or CH3CN, respectively, under N2 atmosphere. Photoactivated ligand 
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exchange (λirr = 500 nm) of 7, with absorption maximum at 474 nm, results in a blue shift to 

450 nm in CH3CN (Figure 2A) and a red shift to 495 nm in H2O (Figure 2B). The resulting 

absorption maxima are consistent with the formation of the corresponding product with a 

coordinated CH3CN or H2O molecule.23,60,70 Similarly, the irradiation of 8 with 500 nm 

light in CH3CN resulted in a decrease in 470 nm absorption and a concomitant increase at 

455 nm. This hypsochromic shift in the metal-to-ligand charge transfer (MLCT) band is 

consistent with the substitution of 6 coordinated to the Ru(II) metal through a pyridine unit 

for a CH3CN solvent molecule (Figure S8).23,70 The presence of an isosbestic point at 463 

nm indicates the formation of a single photoproduct, [Ru(tpy)(Me2bpy)(CH3CN)]2+. 

Comparable changes in the electronic absorption spectra of 9–11 are observed under similar 

experimental conditions (Figures S9–S11).

The quantum yields (ΦLE) for the ligand exchange with a solvent molecule for 7–11 are 

listed in Table 1. For 7, ΦLE values of 0.15(1) in H2O and 0.31(1) in CH3CN were measured 

upon 500 nm irradiation (Table 1). The value in H2O is lower than that observed for 

[Ru(tpy)(Me2bpy)(py)]2+, ΦLE = 0.41(2), but similar in CH3CN, ΦLE = 0.33(1).60 The lower 

quantum yield observed for 7 vs Ru(tpy)(Me2bpy)(py)]2+ in H2O can be attributed to the 

lower solubility of CYP3A4 inhibitor 4 in water as compared to pyridine, which reduces the 

ability of the former to escape the solvent cage upon release from Ru(II). Similarly, Table 1 

reveals a ΦLE value lower for 8 relative to 7 in CH3CN, which likely arises from the larger 

size and poorer solubility of inhibitor 6 as compared to 4. Following the same trend as 7 and 

8, complex 9 containing the CYP3A4 inhibitor 4 showed ~2-fold more efficient photorelease 

than its analog 10 containing the bulky inhibitor 6. Complex 11 showed the most efficient 

photorelease in the 9–11 subseries, which is consistent with our earlier observations showing 

that complexes containing arylated Me2dppn derivatives, such as Ph2Me2dppn, undergo 

more efficient photorelease than Me2dppn derivatives.68 Complex 7 exhibits the highest 

ligand exchange quantum yield of the five complexes. It is hypothesized that the initially 

populated 1MLCT excited state intersystem crosses to the triplet manifold, populating both 

the lowest-energy dppn 3ππ* state and the 3LF states in 9–11, and the population of the 

latter results in ligand dissociation. The absence of a lowest-energy long-lived dppn-centered 
3ππ* excited state in 7 and 8 precludes the bifurcation of intersystem crossing, resulting in 

an increased population of the 3LF state and, consequently, greater photoinduced ligand 

exchange quantum yield as compared to 9–11.69,71

In addition to photosubstitution of the monodentate ligand, 9–11 produce cytotoxic 1O2 

through the population of the lowest-energy, long-lived 3ππ* excited state upon irradiation. 

The quantum yields for 1O2 production, ΦΔ, by 9–11 of 0.59(6), 0.57(6), and 0.80(7), 

respectively, are comparable to those of other dual-activity complexes possessing dppn 

ligands, such as [Ru(tpy)(Ph2Me2dppn)(py)](PF6)2
68 and [Ru(tpy)(Me2dppn)(imatinib)]2+ 

(Table 1).70,72 Our prior studies established that the Ru(II) photocaging group [Ru(tpy)

(Me2bpy)] found in 7 and 8 does not generate 1O2 either before or after photorelease 

because its excited state lifetime is too short to undergo bimolecular reactions, as is the case 

with other Ru(II) complexes containing the tpy ligand or those that undergo facile ligand 

photodissociation.69,70
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The stability of 7–11 was assessed in cell growth medium at 37 °C as previously described.
73,74 No spectral changes were observed for 7–9 in the dark (Figures S18–S24) over a course 

of 24 h, consistent with the exceptional stability of Ru(II)-caged aromatic heterocycles. 

Complexes 10 and 11 did show some spectral changes over the 24 h period that are 

consistent with compound precipitation from solution and/or thermal ligand dissociation.

CYP3A4 Inhibition Studies.

After establishing that CYP3A4 inhibitor 4 is photochemically released from its Ru(II) cage 

7, the complex was evaluated against the purified CYP3A4 enzyme under dark conditions 

and upon irradiation. Stock solutions of 7 were left in the dark or exposed to light (λirr = 

400–700 nm, tirr = 40 min) before titrating against soluble CYP3A4 (residues 3–22 deleted). 

Heme binding to the iron center in CYP3A4 was monitored via electronic absorption 

spectroscopy. Data indicated that the caged inhibitor 7 effectively released 4 from the 

ruthenium center upon irradiation with visible light, allowing the pyridine functional group 

of 4 to bind to CYP3A4 via a type II heme ligation. The difference spectra were similar to 

those obtained for the free inhibitor 4 and showed an increase in intensity at 427 nm and a 

decrease at 407 nm, consistent with type II binding (Figure 3A), where the water ligand is 

substituted with pyridine, converting the heme center to a low spin ferric state. Hyperbolic 

fitting to the titration plot resulted in Kd = 340 nM for 7 under irradiation (Figure 3B). In 

contrast, no spectral evidence for type II binding was observed during titration of CYP3A4 

with 7 under dark conditions. Minor perturbations to the absorption spectra were attributed 

to the Ru(II) complex, strongly absorbing at 400–500 nm, rather than type II binding (Figure 

3C). Similarly, the titration of CYP3A4 with a control compound, [Ru(tpy)(Me2bpy)(Cl)]Cl, 

led to minor spectral changes. Taken together, these data indicate that type II heme binding 

is effectively blocked by Ru(II) caging and that irradiation with visible light triggers the 

release of inhibitor 4, enabling its ligation to the CYP3A4 heme.

Next, compound 7 was evaluated for its ability to inhibit CYP3A4 activity under light and 

dark conditions. The free inhibitor 4 and [Ru(tpy)(Me2bpy)(Cl)]Cl were included as 

controls. IC50 values were determined using a fluorogenic assay that monitors the O-

debenzylation of 7-benzyloxy-4-trifluoromethylcoumarin (BFC), with 100% activity set at 

vehicle (DMSO) only. After treatment with visible light (λirr =400–700 nm, tirr = 40 min), 7 
inhibited CYP3A4 nearly as well as free inhibitor 4 (IC50 of 2.2 μM and 1.5 μM, 

respectively), which agrees well with the spectral data (Figures 2 and 3) showing that 4 is 

released from 7 upon irradiation. However, to our surprise, the intact 7 was more potent in 

the dark (IC50 of 0.9 μM; Figure 4), suggesting that the Ru(II) complex could bind to 

CYP3A4 more strongly than free 4. Control experiments with [Ru(tpy)(Me2bpy)(Cl)]Cl 

(IC50 > 50 μM) showed that CYP3A4 inhibition was not due to just the Ru(II) fragment. 

Taken together, these data indicate that 7 is a stronger inhibitor when kept in the dark as 

compared to under irradiation.

To confirm that the intact 7 is able to access the active site, we crystallized the CYP3A4-7 
complex and solved the structure to 2.5 Å resolution. Indeed, 7 was bound in a well-defined 

manner within the active site (Figure 5). The inhibitor tail curls above the heme without 

direct binding to the iron center, while the bulky Ru(II) cage stacks inside the substrate 
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channel. Protein–ligand interactions are predominantly hydrophobic. The inhibitor tail is 

surrounded by Phe241, Ile301, Phe304, and Ile369, whereas the ligands of the [Ru(tpy)

(Me2bpy)] cage fragment stack with Phe108, Phe215, and Phe220 and are in close contacts 

with Phe57, Leu217, Met371, and Leu482. The anionic residues Asp76, Asp217, and 

Glu374 may also help to strengthen the inhibitory complex by creating favorable 

electrostatic interactions with the dicationic Ru(II) fragment. Importantly, the 7 N-pyridine 

does not bind to the heme iron because it is stably coordinated to Ru(II). This structure is 

highly valuable because it demonstrates that strong CYP3A4 inhibition by the intact, 

nonirradiated chimeric compound does not require Fe–N ligation.

On the basis of the finding that 7 potently inhibits CYP3A4 in the dark, the inhibitory assays 

for complexes 8–11 were conducted under both dark and light conditions (λirr = 400–700 

nm, tirr = 40 min). IC50 values for the BFC activity of CYP3A4 are presented in Table 2. 

Complex 8, which contains inhibitor 6, inhibits CYP3A4 nearly to the same extent under 

dark and light conditions, giving a phototherapy index (PI) of 1.1. Interestingly, under dark 

conditions, 8 inhibits CYP3A4 roughly twice as potently as 7 (IC50 of ~400 nM). Since 8 
willingly cocrystallized with CYP3A4, we also determined the CYP3A4-8 complex 

structure. Despite the fact that resolution was similar, 2.5 Å, 8 was poorly defined and the 

electron density around the ligand was discontinuous, which can be attributed to multiple 

binding modes. Nonetheless, the Ru-center and the core of the inhibitor tail could be located, 

allowing ligand fitting. As shown in Figure S12, the [Ru(tpy)(Me2bpy)] cage binds within 

the same pocket in the substrate channel. The inhibitor end-portion, in turn, similarly curls 

above the heme. Again, the complex is largely stabilized by aromatic stacking and 

hydrophobic interactions mediated by Phe57, Phe108, Phe220, Phe221, Phe241, and 

Phe304.

Similar to 7, the Me2dppn complexes 9 and 10 inhibited CYP3A4 more potently under dark 

than light conditions but at lower concentrations than 7. Dark IC50 values for 9 and 10 were 

in the 250–280 nM range, with PI values of 0.30 and 0.61, respectively. Attempts to 

cocrystallize 9 and 10 with CYP3A4 were unsuccessful. Examination of inhibitors’ 

solutions showed that both 9 and 10 have a tendency to aggregate. Compound aggregation in 

solution can lead to false positives for enzyme inhibition, e.g., by trapping active enzyme 

within colloidal particles that block access of substrates.75 One way to distinguish between 

specific and nonspecific inhibition is to add detergents or other solubilizing agents to 

enzymatic assays. Therefore, we screened several detergents known to break up aggregates, 

including CHAPS, CYMAL-5, octylglucoside, and cyclodextrin. CYP3A4 was highly 

sensitive to detergents, with most detergents abolishing the BFC activity even in the absence 

of inhibitors. However, CYP3A4 preserved ~80% activity in the presence of 2% 

cyclodextrin. The latter agent was used for re-evaluation of 10 and, as we found, reversed the 

trend: dark IC50 = 1.02 μM, light IC50 = 0.44 μM, giving a PI of 2.3. Thus, aggregation was 

at least partially responsible for CYP3A4 inhibition by 10 in the dark. Importantly, the 

higher PI with 2% cyclodextrin was due to a higher IC50 for 10 in the dark; light data with 

and without 2% cyclodextrin were virtually the same and agreed well with those for free 6. 

Finally, the bulky Ph2Me2dppn-containing complex 11 showed an improved PI value, 1.90, 
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as compared to PI = 0.61 for 10, implying that the larger caging group [Ru(tpy)

(Ph2Me2dppn)] disfavors binding to the CYP3A4 active site.

In order to characterize the scope of CYP3A4 inhibition, we screened a library of 15 

compounds, consisting of a diverse set of mono- and dicationic Ru(II) complexes (12–26, 

Figure 6; see Figure S25 for structures), against the purified enzyme. All complexes were 

screened against CYP3A4 under dark conditions at a concentration of 1 μM. Activities were 

determined using BFC as a substrate and expressed as percentage vs vehicle (DMSO) 

control. Thirteen complexes failed to decrease CYP3A4 activity below 75% at 1 μM 

concentration, confirming that potent CYP3A4 inhibition is not a general property of Ru(II) 

complexes. Only two compounds, [Ru(bpy)2(dppn)](PF6)2 (18) and [Ru(dppz)2(bpy)]Cl2 

(19) reduced CYP3A4 activity below 75% at 1 μM concentration. Collectively, these data 

reveal complex structure–activity relationships for inhibition of CYP3A4 by Ru(II) 

complexes that warrant further investigation.

To gain further insight into the potential biological applications of Ru(II)-based CYP 

inhibitors, we determined IC50 values for 4 and complexes 7 and 9 against microsomal 

CYP3A4 and two other major drug metabolizing enzymes, CYP1A2 and CYP2C9,76 using 

commercially available inhibitor screening kits (BioVision, Table 3). It should be pointed 

out that protein concentration and CYP:reductase ratios in the BioVision kits and our soluble 

reconstituted system were different, owing to which data in Tables 2 and 3 cannot be directly 

compared. For microsomal CYP3A4, inhibitor 4 was active in the nM range, with the IC50 

values being nearly the same (~200 nM) under dark and light conditions. Complex 7 also 

inhibited CYP3A4 at nanomolar concentrations but more potently under dark vs light 

conditions, following the same trend as data for 7 presented in Table 2. Importantly, both 4 
and 7 were much weaker inhibitors of CYP1A2 and CYP2C9. The selectivity of 4 for 

CYP3A4 was ~500-fold higher, whereas 7 inhibited CYP3A4 ~70-to-130-fold and 60-to-76-

fold more strongly than the other CYPs under dark and light conditions (460–470 nm; 20 

min), respectively. A multifold difference in IC50 measured for 4 and 7 under dark 

conditions suggests some influence of the released Ru(II) cage in the inhibition. The 

respective data were also collected for Ru(II) complex 9, which contains the same inhibitor 4 
linked to the bulky and more hydrophobic photocaging group [Ru(tpy)(Me2dppn)]. 

Compared to 7, the inhibitory potency of 9 for microsomal CYP3A4 was ~8-and 5-fold 

lower under dark and light conditions, respectively, and its selectivity for other isoforms 

could not be accurately measured due to solubility problems. Even so, there was a common 

trend, as all three compounds displayed higher specificity for CYP3A4 albeit to a different 

extent.

Biological Studies.

Studies on the interaction of 7–11 with isolated CYP3A4 showed that inhibition can be 

achieved via blockage of the active site by the intact caged compounds, light-activated 

release of the inhibitory fragment and its subsequent heme ligation, and efficient 1O2 

generation. However, questions remained regarding the role of aggregation vs direct 

inhibition of CYP3A4 in the dark, due to sensitivity of the recombinant enzyme to common 

detergents. These challenges prompted us to utilize an in vitro cell-based assay to probe for 
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CYP3A4 inhibition by our compounds. Importantly, prior studies demonstrated that 

CYP3A4 inhibitors work synergistically with microtubule-destabilizing drugs in cancer 

cells.77,78 We chose to evaluate our compounds in DU-145 prostate cancer cells because (i) 

they have high levels of CYP3A4 expression, (ii) prior studies showed synergism between 

the CYP3A4 inhibitor ketoconazole and vinblastine,77 a drug commonly used in 

combination therapies for various cancers, and (iii) utilization of a validated protocol for in 
vitro detection of synergism between a chemotherapeutic drug and CYP3A4 inhibitors 

would provide a reliable cell-based assay for evaluation of our compounds. Vinblastine 

binds to tubulin and stops production of microtubules, leading to M-phase specific cell cycle 

arrest. Synergism between vinblastine and ketoconazole was previously achieved by 

blocking CYP3A4-dependent vinblastine metabolism in several prostate cancer cell lines.77 

On the basis of this knowledge, we designed experiments with DU-145 cells and our panel 

of compounds. First, free CYP3A4 inhibitors 4 and 6 (5 μM) were evaluated against DU-145 

cells in the presence or absence of vinblastine (5 nM). Cells were treated with 4 or 6 and 

vinblastine or vehicle, and viability was assessed after 72 h by the 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It was found that both 4 and 6 reduce 

viability of the DU-145 cells by up to ~40% in the presence of 5 nM vinblastine. This 

reduction of viability is similar to that observed with ketoconazole77 and suggests the 

synergy between CYP3A4 inhibition and the microtubule-destabilizing drug (Figure 7A).

Next, inhibitors 4 and 6 were evaluated alongside the photocaged inhibitors 7–11 in the dark 

or with irradiation in the presence of vinblastine (5 nM). In these experiments, cells were 

treated with 4, 6, or 7–11 (5 μM) and kept in the dark for 1 h, then the medium was replaced 

with medium containing 5 nM vinblastine, and cells were irradiated with blue light (460–

470 nm, 20 min) or left in the dark for 20 min. Viabilities were determined 72 h after light 

treatment by the MTT assay. As expected, results with the free inhibitors 4 and 6 were 

virtually identical under dark and light conditions, ruling out synergy between 4 or 6 and 

light. In these experiments, synergy with 4 and 6 was less pronounced compared to 

incubations where 4 or 6 was left with cells for the full 72 h without medium replacement 

(Figure S13), which may indicate slower uptake of these inhibitors by DU-145 cells. Among 

the investigated compounds, complex 9, which not only releases the CYP3A4 inhibitor 4 
(PCT) but also generates 1O2 (PDT), showed the strongest response by reducing viability to 

~10% in the light compared to ~90% in the dark (Figure 7B). Again, results were less 

pronounced when 7–11 were left with DU-145 cells for the full 72 h without replacement of 

medium (Figure S13), further indicating that cell uptake is slower for some of the Ru(II) 

complexes. Nonetheless, complex 9 showed a strong response with replacement of medium 

after only 1 h, which supports the ability of 9 to penetrate DU-145 cells within that time 

frame.

Next, we probed the impact of CYP3A4 inhibition in cell-induced toxicity with vinblastine. 

Complex 9 was compared side-by-side with the [Ru(tpy)(Me2dppn)(py)](PF6)2 complex 

(27), which generates 1O2 just as efficiently69 but serves as a control by releasing pyridine 

rather than the CYP3A4 inhibitor 4. Experiments with 27 were important to carry out 

because prior studies demonstrated that PDT can work synergistically with microtubule-

targeting drugs.79 The results in Figure 7C show that 9 (5 μM) produces a strong, dose-
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dependent synergy with vinblastine (0–5 nM), whereas less toxic 27 (5 μM) does not. These 

data suggest that CYP3A4 inhibition is synergistic with PDT and vinblastine.

In order to quantify drug synergy, the Chou–Talalay method was applied, which is the field 

standard for assessing the synergy of a drug combination.80–83 DU-145 cells were treated 

with either 4, 7, 9, 27, or vinblastine alone over a range of concentrations to determine EC50 

(Table 4). For only 9, 27, and vinblastine, the EC50 values were <25 μM under light 

conditions (tirr = 20 min, λirr = 460–470 nm, 72 h MTT); in the dark, EC50 for all 

compounds was >25 μM. Next, DU-145 cells were treated with a combination of single 

concentrations of 9 or 27 and vinblastine over a range of concentrations spanning the EC50 

values under light conditions (tirr = 20 min, λirr = 460–470 nm, 56 J/cm2, 72 h MTT), 

resulting in a panel of 16 distinct combinations (Figure 8 for 9, Figure S14 for 27). 

Viabilities for the single drug and combination treatments were compared against the vehicle 

control to measure the % effectiveness as the proportion between live and dead cells in a 

given treatment. By use of the dose and effect for each monotreatment and each 

combination, the combination index (CI) values for each treatment pair were calculated 

using Compusyn software (Figure 8).80 CI values less than 1 indicate synergy, equal to 1 

indicate an additive effect, and greater than 1 indicate antagonism. For compound 9, 12 out 

of 16 combinations surveyed showed CI values <1, with the other four combinations 

showing CI values near 1, indicating high synergism between 9 and vinblastine under light 

conditions. In contrast, 27 showed weaker synergism under all concentrations surveyed 

under light conditions (Figure S14). Taken together, these data suggest that (i) 9 blocks 

intracellular metabolism of vinblastine via CYP3A4 inhibition and (ii) the CYP3A4 

inhibition, PDT, and vinblastine act together and produce a stronger cytotoxic response in 

the DU-145 cells than the combination of PDT and vinblastine. Because microtubule-

destabilizing drugs have deleterious side effects and narrow therapeutic indexes, the 

combination of localized CYP3A4 inhibition and PDT may prove to be a promising 

approach to achieve synergy and lower the doses of chemotherapeutic drugs like vinblastine.

CONCLUSION

This is the first report on the synthesis and biological evaluation of metal-based inhibitors of 

the major human drug metabolizing enzyme CYP3A4. Using two analogs of ritonavir, we 

synthesized and characterized five Ru(II)-caged CYP3A4 inhibitors (7–11) that showed 

either single action PCT or dual action PCT/PDT behavior. Serendipitously, we 

demonstrated that CYP inhibition can be enhanced through inhibitor metalation, as the 

caged complexes can tightly and selectively bind to the CYP3A4 active site without heme 

ligation. Moreover, compound 9 was identified as a dual-action PCT/PDT lead compound, 

which effectively generates 1O2 and releases the CYP3A4 inhibitor to act synergistically 

with the common chemotherapeutic drug vinblastine in DU-145 adenocarcinoma cells. 

These findings warrant further studies on photoactive CYP inhibitory compounds to 

determine their potential use for clinical applications, such as enhancement of therapeutic 

efficacy of chemotherapeutic drugs.
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EXPERIMENTAL SECTION

Materials. General Procedure for Synthesis of Ru(II) Complexes.

Some reactions were performed under ambient atmosphere unless otherwise noted. 

Anaerobic reactions were performed by purging the reaction solutions with Ar or nitrogen. 

Complexes 12 and 13 were purchased (Strem Chemicals). Complexes 14,84 15,85 16,86 17,86 

18,87 19,88 20–22,89 23 and 24,90 25,70 and 2691 were prepared following literature 

protocols. For synthesis of 7–11, a solution of [Ru(tpy)(L1)Cl]Cl in EtOH was treated with 

pyridine. Water was added, and the mixture was deoxygenated by bubbling Ar through a 

submerged needle for 20 min. The pressure tube was sealed and heated to 80 °C for 16 h. 

The reaction mixture was cooled to room temperature, concentrated, and the residue was 

purified by column chromatography on neutral alumina to give [Ru(tpy)(L1)(L2)](Cl)2 

complexes.

Synthesis of [Ru(tpy)(Me2bpy)(4)]Cl2 (7).

[Ru(tpy)(Me2bpy)Cl]Cl67 (19.0 mg, 0.0300 mmol) was added to a solution of 4 (28 mg, 

0.070 mmol) in a 1:1 mixture of EtOH and H2O (3.0 mL each) under inert atmosphere in a 

pressure flask. The pressure flask was wrapped with aluminum foil. The solution was purged 

with argon for 10 min at room temperature. The pressure flask was sealed, and the reaction 

mixture was refluxed at 80 °C for 16 h under an inert atmosphere. The color of the reaction 

mixture turned from purple to brown. The reaction mixture was cooled to room temperature 

and concentrated under reduced pressure. The crude product was purified over neutral 

alumina (5% MeOH/DCM) in the dark to give 7 as a brown solid (25 mg, 75%): 1H NMR 

(400 MHz CD3OD) δ 8.75–8.72 (m, 1H), 8.69 (d, 2H, J = 8.4 Hz), 8.63 (d, 2H, J = 8.0 Hz), 

8.48–8.45 (m, 1H), 8.29 (t, 1H, J = 8.0 Hz), 8.24–8.18 (m, 3H), 8.14 (t, 2H, J = 8.0 Hz), 

7.81–7.72 (m, 2H), 7.66–7.60 (m, 4H), 7.55 (d, 1H, J = 5.6 Hz), 7.28–7.17 (m, 5H), 7.08 (t, 

1H, J = 7.6 Hz), 7.01 (d, 1H, J = 7.6 Hz), 4.04–3.93 (m, 2H), 3.86–3.79 (m, 1H), 2.94–2.88 

(m, 1H), 2.72 (t, 2H, J = 7.2 Hz), 2.68–2.65 (m, 1H), 2.60–2.55 (m, 2H), 2.34 (t, 2H, J = 7.2 

Hz), 2.03 (s, 3H), 1.50 (s, 3H), 1.36–1.29 (m, 9H); IR νmax (cm−1) 3372, 2926, 2830, 1740, 

1711, 1536, 1447, 1371, 1223, 1022, 519; ESMS calcd for C50H54N8O3RuS (M+2) 474, 

found 474; UV–vis λmax = 474 nm (ε = 7700 M−1 cm−1).

Synthesis of [Ru(tpy)(Me2bpy)(6)]Cl2 (8).

Compound 8 was prepared by following the general procedure by treating [Ru(tpy)

(Me2bpy)Cl]Cl67 (13 mg, 0.022 mmol) with 6 (23 mg, 0.044 mmol) in EtOH (3 mL) and 

water (3 mL). The residue was purified by column chromatography on neutral alumina (4–

6% MeOH in DCM) to give a red solid (15 mg, 63%). 1H NMR (400 MHz, methanol-d4) δ 
8.76 (d, J = 8.0 Hz, 1H), 8.73–8.62 (m, 3H), 8.57 (t, J = 7.3 Hz, 1H), 8.50 (d, J = 8.1 Hz, 

1H), 8.27 (dd, J = 9.2, 6.9 Hz, 3H), 8.18 (ddd, J = 12.3, 6.1, 3.6 Hz, 2H), 8.07 (ddt, J = 7.9, 

3.9, 2.0 Hz, 1H), 7.77 (dt, J = 13.1, 7.7 Hz, 2H), 7.68–7.60 (m, 1H), 7.60–7.54 (m, 1H), 7.48 

(dq, J = 8.7, 6.0, 4.8 Hz, 3H), 7.28–7.15 (m, 8H), 7.15–6.99 (m, 4H), 3.82 (ttd, J = 8.9, 6.7, 

3.0 Hz, 1H), 3.55 (dd, J = 9.7, 5.7 Hz, 1H), 3.08 (ddd, J = 13.7, 9.7, 6.6 Hz, 1H), 2.97–2.81 

(m, 2H), 2.78–2.60 (m, 5H), 2.10 (t, J = 8.1 Hz, 5H), 1.51 (d, J = 3.1 Hz, 3H), 1.39–1.25 (m, 

9H), 1.25–1.18 (m, 2H); IR (KBr) 3395, 3242, 3058, 3027, 2974, 2927, 2859, 1698, 1660, 

1602, 1542, 1523, 1496, 1447, 1388, 1364, 1282, 1248, 1168, 1119, 1078, 1016, 916, 778, 
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748, 701, 672, 646; UV–vis λmax = 470 nm (ε = 9700 M−1 cm−1); ESMS calculated for 

C58H62N8O3RuS [M2+] 526, found 526.

Synthesis of [Ru(tpy)(Me2dppn)(4)]Cl2 (9).

Compound 9 was prepared by following the general procedure by treating [Ru(tpy)

(Me2dppn)Cl]Cl65 (22 mg, 0.029 mmol) with 4 (25 mg, 0.058 mmol) in EtOH (4 mL) and 

water (4 mL). The residue was purified by column chromatography on neutral alumina (3–

4% MeOH in DCM) to give a red solid (20 mg, 57%). 1H NMR (400 MHz, methanol-d4) δ 
9.93 (dd, J = 8.4, 1.6 Hz, 1H), 9.33 (d, J = 8.2 Hz, 1H), 8.98 (d, J = 12.1 Hz, 2H), 8.78 (d, J 
= 8.1 Hz, 1H), 8.78–8.68 (m, 2H), 8.65 (d, J = 8.2 Hz, 1H), 8.33–8.23 (m, 3H), 8.26–8.17 

(m, 1H), 8.16 (t, J = 7.8 Hz, 2H), 8.11 (h, J = 3.8 Hz, 2H), 7.75–7.68 (m, 2H), 7.68–7.58 (m, 

3H), 7.61–7.50 (m, 1H), 7.50 (t, J = 6.7 Hz, 1H), 7.42 (d, J = 8.3 Hz, 1H), 7.26–7.09 (m, 

7H), 4.03 (d, J = 4.6 Hz, 2H), 3.85–3.74 (m, 1H), 3.34 (d, J = 3.6 Hz, 1H), 2.86 (ddd, J = 

15.9, 10.9, 5.5 Hz, 1H), 2.74 (t, J = 7.1 Hz, 2H), 2.66–2.58 (m, 1H), 2.58 (q, J = 2.7, 2.3 Hz, 

2H), 2.37 (t, J = 7.0 Hz, 2H), 2.34 (s, 3H), 1.79 (s, 3H), 1.31 (d, J = 7.6 Hz, 9H); IR (KBr) 

3394, 3056, 3027, 2924, 2853, 1966, 1697, 1662, 1542, 1520, 1446, 1363, 1247, 1167, 

1056, 1017, 880, 776, 703; UV–vis λmax = 485 nm (ε = 13 500 M−1 cm−1); ESMS 

calculated for C62H58ClN10O3RuS [M+] 1159, found 1159.

Synthesis of [Ru(tpy)(Me2dppn)(6)]Cl2 (10).

Compound 10 was prepared by following the general procedure by treating [Ru(tpy)

(Me2dppn)Cl]Cl65 (17 mg, 0.022 mmol) with 6 (23 mg, 0.044 mmol) in EtOH (5 mL) and 

water (5 mL). The residue was purified by column chromatography on neutral alumina (3–

4% MeOH in DCM) to give a red solid (17 mg, 61%). 1H NMR (400 MHz, methanol-d4) δ 
9.96 (dd, J = 8.3, 6.4 Hz, 1H), 9.45 (dd, J = 8.2, 3.8 Hz, 1H), 9.14–9.02 (m, 2H), 8.83–8.72 

(m, 2H), 8.68 (d, J = 8.0 Hz, 1H), 8.59–8.50 (m, 1H), 8.35 (t, J = 6.3 Hz, 1H), 8.26 (dtd, J = 

15.0, 9.2, 5.4 Hz, 4H), 8.15 (dd, J = 18.4, 6.0 Hz, 2H), 8.05–7.98 (m, 1H), 7.77–7.66 (m, 

3H), 7.61–7.53 (m, 3H), 7.57–7.30 (m, 2H), 7.18 (s, 4H), 7.27–7.12 (m, 1H), 7.16–7.04 (m, 

5H), 3.76–3.46 (m, 1H), 3.47 (dt, J = 9.1, 6.0 Hz, 1H), 3.13–2.98 (m, 1H), 2.80 (dtd, J = 

43.5, 15.3, 6.5 Hz, 1H), 2.67 (s, 2H), 2.67–2.58 (m, 1H), 2.56 (s, 1H), 2.36 (dd, J = 11.6, 3.3 

Hz, 3H), 2.16 (dp, J = 21.1, 7.0 Hz, 1H), 1.80 (s, 3H), 1.29 (d, J = 8.1 Hz, 11H); IR (KBr) 

3365, 3256, 3056, 3025, 2974, 2922, 2852, 2360, 2342, 1868, 1792, 1760, 1733, 1698, 

1653, 1558, 1542, 1522, 1447, 1388, 1362, 1243, 1161, 1056, 881, 841, 775, 752, 700, 669; 

UV–vis λmax = 480 nm (ε = 12 000 M−1 cm−1); ESMS calculated for C70H66ClN10O3RuS 

[M+] 1263, found 1263.

Synthesis of [Ru(tpy)(Ph2Me2dppn)(4)]Cl2 (11).

Compound 11 was prepared by following the general procedure by treating [Ru(tpy)

(Ph2Me2dppn)Cl]Cl68 (19 mg, 0.021 mmol) with 6 (22 mg, 0.042 mmol) in EtOH (3 mL) 

and water (3 mL). The residue was purified by column chromatography on neutral alumina 

(3–4% MeOH in DCM) to give a red solid (14 mg, 48%). 1H NMR (400 MHz, methanol-d4) 

δ 9.42–9.30 (m, 1H), 8.88–8.58 (m, 4H), 8.50 (dt, J = 6.6, 3.3 Hz, 1H), 8.32–7.89 (m, 9H), 

7.83–7.55 (m, 14H), 7.46–7.29 (m, 2H), 7.29–6.96 (m, 12H), 3.83–3.68 (m, 1H), 3.46 (td, J 
= 9.2, 6.7 Hz, 1H), 2.99 (dd, J = 13.7, 9.6 Hz, 1H), 2.93–2.47 (m, 7H), 2.28 (d, J = 10.6 Hz, 
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3H), 2.14 (tdd, J = 16.6, 8.0, 3.7 Hz, 2H), 1.73 (s, 3H), 1.33 (d, J = 4.0 Hz, 1H), 1.27 (d, J = 

2.2 Hz, 10H); IR (KBr) 3255, 3057, 3025, 2973, 2924, 2853, 2360, 2330, 1698, 1684, 1653, 

1558, 1542, 1522, 1496, 1490, 1448, 1420, 1387, 1362, 1246, 1166, 1073, 1014, 839, 773, 

701, 670; UV–vis λmax = 491 nm (ε = 13 500 M−1 cm−1); ESMS calculated for 

C82H74ClN10O3RuS [M+] 1415, found 1415.

Instrumentation and Methods.

NMR spectra were recorded on a Varian FT-NMR Mercury 400 MHz spectrometer. UV–vis 

spectra were recorded on a Varian Cary 60 spectrophotometer. Steady state electronic 

absorption spectra were collected using an Agilent Cary 8453 diode array spectrometer, and 

emission data were collected using a Horiba FluoroMax-4 fluorimeter. All experiments 

involving DU-145 cells were carried out in Dulbecco’s modified Eagle’s medium containing 

10% FBS and 1000 units/mL penicillin/streptomycin. The irradiation source for quantum 

yield measurements was a 150 W Xe arc lamp (USHIO) in a MilliArc lamp housing unit, 

powered by an LPS-220 power supply and an LPS-221 igniter (PTI). The emission 

wavelengths were selected using a CVI Melles Griot long-pass filter, and the appropriate 

irradiation wavelengths for photolysis experiments were selected with a bandpass filter 

(Thorlabs) and long-pass filter (CVI Melles Griot). The quantum yields (Φ) for ligand 

dissociation were determined in CH3CN with an irradiation wavelength of 500 nm. The rate 

of moles reacted at early irradiation times was determined by monitoring the decrease in the 

MLCT absorption maximum as a function of time. The photon flux of the lamp with a 435 

nm long-pass filter and a 500 nm bandpass filter was determined using ferrioxalate 

actinometry as previously described in detail.92 Singlet oxygen quantum yields were 

performed using [Ru(bpy)3]2+ as a standard (ΦΔ = 0.81 in MeOH) and 1,3-

diphenylisobenzofuran (DPBF) as a 1O2 trapping agent and following a previously 

established procedure.93

Studies on Recombinant CYP3A4.

Full-length and truncated (Δ3–22) human CYP3A4 was expressed and purified as described 

previously.94

Spectral Binding Titrations.—Equilibrium ligand binding to Δ3–22 CYP3A4 was 

monitored in a Cary 300 spectrophotometer at ambient temperature in 0.1 M phosphate 

buffer, pH 7.4, supplemented with 20% glycerol and 1 mM dithiothreitol. Inhibitors and 

caged compounds, with or without visible light irradiation (λirr = 400–700 nm, tirr = 40 

min), were dissolved in DMSO and added to a 2 μM protein solution in small aliquots, with 

the final solvent concentration of <2%. Spectral dissociation constants (Kd) were determined 

from hyperbolic fits to titration plots.

Inhibitory Potency Assays.—Inhibitory potency for the 7-benzyloxy-4-

(trifluoromethyl)coumarin (BFC) O-debenzylase activity of CYP3A4 was evaluated 

fluorometrically in a soluble reconstituted system. Full-length CYP3A4 and rat cytochrome 

P450 reductase (40 μM and 60 μM, respectively) were preincubated at room temperature for 

1 h before 10-fold dilution with the reaction buffer consisting of 0.1 M potassium phosphate, 

pH 7.4, catalase, and superoxide dismutase (2 units/mL each). Prior to measurements, 85 μL 
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of the reaction buffer was mixed with 10 μL of the NADPH-regenerating system (10 mM 

glucose, 0.2 mM NADP+, and 2 units/mL glucose 6-phosphate dehydrogenase), 5 μL of the 

protein mixture (0.2 μM final CYP3A4 concentration), and 2 μL of the cage/inhibitor 

solution or DMSO. The mixture was incubated for 2 min, after which 1 μL of 2 mM BFC 

and 1 μL of 7 mM NADPH were added to initiate the reaction. Accumulation of the 

fluorescent product, 7-hydroxy-4-(trifluoromethyl)coumarin, was monitored for 2 min at 

room temperature in a Hitachi F400 fluorimeter (λex = 404 nm; λem = 500 nm). Within this 

time interval, fluorescence changes were linear. The average of three measurements was 

used to calculate the remaining activity, with the DMSO-containing sample used as a control 

(100% activity). The IC50 values were derived from four-parameter logistic fittings to the [% 

activity] vs [inhibitor] plots.

Crystallization of 7- and 8-Bound CYP3A4.—Both complexes were crystallized using 

a microbatch method under oil. Prior to crystallization setup, Δ3–22 CYP3A4 (50–60 

mg/mL in 75–100 mM phosphate, pH 7.4) was incubated with a 2-fold ligand excess for 15 

min and centrifuged to remove the precipitate. The supernatant (0.4 μL) was mixed with 

0.4–0.5 μL of the crystallization solution containing 10% PEG 3350 and 80 mM tribasic 

ammonium citrate, pH 7.0, for 7 and 8% PEG 3350 and 70 mM DL-malate, pH 7.0, for 8. 

Crystals were grown at room temperature for 2–3 days and cryoprotected with Paratone-N 

before freezing in liquid nitrogen.

Determination of the X-ray Structures.—X-ray diffraction data were collected at the 

Stanford Synchrotron Radiation Lightsource beam-lines 9-2 and 12-2. Crystal structures 

were solved by molecular replacement with PHASER95 and 5VCC as a search model. 

Ligands were built with eLBOW96 and manually fit into the density with COOT.97 The 

initial models were rebuilt and refined with COOT and PHENIX.96 Polder omit electron 

density maps were calculated with PHENIX. Data collection and refinement statistics are 

summarized in Table S1. The atomic coordinates and structure factors for the 7- and 8-

bound CYP3A4 were deposited to the Protein Data Bank with the identifier codes 7KS8 and 

7KSA, respectively.

IC50 Determination Studies.

Cytochrome P450 inhibitor screening kits for CYP3A4, CYP1A2, and CYP2C9 were 

obtained from BioVision. Stock solutions of compounds 4, 7, and 9 were prepared at 5× 

concentrations in the provided assay buffer. Stock solutions were dispensed into triplicate 

wells of a 96-well plate and irradiated (tirr = 20 min, λirr = 460–470 nm) or left in the dark. 

Compounds 4 and 7 (100 μM to 100 nM) and compound 9 (100 μM to 100 nM) were 

evaluated following the manufacturer’s protocols. Percentage of enzyme activities was 

calculated from the initial linear slopes of the fluorescence vs time plots (first 5 min), using 

solvent control (no inhibitor, 1% MeCN in assay buffer) as 100% activity. The slope of the 

blank plot (no enzyme, 1% MeCN in assay buffer) was subtracted from each experimental 

slope value. Percent inhibition was expressed as the quotient of the blank subtracted 

experimental slopes over the blank subtracted solvent control slope. Igor Pro graphing 

software was used to produce % activity vs log(molarity) dose–response plots (Figures S15–

S17), from which IC50 values were determined.
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Biological Studies.

General Viability Assays.—DU-145 cells were seeded in a 96-well plate at a density of 

7000 cells per well in 100 μL of Dulbecco’s modified Eagle’s medium (DMEM) containing 

10% FBS and 1000 units/mL penicillin/streptomycin. Each plate was incubated in a 37 °C 

humidified incubator ventilated with 5% CO2 overnight (16 h). The medium was aspirated 

from each well, and octuplicate wells were treated with medium containing 4 or 6–12 (5 

μM) in DMEM medium with 1% DMSO. Plates also contained blank wells with no cells and 

control wells with DMEM medium containing 1% DMSO (vehicle). After 1 h of incubation 

at 37 °C, plates were removed from the incubator and the medium was aspirated and 

replaced with either vehicle or medium containing vinblastine (2.5–5 nM). The plates were 

then irradiated using a blue LED light source (tirr = 20 min, λirr = 460–470 nm) or left in the 

dark and incubated for 72 h in a 37 °C humidified incubator ventilated with 5% CO2. After 

incubation, MTT reagent (10 μL, 5 mg/mL in PBS) was added to each well, and plates were 

kept at 37 °C and 5% CO2 for 2 h. The medium was aspirated from each well, and DMSO 

(100 μL) was added. The wells were shaken for 30 min to allow solvation of the formazan 

crystals. Absorbance at 570 nm was measured in each well. Average absorbance values for 

the blank wells were subtracted from absorbance values for each sample to eliminate the 

background. Viability data were obtained by averaging blank-normalized absorbance values 

for control cells and expressing average absorbance for the treated samples as percent 

control.

EC50 Determination.—DU-145 human prostate cancer cells were seeded in a 96-well 

plate at a density of 7000 cells per well in 100 μL of Dulbecco’s modified Eagle’s medium 

(DMEM) containing 10% FBS and 1000 units/mL penicillin/streptomycin. Each plate was 

incubated in a 37 °C humidified incubator ventilated with 5% CO2 overnight (16 h). The 

medium was aspirated from each well, and quadruplicate wells were treated with medium 

containing 4, 7, 9, 12 (25 μM–0.5 μM) or vinblastine (10 nM–0.5 nM) in 1% DMSO. Plates 

also contained blank wells with no cells and control wells with medium containing 1% 

DMSO. After 1 h of incubation at 37 °C, wells containing 4,7, 9, or 12 were aspirated and 

replaced with fresh medium. Wells with vinblastine were left alone. Plates were then 

irradiated with blue light (460–470 nm; 20 min) or left in the dark and incubated for 72 h in 

a 37 °C humidified incubator ventilated with 5% CO2. After incubation, MTT reagent (10 

μL, 5 mg/mL in PBS) was added to each well, and plates were kept at 37 °C and 5% CO2 for 

2 h. The medium was aspirated from each well, and DMSO (100 μL) was added. The wells 

were shaken for 30 min to allow for the solvation of the formazan crystals. Absorbance at 

570 nm was measured in each well. Average absorbance values for the blank wells were 

subtracted from absorbance values for each sample to eliminate the background. Viability 

data were obtained by averaging normalized absorbance values for untreated cells and 

expressing absorbance for the treated samples as percent control. EC50 values were 

determined using Igor Pro graphing software or Compusyn software.

Chou–Talalay Synergy Determination.—DU-145 human prostate cancer cells were 

seeded in a 96-well plate at a density of 7000 cells per well in 100 μL of Dulbecco’s 

modified Eagle’s medium (DMEM) containing 10% FBS and 1000 units/mL penicillin/

streptomycin. Each plate was incubated in a 37 °C humidified incubator ventilated with 5% 
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CO2 overnight (16 h). The medium was aspirated from each well and replaced with 

treatment medium containing compound 9 (10−1 μM) or vehicle (medium with 1% DMSO). 

Plates were than incubated for 1 h. After incubation the medium from each well was 

aspirated and replaced with medium containing vinblastine (10−0.5 nM) or vehicle, resulting 

in vinblastine alone and 9 alone monotreatments as well as combination treatments at each 

compound concentration, all in quadruplicate. Plates were then irradiated with blue light 

(460–470 nm; 20 min). After irradiation the plates were incubated in a 37 °C humidified 

incubator ventilated with 5% CO2 for 72 h. After incubation, MTT reagent (10 μL, 5 mg/mL 

in PBS) was added to each well, and plates were kept at 37 °C and 5% CO2 for 2 h. The 

medium was aspirated from each well, and DMSO (100 μL) was added. The wells were 

shaken for 30 min to allow for the solvation of the formazan crystals. Absorbance at 570 nm 

was measured in each well. Average absorbance values for the blank wells were subtracted 

from absorbance values for each sample to eliminate the background. Viability data were 

obtained by averaging normalized absorbance values for untreated cells and expressing 

absorbance for the treated samples as percent effect. Dose and effect data points were then 

inserted into the Compusyn software, which solved for the EC50 for both the 

monotreatments and the combination as well as the CI values for each treatment 

combination (Figure 8).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of type II heme-binding CYP3A4 inhibitors including ritonavir and related 

analogs 4–6.
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Figure 2. 
Changes to the electronic absorption spectra of 7 as a function of irradiation time (λirr = 500 

nm) in CH3CN for 0–12 min (A) and in H2O for 0–20 min (B) under N2 atmosphere.
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Figure 3. 
Equilibrium titration of CYP3A4 with 7 under light and dark conditions. (A) Difference 

spectra recorded during titration of recombinant CYP3A4 with 7 under light conditions. (B) 

Titration plot. The dissociation constant (Kd) was calculated by fitting the data to a 

hyperbolic equation: ΔA = ΔAmax[ligand]/(Kd + [ligand]), where ΔAmax is the maximal 

absorbance change and ΔA and [ligand] are the absorbance change and ligand concentration 

after each titrant addition, respectively. (C) Difference spectra recorded in control 

experiments, where CYP3A4 was mixed with 10 μM 7 (blue) or 10 μM [Ru(tpy)

(Me2bpy)Cl]+ (red) in the dark, show the lack of spectral changes characteristic for type II 

N–Fe ligation.
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Figure 4. 
Inhibition of the BFC activity of recombinant CYP3A4 by 4, 7, and the control complex 

[Ru(tpy)(Me2bpy)(Cl)]Cl. Inhibitory assays were conducted at room temperature in a 

reconstituted system containing 0.2 μM CYP3A4 and 0.3 μM cytochrome P450 reductase by 

monitoring formation of a fluorescent product. The remaining activity was calculated 

relative to the DMSO-containing sample, used as a control (100% activity). The IC50 values 

were derived from fittings to the [% activity] vs [inhibitor] plots.
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Figure 5. 
Crystal structure of CYP3A4 bound to 7 at 2.5 Å resolution: (A) slice through the CYP3A4 

molecule showing orientation of 7, (B) omit electron density map for 7 at 3σ level, (C) the 

binding mode of free compound 4 (4D78 structure) shown for comparison, and (D) residues 

interacting with 7; hydrophobic in beige and acidic in pink.
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Figure 6. 
CYP 3A4 inhibition with a panel of Ru(II) complexes at 1 μM against purified enzyme. 

Inhibition of recombinant CYP3A4 with various complexes. Compounds are [Ru(bpy)3]Cl2 

(12), [Ru(phen)3](PF6)2 (13), [Ru(bpy)2(phpy)]Cl (14), [Ru(bpy)2(acac)]PF6 (15), 

[Ru(bpy)2(bete)](PF6)2 (16), [Ru(bpy)2(bpte)]Cl2 (17), [Ru(bpy)2(dppn)](PF6)2 (18), 

[Ru(dppz)2(bpy)]Cl2 (19), [Ru(η6-p-cym)(DBM)Cl] (20), [Ru(η6-p-cym)(hfa)Cl] (21), 

[Ru(η6-p-cym)(bpy)Cl]Cl (22), [Ru(bpy)2(NHC-OMe)]PF6 (23), [Ru(bpy)2(NHC-

COOEt)]PF6 (24), [Ru(tpy)(dppn)(py)](PF6)2 (25), [Ru(tpy)(acac)(py)]PF6 (26). See Figure 

S25 for structures.
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Figure 7. 
Cellular viability studies with compounds 4, 6–11, and 27 in DU-145 prostate 

adenocarcinoma cells. DU-145 cells were seeded in a 96-well plate at a density of 7000 cells 

per well and incubated overnight (~18 h). (A) The medium was aspirated from each well, 

and quadruplicate wells were treated with medium containing either 4 or 6 (5 μM) in 1% 

DMSO (black) or co-treated with vinblastine (5 nM) (gray). After 72 h of incubation at 37 

°C, MTT assay was performed. Viability data were obtained by averaging blank-normalized 

absorbance values for control cells and expressing average absorbance for the treated 

samples as percent control. P-values are vs 5 nM vinblastine alone. (B) The medium was 

aspirated from each well, and octuplicate wells were treated with medium containing one of 

compounds 4 or 6–11 (5 μM) in 1% DMSO. After 1 h of incubation at 37 °C, the medium 

was aspirated and replaced with medium containing vinblastine (5 nM). The plates were 

irradiated using a blue LED light source (tirr = 20 min, λirr = 460–470 nm, 56 J/cm2) (red) 

or left in the dark (black) and incubated for 72 h. MTT assay was then performed. Viability 

data were obtained by averaging blank-normalized absorbance values for control cells and 

expressing average absorbance for the treated samples as percent control. P-values are vs 

dark viabilities for each compound. (C) The medium was aspirated from each well, and 

octuplicate wells were treated with medium containing either compound 9 (red) or 27 (blue) 

(5 μM) in 1% DMSO. After 1 h of incubation at 37 °C, the medium was aspirated and 

replaced with either vehicle or medium containing vinblastine (2.5 nM or 5 nM) or vehicle. 

The plates were irradiated using a blue LED light source (tirr = 20 min, λirr = 460–470 nm, 

56 J/cm2) and then incubated for 72 h. MTT assay was then performed. Viability data were 

obtained by averaging blank-normalized absorbance values for control cells and expressing 

average absorbance for the treated samples as percent control. P-values are vs 0 nM 

vinblastine (No Vin.) for each compound; ***P < 0.01, **P < 0.05, *P < 0.10.
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Figure 8. 
Chou–Talalay combination index heat map. Chou–Talalay determination of drug synergy 

between 9 and vinblastine under light conditions (tirr = 20 min, λirr = 460–470 nm, 56 J/

cm2). Effects on cell killing were determined by MTT 48 h after light treatment. Values 

shown in colored boxes denote combination indices (CI). CI > 1: antagonism. CI = 1: 

additive effect. CI < 1: synergy. CI values were obtained using Compusyn software.
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Scheme 1. 
Synthesis (A) and Structures (B) of Ru(II)-Caged CYP3A4 Inhibitors 7–11
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Table 1.

Quantum Yields of Ligand Exchange (ΦLE) and Singlet Oxygen (ΦΔ) Production for 7–11

complex ΦLE
a ΦΔ

b

7
0.15(1)

c

7 0.31(1)

8 0.13(2)

9 0.024(4) 0.59(6)

10 0.014(3) 0.57(6)

11 0.061(8) 0.80(7)

[Ru(tpy)(Me2dppn)(L)]2+ d 0.073(1) 0.57(7)

a
In CH3CN, λirr = 500 nm, N2 atmosphere.

b
In MeOH, λirr = 460 nm, determined with diphenylisobenzofuran (DPBF) 1O2 probe.

c
In H2O, λirr = 500 nm.

d
From ref 72; L = imatinib.
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Table 2.

IC50 Values (μM) for CYP3A4 Inhibition by 4, 6, and 7–11 under Dark and Light Conditions
a

compd dark IC50 light IC50
b PI

4 1.54 nd

6 0.40 nd

7 0.9 2.2 0.41

8 0.40 0.36 1.1

9 0.25 0.84 0.30

10 0.28 0.46 0.61

10
c 1.02 0.44 2.3

11 0.40 0.21 1.90

a
Inhibitory assays for the BFC activity were conducted at room temperature in a reconstituted system containing 0.2 μM CYP3A4 and 0.3 μM 

cytochrome P450 reductase by monitoring formation of a fluorescent product. Stock solutions of 4, 6, 7–11 were prepared in DMSO. The activity 
remaining was calculated relative to the DMSO-containing sample, used as a control (100% activity). The IC50 values were derived from fittings to 

the [% activity] vs [inhibitor] plots. The standard error was <10%.

b
Light conditions (λirr = 400–700 nm, tirr = 40 min).

c
Assay containing 2% cyclodextrin.
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Table 4.

EC50 Values for 4, 7, 9, and 27 in DU-145 Cells
a

EC50 (μM)

entry compd light dark

1 4 >25 >25

2 6 ND 17 ± 3

3 7 >25 >25

4 9 2.8 ± 1.0 >25

5 27 5.5 ± 0.8 >25

6 vinblastine (8.3 ± 1.1) × 10−3 ND

a
EC50 determination for compounds 4, 6, 7, 9, 27, and vinblastine was performed on DU-145 cells. Data are the average of three independent 

experiments using quadruplicate wells; errors are standard deviations. After treatment, cells were incubated at 37 °C and 5% CO2 for 1 h. Medium 

was aspirated and replaced with vehicle. Cells were irradiated using a blue LED light source (tirr = 20 min, λirr = 460–470 nm, 56 J/cm2) and 

incubated for 72 h. After that, viability was assessed by MTT assay. EC50 values were obtained using Igor Pro graphing software for 4, 6, 7, 9, and 

27 and with Compusyn software for vinblastine.
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