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Many human neurodegenerative diseases are associated with amyloid fibril formation.
Inhibition of amyloid formation is of importance for therapeutics of the related diseases.
However, the development of selective potent amyloid inhibitors remains challenging.
Here based on the structures of amyloid β (Aβ) fibrils and their amyloid-forming
segments, we designed a series of peptide inhibitors using RosettaDesign. We
further utilized a chemical scaffold to constrain the designed peptides into β-strand
conformation, which significantly improves the potency of the inhibitors against Aβ

aggregation and toxicity. Furthermore, we show that by targeting different Aβ segments,
the designed peptide inhibitors can selectively recognize different species of Aβ. Our
study developed an approach that combines the structure-based rational design with
chemical modification for the development of amyloid inhibitors, which could be applied
to the development of therapeutics for different amyloid-related diseases.

Keywords: neurodegenerative diseases, Alzheimer’s disease, Aβ fibril, protein misfolding, structure-based
inhibitor design

INTRODUCTION

Amyloid diseases, including many neurodegenerative diseases, are increasingly prevalent in aging
societies (Eisenberg and Jucker, 2012; Dobson, 2017). The pathogenesis of these devastating
diseases is closely associated with aberrant protein aggregation (Chiti and Dobson, 2006). In the
progression of amyloid aggregation, soluble proteins undergo a series of conformational changes
and self-assemble into insoluble amyloid fibrils (Riek and Eisenberg, 2016). Plaques containing
amyloid fibrils are one of the histological hallmarks of Alzheimer’s and Parkinson’s diseases (Lee
et al., 1991; Spillantini et al., 1997; Koo et al., 1999). Various strategies have been exploited to
interfere with the process of amyloid aggregation by targeting different conformational species,
including stabilizing monomers by antibodies (Ladiwala et al., 2012), redirecting monomers to
nontoxic off-pathway oligomers by polyphenolic compounds (Ehrnhoefer et al., 2008), accelerating
mature fibril formation by fibril binders (Bieschke et al., 2012; Jiang et al., 2013), inhibiting
fibril growing by peptide blockers (Seidler et al., 2018), and disrupting amyloid assembly by
nanomaterials (Hamley, 2012; Huang et al., 2014; Lee et al., 2014; Li et al., 2018; Han and He, 2018).
Many of these strategies show promising inhibitory effects against toxic amyloid aggregation (Härd
and Lendel, 2012; Arosio et al., 2014), but so far none has led to clinical drugs because of unsettled
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issues such as target selectivity, side effects, membrane
permeability and penetration of the blood-brain barrier.

Amyloid β (Aβ) has long been targeted for drug development
and therapeutic treatment of Alzheimer’s disease (Caputo and
Salama, 1989; Haass and Selkoe, 2007; Sevigny et al., 2016).
In addition to the common difficulties in targeting amyloid
proteins, Aβ is especially challenging since it contains multiple
species with various lengths generated by γ-secretases (Acx
et al., 2014; Kummer and Heneka, 2014; Szaruga et al., 2017).
Many studies have shown that Aβ42 rather than Aβ40 is more
prone to form toxic aggregates, and the ratio of Aβ42/Aβ40 is
better correlated with the pathology rather than the amount
of each individual Aβ species (Lewczuk et al., 2004; Jan et al.,
2008; Kuperstein et al., 2010). However, selective inhibition
of Aβ42 is very difficult because it is only two residues
longer than Aβ40 at the C-terminus. In this work, we targeted
two key amyloid-forming segments of Aβ42 (16KLVFFA21 and
37GGVVIA42) based on the cryo-EM structure of Aβ42 fibrils
reported recently (Gremer et al., 2017). We designed peptide
binders of these two segments using RosettaDesign with the
atomic structures of these two segments as templates (Sawaya
et al., 2007; Colletier et al., 2011). The designed sequences
showed inhibitory effect to Aβ42 fibril formation. We further
utilized a macrocyclic β-sheet mimic scaffold (Zheng et al., 2011;
Cheng et al., 2012, 2013) to constrain the designed peptide
inhibitors in β-conformation, which significantly enhanced the
inhibitory effect on Aβ42 aggregation. Furthermore, we show
that the peptide inhibitor designed to target the C-terminus
of Aβ42 can selectively inhibit Aβ42 aggregation, but not
to that of Aβ40 or other amyloid proteins. Our work shed
light on the application of structure-based rational design
combined with chemical modification in the development
of therapeutics for Alzheimer’s disease and other amyloid-
related diseases.

MATERIALS AND METHODS

Structure-Based Design by Rosetta
Software Package
Initial Structure Model for Design
We chose two key amyloidogenic Aβ segments, 16KLVFFA21

and 37GGVVIA42, for our inhibitor design. The design templates
were taken from the crystal structures of KLVFFA (PDB
ID: 2Y2A) and GGVVIA (PDB ID: 2ONV). The backbone
of the inhibiting pentapeptide was fully extended to mimic
β-conformation. This extended peptide was aligned with the N,
C, and O backbone atoms of the template.

Rosetta Design of Fibril-Inhibiting Peptides
The peptide inhibitors were subsequently designed to ensure
maximal interaction, while keeping the template amino acid
sequence fixed. Computational designs were carried out using
the RosettaDesign software package1. This algorithm involves
building side-chain rotamers of all L-amino acids onto a fixed
peptide backbone. The optimal set of side-chain rotamers

1https://www.rosettacommons.org

at each position with the best interaction energy is then
identified, with the guidance of a full-atom energy function
containing a Lennard-Jones potential, an orientation-dependent
hydrogen bond potential, an implicit solvation term, amino
acid-dependent reference energies, and a statistical torsional
potential that depends on the backbone and side-chain dihedral
angles. Finally, the entire structure was refined by simultaneously
optimizing degrees of freedom on: (1) the rigid-body geometry
between the inhibiting peptide and template; (2) backbone
torsions of each peptide; and (3) side chain torsions of each
peptide. The lowest-energy model was picked and the interaction
energies of each final model from different peptide inhibitors are
listed in Table 1.

Circular Dichroism Spectroscopy (CD)
Chirascan spectrometer (Applied Photophysics) equipped with
a Peltier temperature controller (Quantum Northwest) is used
to acquire the CD spectra. Far UV spectra (240–180 nm)
are collected in 0.05 cm path-length quartz cells. Sample
concentration is 600 µM. All measurements are conducted at
23◦C. Water is used as blank for subtraction from corresponding
samples. Secondary structure is predicted from CD using CDPro
(Eisenberg and Jucker, 2012).

Preparation of Aβ42 and Aβ40
Both Aβ42 and Aβ40 were purified from E. coli expression
system as reported previously (Dobson, 2017). The expression
constructs contain an N-terminal His-tag, followed by 19 repeats
of Asn-Ala-Asn-Pro, the Tobacco etch virus (TEV) protease
site, and the sequence of Aβ42 or Aβ40. Purification of Aβ42
and Aβ40 follows the same experimental procedure. Briefly, the
Aβ fusion protein was overexpressed into inclusion bodies in
E. coli BL21(DE3) cells. The inclusion bodies were solubilized
in 8 M urea, followed by washing in a high salt and detergent-
containing solution. The Aβ fusion proteins were purified
through HisTrapTM HP Columns, followed by reversed-phase
high-performance liquid chromatography (RP-HPLC). After
cleavage by TEV protease, Aβ was released from fusion protein,
and purified through RP-HPLC followed by lyophilization.
To disrupt preformed Aβ aggregates, lyophilized Aβ powder
was resuspended in 100% HFIP and incubated at room
temperature for 2 h. HFIP was fully removed by evaporation.
Before used in ThT or MTT assay, Aβ was freshly dissolved
in 10 mM NaOH, solubilized by sonication. Aβ is further
diluted to 200 µM in phosphate buffer saline (PBS) as a
stock solution.

Synthesis of Designed Macrocyclic
Peptides
Designed macrocyclic peptides were synthesized by standard
Fmoc solid-phase peptide synthesis. In brief, with Boc-
Orn(Fmoc)-OH attached onto 2-chlorotrityl chloride resin, the
linear peptide was elongated by standard automated Fmoc solid-
phase peptide synthesis. Then, the peptide was cleaved from the
resin under mildly acidic conditions, followed by being cyclized
to the corresponding protected cyclic peptide by slow addition to
HCTU and DIEA in dilute (ca. 0.5 mM) DMF solution. Since
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TABLE 1 | Characteristics of designed peptide inhibitors.

Targeting sequence Aβ target Inhibitor ID Inhibitor sequence Predicted binding Buried area Shape complementarity
energy (kcal/mol) (Å2) (Sc; Lawrence and Colman, 1993)

16KLVFFA21 Aβ42 K6A1 TLWYK −16 280 0.65
Aβ40 K6A2 EHWYH −13 278 0.7

G6A1 HYFKY −19 271 0.67
37GGVVIA42 Aβ42 G6A2 HYYIK −15 252 0.72

G6A3 KYYEI −14 270 0.66

the C-terminus of the protected linear peptide comprises an
amino acid carbamate (Boc-NH-CHR-COOH), the cyclization
condition efficiently avoids problematic epimerization. The
final deprotection with TFA solution followed by RP-HPLC
purification yielded macrocyclic peptides in 18%–43% overall
yield, based on the loading of Boc- Orn(Fmoc)-OH attached onto
the resin.

1H NMR Spectroscopy
1H NMR experiments for the designed macrocyclic peptides
were performed in D2O with the internal standard 4,4-
Dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA) at
500 MHz (Brüker Avance) or 600 MHz (Brüker Avance).
All peptides were studied at 2 mM in D2O at 298 K.
Sample solutions were prepared gravimetrically by dissolving
the macrocyclic peptides directly in solvent. All amino groups
were assumed to be protonated as the TFA salts for molecular
weight calculation. The data were processed with the Brüker
XwinNMR software.

ThT Fluorescence Assay
Thioflavin T (ThT) fluorescence assays were performed to
monitor the real-time aggregation of Aβ42 and Aβ40 in the
absence or presence of designed peptides. ThT assays were
conducted in 96-well plates (black with flat optical bottom)
in a Varioskan fluorescence plate reader (Thermo Scientific,
444 nm excitation, 484 nm emission). Each experiment was
run in triplicates. The reaction solution contained 30 µM
pre-disaggregated Aβ42 or Aβ40, 10 µM ThT, and designed
peptides at indicated concentrations in PBS. The ThT assay
was conducted at 37◦C, without shaking for the Aβ42
aggregation assay, and with shaking (300 rpm) for Aβ40
aggregation assay. The fluorescence readings were collected
every 2 min.

Native Gel Electrophoresis
Purified Aβ42 powder was pre-treated by HFIP and dissolved
in PBS buffer as described above. Aβ42 solution was diluted
to a final concentration of 10 µM with or without the
macrocyclic peptides mcG6A1, mcG6A2, and mcK6A1 (the final
concentration of the inhibitors was 50 µM), and incubated at
37◦C for 7.5 h. The samples were separated by a NativePAGE
4%–16% BisTris Gel (Novex, USA) and transferred to a
nitrocellulose membrane pre-packed in iBlot 2 NC Mini
Stacks (Novex, USA) by iBlot 2 Dry Blotting System (Life
technologies, USA). The membrane was probed by β amyloid,
1–16 (6E10) Monoclonal Antibody (Covance, USA) and
secondary anti-mouse IgG-HRP (MBL, USA), and detected with

SuperSignal West Pico Chemiluminescent Substrate (Thermo,
USA). The freshly made Aβ42 sample without inhibitors was
loaded to a separated native gel and detected by the same
method as a 0-h control. The molecular weight of the protein
aggregates or monomer were accurately determined by the
protein standard especially for native gel (Life technologies;
cat. # LC0725).

Transmission Electron Microscopy (TEM)
For specimen preparation, 5 µl of each sample was deposited
onto a glow-discharged carbon film on 400 mesh copper grids,
followed by washing in water twice. The grids were then stained
in 0.75% uranyl formate. A Tecnai G2 Spirit transmission
electron microscope operating at an accelerating voltage of
120 kV was used to examine and visualize the samples. Images
were collected by a 4k × 4k charge-coupled device camera (BM-
Eagle, FEI).

Cell Viability Assay
We performed MTT-based cell viability assays to evaluate the
toxicity of Aβ42 in the absence or presence of the designed
peptides. We used a CellTiter 96 aqueous non-radioactive cell
proliferation assay kit (Promega cat. # G4100). PC-12 cell lines
(ATCC; cat. # CRL-1721) were used to test the cytotoxicity
of Aβ42 under different conditions. PC-12 cells were cultured
in ATCC-formulated RPMI 1640 medium (ATCC; cat. # 30-
2001) with 5% fetal bovine serum and 10% heat-inactivated
horse serum. Before the cell viability experiment, PC-12 cells
were plated at 10,000 cells per well in 96-well plates (Costar;
cat. # 3596), and cultured for 20 h at 37◦C in 5% CO2. For the
preparation of Aβ42 and peptide inhibitors mixture solutions,
purified and pre-disaggregated Aβ42 samples were dissolved in
PBS to a final concentration of 5 µM, followed by the addition
of different peptide inhibitors at indicated concentrations. The
mixture solution was filtered through a 0.22 µm filter, followed
by incubation at 37◦C without shaking for 16 h. To initiate the
cell viability assay, 10 µl of pre-incubated mixture was added to
each well containing 90 µl medium. After incubation at 37◦C
in 5% CO2 for 24 h. Fifteen microliter Dye solution (Promega;
cat. # G4102) was applied into each well. After incubation for
4 h at 37◦C, 100 µl solubilization Solution/Stop Mix (Promega;
cat. # G4101) were added. After further incubation at room
temperature for 12 h, the absorbance reading was collected at
570 nmwith background reading at 700 nm. Four replicates were
measured in parallel for each sample. The cell survival rate was
normalized by using the PBS-treated cells as 100% and 0.02%
SDS-treated cells as 0% viability.
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RESULTS

Structure-Based Design of Peptide
Inhibitors
To effectively inhibit Aβ fibril formation, we targeted two
key amyloid-forming segments of Aβ42: 16KLVFFA21 and
37GGVVIA42 (Figure 1A). The 16KLVFFA21 segment has been
identified as a key segment accounting for both Aβ42 and
Aβ40 nucleation and fibrillation (Ahmed et al., 2010; Colletier
et al., 2011; Fawzi et al., 2011; Lu et al., 2013). In the known
structures of Aβ fibrils including the recent cryo-EM structure
of Aβ42 and the previous solid-state NMR structure of Aβ40
(Paravastu et al., 2008; Ahmed et al., 2010), this segment forms
extended β-strands and stacks repetitively along the fibril axis to
form the Aβ fibril core (Supplementary Figure S1). Thus, we

selected 16KLVFFA21 as one of our design targets. In addition,
the cryo-EM structure of Aβ42 fibril shows that the C-terminal
segment 37GGVVIA42 plays an essential role in the fibril
formation (Supplementary Figure S2). 37GGVVIA42 of one
protofilament interdigitates via side chains with its counterpart
of the neighboring protofilament forming a steric-zipper-like
interaction to compose the mature fibril. Therefore, preventing
the self-assembly of either 16KLVFFA21 or 37GGVVIA42 may
potentially inhibit the assembly of Aβ42 fibrils.

For structure-based computational design, we used the atomic
structures of 16KLVFFA21 (PDB ID: 2Y2A) and 37GGVVIA42

(PDB ID: 2ONV) as templates. The atomic structures of these
two segments represent their conformations in the context of
the full-length Aβ fibrils (Figures 1A,B). Based on the structures
of the two targeting templates, we designed pentapeptides

FIGURE 1 | Structure-based peptide inhibitor design of amyloid β (Aβ) amyloid aggregation. (A) The fibril structure of full-length Aβ42 determined by cryo-EM (PDB
ID: 5OQV) is shown as black ribbons. The atomic crystal structures of peptides KLVFFA (PDB ID: 2Y2A, cyan) and GGVVIA (PDB ID: 2ONV, magenta) are aligned on
one of the two protofilaments of the full-length Aβ42 fibril structure and shown as sticks. (B) The fibril structure of full-length Aβ40 determined by solid-state NMR
(PDB ID: 2LMN) is shown as black ribbons. The atomic crystal structure of peptides KLVFFA is aligned on one of the two protofilaments of the full-length Aβ40 fibril
structure and shown as sticks. (C) Design strategy for peptide inhibitors of amyloid fibrils. The designing template is a five-stranded sheet extracted from the fibrillar
structure of the targeting segment. Peptide inhibitors (in cyan) are designed to have the optimal interactions with the target via backbone hydrogen bonds (yellow
dashed lines) and complementary side-chain interactions (shown as spheres and dots). Oxygen atoms are in red. Nitrogen atoms are in blue.
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that bind the targeting segments to block the stacking of Aβ

molecules along the fibril axis, thus inhibiting fibril growth
(Figure 1C). We extracted a five-stranded layer from the steric-
zipper structure of each segment, and docked a fully extended
pentapeptide backbone on one end of the β-sheet. Then, we
maximized the backbone interaction with the template by
forming a backbone H-bonding network. To further increase the
binding affinity and selectivity, we searched for the canonical
L-amino acids at each position of the pentapeptide, using
RosettaDesign (Leaver-Fay et al., 2011) for the side chains and
their conformations, that provide maximal interactions with
the template.

Next, we calculated the binding energy, buried surface
area and shape complementarity of the binding interfaces
of the predicted binding models, and proceeded with
experimental validation for the top-ranking designs. Using
ThT fluorescence assay, we observed that the top-5 designs
showed inhibitory effects on Aβ42 amyloid aggregation by
significantly delaying the aggregation lag time (Xue et al., 2008;
Knowles et al., 2009; Figure 2). Among them, two peptide
inhibitors (K6A1 and K6A2) were designed for targeting
16KLVFFA21 and three (G6A1-G6A3) were for 37GGVVIA42

(Table 1). Furthermore, unlike their targeting segments, the five
designed peptides do not form amyloid fibrils by themselves
(Supplementary Figure S3).

Constraining the Structures of Designed
Peptides With a Chemical Scaffold
We next sought to enhance the potency of the peptide inhibitors.
In our design, the peptide inhibitors were expected to adopt
an extended β-strand conformation to maximize the interaction
with the template (Figure 1C). However, in solution, the peptides
are mainly unstructured (Supplementary Table S1). Thus,
upon binding to the template, the peptides need to undergo
conformational change to form extended β strands, which causes
an entropy decrease and thus weakens the binding affinity of the
peptides to the template. To overcome the entropy lost during the
conformational change, we adopted a macrocyclic β-sheet mimic

scaffold to fix the peptide binders into β strands (Figure 3A). The
Nowick group has developed a series of macrocycles in different
sizes as robust scaffolds for displaying peptides of interest in
β-conformation (Liu et al., 2012; Cheng et al., 2013; Salveson
et al., 2016; Kreutzer et al., 2017). According to the length of our
designed peptides, we chose a 42-membered macrocyclic β-sheet
mimic and grafted the designed sequence into the open strand
of the macrocyclic scaffold with appropriate amino acids in the
blocking strand for proper solubility and stability (Figure 3B).
The β-strand conformation of the grafted sequence was validated
by measuring the α-H shifts and δOrn anisotropy using 1H
NMR experiments (Supplementary Figures S4, S5) in solution.
Furthermore, we confirmed that the macrocycles carrying the
designed peptides do not form amyloid aggregation in solution,
while those carrying native amyloid-forming sequences may
form amyloid fibrils with an out-of-register packing (Lu et al.,
2013; Supplementary Figure S3).

Next, we tested the inhibitory effects of the macrocyclic
peptides on Aβ42 amyloid aggregation. The result showed that,
in comparison with the free peptides, the macrocyclic peptides
remarkably enhanced the inhibition on Aβ42 aggregation
(Figures 2B, 4A,B, and Supplementary Figures S6–S10). For
instance, the macrocycle carrying K6A1 (mcK6A1) is about
10 times more potent than free K6A1 in prolonging the lag
time of Aβ aggregation. The macrocyclic peptides inhibited
the amyloid aggregation of Aβ42 in a dose-dependent manner.
McK6A1, mcG6A1 and mcG6A2 showed remarkably strong
inhibition with a 7–10-fold increase of the lag time at
sub-stoichiometric concentrations of 0.2 molar equivalence to
Aβ42 monomer (Figure 4A).

Moreover, we found that the designed macrocyclic peptides
can inhibit the formation of Aβ42 oligomers, the toxic
intermediates of Aβ aggregation, monitored by the native
gel (Figure 4C). This result demonstrated that targeting
16KLVFFA21 and 37GGVVIA42 can prevent both oligomer and
fibril formation, indicating the potential important role of these
two segments in the early stage of Aβ42 aggregation. To further
assess whether the designed peptides can reduce Aβ cytotoxicity,

FIGURE 2 | Inhibitory effects of designed peptides on Aβ42 amyloid aggregation measured by the thioflavin T (ThT) fluorescence assay. (A) The ThT fluorescence
curves of Aβ42 in the presence of designed peptide inhibitors. The molar ratio of Aβ:peptide-inhibitor is 1:5. Three replicates were measured for each curve. The lag
time of Aβ42 aggregation in the presence of peptide inhibitors is compared in (B). ∗p-value < 0.05; ∗∗p-value < 0.01; ∗∗∗p-value < 0.001.
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FIGURE 3 | Design of macrocyclic peptide inhibitors. (A) The schematic shows that as the macrocyclic β-sheet mimic scaffold constrains the designed peptide
sequence into a β-strand, the entropy loss is diminished during the process of target binding. “f” represents free peptide; “mc” represents macrocyclic peptide. The
zoom-in view shows the structure model of a macrocyclic inhibitor binding to the targeting segment. The targeting segment is in magenta. The designed sequence is
in cyan. The macrocyclic scaffold is in gray. H-bonds between the designed sequence and the targeting sequence are labeled by yellow dotted lines. (B) The
42-membered macrocyclic scaffold used in this study. The open strand (positions R1 to R5) accommodates the designed peptides in β-conformation. Two δ-linked
ornithine turn units are in blue. The Hao unit in the blocking strand is in red. Sequences of R1-R7 are listed in the table below.

we performed the MTT-based cell viability assay. The result
showed that the designed macrocyclic peptides can significantly
reduce the cytotoxicity of Aβ42 to PC-12 cells even with a molar
ratio of inhibitor to Aβ42 as low as 0.2:1 (Figure 4D). Also,
the designed macrocyclic peptides showed little toxicity to the
PC-12 cells (Figure 4D). In addition, the designed inhibitors of
Aβ42 showed no inhibition of the amyloid aggregation of other
amyloid proteins (e.g., α-synuclein and the K19 variant of Tau),
indicating that the designed peptides are highly sequence-specific
(Supplementary Figure S11).

Designed Peptides Selectively Inhibit the
Aggregation of Aβ42 but Not Aβ40
Selective inhibition of Aβ42 aggregation over that of Aβ40 is
challenging because Aβ42 is only two residues longer than Aβ40 at
the C- terminus (Figure 5A). Since segment 37GGVVIA42 exists
only in Aβ42, the designed peptides that target this segment may
selectively inhibit the aggregation of Aβ42 but not that of Aβ40.
As shown in the designed models, mcG6A1 that is designed
to target 37GGVVIA42 forms extensive side-chain interactions
with 37GGVVIA42 (Figure 5B). The aromatic residues Tyr
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FIGURE 4 | Inhibitory effects of designed macrocyclic peptides on Aβ42 amyloid aggregation and cytotoxicity. (A) The designed macrocyclic peptides, in particular
mcK6A1, mcG6A1 and mcG6A2, significantly inhibit the amyloid fibril formation of Aβ42 in a dose-dependent manner. (B) Transmission electron microscopy (TEM)
images of Aβ42 (20 µM) after incubation without inhibitors (top) and with 1.0 equivalent of mcK6A1 (bottom) to Aβ monome for 15 h. The scale bars are 200 nm.
(C) Inhibition of Aβ42 oligomers. Aβ42 oligomers formed after 7.5 h of incubation at a concentration of 5 µM (by Aβ42 monomer equivalence) were invisible on the
native gel with the addition of five molar excess of designed macrocyclic peptides. (D) The designed peptide inhibitors ameliorated Aβ42 cytotoxicity to PC-12 cells.
The first column is the cells treated with 0.1 mM NaOH and phosphate buffer saline (PBS) as a positive control. Error bars correspond to standard deviations three
replicates of each experiment. ∗p-value < 0.05; ∗∗p-value < 0.01; ∗∗∗p-value < 0.001; n.s. represents “not significant”.

and Phe of mcG6A1 interact with Ile41 of 37GGVVIA42 via
van der Waals forces. The absence of Ile41 and Ala42 in
Aβ40 diminishes the binding of mcG6A1 to Aβ40. Indeed, the
experimental data showed that mcG6A1 and mcG6A2 that
strongly inhibit the amyloid aggregation of Aβ42, cannot
effectively inhibit the aggregation of Aβ40, as measured by
ThT assay (Figure 5C, Supplementary Figures S12, S13). Note
that a weak inhibitory effect of mcG6A1 and mcG6A2 to
Aβ40 remains, which might come from non-specific backbone
interactions between the inhibitors and Aβ40 (Figure 5B). In
contrast, mcK6A1 that was designed to target the 16KLVFFA21

segment, a segment important for the amyloid aggregation
of both Aβ42 and Aβ40, showed a dose-dependent inhibition
of both Aβ42 and Aβ40 aggregation (Figures 4A, 5C,D, and
Supplementary Figure S14). However, the inhibitory efficiency
of mcK6A1 on Aβ40 is weaker than that on Aβ42, indicating
that 16KLVFFA21 may play a more important role in Aβ42

aggregation than that of Aβ40. This implication is in agreement
with the hypothesis that Aβ42 and Aβ40 may employ different
amyloid nucleation and aggregation process (Sánchez et al., 2011;
Meisl et al., 2014).

DISCUSSION

Development of peptide-based drugs is gaining greater
attentions. In general, peptide-protein interactions have a
high density of hydrogen bonds and highly complementary
packing via hot-spot binding residues, leading to high binding
affinity and exquisite selectivity with fewer off-target side
effects (Kaspar and Reichert, 2013). Many attempts have
been made to rationally design peptide inhibitors of amyloid
protein aggregation, including modified internal segments of
parent amyloid proteins, non-natural amino-acid inhibitors,
proline substitutions, and other methods (Abedini et al.,
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FIGURE 5 | Specificity of designed macrocyclic peptides for the inhibition of Aβ42 and Aβ40 aggregation. (A) The sequences of Aβ42 and Aβ40. The amyloid-forming
segment 16KLVFFA21 (highlighted in orange) is present in both Aβ42 and Aβ40, while segment 37GGVVIA42 (highlighted in magenta) is present only in Aβ42. The
consensus sequence of Aβ42 and Aβ40 is highlighted in gray. (B) The structure models of mcG6A1 (cyan) in complex with 37GGVVIA42 (magenta) and 16KLVFFA21

(orange), respectively. McG6A1 was designed based on the structure of GGVVIA. Residues Tyr and Phe of mcG6A1, and Ile41 of GGVVIA (highlighted with a gray
frame) engage in van der Waals interactions at the inhibitor-target interface. In contrast, mcG6A1 designed for GGVVIA has no specific side-chain interactions, but
merely non-specific back-bone interactions with KLVFFA. (C) The effects of mcK6A, mcG6A1 and mcG6A2 on Aβ40 aggregation (30 µM by Aβ40 monomer
equivalence), measured by ThT assay. Error bars correspond to standard deviations of three replicates of each experiment. ∗p-value < 0.05; ∗∗p-value < 0.01;
∗∗∗p-value < 0.001; n.s. represents “not significant.” (D) TEM images of Aβ40 (30 µM) after incubation without inhibitors (left), and with 1.0 equivalent of mcK6A1 to
Aβ monome (right). The scale bars are 200 nm.

2007; Sievers et al., 2011). Recently, RosettaDesign shows
effectiveness for designing novel proteins and peptides with
predicted structures having atomic accuracy (Bhardwaj
et al., 2016; Huang et al., 2016). This technical advance has
enabled the peptide inhibitor design of Tau aggregation
(Abedini et al., 2007; Seidler et al., 2018). In this study,
we designed peptides that can efficiently inhibit Aβ42
aggregation. Notably, the designed peptides show selectivity
for the intended amyloid target, in contrast to small molecule
inhibitors (e.g., EGCG and methylene blue) that broadly
interfere amyloid aggregation of many proteins (Necula et al.,
2007; Jiang et al., 2013; Palhano et al., 2013). Furthermore,
the designed peptides can differentiate Aβ42 from Aβ40,
demonstrating the accuracy and potency of structure-based
rational design.

Short peptides composed of natural amino acids normally
form unstructured ensembles in solution. If a defined
conformation is required for target binding, conformational
changes may occur upon binding, at a large entropic cost.
This counteracts enthalpy gain from the favorable interaction
of the designed peptide and its target, and consequently
reduces the binding affinity of the peptide with its target.

Therefore, constraining the designed peptide in the desired
conformation (‘‘pre-organization’’) can minimize the entropic
cost and increase the binding affinity. Chemical scaffolds
provide a powerful toolbox for constraining peptides in defined
secondary or tertiary structures in solution (Mowery et al.,
2009; Azzarito et al., 2013; Cheng et al., 2013; Johnson and
Gellman, 2013). In this work, we use a macrocyclic β-sheet
mimic scaffold to constrain the designed peptides into β

strands. Our results show significant enhancement of inhibition
gained by the conformational constraint, which highlights the
importance of conformation-constraint and the advantage of
a chemical scaffold in the development of peptide binders. In
addition, biopharmaceutical properties, such as degradation
resistance and membrane permeability, may be achieved by
modifying the chemical scaffold, rather than changing the
inhibitor sequences.

Macrocyclic β-sheet mimics have been shown to be a useful
model system to study the structural basis of amyloid-like
oligomers and fibrils (Liu et al., 2012; Cheng et al., 2013;
Zheng et al., 2013; Salveson et al., 2016). A variety of
key amyloidogenic segments from different amyloid proteins
(e.g., Aβ, α-synuclein and prion) were constructed into the
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macrocycles (Zheng et al., 2011; Cheng et al., 2012). However,
the self-assembling and potential toxic properties of macrocyclic
molecules that contain native amyloid-forming sequences hinder
application of macrocycles in the development of amyloid
inhibitors (Liu et al., 2012; Salveson et al., 2016). In this
study, by using RosettaDesign approach, we developed novel
sequences and incorporated them into macrocycles. These
designed macrocyclic peptides resist self-assembly and exhibit
little cytotoxicity. In additional to Aβ, the structures of many
other pathogenic amyloid fibrils have been determined recently
(Tuttle et al., 2006; Fitzpatrick et al., 2017; Murray et al., 2017).
Thus, the strategy of combining RosettaDesign and chemical
scaffolds may be useful for peptide inhibitor design of different
amyloid proteins for a variety of amyloid-related diseases.
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