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Abstract

Cancer genotyping has identified a large number of putative tumor suppressor genes. 

Carcinogenesis is a multi-step process, however the importance and specific roles of many of these 

genes during tumor initiation, growth and progression remain unknown. Here we use a 

multiplexed mouse model of oncogenic KRAS-driven lung cancer to quantify the impact of forty-

eight known and putative tumor suppressor genes on diverse aspects of carcinogenesis at an 

unprecedented scale and resolution. We uncover many previously understudied functional tumor 
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suppressors that constrain cancer in vivo. Inactivation of some genes substantially increased 

growth, while the inactivation of others increases tumor initiation and/or the emergence of 

exceptionally large tumors. These functional in vivo analyses revealed an unexpectedly complex 

landscape of tumor suppression that has implications for understanding cancer evolution, 

interpreting clinical cancer genome sequencing data, and directing approaches to limit tumor 

initiation and progression.

INTRODUCTION

Cancer initiation and development is a multi-step process driven in large part by cancer cell-

intrinsic alterations (1). Over the past several decades, cancer genome sequencing has 

contributed to our understanding of the genetic drivers of cancer and identified a large 

number of putative tumor suppressor genes (2–8). However, genome sequencing data is 

insufficient to determine the importance of these genes during various stages of 

carcinogenesis (9). The nature and frequency of genomic alterations also provide limited 

insight into the modes of action of putative tumor suppressor genes, underscoring the 

importance of functional genomics in elucidating gene function (10,11).

Tumor suppressors regulate many different pathways and cellular processes. Assessing their 

impact on tumor initiation and each step of cancer development not only distinguishes driver 

from passenger genes but also highlights different pathways and processes that constrain 

carcinogenesis across the course of the disease (12,13). Thus, in vivo functional genomic 

approaches are critical for understanding cancer evolution (14–16), interpreting clinical 

cancer genome sequencing data (17,18), and directing precision medicine approaches 

(19,20).

In vivo cancer models in which tumor initiation and growth occurs entirely within the 

autochthonous environment are uniquely tractable systems to uncover gene function (21). 

The integration of CRISPR/Cas9 somatic genome editing into genetically engineered mouse 

models of human cancer has facilitated the rapid analysis of gene function in vivo (22–25). 

Recently, the combination of somatic CRISPR-based genome editing with tumor barcoding 

and high-throughput barcode sequencing (Tuba-seq) has greatly increased the scale and 

precision of these in vivo approaches (26,27). These types of approaches can quantify the 

impact of many engineered genomic alterations on cancer growth in vivo in a multiplexed 

manner (12,26–28).

Here we integrate multiple critical advances in our Tuba-seq pipeline and quantify the roles 

of a broad range of diverse putative tumor suppressors across multiple facets of 

carcinogenesis. By uncovering the extent to which different tumor suppressors govern tumor 

initiation, growth and acquisition of altered phenotypes across time, we uncover an 

unexpectedly complex taxonomy of tumor suppression across the life history of oncogenic 

KRAS-driven lung cancer.
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RESULTS

Prioritization of candidate tumor suppressor genes

To characterize the functional landscape of tumor suppression, we selected 48 known and 

putative tumor suppressor genes to investigate using Tuba-seq in a model of oncogenic 

KRAS-driven lung cancer (Fig. 1A; Methods). These genes were chosen based on multiple 

criteria including their mutational frequency in lung adenocarcinoma from TCGA, GENIE, 

and TRACERx datasets, their mutational frequency in pan-cancer genomic data, and the 

consistency of their mutational profiles with tumor suppressor activity (Fig. 1A and B; 

Supplementary Fig. S1A–E and Table S1)(2,4–7). We also considered their putative tumor-

suppressive function in other cancer types as well as their molecular functions 

(Supplementary Fig. S2A and B)(8,29,30). Our candidate genes vary greatly in their 

mutation frequency and co-occurrence with oncogenic KRAS alterations (Supplementary 

Fig. S1C–E). Importantly, these genes include well-studied tumor suppressors as well as 

genes for which there is very limited evidence supporting a role in constraining any aspect of 

carcinogenesis (Supplementary Fig. S3A and B).

Quantitative analysis uncovers diverse tumor suppressors with distinct abilities to 
constrain tumor growth in vivo

To determine the impact of inactivating each candidate tumor suppressor gene on 

carcinogenesis in vivo, we used Tuba-seq to quantify the tumor size profiles after 

inactivation of each gene (Supplementary Fig. S4A). We generated at least two Lenti-

sgRNA/Cre vectors with distinct sgRNAs targeting each gene and five Lenti-sgInert/Cre 

negative control vectors (102 total vectors; Fig. 1C; Supplementary Table S2). Each vector 

contains a two-component sgID-BC, where the sgID uniquely identifies the sgRNA and the 

diverse random 20-nucleotide barcode (BC) uniquely labels each clonal tumor. We 

generated each lentiviral vector separately and pooled them to generate a highly multiplexed 

vector pool (Lenti-sgTS102/Cre; Fig. 1C; Methods). We initiated lung tumors with this pool 

in KrasLSL-G12D/+;R26LSL-Tom;H11LSL-Cas9 (KT;H11LSL-Cas9) mice and Cas9-negative 

control KrasLSL-G12D/+;R26LSL-Tom (KT) mice. These Cas9-negative mice are necessary to 

confirm that all vectors have little impact on tumor growth in the absence of Cas9 and to 

calculate genotype-specific effects on tumor number (see below). Fifteen weeks after tumor 

initiation, KT;H11LSL-Cas9 mice had visibly larger tumors than KT mice (Fig. 1D). We 

extracted DNA from bulk tumor-bearing lungs and used Tuba-seq to quantify overall tumor 

burden and the sizes of each tumor, of each genotype, in each mouse.

KT;H11LSL-Cas9 mice had ~10-fold higher total neoplastic cell number and proportionally 

increased total lung weight (Fig. 1E). Initial analysis of the impact of each sgRNA on tumor 

burden (a metric of the relative number of neoplastic cells in all tumors of the same sgRNA) 

highlighted many genes as functional tumor suppressors. Even this relatively crude metric, 

which does not incorporate the per-tumor resolution of Tuba-seq, uncovered genes where 

both sgRNAs increased tumor burden (Fig. 1F). To investigate which aspects of 

carcinogenesis are regulated by putative tumor suppressor genes, we calculated multiple 

summary statistics. We applied our experimental design to identify tumor suppressor genes 
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that normally limit overall tumor growth, tumor initiation, and the emergence of 

exceptionally large tumors (Fig. 1C; Supplementary Fig. S4B, S4C; Methods).

Many diverse tumor suppressor genes increased overall tumor growth

The ability of Tuba-seq to quantify the number of neoplastic cells in thousands of tumors of 

each genotype allowed us to precisely assess their impact on tumor growth with greater 

precision than previous approaches. We calculated two metrics of tumor growth from the 

distribution of tumor sizes to uncover the effect of inactivating each tumor suppressor on 

overall tumor growth (tumor sizes at defined percentiles within the tumor size distribution 

and log-normal mean, Methods; Supplementary Fig. S4B). As expected, tumors initiated 

with each Lenti-sgRNA/Cre vector in control Cas9-negative KT mice had very similar tumor 

size profiles, suggesting that our pipeline is free from bias and false-positive signals 

(Supplementary Fig. S5A). Consistent with previous Cre/lox and CRISPR/Cas9-based 

mouse models (22,26,31–34), inactivation of Stk11/Lkb1, Pten, Setd2, and Nf1 in tumors in 

KT;H11LSL-Cas9 mice greatly increased tumor growth (Fig. 2A–C; Supplementary Fig. 

S5B). Importantly, inactivation of STAG2, a cohesin complex component, increased tumor 

growth to a comparable extent as inactivation of those well-established tumor suppressors 

(Fig. 2A–C; Supplementary Fig. S5B).

Inactivation of 14 other genes, including Cdkn2c, Cmtr2, Rb1, Rnf43, Tsc1, and Rbm10, 

significantly increased tumor growth (Fig. 2A–C; Supplementary Fig. S5). These 14 genes 

include not only well-established tumor suppressors such as Rb1 and Cdkn2a, but also many 

genes that have not been previously considered functional tumor suppressors in lung 

adenocarcinoma or cancer in general. For example, the effects of inactivating Cmtr2 and 

Rnf43 were particularly dramatic and unexpected (Fig. 2B). CMTR2 is the sole cap2 2’-O-

ribose methylase that modifies the 5’-cap of mRNAs and small nuclear RNAs and is mutated 

in ~2.2% of lung adenocarcinomas and 1.4% of all cancers (7,35)(Supplementary Table S1). 

No previous studies have investigated its function in cancer, and no commercial or academic 

cancer gene sequencing panels include CMTR2 (Supplementary Fig. S3A and B). RNF43 is 

a transmembrane E3 ubiquitin ligase that targets Wnt receptors for lysosomal degradation 

(36). RNF43 is frequently mutated across multiple cancer types, including in colorectal and 

pancreatic adenocarcinoma, where RNF43 deficiency has been shown to sensitize cancer 

cells to porcupine inhibitors (37,38). Thus, our broad survey pinpointed multiple novel 

functional tumor suppressors in oncogenic KRAS-driven lung cancer and revealed 

commonality among cancer subtypes.

STAG2 is a novel functional tumor suppressor

From our initial analysis of overall tumor growth suppression, STAG2 emerged as a 

particularly interesting and novel suppressor of lung tumor growth. STAG2 is mutated in 

~4% of lung adenocarcinomas and cohesin complex components are altered in ~10% of lung 

adenocarcinomas (Supplementary Fig. S6A, S6B and Table S1). STAG2 has been implicated 

as a tumor suppressor in bladder cancer, regulates lineage-specific genes in acute myeloid 

leukemia, and is mutated across diverse cancer types (39–42). However, no previous studies 

have suggested STAG2 as a critical suppressor of lung cancer growth. To further investigate 

the tumor-suppressive effect of STAG2, we initiated lung tumors in KT and KT;H11LSL-Cas9 
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mice with individual Lenti-sgInert/Cre and Lenti-sgStag2/Cre vectors (Supplementary Fig. 

S7A). Relative to control cohorts, Stag2 inactivation dramatically increased tumor burden 

(Supplementary Fig. S7B–E). Inactivation of Stag2 in lung tumors in KT;H11LSL-Cas9 mice 

also significantly reduced long-term survival, consistent with its tumor growth-suppressive 

function (Supplementary Fig. S7F).

To further characterize STAG2-mediated lung tumor growth suppression, we assessed tumor 

growth in KT mice with Cre/lox-mediated inactivation of Stag2 (Fig. 3A). Stag2 is located 

on the X-chromosome, thus both heterozygous and homozygous Stag2 deletion in female 

mice and hemizygous Stag2 deletion in male mice generated tumors that lacked STAG2 

protein (Fig. 3B and C). Stag2 inactivation dramatically increased lung tumor burden, and 

mice with Stag2-deficient tumors had markedly shorter overall survival (Fig. 3D–G). Stag2-

deficient and proficient lung tumors were atypical adenomatous hyperplasias, adenomas, and 

early adenocarcinomas that were uniformly NKX2–1/TTF1-positive. Interestingly, some 

Stag2-deficient tumors had nuclear palisading and were histologically distinct from the 

tumors that developed in control KT mice (Supplementary Fig. S7G–I). STAG2 inactivation 

in other cancer- and cell-types is associated with chromosomal instability (43,44), increased 

DNA damage (45,46), and activation of MEK/ERK or cGAS/STING signaling (47,48). 

However, immunohistochemistry and analysis of canonical target genes suggest that these 

mechanisms are unlikely to be major drivers of the increased growth in Stag2-deficient lung 

cancer (Supplementary Fig. S8A–E). Thus, further work will be necessary to determine the 

molecular mechanisms of tumor suppression driven by STAG2.

Finally, to further characterize the expression of STAG2 in lung cancer, we perform 

immunohistochemistry for STAG2 on 479 human lung adenocarcinomas. About 20% of 

tumors were low or negative for STAG2 protein, suggesting that an even larger fraction of 

lung adenocarcinomas may be driven by alterations in this pathway (Fig. 3H). Interestingly, 

STAG2-low/negative tumors were often more poorly differentiated and advanced human 

lung adenocarcinomas (Fig. 3I).

Additional tumor-suppressive effects emerge at later time points

To gain further insights into the dynamics of tumor suppression in lung cancer, we assessed 

tumor suppressor gene function at a later timepoint after tumor initiation. We reasoned that 

allowing tumors to grow for a longer period of time might uncover greater magnitudes of 

growth-suppression for genes that initially had modest effects and could highlight additional 

tumor suppressors that play more important roles only at later stages of tumor growth. To 

allow mice to survive for a longer period of time after tumor initiation, we generated a 

second pool of Lenti-sgRNA/Cre vectors, which excluded those targeting Lkb1, Pten, Setd2, 
Nf1, p53, Stag2, Cdkn2c and Rb1 that collectively accounted for more than half of the total 

tumor burden (Lenti-sgTS85/Cre; Fig. 4A). We initiated tumors in KT;H11LSL-Cas9 mice 

with a titer of Lenti-sgTS85/Cre that would allow them to survive for 26 weeks while 

maximizing tumor number to achieve reasonable statistical power (Fig. 4A; Supplementary 

Fig. S9A; Methods). As controls, we also initiated tumors with Lenti-sgTS85/Cre pool in 

KT;H11LSL-Cas9 and KT mice and analyzed them after 15 weeks (Fig. 4A).
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After 26 weeks of tumor growth, inactivation of Cdkn2a, Dnmt3a, Cmtr2, Kdm6a and 

Ncoa6 significantly increased tumor burden (Fig. 4B). Furthermore, inactivation of Rbm10, 

Cmtr2, Rnf43 and Tsc1 also still increased tumor sizes at defined percentiles of the 

distribution as well as the log-normal mean tumor size at this later time point 

(Supplementary Fig. S9B). These results confirm the tumor-suppressive function of these 

genes. Importantly, inactivation of several other genes that had marginal to no effects on 

tumor sizes after 15 weeks of tumor growth, including Keap1, Kdm6a, Ncoa6, Cdkn2a, 

Dnmt3a and Dot1l, broadly increased tumor sizes after 26-weeks of tumor growth (Fig. 4C–

F). Thus, analysis of growth metrics at multiple time points after tumor initiation can 

provide temporal resolution of tumor suppressor gene effects.

Tuba-seq captures additional aspects of tumor suppressor gene function

In addition to uncovering tumor suppressor genes that limit overall growth, our methods can 

quantify other aspects of cancer initiation and progression impacted by these genes and 

pathways. The relative tumor burden induced by each Lenti-sgRNA/Cre vector was mostly 

consistent with the growth effects uncovered using tumor sizes at defined percentiles 

(Supplementary Fig. S10A). However, the effects of inactivating some genes on relative 

tumor burden were disproportionately large (Supplementary Fig. S10A and B). For example, 

p53 was clearly a tumor suppressor based on relative tumor burden but p53 inactivation did 

not greatly increase overall tumor growth as assessed by log-normal mean or tumor sizes up 

to the 95% percentile tumor (Supplementary Fig. S10A). Inactivation of several other genes 

also had much more significant and dramatic effects on relative tumor burden than on tumor 

sizes (Supplementary Fig. S10B and C). These disproportionate increases in relative tumor 

burden could be driven by genotype-specific increases in tumor number and/or the sizes of 

the very largest tumors, neither of which are captured well by log-normal mean or tumor 

sizes at defined percentile of the tumor size distribution.

Many tumor suppressors constrain tumor initiation

Our experimental design, in which we initiated tumors in cohorts of KT;H11LSL-Cas9 and 

KT mice with the exact same pool of lentiviral vectors, enabled us for the first time to use 

Tuba-seq to uncover the impact of each putative tumor suppressor gene on tumor initiation 

and very early oncogenic KRAS-driven epithelial expansion (Supplementary Fig. S4C and 

Methods). The genetic alterations that drive the development of very early epithelial 

expansions are poorly understood, yet these events influence tumor incidence and set the 

stage for all subsequent events during cancer evolution. In vivo mouse models are 

particularly well suited to study the effects of genetic alterations on these early events.

Fifteen weeks after tumor initiation, inactivation of many genes including Lkb1, Setd2, and 

Stag2, which had some of the most dramatic effects on tumor growth, did not increase tumor 

number (defined as the number of clonal expansions with more than 200 cells; Fig. 5A; 

Supplementary Fig. S4C and Methods). However, Pten inactivation increased tumor number 

by ~4-fold, suggesting that at least three-quarters of epithelial cells expressing oncogenic 

KRASG12D fail to expand beyond a very small size if at all (Fig. 5A and B). Tsc1 
inactivation also increases tumor number, albeit to a lesser extent, consistent with TSC1 

suppressing mTOR downstream of PI3K (49). Inactivation of Nf1, Rasa1, and p53 also 
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increased tumor number, thus implicating several signaling pathways in the earliest stages of 

lung tumor development (Fig. 5A). Strikingly, inactivation of four members of the 

COMPASS complex (Kdm6a, Ncoa6, Kmt2c/Mll4 and Kmt2d/Mll3)(50,51) all increased 

tumor number (Fig. 5A). The importance of histone H3K4 methylation mediated by this 

complex is further substantiated by the mutation of at least one member of this complex in 

8.9–32.5% of human lung adenocarcinoma (Fig. 5C and D)(2). Importantly, genes that limit 

tumor initiation and those that constrain tumor growth are often independent, suggesting that 

these facets of tumor suppression can represent distinct functions (Supplementary Fig. 

S11A).

Analysis of the effect of each genotype on tumor number in mice with tumors initiated with 

the Lenti-sg85/Cre pool (at both 15 and 26-weeks after tumor initiation) provided us with 

the opportunity to further validate the effect of tumor suppressor inactivation on tumor 

initiation and early growth (Fig. 5E; Supplementary Fig. S11B and C). The effects of 

inactivating each tumor suppressor gene on relative tumor numbers were highly correlated 

across all three datasets (Fig. 5F; Supplementary Fig. S11D and E). Several genes including 

Cdkn2a, Dnmt3a, Kdm6a and Ncoa6 that initially only increased tumor number also 

increased overall growth fitness at the later time point. This observation suggests some link 

between the cellular changes that enable normal epithelial cells to break through the 

constraints of early hyperplastic growth and the greater fitness in the resulting tumors (Fig. 

4F and 5F; Supplementary Fig. S9B).

Tumor suppressor inactivation allows the emergence of rare but very large tumors

Next, we took advantage of the per-tumor resolution of our Tuba-seq data to quantify the 

impact of inactivating each gene on the generation of exceptionally large tumors. In addition 

to the effects of tumor suppressor gene inactivation on overall tumor growth and tumor 

initiation, the development of exceptionally large tumors is suggestive of genotypes that 

promote or allow additional alterations to drive aggressive tumor growth. We previously 

found that one major effect of p53 deficiency is the generation of such exceptionally large 

tumors (26,27). Using metrics such as the Hill’s estimator (a measure of the heavy-

tailedness of a distribution)(52), we quantified the extent to which p53 inactivation enables 

the emergence of infrequent but exceptionally large tumors after 15 weeks of tumor growth 

(Fig. 6A and B; Supplementary Fig. S12A). The effect of p53 inactivation is consistent with 

many previous reports documenting the emergence of large lung tumors in 

KrasLSL-G12D/+;p53flox/flox mice (32,53–55). These analyses also showed that inactivation of 

Cdkn2a and the DNA methyltransferase Dnmt3a, might allow some tumors to grow to 

disproportionately large sizes (Fig. 6A and B; Supplementary Fig. S12A).

To further investigate the effects of tumor suppressor gene inactivation on the emergence of 

exceptionally large tumors, we determined which genotypes generate heavy-tailed tumor 

size distribution after 26 weeks of tumor growth. Analysis of the distributions of tumor sizes 

specifically highlighted the development of exceptionally large Dnmt3a and Cdkn2a-

targeted tumors (Fig. 6C–E; Supplementary Fig. S12B–D). Both sgRNAs targeting Cdkn2a 
are anticipated to inactivate both INK4A and ARF, therefore the effect of Cdkn2a 
inactivation could reflect the combined reduction of the Rb and p53-pathways, consistent 
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with our observation that p53 inactivation generates a heavy-tailed distribution (Fig. 6A and 

B; Supplementary Fig. S12A)(26,27). The emergence of very large Cdkn2a- and Dnmt3a-

deficient tumors is consistent with the increased lung tumor burden in oncogenic 

KrasLSL-G12D-driven tumors with Cre/lox mediated inactivation of these genes (56,57). 

However, the per-tumor resolution of our data suggests that the inactivation of INK4A/ARF 

or the DNA-methyltransferase DNMT3A enables the emergence of rare but exceptionally 

large tumors, while having only a modest impact on the growth of the vast majority of 

tumors (Fig. 6E; Supplementary Fig. S12C). Therefore, the role of tumor suppressors in 

preventing the development of exceptionally large tumors can be independent of their roles 

in regulating tumor initiation and overall growth during cancer evolution.

Limited effects of overall tumor burden and sex on tumor suppressor function

Our high-resolution data across multiple facets of tumor suppression in principle allow for 

quantification of the effects of other variables on tumor suppressor effects. Given that overall 

tumor burden varies across mice and that we initiated tumors in mice of both sexes, we 

assessed how these variables influence tumor suppressor effects. To uncover whether overall 

tumor burden influences genotype-specific effects, we divided our KT;H11LSL-Cas9 mice 

with Lenti-sgTS102/Cre-initiated tumors into three groups with low, medium, and high 

tumor burden and reassessed multiple metrics of tumor initiation and growth 

(Supplementary Fig. S13A). Very few genotype-specific tumor-suppressive effects were 

influenced by overall tumor burden, suggesting that our results are largely unaffected by 

potential differences in paracrine or physical interactions that change with tumor density 

(Supplementary Fig. S13B–E).

There is a growing interest in understanding sex-specific effects on all aspects of 

carcinogenesis. Our data derived from both male and female mice allowed us to investigate 

sex-specific differences in tumor suppression. Inactivation of most genes, including those on 

the X chromosome, had similar effects on tumor growth and tumor number in male and 

female mice (Supplementary Fig. S14A–D). Thus, tumor suppressor effects in lung cancer 

are not dramatically impacted by differences in the host environment driven by sex. This was 

particularly illuminating for Kdm6a, which is an X-linked gene that has both H3K27me3 

demethylase and non-enzymatic functions (58). Its non-enzymatic function can be 

compensated for by its paralog UTY on the Y chromosome, and thus different effects in 

male and female mice have been used to provide insight into the molecular function of 

KDM6A (58). Kdm6a inactivation increased tumor number similarly in male and female 

mice. The effects were consistent in our data at 15 and 26 weeks after tumor initiation, 

suggesting that the impact of KDM6A inactivation is most likely driven by loss of its 

enzymatic function (Supplementary Fig. S14E–H).

Evaluation of sensitivity and specificity

To better estimate the impact of false negatives and false positives on our data, we used all of 

our datasets to estimate the true positive rate (Methods). Within all of our datasets, the 

effects of sgRNAs targeting the same gene were concordant across multiple metrics, 

consistent with on-target effects (Fig. 2 and 4; Supplementary Fig. S15A–F). For instance, in 

our experiment using Lenti-sgTS102/Cre pool, when one sgRNA showed a significant tumor 
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suppressive effect (nominal P < 0.05), the probability to re-detect the significant effect using 

the other guide was above 89% for all metrics assessed (Supplementary Table S3). Thus, the 

probability that both sgRNAs fail to uncover a functional tumor suppressor that has a similar 

effect to the tumor suppressors identified in our analysis is below 5% (Supplementary Table 

S3). Note that for the eight major tumor suppressor genes that were excluded from the Lenti-

sgTS85/Cre Pool, significant effects for both sgRNAs were uncovered in every case. Given 

these results and the targeting of each putative tumor suppressor gene with two sgRNAs, it is 

unlikely that functional tumor suppressors were missed for technical reasons. Furthermore, 

analysis of sgRNA cutting in cells in culture showed comparable efficiency of sgRNAs 

targeting genes that emerged as tumor suppressors and those that did not (Supplementary 

Fig. S15G–I). Finally, power calculations using our data suggest that an even larger number 

of genes could be assessed using reasonable numbers of mice using these methods 

(Supplementary Fig. S16A–C).

Human mutational data, cell line studies, and in vivo functional studies are complementary 
in defining a catalog of tumor suppression

The candidate tumor suppressor genes that we assessed were chosen based on existing 

human mutational data; however, each gene has different levels of correlative data 

supporting its function as a tumor suppressor (Supplementary Table S1). We explored 

whether effects on tumorigenesis within the autochthonous environment could be predicted 

by either human mutation data or through the analysis of human cell lines. Several strong 

functional tumor suppressors did not stand out based on the human mutational frequency 

data, and genes such as STAG2, CMTR2, and CDKN2C were not often predicted to be 

tumor suppressor genes based on human mutational data (Fig. 2A; Supplementary Fig. 

S17A–G). Thus, computational predictions of tumor suppressor function from mutational 

data alone (including statistical methods that already integrate background mutation rate 

corrections as well as function- and structure-based impact predictions) nominate some but 

not all functional tumor suppressors.

Analysis of data from the Dependency Map (59), in which genome-scale knockout screens 

were performed across diverse cancer cell lines, was also revealing. Inactivation of several 

top functional tumor suppressors, including PTEN, CDKN2C, RB1, and RNF43 increased 

lung adenocarcinoma cell line growth as expected (Supplementary Fig. S17H). However, 

inactivation of several other major functional tumor suppressors, including LKB1, SETD2, 

and STAG2 paradoxically decreased cancer cell growth in culture (Supplementary Fig. 

S17H). The effects of inactivating several modest tumor suppressors were concordant 

between the human cell lines and in vivo mouse model data, although inactivation of some 

genes, including CMTR2, RBM10, and KEAP1, had variable or growth-suppressive effects 

on cancer cells in culture (Fig. 4B; Supplementary Fig. S17H). Collectively, these results 

underscore the differences in the fitness landscape in cell lines and indicate that in vivo 
studies can complement these analyses.
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DISCUSSION

The enormous genomic diversity in cancer, even within tumors of the same subtype, creates 

a challenge for identifying driver genes and deciphering their roles in tumor development. 

Given the sample sizes of cancer genome sequencing studies, variation in genomic features 

such as gene length and mutation rate will continue to make computational predictions of 

tumor suppressor function from mutation data difficult, except for a subset of genes 

(9,60,61). Moreover, mutation frequencies alone cannot easily define the importance of each 

tumor suppressor gene and even less so be used to glean their mode of action. Indeed, even 

rarely mutated tumor suppressor genes can have large consequences when inactivated, with 

the rarity of mutation being driven by mutational cold spots, epistatic interactions and 

biological context (9,62) rather than by the magnitude of their inhibitory function 

(Supplementary Fig. S17A). Thus, while experiments using model organisms could be 

impacted by species-specific effects, in vivo functional studies that include autochthonous 

tumor initiation, growth and progression are an important complement to the computational 

investigation of tumor suppressor inactivation in human tumors (13,20,21).

Carcinogenesis is broadly impacted by different aspects of the in vivo environment. By 

enhancing the throughput, sensitivity, and precision of Tuba-seq (26,27), we quantify the 

effects of inactivating a diverse panel of putative tumor suppressor genes in an 

autochthonous mouse model of oncogenic KRAS-driven lung cancer. The parallel analysis 

of ~50 different genotypes not only uncovered previously uncharacterized functional tumor 

suppressor genes but also provided new insights into the landscape of tumor suppression and 

multiple modes of action of tumor suppressor genes (Fig. 7A and B). We show that tumor 

suppression is unexpectedly complex and multi-faceted, with some genes suppressing tumor 

initiation, some constraining overall tumor growth, and others limiting the emergence of a 

small proportion of unusually fast-growing tumors (Fig. 7A and B). Furthermore, while 

some genes affect only a single feature of carcinogenesis, others affect multiple facets of 

tumor evolution to varying extents (Fig. 7C). The relative importance of these genes can also 

change during the course of carcinogenesis (Fig. 7B and C). Understanding the impact of 

tumor suppressors that primarily regulate certain aspects of carcinogenesis may have a 

unique value for cancer prevention, early detection, and therapeutic targeting. The discovery 

of such functional complexity points to shifting challenges during different stages of 

carcinogenesis. Thus, tumor suppressors are not simply “brakes” on proliferation but rather 

contextually and temporally dependent genetic modifiers of different phases of 

carcinogenesis.

Our results are largely consistent with previous studies that assessed some of these genes 

individually using similar in vivo mouse models of lung cancer (22,26,31–34,51,63,64). 

However, single-gene approaches and quantification of overall tumor burden alone are 

limited in their ability to uncover the modes of tumor suppression and do not enable direct 

comparison across many genotypes. For example, while Lkb1, Pten, Kdm6a, Dnmt3a and 

p53 inactivation each increase overall tumor burden, our quantitative, multiplexed design 

and computational platform uniquely enabled the deconvolution of different aspects of 

tumor suppression (Fig. 7A).
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We show that the inactivation of many understudied genes has major effects on tumor 

growth (Fig. 7C; Supplementary Fig. S3). Identifying additional genes that are 

fundamentally important in suppressing carcinogenesis, including those that are less 

frequently mutated in human lung adenocarcinoma, can highlight key molecular and cellular 

processes that are critical in cancer. Furthermore, alterations in cis-regulatory elements, 

epigenetic silencing and mutations in other members of the same complexes or pathways 

likely dysregulate these processes in a much higher percentage of tumors. Thus, these types 

of in vivo findings suggest not only the importance of certain genes but also more broadly 

uncover under-appreciated cellular processes that limit cancer development. Our findings 

nominate several novel genes and key pathways that should be investigated in further 

mechanistic detail. In particular, the mechanisms by which STAG2 inactivation drives lung 

cancer growth remain to be elucidated.

One key approach used to implicate the context-dependency of tumor suppressor function is 

the analysis of mutual exclusivity in human data (65). Interestingly, our data demonstrate 

that genes that trend toward mutual exclusivity with oncogenic KRAS mutations, such as 

NF1 and PTEN are still important suppressors of oncogenic KRAS-driven lung cancer 

(Supplementary Fig. S17B). Such statistical trends toward mutual exclusivity should not be 

misinterpreted as the lack of tumor-suppressive effect of these genes in oncogenic KRAS-

driven lung cancer, and more generally, these types of patterns in mutation data should be 

interpreted with caution (66). Instead, these patterns likely reflect complex epistatic 

interactions in which context-dependence drives frequencies and mutation spectra (9,62).

Our data, coupled with human lung adenocarcinoma sequencing studies, provide the most 

comprehensive map of in vivo tumor suppressor gene function for cancer (Fig. 7C). Given 

the quantitative and cost-effective nature of Tuba-seq, even broader studies of many other 

genes and combinations of genomic alterations may be warranted. Moreover, studies across 

different genetic and environmental contexts may further elucidate and refine the modality 

and context-dependence of tumor suppressor gene effects (27,67,68). This should lead to a 

more thorough understanding of the interactions between cell-intrinsic and extrinsic 

processes that contribute to the etiology and evolution of lung cancer.

METHODS

Selection of candidate tumor suppressor genes for this study

To select candidate genes to assess in vivo using Tuba-seq (and to complement genomics 

and cell biology approaches), we generated a highly human-curated panel that integrating 

many different considerations.

Known lung adenocarcinoma driver tumor suppressors genes at >5% mutational frequency 

(such as P53, LKB1, CDKN2A, KEAP1) from The Cancer Genome Atlas (TCGA), AACR 

Project Genomics, Evidence, Neoplasia, Information, Exchange (GENIE), and TRAcking 

Cancer Evolution through therapy (Rx) (TRACERx) datasets which were previously 

assessed by Tuba-seq were included as positive controls. We included genes that tend to co-

occur with oncogenic KRAS mutations and those that do not. We also included genes that 

have been categorized as tumor suppressor genes in other cancer types with >5% mutational 
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frequency in lung (such as KDM6A and FAT1), even if they are not predicted to be involved 

in lung adenocarcinoma (Fig. 1A; Supplementary Fig. S1 and Table S1).

We also considered the distribution of mutations within genes (Fig. 1B), including low 

mutation frequency genes (<5%) that show potential clonal or subclonal bias from the 

TRACERx dataset (Supplementary Table S1), genes with discrepancies in scoring of 

potential driver activity (Supplementary Fig. S2), as well as genes that represent biological 

processes or functions commonly associated with carcinogenesis (Supplementary Fig. S3). 

From a curated survey of literature, candidate genes that have been discussed as cancer 

driver genes without much or any functional data were also included (Supplementary Fig. 

S4).

Analysis of human lung adenocarcinoma cancer genome sequencing data

Mutation frequencies and other information for the 48-gene panel of putative candidate 

tumor suppressor genes are available from multiple cancer datasets and their analyses in 

TRACERx (6), GENIE (2) and TCGA (7,69,70). Oncogenes are characterized by missense 

point mutations arising in mutational hotspots. In contrast, TSGs are characterized by 

protein truncating mutations (nonsense and frameshifts) that are more dispersed across the 

transcript. Moreover, when nonsense and frameshift mutations arise in oncogenes, they tend 

to truncate C-terminal domains and occur towards the end of the transcript. To identify 

putative TSGs, we characterized all genes in this survey by these two genetic features: 

mutational hotspots and the fraction of protein truncated per mutation. We used all point 

mutations and short insertion and deletions found within the TCGA lung adenocarcinoma 

(7) and Catalogue Of Somatic Mutations In Cancer (COSMIC)(71) databases. The extent of 

mutational hotspots within a gene was determined using a normalized measure of dispersion 

(Green’s Contagion) of the number of missense mutations observed within all five residue 

rolling windows in each gene: (σ2/μ−1)/(μN−1) , where μ is the mean number of missense 

mutations observed within each window, σ2 is the unbiased estimator of the variance, and N 

is the number of missense mutations. Green’s Contagion and the five-residue window size 

and were chosen because they maximized the accuracy of classification of known oncogenes 

and tumor suppressors. Larger values of Green’s Contagion suggest that mutations are 

clumping at a few residues within the protein and that the mutant gene is likely oncogenic. 

This measure has a value of zero when mutations are randomly dispersed throughout the 

gene and can be negative when mutations are under-dispersed. The fraction of protein 

truncated per mutation is the mean number of amino acids lost per nonsynonymous 

mutation. It is calculated by simply averaging the fraction of a transcript lost due to each 

frameshift and nonsense mutation, while assigning a value of zero to all missense mutations 

in this collective average.

To summarize what has previously been described about the biological functions of the 

candidate genes, we used driver gene scores from attempts to discover cancer driver genes 

using multiple approaches, such as weighted consensus across multiple tools (8) and 

prediction by machine learning (29). We also collated the known biological processes and 

subcellular localization of the 48 genes from the Gene Ontology database (release date 

2019-07-01)(30).
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For co-occurrence of mutations in KRAS and each selected gene, the odds ratio (equals 

(Nneither were mutated * NBoth were mutated) / (Nonly KRAS is mutated * Nonly selected gene is mutated)) 

and P-value (one-sided Fisher’s Exact Test) were available on cBioPortal.org. 566 lung 

adenocarcinoma cases from TCGA Pan-cancer Atlas and 8522 lung adenocarcinoma 

samples from GENIE were analyzed. Note that NCOA6, ATF7IP, CMTR2 and UBR5 are 

not profiled in any GENIE lung adenocarcinoma cases and hence were excluded from the 

analysis. For the fitting of a simple linear regression between measured phenotypes and 

observed clinical parameters, we used data from mutation timing and clonality in lung 

adenocarcinomas that have been previously described (6,70).

Analysis of publications suggesting tumor suppressive function of each putative tumor 
suppressor gene in lung cancer

List of articles related to the gene was accessed through the “Bibliography” section of NCBI 

Gene (https://www.ncbi.nlm.nih.gov/gene/). Subsequently, “lung cancer” and/or “tumor 

suppressor” were used as the keywords to refine the search.

Calculation of gene inclusion in gene sequencing panels

GENIE panel sequencing information was compiled through the GENIE 6.1 Public Release. 

We first generated a list of panels that provided data from patients with “Cancer Type 

Detailed” listed as “Lung Adenocarcinoma”, “Lung Adenocarcinoma In Situ”, or “Lung 

Adenosquamous Carcinoma” by filtering the data_clinical_sample.txt file. Then, by parsing 

the genie_combined.bed file, we generated a list of “screened” genes for each panel, which 

refers to genes that have “Feature_Type” listed as “exon” and “includeInPanel” listed as 

“True”. This list was then utilized to categorize our pool of tumor suppressors as either 

“screened” or “unscreened” by these sequencing panels. Stanford Solid Tumor Actionable 

Mutation Panel (STAMP) and FoundationOne CDx sequencing panels were obtained from 

the official websites.

Design, generation, barcoding, and production of lentiviral vectors

The sgRNA sequences targeting the putative tumor suppressor genes were designed using 

Desktop Genetic’s Guide Picker (72) (https://www.deskgen.com/guide-picker) to prioritize 

on-target activity (score of >0.6)(73), specificity (score of >0.6)(74), likelihood of 

generating frameshift indels (score of >0.6)(75), targeting of maximal number of transcript 

isoforms, no homopolymer runs in the sgRNA, and no extremes in GC-content of sgRNA 

(0.4–0.75), as detailed in Supplementary Table S2.

The Lenti-U6-sgRNA-sgID-barcode-Pgk-Cre vector was modified from our previous work 

(26) as follows. The sgRNA sequence of the previously described pLenti-sgNT1/Cre 

(Addgene #66895) vector was replaced with GCGAGGTATTACCGGCGTATCATCCGCG 

by site-directed mutagenesis to generate pLenti-BaeI-Pgk-Cre. The replacement sequence 

contains a recognition site for the Type IIS restriction endonuclease BaeI, allowing for quick 

replacement of the sgRNA sequence. To generate each desired vector, forward and reverse 

single-stranded oligonucleotides containing the sgRNA sequence and complementary 

overhangs is annealed and ligated into the BaeI-linearised pLenti-BaeI-Pgk-Cre vector using 

T4 DNA ligase. The barcode oligo primer contains the 8-nucleotide sgID sequence and 20-
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nucleotide degenerate barcode (Supplementary Table S2). The generation of the barcode 

fragment and subsequent ligation into the vectors were performed as previously described 

(26).

Lenti-sgRNA/Cre vectors were individually co-transfected into 293T cells with pCMV-VSV-

G (Addgene #8454) envelope plasmid and pCMV-dR8.2 dvpr (Addgene #8455) packaging 

plasmid using polyethylenimine. Supernatants were collected at 48 and 72 hours after 

transfection, filtered through a 0.45 μm syringe filter unit (Millipore SLHP033RB) to 

remove cells and debris, concentrated by ultracentrifugation (25,000 g for 1.5 hours at 4°C), 

and resuspended in PBS. Each virus was titered against a standard of known titer using LSL-

YFP Mouse Embryonic Fibroblasts (MEFs) (a gift from Dr. Alejandro Sweet-Cordero/

UCSF). These MEFs and 293T cells were regularly tested with MycoAlert mycoplasma 

detection kit (Lonza, cat# LT07–418) to make sure that they are free of mycoplasma. All 

lentiviral vector aliquots were stored at −80°C and were thawed and pooled at equal ratios 

immediately prior to delivery to mice.

Mice and tumor initiation

The use of mice for the current study has been approved by Institutional Animal Care and 

Use Committee at Stanford University, protocol number 26696.

KrasLSL-G12D/+ (RRID:IMSR_JAX:008179), R26LSL-tdTomato (RRID:IMSR_JAX:007909), 

and H11LSL-Cas9 (RRID:IMSR_JAX:027632) mice have been previously described 

(24,76,77). They were on a C57BL/6:129 mixed background. The Stag2tm1c(EUCOMM)Wtsi/J 

(Stag2flox) mice were initially generated by Viny et al.(42) and obtained from the Jackson 

Laboratory (RRID:IMSR_JAX:030902). Tumors were initiated by intratracheal delivery of 

60 μl of lentiviral vectors dissolved in PBS.

For the initial experiments, tumors were allowed to develop for 15 weeks after viral delivery 

of a lentiviral pool that contained 102 barcoded Lenti-sgRNA/Cre vectors (Lenti-sgTS102/

Cre). Tumors were initiated in KrasLSL-G12D;R26LSL-Tom/LSL-Tom (KT) mice with 9×104 

infectious units (ifu)/mouse of the Lenti-sgTS102/Cre pool (12 mice analyzed at 15 weeks 

after tumor initiation), and in KT;H11LSL-Cas9/LSL-Cas9 mice with 3×104 ifu/mouse of the 

Lenti-sgTS102/Cre pool (47 mice analyzed at 15 weeks after tumor initiation).

After the detection of the top functional tumor suppressors after 15 weeks of tumor 

development, tumors were initiated in additional mice using a sub-pool of 85 Lenti-

sgRNA/Cre vectors (Lenti-sgTS85/Cre), which excluded the vectors targeting Cdkn2c, 
Lkb1, Nf1, p53, Pten, Rb1, Setd2, and Stag2. Tumors were initiated in KT mice with 

2.5×105 ifu/mouse (6 mice analyzed at 15 weeks after tumor initiation), KT;H11LSL-Cas9 

mice with 6×104 ifu/mouse (10 mice analyzed at 15 weeks after tumor initiation), and 

KT;H11LSL-Cas9 mice with 1.5×104 ifu/mouse (40 mice analyzed at 26 weeks after tumor 

initiation).

For the validation experiments using Lenti-sgRNA/Cre-mediated gene inactivation, tumors 

were allowed to develop for 15 weeks after viral delivery. Tumors were initiated with 

individual barcoded Lenti-sgRNA/Cre vectors in KT mice with 1×105 ifu/mouse (3 mice per 
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vector analyzed at 15 weeks after tumor initiation), and KT;H11LSL-Cas9 mice with 1×105 

ifu/mouse (5–6 mice per vector analyzed at 15 weeks after tumor initiation).

For the survival experiments using Lenti-sgRNA/Cre-mediated gene inactivation, tumors 

were allowed to develop until humane endpoints. Tumors were initiated in KT;H11LSL-Cas9 

mice with individual barcoded Lenti-sgInert/Cre vectors at 2×104 ifu/mouse and with 

individual barcoded Lenti-sgStag2/Cre vectors at 1×104 ifu/mouse (7 mice per vector 

analyzed).

For Stag2 validation experiments using the Stag2floxed allele, tumors were initiated with 

Lenti-sgInert/Cre in KT, KT;Stag2flox/+, KT;Stag2flox/flox and KT;Stag2flox/y mice with 

1×105 ifu/mouse (4–5 mice per group analyzed) and allowed to develop for 15 weeks, and 

KT, KT;Stag2flox/+, KT;Stag2flox/flox and KT;Stag2flox/y mice with 1×105 ifu/mouse (6–7 

mice per genotype analyzed) and allowed to develop until humane endpoints.

Tuba-seq library generation

Genomic DNA was isolated from bulk tumor-bearing lung tissue from each mouse as 

previously described (26). Briefly, benchmark control cell lines were generated from LSL-

YFP MEFs transduced by a barcoded Lenti-sgNT3/Cre vector (NT3: an inert sgRNA with a 

distinct sgID) and purified by sorting YFP+ cells. For mice initiated with Lenti-sgTS102/Cre 

pool, twelve benchmark control cell lines (3 cell lines of 500,000 cells each, 3 cell lines of 

50,000 cells, 3 cell lines of 5,000 cells, and 3 cell lines of 500 cells) were added to each 

mouse lung sample prior to lysis to enable the calculation of the absolute number of 

neoplastic cells in each tumor from the number of sgID-BC reads. Because the standard 

curve was highly linear, we reduced the benchmark controls to three cell lines with 500,000 

cells each for the Lenti-sgTS85/Cre pool. Following homogenization and overnight protease 

K digestion, genomic DNA was extracted from the lung lysates using standard phenol-

chloroform and ethanol precipitation methods.

Subsequently, Q5 High-Fidelity 2x Master Mix (New England Biolabs, M0494X) was used 

to amplify the sgID-BC region from 32 μg of genomic DNA. The unique dual-indexed 

primers used were Forward: AATGATACGGCGACCACCGAGATCTACAC-8 nucleotides 

for i5 index-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-6 to 9 random nucleotides 

for increased diversity-GCGCACGTCTGCCGCGCTG and Reverse: 
CAAGCAGAAGACGGCATACGAGAT-6 nucleotides for i7 index- 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-9 to 6 random nucleotides for 

increased diversity-CAGGTTCTTGCGAACCTCAT. The PCR products were purified with 

Agencourt AMPure XP beads (Beckman Coulter, A63881) using a double size selection 

protocol. The concentration and quality of the purified libraries were determined using 

Agilent High Sensitivity DNA kit (Agilent Technologies, 5067–4626) on the Agilent 2100 

Bioanalyzer (Agilent Technologies, G2939BA). The libraries were pooled based on lung 

weight to ensure even reading depth, cleaned up again using AMPure XP beads, and 

sequenced (read length 2×150bp) on the Illumina HiSeq 2500 or NextSeq 550 platform 

(Admera Health Biopharma Services).
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Code and data availability

Python 3.6 and R 3.6 were used for analyzing the data. The codes are available on GitHub, 

link: https://github.com/lichuan199010/functional-taxonomy-of-tumor-suppressors

The data sets generated and analyzed in the current study are available in the NCBI Gene 

Expression Omnibus database, token: ezsjeksixhkvbqh, link: https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146302

Process paired-end reads to identify the sgID and barcode

The FASTQ files were parsed to identify the sgID and barcode for each read. Each read is 

expected to contain an 8-nucleotide sgID region followed by a random nucleotide barcode 

region (GCNNNNNTANNNNNGCNNNNNTANNNNNGC), and each of the 20 Ns 

represents random nucleotides. The sgID region identifies the putative tumor suppressor 

gene being targeted, for which we require a perfect match between the sequence in the 

forward read and one of the 102 sgIDs with known sequences. Note that all sgID sequences 

differ from each other by at least three nucleotides. Therefore, the incorrect assignment of 

sgID due to PCR or sequencing error is extremely unlikely. All cells in a clonal expansion 

from a cell transduced by a lentiviral vector carry the same BC sequence. To minimize the 

effects of sequencing errors on calling the BC, we require the forward and reverse reads to 

agree completely within the random nucleotide sequence to be further processed. In our 

pipeline, any “tumor” within a Hamming distance of two from a larger tumor is assigned as 

“spurious tumors”, which is likely to be resulting from sequencing or PCR errors and is 

removed from subsequent analysis. Reads with the same sgID and barcode are assigned to 

be the same tumor. The tumor size (number of neoplastic cells) is calculated by normalizing 

the number of reads from an individual tumor to the number of reads from the benchmark 

control cell lines added to each sample prior to lung lysis and DNA extraction. The 

minimum sequencing depth was ~1 read per 43 cells. We have high statistical power in 

identifying tumors with over 200 cells, which was used as the minimum cell number cutoff 

for calling tumors.

Summary statistics for overall growth rate

Three summary statistics, relative sizes at defined percentiles, relative log-normal mean and 

relative tumor burden (will be introduced in a later section), were used to describe the 

overall tumor growth as previously described. Relative sizes at defined percentiles are 

nonparametric summary statistics for the tumor size distribution. Specifically, the relative 

sizes at Xth percentiles are calculated as the Xth percentile (X represents 50% (median), 

60%, 70%, 80%, 90% and 95%) of the tumor size distribution of sgTS tumors divided by the 

corresponding percentile of the tumor size distribution of all sgInert tumors. This ratio 

represents the growth advantage at various percentiles conferred by the inactivation of the 

tumor suppressor gene.

Relativesizeof tumorsatXthpercentile = Neoplasticcellnumber at theXthpercentilefor sgTS tumors
Neoplasticcellnumber at theXthpercentilefor sgInert tumors

Cai et al. Page 16

Cancer Discov. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/lichuan199010/functional-taxonomy-of-tumor-suppressors
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146302
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146302


Log-normal mean is the maximum likelihood estimator for the mean number of neoplastic 

cells for sgTS tumors assuming a log-normal distribution of tumor sizes. Similarly, we 

calculate the relative log-normal mean by dividing the log-normal mean of sgTS tumors by 

the log-normal mean of the sgInert tumors (Supplementary Fig. S4).

Relativelog−normalmean = lognormalmeanfor sgTS tumors
lognormalmeanfor sgInert tumors

Summary statistics for heavy-tailedness of the tumor size distribution

Some tumor suppressor genes may lead to rare cases of exceptionally large tumors, which 

results in a tumor size distribution with a heavy tail. We used two summary statistics, 

relative Hill’s estimator and relative steepness to characterize the heavy-tailedness of the 

tumor size distribution.

Hill’s estimator is a commonly used tail index to characterizes the tail shape of heavy-tailed 

distributions (52). Suppose X1, X2,…, Xn are sgTS tumor sizes, and we order them by size 

such that X1 ≥ X2 ≥ … ≥ Xn. Let Xk be the tumor size at the 95th %ile, and the Hill’s 

estimator is calculated as,

H = 1
k ∑

i = 0

k
ln

Xi
Xk

The relative Hill’s estimator is calculated by dividing the Hill’s estimator for tumors with 

sgTS by that of tumors with sgInert.

RelativeHill′s estimator = H for sgTS tumors
H for sgInert tumors

The steepness (99th percentile / 95th percentile) is calculated as the ratio of the 99th 

percentile over the 95th percentile for the tumor size distribution for each sgID. Large values 

of these estimators indicate that the tumor size distributions are heavy-tailed. We calculate 

the relative steepness by dividing the steepness of tumors with sgTS by that of tumors with 

sgInert.

Steepness = Number of neoplasticcellsat the99thpercentilefor sgTS tumors
Number of neoplasticcellsat the95thpercentilefor sgInert tumors

Relativesteepness = Steepness for sgTS tumors
Steepness for sgInert tumors

For both relative Hill’s estimator and relative steepness, values higher than one indicate that 

the gene inactivation leads to heavier tail and value smaller than one indicate gene 

inactivation leads to lighter tail than expected (Supplementary Fig. S4).
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Summary statistics for relative tumor number and relative tumor burden

The four metrics above compare the tumor size distribution of sgTS tumors relative to 

sgInert tumors and can be calculated for both KT;H11LSL-Cas9 mice and KT mice, 

separately. Unlike these size metrics, relative tumor number and relative tumor burden are 

affected linearly by lentiviral titer. Therefore, when calculating these two metrics, we 

normalized it to that that in KT mice to account for the viral titer differences among different 

Lenti-sgRNA/Cre vectors.

We normalized the observed tumor number for sgTS tumors in KT;H11LSL-Cas9 mice by 

dividing it by that of sgTS tumors in KT mice to account for the titer differences for each 

sgTS.

Tumor number = ∑tumor number inKT ; H11LSL−Cas9mice
∑tumor number inKT mice for eachsgTS

The relative tumor number is calculated as the ratio of tumor number for each sgTS relative 

to sgInert:

Relativetumor number = Tumor number for sgTS tumors
Tumor number for sgInert tumors

The relative tumor number is a metric that reflects the probability of tumor initiation. If the 

tumor suppressor genes normally constrain tumor initiation, inactivation of the gene will 

increase the relative tumor number to be larger than 1.

Similarly, we normalized the observed tumor burden for sgTS tumors in KT;H11LSL-Cas9 

mice by dividing it by that of sgTS tumors. The relative tumor burden is calculated as the 

ratio of the tumor burden for each sgTS relative to sgInert:

Tumor burden = ∑neoplasticcellnumber inKT ; H11LSL−Cas9mice
∑neoplasticcellnumber inKT mice for eachsgTS

Relativetumor burden = Tumor burdenfor sgTS tumors
Tumor burdenfor sgInert tumors

The relative tumor burden is determined mostly by the largest tumors. For instance, the top 

1% of tumor cells accounts for over 50% of total tumor burden in KT;H11LSL-Cas9 mice at 

11 weeks. Both TS inactivation that leads to faster overall growth, rare but exceptionally 

large tumors and tumor initiation rate will result in an increase in relative tumor burden 

(Supplementary Fig. S4).

Bootstrapping the tumors

In the calculation of confidence intervals and P-values, we needed to generate distributions 

of the statistic considering both variation of tumor sizes across mice and within the same 

mice. We adopted a two-step bootstrap resampling process. We first bootstrap resampled 
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mice to generate a pseudogroup of mice and then within each group of resampled mice, we 

bootstrap resampled all observed tumors carrying each sgID.

Calculation of confidence intervals and P-values for size metrics

We have four size metrics that describe the overall growth (relative log-normal mean, 

relative percentiles) and the heavy tailedness (relative Hill’s estimator and relative steepness) 

of the tumor size distribution. For each of these metrics, we bootstrapped tumors 10,000 

times and calculate 10,000 values of each statistic for these bootstrap resampling. The 95% 

confidence interval is calculated as the 2.5th percentile and the 97.5th percentile of these 

bootstrapped results, while the P-value is calculated the proportion of bootstrapped results 

that are not in the same direction as the observed score compared with the baseline of 1.

Calculation of P-values for tumor burden and tumor number

We bootstrap tumors in both the KT;H11LSL-Cas9 and KT mice and calculate the relative 

tumor burden and relative tumor number from these bootstrapped mice. The process was 

repeated 106 times. The 95% confidence interval is calculated as the 2.5th percentile and the 

97.5th percentile of these bootstrapped results, while the P-value is calculated as the 

proportion of bootstrapped values that are not in the same direction as the observed score 

compared with the baseline of 1.

Robustness to tumor burden differences

To investigate whether overall tumor burden has an impact on genotype-specific tumor 

initiation and growth, we calculated summary statistics for tumor initiation and tumor size 

distribution on groups of mice with different overall tumor burden. Specifically, we divided 

the 47 KT;H11LSL-Cas9 mice with Lenti-sgTS102/Cre-initiated tumors at the 15-week time 

point into three groups based on the total tumor burden in each mouse, namely the low 

tumor burden group (16 mice), the medium tumor burden group (16 mice), and the high 

tumor burden group (15 mice). We performed calculations separately for each group for four 

metrics (95th percentile tumor size, log-normal mean, tumor burden, and tumor number) and 

evaluated whether these metrics show any correlation with tumor burden.

Quantification of sex differences

For each statistic, we use the ratio to quantify the differences between female mice and male 

mice. The ratio is calculated as,

Ratio =
XFemale
XMale

Where XMale and XFemale are the statistics quantified in male and female mice, respectively. 

When calculating the P-values, we respectively bootstrapped tumors in male and female 

mice and calculated the proportion of times that the bootstrapped results are not in the same 

direction as the observed score compared with the baseline of 1.
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Empirical estimation of true positive rates

We estimated the power (true positive rate) for each of the three experiments, (1) Lenti-

sgTS102/Cre; 15-week experiment, (2) Lenti-sgTS85/Cre; 15-week experiment, and (3) 

Lenti-sgTS85/Cre; 26-week experiment. Understanding the true positive rate is important for 

understanding the probability of identifying functional tumor suppressor genes. Since we do 

not have a list for genuine functional tumor suppressor genes, we used each sgRNA that 

generated a significant tumor suppressor effect (with nominal P < 0.05) as a proxy for true 

tumor suppressor effects.

For each experiment, whenever we detected a significant effect for an sgRNA, we queried 

whether the other sgRNA targeting that same gene also generated a significant tumor 

suppressive effect. If the other sgRNA shows significant tumor suppressor effect, then the 

test is counted as TRUE (T). If the second sgRNA fails to show a significant tumor 

suppressor effect, then the test is FALSE (F). Across all sgRNA (including sgRNA#1 and 

sgRNA#2 for each gene), we tallied the number of TRUE and FALSE discoveries. We used 

additive smoothing by adding a pseudocount of 0.5 to both T and F counts to avoid the zero-

probability problem in some cases. Therefore, the estimated false negative rate for a gene 

targeted with a single sgRNA would be:

p = F + 0.5
T + 0.5 + F + 0.5

The estimated true positive rate in our experiment is the probability of failing to identify a 

functional tumor suppressor gene with both of two sgRNAs. Thus, this is:

Falsenegativerate = p2

Truepositiverate = 1 − Falsenegativerate = 1 − p2

We performed this calculation separately for four metrics: 95th percentile, log-normal mean, 

tumor burden, and tumor number. We did not estimate the true positive rate for Hill’s 

estimator because the number of positive findings was too few for robust estimations.

In vitro analysis of sgRNA efficiency

To analyze the relative cutting efficiencies of the sgRNAs, we measured the insertion and 

deletion (indel) rates at the target sites in Rosa26LSL-Tomato;H11LSL-Cas9 MEFs that were 

generated from E12.5 embryos. These MEFs tested negative for mycoplasma contamination 

using the MycoAlert mycoplasma detection kit (Lonza, cat# LT07–418). 105 MEFs were 

transduced individually with each Lenti-sgTS/Cre vector and cultured for 1 week followed 

by FACS-based isolation of Tomato-positive transduced cells. Genomic DNA was extracted 

from sorted cells using the QIAamp DNA Micro Kit (Qiagen 56304) and subjected to PCR-

based target enrichment. Two rounds of PCR were performed with Q5 Master Mix (NEB 

#M0494L). The first round amplified each of the 97 sgRNA targeted regions (see 
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Supplementary Table S2 for target-enrichment primer sequences). The second round added 

unique dual indexed Illumina sequencing adaptors to the amplicons.

These libraries were sequenced on an Illumina NextSeq 500 in the 2×150 base-pair paired-

ended configuration (Admera Health Biopharma Services). The resulting reads were 

demultiplexed based on their sample indexes. CRISPRessoPooled was used to quantify on-

target indel mutations (78). Briefly, pooled reads were initially demultiplexed into files 

according to their specific sgRNA and aligned to the reference sequence to identify indel 

mutations. Substitution events were ignored and all indels that occurred within 10 

nucleotides of the predicted target site (3 nucleotides upstream from the NGG PAM) were 

counted as on-target indel mutations. Indel percent mutated was calculated as the number of 

reads with an on-target indel divided by the total number of reads.

Histology and immunohistochemistry (IHC)

Lung lobes were inflated with PBS/4% paraformaldehyde and fixed for 24 hours, stored in 

70% ethanol, and paraffin-embedded and sectioned. 4 μm thick sections were used for 

Hematoxylin and Eosin (H&E) staining and immunohistochemistry.

Primary antibodies used for IHC were anti-STAG2 (1:500, LifeSpan Cat# LS-B11284, 

RRID:AB_2725802), anti-NKX2.1 (1: 250, Abcam Cat# ab76013, RRID:AB_1310784), 

anti-Phospho-RPA2 (1:400, Abcam Cat# ab87277, RRID:AB_1952482), anti-Phospho-

Histone H2A.X (1:400, Cell Signaling Technology Cat# 9718, RRID:AB_2118009) and 

anti-Phospho-ERK1/2 (1:400, Cell Signaling Technology Cat# 4370, RRID:AB_2315112). 

IHC was performed using Avidin/Biotin Blocking Kit (Vector Laboratories, SP-2001), 

Avidin-Biotin Complex kit (Vector Laboratories, PK-4001) and DAB Peroxidase Substrate 

Kit (Vector Laboratories, SK-4100) following the standard protocols. Human lung 

adenocarcinoma tissue microarrays were purchased from US Biomax (HLugA120PG01, 

BC041115e, LC1261, LC706a, NSC155 and NSC157).

Whole Genome Sequencing and quantitative RT-PCR

For whole genome sequencing and qRT-PCR based gene expression analysis, samples were 

generated from Lenti-Cre initiated tumors from three KT and three KT;Stag2flox/flox mice (a 

subset of samples from Fig. 3G). Briefly, neoplastic cells were isolated from pooled tumors 

within two lung lobes of each mouse by FACS for Tomatopositive Lineage (CD45/CD31/F4–

80/Ter119)negative cells (79). 60,000–100,000 neoplastic cells were collected from each 

mouse. Genomic DNA and total RNA were purified using Qiagen AllPrep DNA/RNA Micro 

Kit (Cat# 80284). Genomic DNA was processed with Nextera Flex for karyotyping by low-

pass (0.1x coverage) whole genome sequencing. Log2 ratio of reads mapping to each 

genomic locus versus the average number of reads mapping to all other comparable loci was 

plotted.

For qRT-PCR total RNA was reverse-transcribed using Reliance Select cDNA Synthesis Kit 

with oligo(dT) primers (BioRad Cat# 12012802). Quantitative PCR was performed with 

PowerUp SYBR Green Master Mix (Thermo Fisher Scientific Cat# A25776) on an Applied 

Biosystems QuantStudio 3 Real-Time PCR System. PCR primers were:
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Fos: 5’-TACTACCATTCCCCAGCCGA-3’ and 5’-

GCTGTCACCGTGGGGATAAA-3’;

Klf2: 5’-GAGCCTATCTTGCCGTCCTT-3’ and 5’-

TTGTTTAGGTCCTCATCCGTG-3’;

Ifnl3: 5’-GTGCAGTTCCCACCTCATCT-3’ and 5’-

TGGGAGTGAATGTGGCTCAG-3’; Ifnb1: 5’-GTCCTCAACTGCTCTCCACT-3’ 

and 5’-CATCCAGGCGTAGCTGTTGTA-3’; Mx1: 5’-

ACGGTGCAGACATACCAGAA-3’ and 5’-CTGTCTCCCTCTGATACGGT-3’;

Ifi44: 5’-ATGGCAGCAAGAAAAGTGCC-3’ and 5’-

AAACTTCTGCACACTCGCCT-3’;

Irf1: 5’-CCAGAGATTGACAGCCCTCG-3’ and 5’-

TGCACAAGGAATGGCCTGAA-3’; Gapdh: 5’-TGTGAACGGATTTGGCCGTA-3’ 

and 5’-ACTGTGCCGTTGAATTTGCC-3’; Actb: 5’-

GGCTCCTAGCACCATGAAGA-3’ and 5’-

GTGTAAAACGCAGCTCAGTAACA-3’.

Power analyses

Power analyses were used to evaluate the ability of the Tuba-seq platform to identify 

functional tumor suppressors across a variety of experimental scenarios. The likelihood of 

detecting a tumor suppressor depends on the strength of its effect, the number of mice 

assayed, and the number of guides in the viral pool. We explored how these parameters 

influence statistical power to detect genes affecting tumor growth and initiation through a 

pair of non-parametric nested resampling approaches.

For each simulation that focused on tumor growth, a pseudo-cohort of mice (n = 5, 10, 20, 

50, 100, 200) was sampled with replacement from the cohort of 47 KT;H11LSL-Cas9 mice 

analyzed 15 weeks after tumor initiation, and statistical significance was assessed by 

bootstrap resampling of tumors from the pseudo-cohort. For a given viral titer, a larger 

number of multiplexed vectors results in fewer tumors with each sgRNA and a resulting loss 

of power due to less thorough sampling of the underlying distribution of tumor sizes. To 

model this effect, the number of tumors sampled from each mouse was scaled by the ratio of 

the number of sgIDs in the underlying data to the simulated number of sgIDs (n = 10, 20, 50, 

100, 200, 500). To capture differences in power due to effect size, we performed analyses for 

representative strong, moderate, and weak tumor suppressor-targeting sgRNAs (sgNf1#1, 

sgRb1#1, and sgDot1l#1, respectively). 500 simulations were performed for each gene, with 

a minimum of 16,000 bootstrap samplings per simulation. In each bootstrap, the size of 

tumor at the 95th percentile with the focal genotype was compared to the size of tumor with 

sgInerts at the 95th percentile, and significance in each simulation was assessed by 

bootstrapped P-value <0.05 (two-tailed test, Bonferroni-corrected for the simulated number 

of pooled sgRNAs).

Effects on tumor initiation are inferred through changes in the representation of tumor 

genotypes in KT;H11LSL-Cas9 mice relative to the original proportions of the sgRNAs in the 

lentiviral vector pool. As a result, identifying genes that influence tumor initiation requires 
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comparison of KT;H11LSL-Cas9 mice to KT mice, where the relative abundance of genotypes 

reflects the make-up of the viral pool. For each simulation, we therefore sampled a cohort of 

both KT;H11LSL-Cas9 and KT mice (n = 5, 10, 20, 50, 100, 200). For simplicity, we 

maintained the approximate 4:1 ratio of KT;H11LSL-Cas9:KT used in this study, while 

ensuring that there was more than 1 KT mouse per cohort (e.g. for 50 total mice we sampled 

40 KT;H11LSL-Cas9 and 10 KT mice). Analogous to the tumor size simulations, we model 

the effect of the number of pooled sgRNAs by scaling the number of tumors sampled from 

each mouse by the ratio of the number of sgIDs in the underlying data to the simulated 

number of sgIDs (n = 10, 20, 50, 100, 200, 500); the resulting dataset was then bootstrapped 

to assess significance. To capture differences in power due to effect size, analyses were 

performed for representative strong, moderate, and weak suppressors of tumor initiation 

(sgPten#2, sgKdm6a#2, and sgNcoa6#1, respectively). 500 simulations were performed for 

each gene, with a minimum of 16,000 bootstrap samplings per simulation. In each bootstrap, 

the relative tumor number (ratio of number of tumors with focal genotype to number of 

sgInert tumors) in KT;H11LSL-Cas9 mice was compared to the relative tumor number in KT 
mice, and significance in each simulation was assessed by bootstrapped P-value <0.05 (two-

tailed test, Bonferroni-corrected for the simulated number of pooled sgRNAs).

DepMap data and filtering

Cancer cell line dependency data (DepMap Public 19Q4) and mutation data (CCLE) were 

acquired from the Broad Institute DepMap Portal (RRID:SCR_017655)(59). Lung 

adenocarcinoma cell lines were identified by their Project Achilles identification code. For 

each gene of interest, the cell lines that contained damaging mutations within the gene were 

identified and flagged. Damaging mutations were defined as mutations that likely caused 

loss of gene function. Subsequently, dependency scores for each gene of interest were 

exported from both the complete dataset of lung adenocarcinoma cell lines and dataset of 

cell lines that contains no damaging mutation in the gene of interest. Finally, the distribution 

of dependency scores across each gene of interest was plotted using GraphPad Prism 8.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFICANCE

Our high-throughput and high-resolution analysis of tumor suppression uncovered novel 

genetic determinants of oncogenic KRAS-driven lung cancer initiation, overall growth, 

and exceptional growth. This taxonomy is consistent with changing constraints during the 

life history of cancer and highlights the value of quantitative in vivo genetic analyses in 

autochthonous cancer models.
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Figure 1. An in vivo screen for tumor suppressor genes in autochthonous oncogenic Kras-driven 
lung tumors.
(A) Candidate tumor suppressor genes were chosen based on multiple criteria including their 

frequency and known/predicted biological functions. The plot shows the mutation 

frequencies of these 48 genes across pan-cancer and in lung adenocarcinoma (data from 

TCGA). Color denotes lung adenocarcinoma driver consensus score derived from multiple 

prediction tools. Several genes that are mutated at high frequency in lung adenocarcinoma or 

pan-cancer are labeled.

(B) Features of the mutations in each gene are consistent with tumor suppressor function. 

Green’s contagion is a measure of mutational hotspots, which characterize oncogenes. 

Larger values indicate that mutations are enriched in particular residues of the protein. This 

measure of overdispersion is normalized to not scale with sample size and to be zero when 

mutations are randomly scattered across the transcript. Average fraction of protein lost by 

mutation combines the nonsense/frameshift mutation rate and location of the mutations in 

each gene [(percent of protein transcript altering mutations that are nonsense or 

frameshift)*(Average fraction of protein lost by nonsense or frameshift mutations)].

(C) Schematic of tumor initiation with our pool of 102 barcoded Lenti-sgRNA/Cre vectors 

(Lenti-sgTS102/Cre). Each gene is targeted with two sgRNAs, except p53 which is targeted 

by three sgRNAs. 5 Inert sgRNAs are either non-targeting (NT) or have an active targeting 
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but inert sgRNAs (which target NeoR in the R26LSL-Tomato allele). Barcoded Lentiviral 

vectors contain an sgRNA, Cre, and a 2-component barcode that includes an sgRNA 

identifier (sgID) and random barcode (BC). This allows inactivation of multiple target genes 

in parallel followed by quantification of the number of neoplastic cells by high-throughput 

sgID-BC sequencing. Mouse genotype, mouse number, and titer of lentiviral vectors are 

indicated. Tuba-seq was performed on each tumor-bearing lung 15 weeks after initiation, 

followed by analyses to quantify the indicated metrics. ifu, infectious units.

(D) Fluorescence images of lungs from representative mice at 15 weeks after tumor 

initiation. Lung lobes are outlined with a dashed white line. Scale bars = 2 mm.

(E) Pearson correlation coefficient (r) and P-value (two-tailed) suggest strong correlation 

between neoplastic cell number (an indicator of tumor burden) and lung weight. Each dot 

represents a mouse. When taking into account that tumors were initiated in KT;H11LSL-Cas9 

mice with 3-fold less Lenti-sgTS102/Cre vectors, the total neoplastic cell number is ~10-

fold greater in KT;H11LSL-Cas9 mice than in KT mice.

(F) Volcano plot of the impact of inactivating each putative tumor suppressor gene on 

relative tumor burden. Each dot represents an sgRNA. Inert sgRNAs are in gray. Tumor 

suppressor genes are colored pink when both sgRNAs trigger moderate but significant 

increase and green when one sgRNA triggers >4 fold increase and the other triggers 

moderate but significant increase. Data is aggregated from 47 KT;H11LSL-Cas9 and 12 KT 
mice.
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Figure 2. In vivo lung tumor growth is suppressed by diverse tumor suppressor genes.
(A) The 95th percentile tumor size (normalized to tumors with sgInerts) for each putative 

tumor suppressor targeting sgRNA in KT;H11LSL-Cas9 mice. Error bars indicate 95% 

confidence intervals. 95% confidence intervals and P-values were calculated by bootstrap. 

sgRNAs that significantly increase or decrease tumor size are colored as indicated. sgInerts 

are in gray and the dotted line indicates no effect. Genes are ordered based on the average of 

the 95th percentile tumor sizes from all sgRNAs targeting that gene, individual sgRNAs 

targeting each gene were ranked by effect for clarity. Pearson correlation coefficient (r) and 
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P-value (two tailed) suggest that sgRNAs targeting the same putative tumor suppressor elicit 

consistent and similar changes in size at 95th percentile.

(B) Tumor sizes at the indicated percentiles for the top 17 tumor suppressor genes (relative 

to the average of sgInert-containing tumors) in KT;H11LSL-Cas9 mice. Error bars indicate 

95% confidence intervals. Dotted line indicates no effect. Percentiles that are significantly 

different from the average of sgInerts are in color. Data for all genes is shown in 

Supplementary Fig. S5B. Pearson correlation coefficient (r) and P-value (two-tailed) for all 

sgRNA across all indicated percentiles are shown.

(C) The log-normal mean tumor size (normalized to tumors with sgInerts) for each putative 

tumor suppressor targeting sgRNA in KT;H11LSL-Cas9 mice. Error bars indicate 95% 

confidence intervals. 95% confidence intervals and P-values were calculated by bootstrap. 

sgRNAs that significantly increase or decrease tumor size are colored as indicated. sgInerts 

are in gray and the dotted line indicates no effect. Genes and sgRNAs are ordered as in Fig. 

2A. The high Pearson’s correlation coefficient suggests that sgRNAs targeting the same 

putative tumor suppressor elicit consistent and similar changes in log-normal mean tumor 

size.

All plots represent aggregated data from 47 KT;H11LSL-Cas9.
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Figure 3. Stag2, inactivation of which increases tumor burden and reduces survival, is frequently 
lowly expressed in human lung adenocarcinoma.
(A) Cre/lox-mediated Stag2 inactivation promotes KrasG12D-driven lung tumor growth. 

Lung tumors were initiated in indicated genotypes of mice with Lenti-Cre and allowed to 

grow for 15 weeks.

(B) Representative fluorescence images of lung lobes from the indicated genotypes and 

genders of mice are shown. Scale bars = 5 mm.

(C) Lenti-Cre initiated tumors in indicated KT;Stag2flox/flox mice lack Stag2 protein 

expression. Scale bar = 50 mm.

(D) Lung weight from indicated genotypes of mice 15 weeks after tumor initiation with 

Lenti-Cre. Each dot represents a mouse and the bar is the mean. P-values were calculated by 

Student’s t-test.

(E) Inactivation of Stag2 increases lung tumor growth in vivo. Representative histology is 

shown. Genotype and gender are indicated. Scale bars = 1 mm.

(F) Quantification of tumor area (%) (tumor area/total lung area × 100) on H&E-stained 

sections of mouse lungs 15 weeks after tumor initiation. Each dot represents a mouse and 

the bar is the mean. P-values were calculated by Student’s t-test.
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(G) Survival curve of mice with KrasG12D-driven lung tumors that are either Stag2 wild-

type (KT;Stag2wt/wt female and KT;Stag2wt/y male mice), Stag2 heterozygous 

(KT;Stag2flox/wt), or Stag2 deficient (KT;Stag2flox/flox female and KT;Stag2flox/y male 

mice). Mouse number, P-value and median survival (in days) are indicated. P-values were 

calculated by comparing each cohort to the Stag2 wild-type cohort (Mantel-Haenszel test).

(H) Representative STAG2 IHC on human lung adenocarcinomas expressing high (positive) 

or low (low and negative) STAG2 protein. Scale bars = 100 μm.

(I) Quantification of STAG2 expression in 479 human lung adenocarcinomas. Data are 

grouped by tumor grade (left, with lower grade indicating well-differentiated tumors and 

higher grade indicating poorly differentiated tumors) or by tumor stage (right, classified by 

TNM staging system). A higher percentage of Stag2low/neg tumors are poorly differentiated 

(left) and more advanced (right) tumors.
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Figure 4. Exaggeration of tumor phenotypes and emergence of more functional tumor 
suppressors over time.
(A) Schematic of tumor initiation with a pool of 85 barcoded Lenti-sgRNA/Cre vectors 

(Lenti-sgTS85/Cre) which excludes 8 tumor suppressor genes (in gray and crossed out) from 

the Lenti-sgTS102/Cre pool whose losses collectively account for ~60% of total tumor 

burden. Each gene is targeted with two sgRNAs. Mouse genotype, mouse number, and titer 

of lentiviral vectors delivered to each mouse are indicated. Tuba-seq was performed on each 

tumor-bearing lung at the indicated time after tumor initiation.

(B) Volcano plot of the impact of inactivating each putative tumor suppressor gene on 

relative tumor burden. Each dot represents an sgRNA. Genes for which both sgRNA 

increase tumor burden are colored.

(C,D) The impact of inactivating each gene on the size of the 95th percentile tumor (C) and 

log-normal mean (D) at 15 weeks (Lenti-sgTS102/Cre 15 weeks) and 26 weeks (Lenti-

sgTS85/Cre 26 weeks) after tumor initiation is shown. Each dot represents an sgRNA. 

Statistics are calculated from aggregating all tumors from 40 KT;H11LSL-Cas9 (26 weeks) 

and 47 KT;H11LSL-Cas9 (15 weeks) mice.

(E) Heatmap of the tumor suppressive effects of six genes that emerge as suppressors of 

tumor growth at the later timepoint. Colors indicate the impact of inactivating each gene on 

tumor size at 15 weeks (Lenti-sgTS102/Cre 15 weeks and Lenti-sgTS85/Cre 15 weeks) and 
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26 weeks (Lenti-sgTS85/Cre 26 weeks) after tumor initiation, and sizes of the tiles indicate 

statistical significance levels.

(F) Sizes of tumors at the indicated percentiles for each Lenti-sgRNA/Cre vector relative to 

that of sgInert-targeted tumors in KT;H11LSL-Cas9 mice. Error bars indicate 95% confidence 

intervals. Percentiles that are significantly different from the average of sgInerts are in color. 

Data for all genes is shown in Supplementary Fig. S9B.
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Figure 5. Tumor initiation is inhibited by diverse tumor suppressor genes independent of their 
effects on tumor growth.
(A) Inactivation of many tumor suppressor genes increases tumor number, highlighting 

pathways that normally constrain the earliest steps of carcinogenesis. The effect of each 

sgRNA on tumor number 15 weeks after tumor initiation with Lenti-sgTS102/Cre in 

KT;H11LSL-Cas9 mice is shown. Error bars indicate 95% confidence intervals. 95% 

confidence intervals and P-values were calculated by bootstrap. sgRNAs that significantly 

increase or decrease tumor number are colored as indicated. sgInerts are in gray and the 

dotted line indicates no effect. Genes and sgRNAs are ordered as in Fig. 2A.

(B) Genotype specific effects on growth (represented by the size of the tumor at the 95th 

percentile) and tumor number can be independent aspects of tumor suppression.

(C,D) Mutation frequency of members of the COMPASS complex in human lung 

adenocarcinoma. Data are shown as the number of patients with mutations in one or more of 

the COMPASS complex subunits/total patient number from GENIE/IMPACT (C) as well as 

TCGA and TRACERx (D). Data from GENIE/IMPACT are based on panel sequencing and 

therefore does not include data on NCOA6. Data from TRACERx are from multi-region 

sequencing where we report the number of tumors that had any of these four genes mutated 

in one or more regions.

(E) The effect of each sgRNA on tumor number 26 weeks after tumor initiation with Lenti-

sgTS85/Cre in KT;H11LSL-Cas9 mice is shown. Error bars indicate 95% confidence intervals. 

95% confidence intervals and P-values were calculated by bootstrap. sgRNAs that 

Cai et al. Page 38

Cancer Discov. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significantly increase or decrease tumor number are colored as indicated. sgInerts are in gray 

and the dotted line indicates no effect. Genes and sgRNAs are ordered as in (A).

(F) Effects of tumor suppressor gene inactivation on tumor number are highly reproducible. 

The impact of inactivating each gene on tumor number at 15 weeks (Lenti-sgTS102/Cre 15 

weeks) and 26 weeks (Lenti-sgTS85/Cre 26 weeks) after tumor initiation is shown. Each dot 

represents an sgRNA. Statistics are calculated from aggregating all tumors from all mice in 

each group in each experiment. Pearson correlation coefficient (r) shows correlation.
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Figure 6. Loss of p53, Cdkn2a and Dnmt3a result in rare yet exceptionally large tumors.
(A) Plot of tumor sizes for each indicated sgRNA in KT;H11LSL-Cas9 mice at 15 weeks. 

Each dot represents a tumor and the area of the dot scales with neoplastic cell number within 

the tumor. For better visualization, an equal number of tumors (n=1160) are shown for each 

sgRNA.

(B) Volcano plot of the impact of inactivating each putative tumor suppressor gene on the 

distribution of tumor sizes (Hill’s estimator compares tumors above the 95th percentile to 

those at the 95th percentile to quantify the relative size of tumors in the tail of the 

distribution). P53- and Dnmt3a-targeted tumors are heavy-tailed, suggesting that loss of 

these genes promoted the emergence of exceptionally large tumors. Each dot represents an 

sgRNA.

(C) Plot of tumor sizes for each indicated sgRNA in KT;H11LSL-Cas9 mice at 26 weeks. 

Each dot indicates a tumor, and the area of the dot indicates neoplastic cell number within 

the tumor. Equal number of tumors (814 tumors randomly sampled) are shown for each 

sgRNA.

(D) Volcano plot of the impact of inactivating each putative tumor suppressor gene on the 

developing of infrequent exceptionally large tumors (Hill’s estimator). Each dot represents 

an sgRNA. Statistics are calculated from aggregating all tumors from 40 KT;H11LSL-Cas9 

(26 weeks) mice.

(E) Inactivation of Dnmt3a and Cdkn2a generate tumor size distributions with heavy tails. 

Probability density plots for tumor sizes show the profile of aggregated tumors with sgInerts 
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as well as individual sgRNAs targeting either Dnmt3a or Cdkn2a. Data is aggregated from 

all tumors from 40 KT;H11LSL-Cas9 (26 weeks) mice.
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Figure 7. Tumor suppressors constrain tumorigenesis at different stages and to different levels.
(A) Radar plots of representative genes whose inactivation affects tumor size at the 95th 

percentile (relative to sgInerts, indicating increased overall growth), tumor number (relative 

to sgInerts, indicating increased tumor initiation) and Hill’s estimator (relative to sgInerts, 

indicating increased rare large tumors). Tumor suppressors suppress different aspects of 

tumor development.

(B) Heatmap summarizing the tumor size at the 95th percentile (relative to sgInerts), tumor 

number (relative to sgInerts) and Hill’s estimator (relative to sgInerts) of the functional 

tumor suppressor genes. Color scale is indicated on the side. Bolded circles indicate 

bootstrap P < 0.05. Although the sizes of Ubr5-, Tsc1-, Kdm6a- and Ncoa6-deficient tumors 

are not significantly different from control tumors at 95th percentile, they are significantly 

greater across multiple percentiles at 26 weeks, and thus they are also considered genes that 

suppress tumor growth.
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(C) Summary schematic of a tumor suppression map in lung adenocarcinoma based on our 

data.
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