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Abstract
Arterial stiffness is a progressive aging process that predicts 
cardiovascular disease. Pulse wave velocity (PWV) has 
emerged as a noninvasive, valid, and reliable measure of ar-
terial stiffness and an independent risk predictor for adverse 
outcomes. However, up to now, PWV measurement has 

mostly been used as a tool for risk prediction and has not 
been widely used in clinical practice. This consensus paper 
aims to discuss multiple PWV measurements currently avail-
able in Asia and to provide evidence-based assessment to-
gether with recommendations on the clinical use of PWV. For 
the methodology, PWV measurement including the central 
elastic artery is essential and measurements including both 
the central elastic and peripheral muscular arteries, such as 
brachial-ankle PWV and cardio-ankle vascular index, can be 
a good alternative. As Asian populations are rapidly aging, 
timely detection and intervention of “early vascular aging” 
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in terms of abnormally high PWV values are recommended. 
More evidence is needed to determine if a PWV-guided ther-
apeutic approach will be beneficial to the prevention of car-
diovascular diseases beyond current strategies. Large-scale 
randomized controlled intervention studies are needed to 
guide clinicians. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

With increasing age, arteries become stiffened (arte-
riosclerosis) and this increases linearly with the risk of 
cardiovascular (CV) disease [1]. However, different ge-
netic background, environmental, and lifestyle factors re-
sult in large individual variability in the biological age of 
arteries, even at the same chronological age. This has led 
to the notion that accelerated arterial aging may be re-
garded as a failure of the interaction between genetic and 
environmental factors [2]. The vascular aging CV con-
tinuum has similar final outcome to the classic CV con-
tinuum, such as end-stage cardiac, cerebral, and renal dis-
eases, and death may occur, but there exists a distinct dif-
ference in the underlying pathophysiology [3, 4]. The 
mechanism of the classic CV continuum is atherosclero-
sis and cardiac hypertrophy at the beginning. In contrast, 
that of the vascular CV continuum is fracture of elastic 
lamellae, aortic stiffening, and dilatation, which induces 
pulse wave pathology such as pulse wave encephalopathy, 
pulse wave nephropathy, renal disease, and dementia [3].

Arterial stiffness with aging increases pulse wave ve-
locity (PWV), the measurement of which is a reliable tool 
to predict CV disease [5]. Although its impact on out-
comes has been widely studied and suggested as a clinical 
aid for primary and secondary CV prevention [6], there 
are still large hurdles in applying the concept of PWV in 
clinical use. Hypertension guidelines pay minimal atten-
tion to the clinical use of PWV and with many methods 
available there is no standard method for measuring 
PWV [7, 8]. Currently, the main tool of measuring vascu-
lar aging is PWV, but there are differences in measure-
ment methods. Europeans favor carotid-femoral PWV 
(cfPWV) [9]. In contrast, in Asia, there is favor toward 
brachial-ankle PWV (baPWV) [10] or cardio-ankle vas-
cular index (CAVI) [11]. Main differences between meth-
ods are the arterial measurement sites that vary from the 
central elastic aorta to the aorta and peripheral muscular 
arteries. This review aims to discuss multiple PWV mea-
surement methods and to provide recommendations on 
the clinical use of PWV in Asia.

Methodologic Aspects

The original concept of “hardening of arteries” was 
generally understood as a buildup of atheroma and calci-
fication of the arterial lumen, resulting in regional steno-
sis and leading to obstruction of blood flow [12]. This ef-
fect can be readily measured invasively by detecting a 
pressure drop across the stenotic lesion, or noninvasively 
using Doppler devices to detect changes in blood flow ve-
locity. However, this concept has now evolved from al-
terations in the intimal component of the arterial wall to 
the medial component [12, 13], with altered mechanical 
properties affecting arterial wall stiffness, which cannot 
be measured directly noninvasively. The effect of stiffness 
of large conduit arteries is to increase pulse pressure, an 
effect largely responsible for isolated systolic hyperten-
sion in the elderly [14], but because pulse pressure is a 
result of stroke volume and the distensibility of the aorta 
and large arteries, it is not an explicit measure of arterial 
stiffness. However, from the biophysical relationship of 
stress and strain in the arterial wall, it has been shown that 
PWV can be used as a reliable surrogate measure of arte-
rial stiffness, particularly in large conduit arteries [15].

An important consideration in using PWV as a mea-
sure of arterial stiffness is that the arterial wall is a type of 
“hyperelastic” material, i.e., the stiffness depends on 
blood pressure (BP) – the higher the pressure, the higher 
the PWV for the same arterial wall. However, the inher-
ent structural material which alters the mechanical prop-
erties does not change with increase in pressure immedi-
ately, but what does change is the functional arterial stiff-
ness [16]. Increase in structural stiffness is seen as increase 
in PWV at the same level of BP [17]. These are important 
methodological aspects to be considered when measuring 
PWV and interpreting individual patient or population 
data with respect to contribution of PWV to CV risk be-
yond BP. An important example of this was shown in two 
populations in China with distinct geographical separa-
tion (north, Beijing; south, Guangzhou). PWV was mark-
edly higher in the Beijing cohort at similar levels of BP in 
both groups. This implied a difference in inherent struc-
tural arterial stiffness, which was most likely related to a 
lifelong difference in dietary salt consumption, resulting 
in a marked difference of the prevalence of hypertension 
in both groups [18, 19].

The sections that follow describe the specific methods 
used for PWV measurement that will address the use of 
PWV as a potential clinical measurement that can be per-
formed together with BP in the context of established 
guidelines for measurement of arterial stiffness [7]. In ad-
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dition, the innovative application of the pressure depen-
dency of arterial stiffness will be described to obtain a 
corrected value of PWV, which is independent of BP [20]. 
The important methodologic advancement with this 
technique is that the measurement gives information of 
structural stiffness for an individual patient without the 
need of statistical information from cohort measure-
ments to correct the measured PWV for the effect of BP.

The measurement of PWV involves a measure of pulse 
transit time (PTT) obtained from the time delay between 
two arterial pulses measured simultaneously or sequen-
tially over a given distance. To obtain a reliable measure 
of PTT, the path length cannot be too short; that is, the 
longer the distance the smaller the relative error in PTT. 
In addition, the site of measurement should be conve-
nient and one in which a reliable pulse waveform can be 
easily recorded. Furthermore, the PTT distance should be 
applied to cover mainly large conduit arteries. For this, 
the carotid and femoral sites have been conventionally 
used as a reasonable compromise which will give mean-
ingful information [7]. However, although these sites 
have been used extensively in many population cohorts, 
this measurement method is not favored by investiga-
tions among Asian populations, where instead pulses are 
detected at brachial and ankle sites [21]. Although this 
methodology offers an unobtrusive form of measure-
ment, the path lengths cover muscular arteries, where the 
wall stiffness may be modulated by smooth muscle tone 
and so affect changes of PWV.

Concepts and Clinical Evidence

Brachial-Ankle Pulse Wave Velocity
Concept and Principles
baPWV is calculated by dividing the brachial-ankle 

distance by the time difference between the brachial and 
ankle arterial waves. Thus, baPWV is considered as a 
global measure of arterial stiffness, including the aorto-
muscular region. A volume-plethysmographic technique 
is used to measure baPWV. Pressure cuffs are wrapped at 
the bilateral brachial and ankle sites to record pulse waves 
as shown in Figure 1 [22]. The brachial-ankle distance 
(Distance [ba] in the figure) is determined by the linear 
equation of height, and the time difference between the 
brachial and ankle waves is determined by the foot-to-
foot method. The height-based path length has been vali-
dated by comparing it with the path length determined by 
magnetic resonance imaging [23]. The unique feature of 
this equipment is that it simultaneously records the BP at 
four sites using the oscillometric method, thus also en-
abling determination of the ankle-brachial pressure index 
(ABI). This index is critical in confirming the iliotibial 
circulation and ensuring valid use of baPWV, which be-
comes invalid if ABI <0.9. The baPWV measurement is 
easy and reproducible and the generalizability and valid-
ity of the methodology have been determined [22]. Thus, 
this method is suitable for clinical applications.

Clinical Evidence
A recent review summarized that baPWV increases in 

patients with hypertension, diabetes, metabolic syn-
drome, chronic kidney disease, sleep apnea syndrome, as 
well as with aging and conditions such as tachycardia and 

Fig. 1. Path length formula for baPWV 
(source, see ref. 22).
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postmenopause [24]. In hypertension and diabetes, high-
er baPWV is associated with advanced organ damage. 
The relationship between baPWV and lipid levels re-
mains unclear. Antihypertensive agents, statins, oral dia-
betic drugs, weight loss, smoking cessation, and continu-
ous positive airway pressure have all been reported to 
lower baPWV [25].

The risk of CV events increases linearly with an in-
crease in baPWV. Individual participant data meta-anal-
yses of 14,673 individuals, with no previous history of CV 
events, demonstrated that baPWV can predict both CV 
events and all-cause mortality Independent of conven-
tional CV risk factors including BP [26]. Every 1-SD in-
crease in baPWV was associated with a 21% increase in 
the risk of CV disease. Moreover, a 1 m/s increase in  
baPWV was associated with an increase of 12%, 13%, and 
6% in CV events, CV mortality, and all-cause mortality, 
respectively [27]. Importantly, patients at intermediate 
risk were reclassified into a higher or lower CV risk cat-
egory when baPWV was added to a model incorporating 
the Framingham risk score; net reclassification improved 
by approximately 25%.

Clinical Use
To implement baPWV measurement in everyday clin-

ical practice, it is necessary to determine reference values. 
Recently, the expert committee of the Japanese Society of 
Vascular Failure proposed a physiological diagnostic cri-
terion for various vascular function tests, including  
baPWV [Table 1] [28]. baPWV was positioned as an arte-
rial stiffness measure to examine the medial layer func-
tion of the aorto-muscular region. The measurement of 
baPWV was categorized as normal (<14 m/s), borderline 
(14–18 m/s), and abnormal (>18 m/s). These thresholds 
may be used by health practitioners to individualize non-
pharmacological or pharmacological interventions. 
However, future studies need to verify the clinical signif-
icance of these criteria. The inclusion of leg artery stiff-
ness has been long considered a critical limitation of baP-
WV, but the accumulated data are not fully supportive 
[28]. This suggests that aorto-muscular artery stiffness is 
involved more in the modulation of central hemodynam-
ics than initially considered [29, 30]. This topic is the new 
frontier for future studies.

Table 1. Reference values and risk associated with PWVs

Method Reference values Risk of CV events

baPWV Normal <14 m/s
Borderline ≥14 and <18 m/s
Abnormal ≥18 m/s

Every 1-SD increase of baPWV→ 
21% increase in the risk of CV disease [26]
Every 1 m/s increase of baPWV→ 
12%, 13%, and 6% increase in CV events, CV mortality, and all-cause mortality, respectively 
[27]

CAVI Normal <8
Borderline ≥8 and <9
Abnormal ≥9

Every 1.0 index increase of CAVI→ 
12.6% increase in the risk of future CV events [128]
Cut-off values for CVD events→ 
9.0–9.2 in Asian patients [129, 130]
5-year overall net reclassification index→ 
16.4% and 33.7% for CVD events in patients with obesity and in patients with ACS, 
respectively [131]

cfPWV Abnormal ≥10 m/s Every 1-SD increase of cfPWV→ 
30% increase in the risk of CV events after adjustment for traditional risk factors [44]
Every 1 m/s increase of cfPWV→ 
14%, 15%, and 15% increase in total CV events, CV mortality, and all-cause mortality, 
respectively [1]
5-year overall net reclassification index→ 
14.8% and 19.2% for coronary heart disease and stroke, respectively, in intermediate-risk 
individuals [44]

ACS, acute coronary syndrome; baPWV, brachial-ankle PWV; cfPWV, carotid-femoral PWV; CV, cardiovascular; PWV, pulse wave velocity; 
CAVI, cardio-ankle vascular index; CVD, cardiovascular disease.
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Limitations
baPWV measurement becomes unreliable if the circu-

lation is disturbed in any part from iliac to tibial arteries. 
In patients with ABI <0.9, therefore, baPWV cannot be 
used as a metric for clinical decisions [25]. In addition, up 
to now the evidence of baPWV is derived mainly from 
Asian populations. For global application of baPWV, ev-
idence from non-Asian populations is needed.

Cardio-Ankle Vascular Index
Concept and Principles
CAVI reflects the arterial stiffness of the arterial tree 

from the origin of the aorta to the ankle. CAVI is theo-
retically derived from stiffness parameter β, and the 
Bramwell-Hill’s equation, and is obtained by systolic and 
diastolic BPs and PWV [20]. The equation and measuring 
methods are shown in Figure 2. CAVI is measured in the 
supine position using the VaSera system (Fukuda Denshi, 
Tokyo, Japan). A feature of CAVI is that it purports to be 
a measure that is independent of BP at the time of mea-
surement. It is therefore theoretically possible that the ef-
fect of antihypertensive drugs on structural arterial stiff-
ness can be evaluated as well as the effect of BP change in 

chronic phase. The cut-off value of CAVI is proposed to 
be 9.0 for predicting CV diseases [31].

Clinical Evidence
Cross-sectional studies report that CAVI is higher 

with older age, among men and with arteriosclerotic dis-
eases (coronary artery disease, cerebral infarction, chron-
ic kidney disease) as well as most coronary risk factors 
such as metabolic syndrome, visceral fat accumulation, 
hypertension, diabetes mellitus, and dyslipidemia (see 
Fig. 3) [31]. In vasculitis such as collagen diseases (sys-
temic lupus erythematosus, rheumatoid arthritis) and 
polymyalgia rheumatica, CAVI is also increased.

CAVI also reflects functional stiffness. CAVI decreas-
es in sepsis [32] and rises in hypovolemia [33]. These facts 
indicate that CAVI reflects the effect of contraction of 
arterial smooth muscle cells. Administration of nitroglyc-
erin and the α-blocker, doxazosin acutely decreases CAVI 
[34, 35]. Patients with sleep apnea syndrome showed high 
CAVI, probably due to enhanced sympathetic nervous 
system activation. CAVI was also reported to be elevated 
after an earthquake [36], indicating a potential influence 
of mental or physical stress. Prospective studies showed 

Fig. 2. Determination of the cardio-ankle vascular index (CAVI). Ps, systolic blood pressure of brachial artery; 
Pd, diastolic blood pressure; haPWV, pulse wave velocity from the origin of the aorta to the ankle at mid pres-
sure; ∆P, Ps-Pd; ρ, blood density; a and b, constants to convert the values of CAVI to those of Hasegawa’s hfPWV; 
T, time of the pulse from aortic valve to the ankle; L, length of the arterial tree from the origin of aorta to the 
ankle.
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that high CAVI is predictive for mortality and morbidity 
of coronary artery diseases [31], for the incidence of atri-
al fibrillation [37] in the general population, and also for 
deterioration in kidney function [38, 39].

Clinical Use
In routine clinical practice and medical checkup, mea-

suring CAVI gives important information in terms of 
structural arterial stiffness, functional stiffness, and indi-
ces of vasculitis as stated above. When CAVI shows ab-
normally high value for one’s age, the risk factors should 
be intensively examined, and treatments to address risk 
factor burden and decrease CAVI are recommended. Re-
ported methods for improving CAVI are listed in Figure 
3 [31]. Body weight reduction in metabolic syndrome, es-
pecially visceral fat reduction, and continuous positive 
airway pressure therapy for OSAS decreased CAVI. Exer-
cise, smoking cessation, and Waon therapy also decreased 
CAVI. BP control with angiotensin receptor II blockers, 
such as olmesartan, calcium channel blockers such as cil-
nidipine, efonidipine decreased CAVI. Glucose control 
with rapid-acting insulin, pioglitazone, or glimepiride 
improved CAVI. Lipid control with pitavastatin, bezafi-
brate, and eicosapentaenoic acid also decreased CAVI. 
Resveratrol improved CAVI. Furthermore, a rapid rise of 

CAVI in persons with high CAVI might a harbinger of 
impending CV events. The mechanism is thought to be 
ischemia of vulnerable plaque due to arterial smooth 
muscle contraction [36]. Periodic monitoring of CAVI 
might be useful to predict impending CV events. In sum-
mary, measuring CAVI might be useful for a quantitative 
assessment of vascular aging and the degree of arterio-
sclerosis, and also for control of risk factors.

Limitations
The CAVI value may not be correct when ABI is less 

than 0.9 because the pulse at the ankle is too weak to be 
detected, and PWV which constitutes CAVI cannot be 
properly obtained with the VaSera system. In patients 
with aortic valve stenosis, CAVI shows low values [40]. It 
is suggested that this is due to the PWV decrease associ-
ated with the lowered blood flow from the left ventricle to 
the aorta. Abnormally low age-related CAVI value might 
indicate the presence of severe aortic valve stenosis.

Carotid-Femoral Pulse Wave Velocity
Concept and Principles
Aortic stiffness can be estimated noninvasively by 

measuring PWV between the right carotid and right fem-
oral artery (cfPWV) [7, 41]. cfPWV (expressed in m/s) is 

Fig. 3. Clinical implications of CAVI and improving methods. ARB, angiotensin receptor antagonist; CCB, cal-
cium channel blocker; CPAP, continuous positive airway pressure; SAS, sleep apnea syndrome.
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calculated as the surface distance divided by the PTT be-
tween the two arterial sites. The PTT can be measured 
using the foot-to-foot method from pressure, flow, or vol-
ume waveforms recorded with tonometry, Doppler, me-
chanical sensor, or pulse volume recording device. It 
should be noted that both the surface distance and the 
PTT are only crude estimates because physiologically the 
pulse wave does not actually propagate from the record-
ing site of right carotid artery via aortic arch to the record-
ing site of right femoral artery (Fig. 4) [7].

Clinical Evidence
It has been recommended that arterial stiffness should 

be determined noninvasively by measurement of cfPWV 
[7] and cfPWV is considered as the “gold-standard” mea-
surement of aortic stiffness [41]. However, cfPWV is ac-
tually a crude estimate of aortic arch to femoral artery 
PWV and does not directly measure stiffness of the as-
cending aorta (Fig. 4) [42].

cfPWV is a sensitive marker of vascular aging [43] and 
has been validated as an independent, strong marker for 
future CV events in patients with hypertension, diabetes, 
and renal failure, and in the general population and ap-
parently healthy subjects [42]. cfPWV is predictive of cor-
onary heart disease, stroke, systolic hypertension, atrial 
fibrillation, aortic aneurysm formation, heart failure, and 
CV mortality events [42, 44–47]. cfPWV improves mod-

el fit and reclassifies risk for future CV disease events in 
models that include standard CV disease risk factors [44]. 
cfPWV may enable earlier identification of high-risk 
populations that might benefit from earlier CV disease 
risk factor management [44]. Therefore, it is reasonable 
to measure cfPWV to provide incremental information 
beyond standard CV disease risk factors in the prediction 
of future CV disease events [7].

Clinical Use
Age- and sex-specific normal reference values and 

thresholds have been established in a European popula-
tion, and this may facilitate the clinical application of cf-
PWV for this demographic [48]. The generalizability of 
these cfPWV reference values to Asian populations is yet 
to be known. cfPWV may be clinically useful to identify 
medium and high-risk CV disease groups, but the prog-
nostic value of arterial stiffness in older adults may be 
limited [46]. cfPWV is considered as a surrogate target for 
prevention and intervention [42]. However, large-scale 
randomized controlled intervention studies are needed to 
guide clinicians [42].

Limitations
Regarding cerebral structure and function, increased 

cfPWV has been associated with an increased risk of 
brain structural abnormalities and worse performance in 

Fig. 4. Measurement schematic diagram of carotid-femoral pulse 
wave velocity, aortic arch-femoral pulse wave velocity, and aortic 
pulse wave velocity. The surface distance between the recording 
sites of right common carotid artery and right femoral artery is 
depicted as the straight red line. The path of the pulse wave travel-
ling from the aortic arch (near the bifurcation of the brachioce-

phalic artery) to the recording site of right femoral artery is de-
picted as the red curved line. The path of the pulse wave travelling 
from the aortic root to the end of abdominal aorta (near the bifur-
cation of the right and left common iliac arteries) is depicted as the 
thick black curved line.
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various subdomains of cognitive function but negative 
results were also observed [49]. Since cfPWV does not 
cover the ascending aorta, which may play a critical role 
in generating aortic pressure/flow pulsatility, it is proba-
bly not an ideal parameter to evaluate the association be-
tween vascular aging and cognitive function [49].

Measures of PWV vary with age, sex, BP, ethnicity, and 
measurement techniques and devices [10]. Standardiza-
tion of the techniques, the validation of devices, and arte-
rial stiffness studies have been recommended [7, 50].

Estimated Pulse Wave Velocity
Concept and Principles
cfPWV by applanation tonometry is one of the widely 

used methods for the assessment of aortic stiffness. De-
spite its popularity as a well-standardized and noninva-
sive measure of aortic stiffness, the routine assessment of 
cfPWV still requires sophisticated technical skills and 
specialized equipment, which may limit its widespread 
incorporation into routine clinical practice. As a strategy 
to overcome the restraints concerning the assessment of 
aortic stiffness using cfPWV, researchers have developed 
the concept of estimated PWV (ePWV) that can be cal-
culated from age and mean BP (MBP) using a regression 
equation generated from the Reference Values for Arte-
rial Stiffness Collaboration: ePWV = 9.587 – 0.402 × age 
+ 4.560 × 10−3 × age2 − 2.621 × 10−5 × age2 × MBP + 3.176 
× 10−3 × age × MBP − 1.832 × 10−2 × MBP [51].

Clinical Evidence
In the high-risk patients from the SPRINT trial, ePWV 

predicted all-cause mortality and CVD outcomes beyond 
traditional risk factors, and improved C-statistics beyond 
the Framingham Risk Score (from 0.65 to 0.69) [52]. Ad-
ditionally, ePWV was associated with CV mortality and 
morbidity independently of the Systematic Coronary 
Risk Evaluation (SCORE) and Framingham Risk Score, 
but not independently of traditional CV risk in the MOR-
GAM Project with 38 cohorts from 11 countries [53]. 
ePWV is associated with all-cause and CVD mortality 
and slightly improves the C-statistics for the primary out-
come in the Chinese Study [54].

By contrast, an addition of ePWV to contemporary 
CVD risk scores does not improve discrimination of all-
cause and CVD mortality risk [55]. Similarly, while ePWV 
is associated with all-cause mortality and MI, indepen-
dent of traditional risk factors, discrimination is not im-
proved to a clinically meaningful extent in patients with 
angina pectoris [56]. Given uncertainty related to the use-
fulness of ePWV, additional research examining the role 

of ePWV as a predictor of CVD outcomes is clearly war-
ranted, especially in differing outcomes, populations, and 
racial/ethnic backgrounds.

Clinical Use
Emerging evidence suggests that ePWV is associated 

with CVD outcomes and mortality, independent of tradi-
tional CVD risk factors in USA and European cohorts 
[52, 53, 55–59]. The role of ePWV as an independent pre-
dictor of CVD outcomes may also extend to Asian popu-
lations [54, 60]. Non-device-based estimation of aortic 
stiffness is rapid, easy, and inexpensive and may be used 
in clinical practice settings to aid in CVD risk prediction. 
However, there remains a substantial unexplained vari-
ance. Furthermore, the question remains as to whether 
ePWV can become an alternative for assessment of  
cfPWV as a marker of vascular aging remains to be deter-
mined, and whether ePWV improves CVD risk predic-
tion beyond contemporary CVD risk scores such as Sys-
tematic Coronary Risk Evaluation (SCORE) and the 
Framingham Risk Score, as findings have been sparse and 
equivocal.

Limitations
To date, only few studies have sought to examine the 

correlation between ePWV and cfPWV and have report-
ed this correlation to be weak (r ranges: 0.31–0.36) or 
moderate (r range: 0.52–0.67) [61, 62], but this correla-
tion still remains unexplored in Asian population. It is 
also unclear whether the current ePWV equation from 
European cohort data is appropriate to be applied to oth-
er populations and racial/ethnic backgrounds. Thus, fur-
ther validation studies comparing ePWV to other mea-
sures of vascular aging are needed in Asian reference pop-
ulations.

While ePWV is somewhat correlated with cfPWV and 
an increased risk of CVD outcomes beyond risk scores, it 
still remains uncertain as to whether ePWV is a sensitive 
assessment of aortic stiffness and can serve as a substitute 
for cfPWV. Few studies to date have simultaneously com-
pared the ePWV prediction equation to directly noninva-
sive or invasive measured aortic stiffness in predicting 
CVD outcomes. Compared to cfPWV or baPWV, ePWV 
has been shown to also predict major CV events indepen-
dently of SCORE and Framingham Risk Score in patients 
[60, 61]. Interestingly, both ePWV and invasive PWV in-
dependently predict CV events and mortality and that 
ePWV has a similar predictive value for mortality as that 
of invasive PWV in patients with undergoing coronary 
angiography [59]. Despite these findings, whether ePWV 
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can become a substitute for cfPWV as a marker of vascu-
lar aging remains to be determined. However, as ePWV 
reflects an interaction between age and MBP [61], this 
variable may not be viewed as synonymous with cfPWV 
[61] and may capture different risk information than  
cfPWV [56, 61], thereby providing another important 
prognostic value to the prediction of CV health.

Other Pulse Wave Velocities
Regional PWVs
Devices which measure the cfPWV can also be used to 

measure other regional PWVs, such as the carotid-radial 
PWV and femoral-ankle PWV. While the usefulness of 
these regional PWVs for CV risk assessment may be lim-
ited, aortic-brachial arterial stiffness mismatch has been 
reported to be associated with increased mortality in the 
dialysis population [63].

Apart from the aforementioned regional PWVs, heart-
to-brachium PWV (hbPWV) includes a segment of the 
proximal aorta, and this measurement can be obtained in 
the baPWV measurement. PTT for hbPWV can be evalu-
ated fairly easily by simultaneous recordings of the heart 
sounds or electrocardiography and brachial arterial pulse 
waves are recorded with a high-fidelity sensor (e.g., air-
plethysmography) embedded in the BP cuff. The path 
length is obtained using an equation derived from the 
gender and height. hbPWV has been shown to be corre-
lated with the aortic systolic BP and augmentation index. 
Therefore, the hbPWV may be a marker of proximal aor-
tic stiffness [64].

Finger-toe PWV is a simple noninvasive method for 
measuring regional arterial stiffness. The finger-toe PWV 
is determined on the basis of a patented height chart for 
the distance and the PTT between the finger and the toe 
pulpar artery signals (ft-PTT). Acceptable correlation has 
been reported between the finger and the toe pulpar ar-
tery signals and carotid-femoral PTT [65].

Recently, based on the pulse waveform recorded at the 
radial and digital arteries, the radial-digital PWV has be-
come available as a measure of the regional stiffness of 
small conduit arteries [66]. The clinical implication of 
this measurement has not yet been clarified.

Local PWVs and Ambulatory PWVs
The use of cuff-based oscillometric devices provides 

an estimated (local) PWV based on pulse wave analysis 
and wave separation analysis at a single site such as the 
carotid, brachial, radial, or femoral arteries [67, 68]. These 
are simple and relatively operator-independent, and en-
able ambulatory measurements, and the PWV values are 

associated with aortic stiffness. Sarafidis et al. [69] report-
ed that ambulatory PWV is a useful marker to predict 
future CV events. Ambulatory PWV was estimated with 
an oscillometric ambulatory BP monitoring device. In the 
future, it may be possible for both ambulatory and home 
monitoring of stiffness parameters and related hemody-
namic abnormalities. It is still not known how these may 
be applied in clinical practice, and robust validations for 
such devices are needed.

Aortic PWV by Magnetic Resonance
For measurement of the aortic PWV by magnetic res-

onance, which is the most reliable noninvasive method to 
measure the aortic PWV, a fully automatic method has 
become available [70], although this measurement is lim-
ited to research use because of its cost and availability in 
limited institutions. In patients with hypertrophic cardio-
myopathy, the aortic strain of the descending aorta as-
sessed by magnetic resonance was significantly decreased 
as compared with that in control subjects and correlated 
with the native T1 values. Aortic strain may be a marker 
of myocardial fibrosis in patients with hypertrophic car-
diomyopathy [71].

Standardization of PWV Measurement

Validation is a crucial step for standardization. For the 
validation of devices, performance in terms of precision 
(i.e., repeatability/reproducibility) and accuracy (i.e., 
closeness to real value) must be assessed [72] because 
these features determine the reliability and validity of a 
device in clinical practice. Validation is a fundamental 
prerequisite for a device to be clinically useful. For this 
reason, structured standardized protocols providing evi-
dence of the performance of a system need to be imple-
mented in the development of any medical device. Cur-
rently, available guidelines provided by the Artery Society 
in 2010 [73] have been used in the last 10 years for valida-
tion of devices measuring carotid-femoral cfPWV. How-
ever, since 2010, many devices measuring PWV on arte-
rial paths other than carotid-femoral have been devel-
oped, raising many methodological and clinical ques-
tions. A detailed evaluation of these issues is beyond the 
scope of this article: an international working group is 
now working to provide an updated document including 
those cases. However, it is worthwhile to mention some 
open issues posed as questions and answers below:
• Q1: Are PWV values from different arterial segments 

directly comparable in a single individual?
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• A1: baPWV is systematically higher than cfPWV [74], 
even when correction formulas are used [23]. This is a 
consequence of different arterial segments containing 
different distributions of elastic and muscular arteries. 
One possible standardization could be to make refer-
ence to normal percentiles, or vascular age calculation, 
for each technique, noting that validation of such ap-
proach is still needed.

• Q2: Are PWVs from different arterial segments to be 
validated against the same reference standard (i.e., in-
vasive aortic PWV)?

• A2: As elaborated in Q1, PWVs differ quantitatively 
between arterial beds. As far as baPWV is concerned, 
the brachial-ankle arterial bed cannot realistically be 
assessed invasively using catheters. As an alternative, 
new baPWV devices can be validated against existing 
(noninvasive) baPWV devices that have shown prog-
nostic relevance beyond classical risk factor assess-
ment [26]. Thus, new baPWV devices can be validated 
against these proven devices. For arterial beds other 
than brachial-ankle, the answer is less clear.

• Q3: Do PWVs from different arterial segments pro-
vide similar prognostic information/risk stratification 
in a single individual?

• A3: cfPWV and baPWV predict CV events beyond 
classical CV risk assessment and improve risk reclas-
sification [26, 44]. To the authors’ knowledge, a formal 
head-to-head comparison between cfPWV and  
baPWV in terms of risk prediction is not available at 
present. International collaborations are encouraged 
to address this important gap. However, in 2005, Pan-
nier et al. [75] directly compared the ability of cfPWV, 
carotid-radial PWV, and femoral-tibial PWV to pre-
dict CV events in end-stage renal disease and found 
only cfPWV to significantly predict CV events.
Other devices, measuring finger-to-toe PWV by finger 

plethysmography or heart-to-foot PWV by a combina-
tion of ballistocardiography and foot impedance mea-
surement [65, 76], have demonstrated agreement with 
noninvasive cfPWV, but only in small samples; no infor-
mation on prognostic value is available. Furthermore, an 
increasing number of approaches claim to evaluate arte-
rial stiffness by use of machine learning algorithms ap-
plied mostly to arterial waveforms, but sometimes also 
using clinical variables such as age, sex, or BP [77]. Though 
promising given their ease of use and with the potential 
of evaluating beat-to-beat PWV for some methods, these 
techniques cannot be recommended for clinical use to 
date.

The standardization of PWV measures must also con-
sider the standardization of how these measures should 
be recorded in clinical practice. This is crucial given the 
dependence of PWV measurements on the hemodynam-
ic status of the patient. We recommend standard operat-
ing procedures which are similar to those of BP measure-
ments [78] or ECG, and that are summarized in the 2012 
paper about measurement of cfPWV in daily practice [9]. 
Most importantly, we recommend that the measurement 
is taken in a quiet and stable-temperature environment 
after 10 min rest, avoiding smoking, caffeine, alcohol, and 
eating in the hours preceding the measurement, and not 
speaking during the measurement. Noteworthy, each 
technique may have specific contraindications (e.g., ca-
rotid stenosis for cfPWV, peripheral arterial disease for 
baPWV). With an increasing number of devices allowing 
out-of-office, self-measurement of arterial stiffness [79], 
the issue of measure standardization will become even 
more critical.

Clinical Implication of PWV Measurement

Arterial stiffness is the primary parameter to detect 
age-related CV risk before CV risk factors and organ 
damage become clinically overt. In addition, even after 
clinically overt risk factors, organ damage, and/or CV dis-
ease developed, arterial stiffness is closely associated with 
these risks and is useful for the management [80]. Thus, 
arterial stiffness is a useful parameter across the broad 
scope of healthcare and medicine [28, 81].

CV Risk Stratification for Medical Use
A clinical implication of arterial stiffness is the risk 

stratification for CV events from the community-dwell-
ing population to outpatients with CV risk factors and/or 
CV diseases. The hypertension guidelines or expert con-
sensus documentation include measures of arterial stiff-
ness for risk stratification and better management of hy-
pertension [82].

There is ample evidence which demonstrates that in-
creased arterial stiffness, assessed by different measures 
such as cfPWV, baPWV, and CAVI, is associated with 
organ damage and CV events [28]. Although arterial stiff-
ness is closely associated with high BP, all arterial stiffness 
measures are associated with CV event risk even after 
controlling for BP.

First, cfPWV is a well-established measure of arterial 
stiffness, independently associated with organ damage 
and CV event risk. Theoretically, it is the measure of stiff-
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ness of large arteries, however, to detect the pulse at the 
femoral site limits its clinical use. Second, compared with 
cfPWV, baPWV included the arterial properties of mus-
cular peripheral artery distal to the femoral site. Thus, this 
indicator is more closely affected by BP. baPWV is associ-
ated with CV risk factors and a risk predictor of CV 
events, and it is useful for the risk stratification [83–85]. 
Third, CAVI is a new measure of arterial stiffness that re-
flects the stiffness from the ascending aorta to the ankle 
arteries and demonstrates less dependence on BP during 
the evaluation [20]. The systematic review to assess the 
association between CAVI and CV diseases (9 prospec-
tive studies (n = 5,214) and 17 cross-sectional eligible 
studies (n = 7,309), with most enrolling high CVD risk 
populations in Asia), demonstrated a modest association 
between CAVI and incident CVD risk [86]. A recent pro-
spective study, CAVI-J, demonstrated that CAVI is pre-
dictive of stroke and heart failure in outpatients with CV 
risk [87].

The challenges of arterial stiffness are to demonstrate 
the benefit of arterial stiffness-guided management of 

risk factors on future CV prognosis. To address this issue, 
the Coupling study, a nationwide-prospective study, is 
now ongoing to demonstrate the association of serial 
change of CAVI and CV risk [88, 89]. A recent prospec-
tive study on the serial cfPWV change in patients with 
resistant hypertension, reducing, or preventing progres-
sion of aortic stiffness was associated with significant CV 
protection in patients with resistant hypertension [90].

Prediction of Hypertension in Healthcare
In healthy subjects, arterial stiffness may predict the 

future development of hypertension and hypertension-
related organ damage. In subjects without hypertension, 
increase in CAVI or baPWV predicted hypertension [91]. 
Stress and obesity per se could accelerate the age-related 
arterial stiffening [92–94]. Other age-related diseases, 
such as cognitive dysfunction-associated small artery dis-
ease and atrial fibrillation are also associated with in-
creased arterial stiffness [95, 96].

Fig. 5. Concept and biomarkers of the systemic hemodynamic atherothrombotic syndrome. AI, augmentation 
index; BNP, B-type natriuretic peptide; CAVI, cardio-ankle vascular index; FMD, flow-mediated dilation; UACR, 
urinary albumin/creatinine ratio. (Source: Kario. Nat Rev Nephrol. 2013;9:726–738 and Kario. Prog Cardiovasc 
Dis. 2016;59:262–281.)
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Challenges and Concept of Systemic Hemodynamic 
Atherothrombotic Syndrome
There is the vicious cycle between arterial stiffness and 

BP variability to facilitate the organ damage and CV 
events. The concept of systemic hemodynamic athero-
thrombotic syndrome (SHATS) has been proposed, de-
scribing an age-related and synergistic vicious cycle of he-
modynamic stress and vascular disease [97]. This was 
presented and discussed at the 2018 Scientific meeting of 
Pulse of Asia, Kyoto (Fig.  5) [98]. The importance of 
SHATS is based on the assumption that the assessment of 
BP variability and arterial disease is likely to provide an 
effective opportunity to intervene early to reduce pro-
gression to hypertension in younger patients or to CV 
disease events and organ damage in older patients. We 
propose a new SHATS score to diagnose and assess the 
severity of SHATS. The score includes two components 
– a BP score and a vascular score – which are multiplied 
to generate the SHATS score [98]. This reflects the syner-
gistic, rather than additive, effects of BP and vascular dis-
ease on target organ damage and CV disease events. Re-
cently, we demonstrate the interaction of arterial stiffness 
with the association between home BP variability and CV 
risk in the prospective J-HOP study [99, 100]. First, the 
regression line of levels of BNP, a measure of cardiac 
overload, against home BP variability was steeper in those 
with baPWV >1,800 cm/s than those with baPWV <1,800 
cm/s in the cross-sectional analysis [100]. Second, in the 
prospective analysis, the regression lines of CV events 
against the home BP variability were also steeper in those 
with baPWV >1,800 cm/s than those with that <1,800 
cm/s [100]. Although it requires refinement and valida-
tion in future studies and in other populations, early de-
tection of SHATS using tools such as the proposed score, 
combined with population-based stratification and tech-
nology-based anticipation medicine incorporating real-
time individual data, has the potential to contribute to 
meaningful reductions in rates of CV disease events and 
target organ damage.

Perspective of PWV Measurement

Methodology Perspectives
There is no methodologic consensus for PWV in risk 

prediction models of CV disease. Japan Brachial-Ankle 
Pulse Wave Velocity Individual Participant Data Meta-
Analysis of Prospective Studies (J-BAVELs) suggested 
the steno-stiffness approach improved CV risk assess-
ment in primary prevention using the inter-arm BP dif-

ference, the ABI, and baPWV [83]. Asian population 
might have different responses in PWV profiles to vascu-
lar aging or BP lowering treatment. Vascular aging or hy-
pertension-related medial degeneration is the dominant 
factor associated with increased arterial stiffness (arterio-
sclerosis) more than the narrowing of the artery (athero-
sclerosis) in Asian populations [18]. Asian populations 
also have a particular predisposition to increased central 
aortic pulse pressure because of the relatively larger diam-
eter and thinner media at the proximal aorta that modu-
lates the interaction between ventricular ejection and ar-
terial load than other ethnicities [101]. Still, there are no 
specific indications for the vascular markers in most 
Asian CV prevention guidelines. However, recently the 
Japanese Society of Hypertension Guidelines introduced 
the implication of PWV analysis [102]. Both cfPWV and 
baPWV could improve the prediction of existing risk 
models; however, with the improvement of the prognos-
tic ability being larger when baPWV was used in the low-
risk group [26], cfPWV may perform better when used in 
cases of moderate or higher risk [44]. Also, the guideline 
recommended to conduct vascular evaluation upon sta-
bilization of BP after the initiation of antihypertensive 
treatment rather than before treatment. One of the fun-
damental limitations of PWV measurement is that BP 
change substantially influences its value, namely “func-
tional stiffness.” Therefore, after BP lowering, the PWV 
values are reduced rapidly within weeks before the vascu-
lar rigidity is actually reversed. There is little possibility 
that any advances in PWV methodology might complete-
ly remove functional components from the PWV values. 
However, the standard method of PWV evaluation after 
BP lowering treatment, e.g., taking stable doses of medi-
cation for 2–3 months to minimize the effect of BP lower-
ing or antihypertensive medications, will be necessary to 
remove the functional component, thus solely evaluating 
the vascular structural changes.

Clinical Perspectives
Modern clinical practice stresses the importance of 

basing healthcare practices and health policy on the best 
available clinical evidence. However, it is a long journey 
to translate research evidence into routine clinical prac-
tice through closing fundamental translational gaps 
[103]. There have been numerous studies and meta-anal-
yses demonstrating the prognostic value of arterial stiff-
ness beyond established CV disease risk factors, including 
age and BP [1, 44]. Nevertheless, clinical practice guide-
lines rarely recommend the routine use of arterial stiff-
ness in daily care [104, 105]. To facilitate the routine use 
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of arterial stiffness measurements, the corresponding 
translational gaps in the clinical application should be an-
alyzed and addressed with appropriately designed clinical 
trials.

To justify the routine clinical use of any biomarkers, 
several criteria must be met. For the many methodologies 
to estimate arterial stiffness, their reliability, and repro-
ducibility in a standard clinical setting should be firstly 
demonstrated [106]. Moreover, in a busy clinical envi-
ronment, a less complicated measurement procedure 
with operator independence is more welcomed [105]. 
Second, these techniques must carry the ability to add ad-
ditional risk discrimination beyond the conventional risk 
prediction systems such as Framingham risk score or 
SCORE and should be cost-effective. Not only the inde-
pendent prognostic value but also the significant reclas-
sification ability should be shown [44]. Lastly, clear indi-
cation of the implementation of arterial stiffness tech-
niques should be provided including but not limited to 
being used for risk stratification, treatment monitoring, 
or as a therapeutic target.

Previous studies pertaining to arterial stiffness have en-
deavored to address most but not all the above require-
ments. The independent value of arterial stiffness in pre-
dicting CV events have been presented [1, 44, 107]. More-
over, its ability to predict incident hypertension [108] and 
target organ damage, including brain [109, 110], heart 
[111], and kidney [112] have also been confirmed. In an 
individual patient, data meta-analysis of cfPWV for sub-
jects at intermediate risk [44] adding cfPWV into standard 
risk factors rendered a net reclassification of 15% and 27% 
for coronary heart disease events and CVD death, respec-
tively. Such analysis provided justification to apply arterial 
stiffness measurements in routine clinical practice. They 
can make risk prediction more accurate by reclassifying 
subjects with intermediate CV risk into a higher risk level, 
in which treatment is indicated, or into a lower risk level, in 
which further therapy could be safely avoided. In subjects 
with intermediate risk such as white coat hypertension 
[113], isolated diastolic hypertension [114], or borderline 
hypertension, the uncertainty in risk prediction may be fur-
ther reduced by measuring arterial stiffness.

Of the techniques for estimating arterial stiffness, ad-
vantages and disadvantages of each technique are ob-
served. Although cfPWV has the strongest evidence base 
supporting clinical value [7], the operator dependence 
limits its widely use in routine practice [105]. Cuff-based 
devices require less training but may be less accurate 
[106]. Further research is required to address this impor-
tant unmet need. Besides, recommendation of the routine 

use of arterial stiffness techniques could be further sup-
ported by conducting randomized controlled trials adopt-
ing arterial stiffness as a treatment target, a treatment 
monitoring instrument, or as a tool incorporated in the 
intervention strategies such as risk stratification for sub-
jects with intermediate risk profiles. To obtain health in-
surance reimbursement, cost-effectiveness analysis ac-
companied with the prospective studies for arterial stiff-
ness is also warranted to support its routine clinical 
implement.

The distinctive clinical value of arterial stiffness tech-
niques relies on the ability to provide important informa-
tion regarding BP progression and susceptibility to end 
organ damage. The most useful scenario seems to be the 
more accurate risk classification for subjects at intermedi-
ate CVD risk, in which condition the need for treatment 
is uncertain, such as patients with masked or white coat 
hypertension. Therefore, arterial stiffness can be seen as 
complimentary to current BP measurement, and both 
should be considered when risk assessment is required for 
making timely and relevant treatment decisions. The role 
of arterial stiffness as a treatment target, treatment moni-
toring strategy in response to therapy, or a tool in the in-
tervention strategy should be further uncovered in pro-
spective studies or randomized controlled trials.

Research Perspectives
Comparison between Various PWVs and 
Exploration on Structural Stiffness
Irrespective of the cfPWV or baPWV, the PWV mea-

surements are highly dependent on BP, which often 
makes the interpretations of separate interventional ef-
fects on structural and functional stiffness difficult [16]. 
CAVI is less dependent on BP, but it reflects not only aor-
tic stiffness but also stiffness of the femoral and tibial ar-
teries, similar to baPWV [20]. cfPWV, baPWV, and 
CAVI were all associated with target organ damage and 
predictive of adverse clinical outcomes. However, com-
parisons between these parameters in their associations 
with target organ damage are inconsistent [115, 116]. It 
remains to be determined whether the predictive value 
would be different between various PWVs, and what val-
ues are added on each other. Furthermore, there is still a 
need to develop new methods for the calculation of PWV-
derived values independent of BP, especially for interven-
tional research.

Asian-Specific Reference Values
In addition to age and BP, the two major determinants 

of PWV, other factors include sex, body height, body 
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weight, heart rate, blood glucose, and lipids. Populations 
of different ethnicity or environmental background may 
share similar major risk profiles of PWV but may be dif-
ferent in risk factors and strengths of associations be-
tween these risk factors and PWV [117]. Indeed, Europe-
ans and Asians are different in body height, heart rate, 
and metabolic risk profiles [117]. It is therefore necessary 
to explore whether the currently proposed reference val-
ues of PWV fit the Asian population.

New Devices and Parameters
Recent advanced techniques make it possible to mon-

itor the diurnal PWV changes during ambulatory BP 
monitoring [118]. In normotensive volunteers, the 24-
hour PWV follows a similar circadian pattern as BP [119]. 
However, the clinical significance of 24-hour, daytime, 
and nighttime PWVs remains to be elucidated. It is ex-
pected that the “white-coat” effect and the “masked” phe-
nomenon also exist for the PWV measurement because 
of its BP-dependent nature. Indeed, in patients with 
chronic kidney disease, 24-hour PWV increased only in 
patients with masked uncontrolled hypertension and sus-
tained uncontrolled hypertension, but not those with 
controlled hypertension [120].

Emerging newly developed smart wearable devices can 
estimate PWV via signals of electrocardiography and 
photoplethysmography in a tracing of 30 s [121]. Such a 
device (Huawei Watch GT2/3 Pro) has been recently 
commercialized in China. According to the results of a 
validation study in adults, the mean difference in com-
parison with the estimation by the Complior device 
(France) was within the acceptable pass criteria [121]. It 
remains to be determined what this new and convenient 
measurement of PWV can add on the management of ar-
terial stiffness in populations.

During PWV measurement, PTT varies in a beat-to-
beat manner. In the Chinese and Swedish elderly popula-
tions, the beat-to-beat variation of PTT within a 10-s 
measurement period independently predicted all-cause 
and CV mortality outcomes and improved risk predic-
tion beyond PWV and other conventional risk factors 
[122]. Further studies are warranted to address whether 
the longer term variation of PWV or PTT could add to 
risk stratification and would be modifiable by lifestyle 
modifications and drug treatment.

New Strategies and Drugs
In most of the previous research, PWV has been used as 

a risk predictor. The SPARTE trial was the first to investi-
gate whether a PWV-guided therapeutical strategy would 

be better than conventional antihypertensive treatment in 
improving CV outcomes [123]. Although the PWV nor-
malization driven strategy, compared with usual BP driven 
therapeutic strategy, did not result in a statistically signifi-
cant reduction in the risk of CV events because of inade-
quate power, it resulted in significant treatment intensifica-
tion, reduction in office and ambulatory BP, and preven-
tion of vascular aging. The research hypothesis is warranted 
to be tested in future adequately powered trials.

The lack of effective interventions to improve arterial 
stiffness is a major barrier for the clinical application of 
PWV measurement. Conventional lifestyle improvement 
and RAS inhibitors, especially in high doses, such as 40 
and 80 mg olmesartan, were able to significantly remodel 
or destiffen the arterial wall material during long-term 
treatment, partly independent of BP lowering effects 
[124, 125]. Selective sodium-glucose cotransporter inhib-
itors were recently demonstrated to reduce PWV inde-
pendent of change in systolic BP and CV risk factors 
[126], although not CAVI [127]. However, it is important 
to look for new therapeutic targets. The promising effect 
of several new agents on the pathways of caloric restric-
tion, inflammation, and fibrosis, such as the mTOR in-
hibitors, AMPK, sirtuin and PPAR-γ activators, and 
TNFα antagonism, is anticipated to be tested in future 
clinical research [125].

Conclusion

Arterial stiffness, as a marker of subclinical target or-
gan damage, is an important and independent predictor 
for CV mortality and morbidity. PWV is a noninvasive 
and reliable tool for the assessment of arterial stiffness. 
Various methods of PWV measurement, depending on 
which arterial sites are involved, are now available. PWV 
measurement including the central elastic artery is essen-
tial and measurements including both the central elastic 
and peripheral muscular arteries can be a good alterna-
tive, as PWVs, with either measurement methodology, 
are predictive of outcomes. As Asian populations are rap-
idly aging, timely detection and intervention of “early 
vascular aging” are recommended. Convenient and wear-
able devices may facilitate the application of PWV mea-
surement in diverse settings; nonetheless, the validation 
of devices is also necessary pending the development of 
consensus on the validation protocol. More evidence is 
urgently needed to prove a PWV-guided therapeutic ap-
proach will be beneficial to the prevention of CV diseases 
beyond current strategies.
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