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Multi-molecular hyperspectral PRM-SRS
microscopy

Wenxu Zhang1,9, Yajuan Li1,9, Anthony A. Fung1,9, Zhi Li1, Hongje Jang 1,
Honghao Zha1, Xiaoping Chen2, Fangyuan Gao3, Jane Y. Wu2, Huaxin Sheng4,
Junjie Yao 5, Dorota Skowronska-Krawczyk 3, Sanjay Jain 6,7,8 &
Lingyan Shi1

Lipids play crucial roles in many biological processes. Mapping spatial dis-
tributions and examining themetabolic dynamics of different lipid subtypes in
cells and tissues are critical to better understanding their roles in aging and
diseases. Commonly used imaging methods (such as mass spectrometry-
based, fluorescence labeling, conventional optical imaging) can disrupt the
native environment of cells/tissues, have limited spatial or spectral resolution,
or cannot distinguish different lipid subtypes. Herewe present a hyperspectral
imaging platform that integrates a Penalized Reference Matching algorithm
with StimulatedRaman Scattering (PRM-SRS)microscopy. Using this platform,
we visualize and identify high density lipoprotein particles in human kidney, a
high cholesterol to phosphatidylethanolamine ratio inside granule cells of
mouse hippocampus, and subcellular distributions of sphingosine and cardi-
olipin in human brain. Our PRM-SRS displays unique advantages of enhanced
chemical specificity, subcellular resolution, and fast data processing in dis-
tinguishing lipid subtypes in different organs and species.

Current lipidomic technologies, such as shotgun lipidomics, can
quickly identify hundreds of lipids from small samples. Albeit highly
sensitive, such methods rely on mass spectrometry (MS), nuclear
magnetic resonance (NMR), or other techniques that are destructive to
cells and tissues1–5. Conventional matrix-assisted laser desorption/
ionization (MALDI)-MS imaging enables label-free lipid imaging but it
has a lateral resolution on the order of cell diameters (~10 µm) and
destroys the sample during the imaging process. In addition, 3D
MALDI imaging relies on serial sections of the sample, and the lipid
species that are resolvable are limited to those with the highest ion
yields. Other optical techniques have been developed to non-
destructively visualize spatial distributions of lipid subtypes as well
as metabolic flux6 at the subcellular resolution, but they rely on

markers such as fluorescently labeled antibodies and transfected bio-
sensors, which may alter the native distribution of lipids in cells or
tissues. It is difficult to use labeled optical imaging to differentiate
diverse molecular species simultaneously, since the diversity of lipid
species far exceeds the specificity and availability of optical tags and
dyes. Therefore, label-free optical imaging is instrumental. Stimulated
Raman scattering (SRS) microscopy has demonstrated the advantages
of non-destructive 3D imaging with subcellular resolution in a label-
free manner7,8. Recent work has even demonstrated quantitative mass
concentration measurements of lipids, proteins, and water9. For label-
free SRS imaging microscopy, multiple subcellular organelles and
their chemical compositions can be visualized and mapped
out through hyperspectral imaging (HSI) or training of a deep learning
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model10. Lock-in free multiplex SRS imaging can rapidly extract hun-
dreds of morphological or metabolic features in situ to understand
lipid metabolism in cancer cells11. Despite these advancements, there
has been no report on distinguishing multiple lipid subtypes in cells
and tissue samples by using nondestructive label-free optical imaging
methods.

In addition to imaging technologies, post-processing methods/
algorithms also contribute to producing high-resolution and high-
quality images. Recent work on Raman HSI analysis using multi-
variate curve resolution alternating least squares (MCR-ALS) algo-
rithm has demonstrated effective unmixing of chemical species
without disturbing the native distribution of biomolecules12. How-
ever, a higher spectral resolution may entail prohibitively long
imaging time. In addition, unmixing lipid species using unsu-
pervised methods can be computationally expensive and lack the
ability to directly identify a chemical species without manual asso-
ciation posteriori. For example, the MCR-ALS approach converts a
complex spectrum to a linear combination of component spectra,
but it can take 30min to process a 512 × 512-pixel hyperspectral
image and presupposes the number of chemical species in a sample.
The result displays a pixel’s identity by its relative proportional
composition of reference species. However, this is not always fea-
sible in a complex biological sample. Singular Value Decomposition
(SVD) can estimate the number of components, but analytical
results may be sensitive to slight deviations from the exact number
of components. Clustering and segmentation of image pixels may
be informed by MCR-ALS, however, the precise molecular identities
of the highlighted pixels may still be unknown, as there is no
guarantee that the unmixed components correspond to a specific
molecular type.

Spectral reference matching approaches, also known as spectral
angle mapping, have been widely applied to Raman spectral analyses
by quantifying the spectral similarity between an image pixel spec-
trum and a known reference spectrum13. Figure 1 shows the general
process of reference matching approach applied to hyperspectral
imaging. First, spectra of the target analytes (the reference standards
of interest) are acquired using spontaneous Raman spectroscopy
(Fig. 1a) and preprocessed for background removal and normal-
ization (see Methods for details). Hyperspectral Raman microscopy
imaging is next performed on the sample of interest, in which each
pixel contains specific spectral information (Fig. 1b). Then each pix-
el’s spectrum is preprocessed in the same way as the reference
spectrum and is analyzed with respect to the reference spectrum by
calculating the cosine similarity score (Fig. 1c). By repeating this step

pixel-by-pixel, resulting images representing the dominant lipid
subtypes are generated (Fig. 1d). However, the general spectral
reference matching approach has low specificity and the high inci-
dence of false positives makes it difficult to implement in vibrational
spectroscopy. This is because the peak position and intensity dif-
ferences of spectra generated by various equipment can produce
uncertainty that overshadows the subtle differences between lipid
subtypes.

To enhance the specificity for distinguishing lipid species accu-
rately, in this work, we develop a Penalized ReferenceMatching (PRM)
algorithm and apply it to SRS (PRM-SRS) microscopy. We focus on
using dominant components to illustrate the application of PRM-SRS
in analyzing different lipid subtypes in a variety of organs and species.
We accumulate a library of 38 biomolecules for potential detection.
This method is efficient and can process a 512 pixels × 512 pixels × 76
hyperspectral image stack within one minute. In future follow-up stu-
dies, we will further enhance the detection sensitivity to improve the
signal-to-noise ratio for examining molecules of low abundance. This
methodwill provide quantitative and qualitative insights into different
roles of lipid species in multiple biological processes and can augment
other unmixing techniques as well.

Results
Developing a penalized reference matching (PRM) method
SRS HSI pixel spectra and reference spectra were linearly interpolated
such that the spectral interval is 1 cm−1 wavenumber. This ensures that
the inner product, which requires vector dimensions to be the same, is
possible. After all spectra were adjusted to the same interpolated
resolution, they were simplex normalized using Eq. 1,

I1 =
I � Imin

Imax � Imin
ð1Þ

where Imin is the minimum value and Imax is the maximum value in the
pixel spectrum.This normalization is doneprior to referencematching
so that the process generates results that are solely based on spectral
shape without being affected by any intensity fluctuation. The nor-
malized pixel spectra were then divided by their Euclidean norm as
shown in Eq. 2

I2 =
I1

jjI1jj2
ð2Þ

Fig. 1 | General Reference Matching Method. a A lipid subtype standard is ana-
lyzed by spontaneous Raman spectroscopy and preprocessed to generate a
reference spectrum. b A sample is imaged using SRS to generate a HSI. c Each pixel
of the HSI is a vector of intensity values that represent the Raman spectrum at that
pixel. These spectra are compared using spectral anglemapping and illustrate how

dissimilar spectra have a lower cosine similarity. d An example of a mouse brain
sample with thresholded similarity scores with respect to sphingosine, cholesterol,
and TAG. Pixel intensities are scaled to their similarity scores. SRS Stimulated
Raman Scattering, HSI Hyperspectral Image, TAG triacylglyceride. (Panels (a) and
(b) were created with BioRender.com).
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where I2 is the interpolated signal of the pixel spectrum. Reference
spectra from spontaneous Raman acquisitions follow the same pre-
processing steps as the HSI pixel spectra, as shown in Eqs. 3 and 4
below.

I4 =
I3 � I3,min

I3,max � I3,min
ð3Þ

I5 =
I4

jjI4jj2
ð4Þ

where I3 denotes spontaneous Raman spectra, and I5 is the inter-
polated signal of the reference spectrum. Due to the nature of Raman
spectral intensity, similarity scores between each pixel spectrum and
the reference spectrum were calculated using the dot product of I2
and I5.

These spectroscopic methods have been deployed for several
decades, but due to high false positive rates, direct label-free char-
acterization of multiple lipid subtypes in cells and tissues has not been
achieved by using optical imaging. To address this, we added a penalty
term to the canonical cosine similarity algorithm, which decreases the
false positive rates by proportionally reducing the similarity scorewith
the positional discrepancy to the best spectral match (Fig. 2a–c). This

process is summarized as

score= ðui � v� α4xi
2Þ ð5Þ

whereu represents the interpolated signal of a pixel’s shifted spectrum
at various positions; v represents the interpolated signal of the refer-
ence spectrum; α is the penalty coefficient, with a unit of [cm2]; Δxi is
the deviation in positionof the spectrum inui from the initial observed
position; and N is the number of interpolated signals, which depends
on the spectral resolution of the HSI. The penalty term αΔx2 inherently
addresses the slight positional deviations due to the diverse chemical
environment, as well as the variations in instrumentation (such as
thermoelectric noise, lensing, and other interference). Without this
term, even if the spectral shape of a pixel matches the reference
spectrum (Fig. 2a), the final similarity score may still be low when the
positions of the peaks differ greatly (Fig. 2b, c). With the penalty term,
all pixel spectra are evaluated as they occur at multiple Raman shifts,
and the highest similarity score is returned in a pixel-by-pixel manner.

By leveraging positional information in addition to peak shape,
the breadth of similarity score is increased or decreased, akin to a
change in contrast (Fig. 2d–f). This ensures that pixels with similar
shapes and positions are scored accordingly.

Most images collected in this study were taken from the Raman
CH stretching region (2700–3150 cm−1) with 75 total Raman shifts

Fig. 2 | Penalized Reference Matching Method. a A lipid reference spectrum
(blue) was collected by spontaneous Raman spectroscopy, and an SRS HSI pixel
spectrum (orange)was comparedwith the reference spectrum.bDemonstrationof
shifts in pixel’s spectrum: 7.13 cm−1 left shift and 21.39 cm−1 right shift. These posi-
tional offsets decrease the final similarity score because the penalty term scales
exponentially to the positional offset. c Matching scores are retrieved by dot pro-
duct between the reference signal and SRS pixel’s signal. Then the penalty, esti-
matedwith a quadratic function, is subtracted fromeachmatching score.When the

shift wavenumber is high, a high penalty will be given. The highest value in this
score curvewill be used as the similarity scorebetween this pixel spectrumand that
of thepure reference standard.d Image illustrating thedistributionof cardiolipin in
amurinedentate gyrus samplewith a penalty coefficient ofα = 1 × 10−4. e Imagewith
the penalty coefficient α = 4 × 10−4. The full range of the cardiolipin distribution was
not clearly shown due to over-penalization. f An over-saturated image with the
penalty coefficient α =0.25 × 10−4. Almost all pixels have a high similarity score due
to under-penalization. Scale bar, 100 µm. HSI Hyperspectral Image.
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(a spectral distance of 6 cm−1 between images). The position devia-
tion Δx was the shift of peaks in the spectrum. We assessed several
values for the penalty coefficient and chose α = 1 × 10−4. At a higher
value (4 × 10−4) of α, the image contrast was too high to show the full-
range signals, whereas a lower α (0.25 × 10−4) caused over-saturation
in images (Fig. 2d–f). This is because if the penalty is too low, the
pixel and reference spectra are free to shift themselves relative to
each other until the highest similarity score is returned, no matter
how far that shift may be from the original position. In addition, to
show the capability of analysis based on CH stretching region signal
only, we fitted the spectra of 38 lipid subtypes using four Gaussian
peaks corresponding to functional groups defining lipid structures
as shown in Supplementary Fig. 1a and Table 1. The fitting para-
meters were listed in Supplementary Table 2, and t-SNE plot of the
parameters shows the spectral differences between different lipid
subtypes.

Since Raman spectra contain molecular bond information that
correlates with concentration, similarity scores may be used to esti-
mate the relative levels of different molecules, such as different lipid
subtypes.When theRaman spectra of a sampleexhibit a highdegreeof
similarity to that of a reference standard, it will suggest a higher con-
centration of that reference molecule in the sample. Different bio-
molecules may have the same types of chemical bonds, and the
cumulativemixture of variousmoleculesmay result in a spectrum that
displays the same spectral shape as an unrelated molecule. From a
macromolecular perspective in biological samples, however, we find
that factors such as the diversity of the analyte composition do not
necessarily void the correlation between relative ratios and similarity
scores (Supplementary Figs. 2 and 3, also see data presented later
in Fig. 7).

We further compared PRM with pseudo-inverse matrix (PINV)
multiplication and found that both PRM-based similarity scores and
PINV-derived coefficients correlated with relative ratios of lipids.
However, PINV-derived coefficients can have negative values and have
unbounded ranges. Furthermore, calculation using PINV took much
longer time thanPRM (Supplementary Figs. 3, 4a, b). Even though PINV
coefficients intuitively classify the similarity of random spectra as
having no similarity (a value of 0), a perfect match may not have a
coefficient of 1 (Supplementary Fig. 4b). Since the Raman spectra of
biological samples are not entirely random, and share some general
similarities, it is more important that perfect matches be bound to a
value of 1, even if the similarity scores of random spectra are not
centered at 0. Furthermore, HSIs are often acquired at various pixel
densities and resolutions, which yield datasets of different sizes.
Whether a 512 × 512 px or a 256× 256 px HSI is acquired for the same
sample, the pixels corresponding to the same structures should have
the same spectrum, and therefore the same similarity score. However,
since PINV coefficients for the spectra in a HSI are not mutually
exclusive, it may not be suitable for comparing different HSIs (Sup-
plementary Fig. 4c–f). Although similarity scores for Raman spectra in
the CH-stretching region are typically close to 1, the variance within
pixels of a pure sample is much lower (Supplementary Fig. 5). These
results show that SRS HSI is suitable for PRM analysis.

Mapping cholesterol levels in Drosophila fat body using
reference spectra
As a proof of concept, we applied the PRM algorithm to detecting and
comparing cholesterol levels in fat body tissues of young and old
Drosophila. Analogous to mammalian liver and adipose tissue, Droso-
phila fat body has been used extensively to study lipidmetabolism.We
collected fat body tissue spectra from young and old flies using
spontaneous Raman spectroscopy and compared them to reference
spectra of cholesterol at the fingerprint (750–1650 cm−1) and CH-
stretching (2700–3150 cm−1) regions (Fig. 3a–d). Although the fat body
is known to be enriched in triacylglycerides (TAGs), PRM enabled us to

extract cholesterol-matched signals in a TAG-rich environment using
the cholesterol reference standard. Compared to samples from young
flies, fat body samples from old flies showed significantly higher
similarity scores to the cholesterol reference spectra in both finger-
print and CH stretching regions (Fig. 3e, f), indicating elevated cho-
lesterol content in old flies. This result is consistent with the published
data14. This analysis demonstrates our PRM algorithm as an effective
method for rapid in situ lipid mapping in tissues.

Depending on the biological questions to address and Raman
scattering equipment available, either the CH-stretching or fingerprint
region in a Raman spectrummay be the focus of a study. Both regions
can be used to analyze changes in biomolecule distribution, patholo-
gical structures (such as amyloid plaques), and other morphological
characteristics15–19. Although both spectral regions yielded similar
results, the fingerprint region generated results with a lower rejection
level of p < 0.001 (Fig. 3). This is likely because the fingerprint region
contained more definitive features, and the CH-stretching region
possessed low intensity shoulders below 2800 cm−1 and above
3000 cm−1, which may lead to a higher similarity score between sam-
ples since both spectral data sets matched in those regions where the
intensity was zero. Importantly, this demonstrates that similarity
scores generated from spectra data by PRM-SRS can be used to esti-
mate the levels of biomolecules in the samples.

Using PRM-SRS to detect cardiolipin changes in cells
After validating the efficacy and robustness of PRM on spontaneous
Raman spectral analysis, we next extended the algorithm to the ana-
lysis of stimulated Raman scattering (SRS) images. To evaluate the
spatial accuracy and quantitative approximation of PRM-SRS, we first
benchmarked it against fluorescence microscopy images. Using PRM-
SRS imaging, we examined cardiolipin (CL), an essential phospholipid
in the inner mitochondrial membrane, in cultured HEK293 cells. CL is
synthesized in the inner mitochondrial membrane in consecutive
reactions catalyzed by enzymes including phosphatidylglyceropho-
sphate synthase 1 (PGS1), phosphatidylglycerophosphate phosphatase
(PTPMT1) and cardiolipin synthase (CLS1)20,21. PGS1 is essential for CL
synthesis, and expression of an enzyme-deficientmutant PGS1 leads to
a reduction of PGP (Phosphatidylglycerophosphate) and CL in CHO
cells22. We generated stable HEK293 cell lines with downregulated
PGS1 (shPGS1). PGS1 downregulation was confirmed by immuno-
fluorescence analysis using a PGS1-specific antibody (Supplementary
Fig. 6). Following staining using nonyl acridine orange (NAO), a fluor-
escent dye with high affinity for CL23, cells were analyzed using both
two-photon fluorescence (TPF) microscopy and PRM-SRS. To
demonstrate the specificity of SRS signals for CL, we compared control
HEK293 cells with shPGS1 cells. PRM-SRS analysis of the hyperspectral
images was consistent with TPF images in both control and
shPGS1 cells (Fig. 4a, b). Quantitative analyses of both PRM-SRS images
and fluorescence images showed significant decreases of CL signals in
shPGS1 cells compared with control cells (Fig. 4c, d). Importantly, the
similarity score image of the reference-matchedCL is distinct fromany
single Raman shift images in the CH symmetric stretching regions
(Supplementary Fig. 6c). These results demonstrate the ability of PRM-
SRS to quantitatively detect CL changes in cells, and its potential for
visualizing lipid metabolic dynamics at the subcellular scale.

To compare the image similarity between fluorescence image and
PRM-SRS image, the similarity index and normalized mean squared
error were calculated (Supplementary Fig. 7). We found that the
similarity index between fluorescence images of NAO stained cardio-
lipin and PRM-SRS images of cardiolipin was higher than other lipid
subtypes. Normalizedmean squared error for cardiolipin is lower than
that of other lipid subtypes, supporting the highest similarity between
NAO stained cardiolipin and PRM-SRS image of cardiolipin. Impor-
tantly, down-regulating PGS1, an enzyme critical for cardiolipin bio-
synthesis, significantly reduced NAO-staining signal and PRM-SRS
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measured cardiolipin signal, supporting that PRM-SRS measured car-
diolipin signals reflect the cardiolipin levels in the samples. These
results of similarity comparison show that PRM-SRS describes well the
cardiolipin distribution.

PRM-SRS tracking clinically relevant lipid subtypebiomarkers in
human kidney tissue
We then applied PRM-SRS to characterizing lipid subtypes in human
kidney tissues, a structurally and functionally highly complex tissue
composed of more than 50 cell types24. Cholesterol, ceramides (Cer),
and triacylglycerides are among themost abundant lipid species in the
kidney. Dyslipidemia is frequently observed in nephrotic syndrome
(NS) and various types of chronic kidney disease (CKD)25. The glo-
merulus, the filtration unit of the nephron, is a network of capillaries
that sequesters lipid species as an initial step of filtration and is
decorated with lipid droplets. Wrapping around the capillary of the
glomerular tuft are podocytes, making up the epithelial lining of the
Bowman’s capsule. We used healthy human kidney tissue sections as a
control to showcase the application of our PRM-SRS in imaging dif-
ferent lipid subtypes in structurally complex tissue samples.

SRS imaging detected the overall distribution of lipids in the
morphologically distinct structures in the kidney tissue, such as glo-
meruli, tubules, and blood vessels (Fig. 5a). Using PRM-SRS, we esti-
mated relative concentrations of lipids in different structures, such as
lipid droplets in podocytes, and eosinophilic bodies near tubules

(Fig. 5a, b). PRM-SRS imaging revealed distributions of distinct lipid
subtypes in the glomerulus and surrounding structures in situ,
including TAG, cholesterol, cholesterol ester, and C12 ceramide, with
the 90th percentile similarity scores to the corresponding pure lipid
reference spectra (Fig. 5c).

Dyslipidemia is manifested as elevated levels of serum TAGs,
cholesterol, and very low to intermediate density lipoproteins. Com-
mon initial abnormalities include decreased production and activity of
lecithin-cholesterol acyltransferase which decreases high-density
lipoprotein (HDL) levels and maturation of HDL cholesterol26. The
regulation of HDL cholesterol is tightly controlled by several organs,
but generally entails the esterification of cholesterol into cholesterol
esters, which move towards the center of HDL particles, along with
neutral TAGs. This maintains a favorable cholesterol gradient as these
HDL particles become enriched by sequestering cholesterols and fatty
acids from other lipoproteins. Although mature lipoproteins are too
large to pass the glomerular filtration barrier, lipids and lipid-bound
proteins from lipoproteins may affect overall renal lipid metabolism27.
Our ratiometric imaging revealed that there is a greater amount of
non-esterified cholesterol in the lipid particles than neighboring
structures. These pools of cholesterol may represent those yet to be
enriched or ectopic deposits (Supplementary Fig. 8). Ceramides are
also abundant in the kidney andplay a crucial role in regulating cellular
processes and binding cholesterol and other lipoproteins28. Cer-
amides, e.g., C12 ceramide, show high similarity with pixel spectra in

Fig. 3 | Spectral PRM cross correlation in the fingerprint and CH stretching
regions. a, b Raman signals from fat body tissues of young (n = 33) and old (n = 50)
biologically independent Drosophila in the fingerprint and CH stretching regions.
Error bands represent 1 standard deviation (SD) from the mean. c, d Raman signals
of the cholesterol reference standard in fingerprint and CH stretching regions,
respectively. e Fingerprint region similarity scores of young (n = 33) andold (n = 50)
Drosophila fat body samples to the cholesterol reference standard. Box plots

indicate median and interquartile range, with whiskers indicating ±1.5 times the
interquartile range. p = 4.85 × 10−4 by two sided Wilcoxon rank sum test. f CH-
stretching region similarity scores of young and oldDrosophila fat body samples to
the cholesterol reference standard. Box plots indicate median and interquartile
range,withwhiskers indicating ±1.5 times the interquartile range. p =0.0037by two
sided Wilcoxon rank sum test. **p <0.01; ***p <0.001. PRM penalized reference
matching. Source data are provided as a Source Data file.
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lipid droplets and lipoprotein particles (Fig. 5c). In nephropathies,
ectopic lipid deposits in the glomerular mesangium and proximal
tubules are typically concurrent with low HDL levels26. The ability of
PRM-SRS to track the lipidomic profile in tissues collected from
patients at various stages of diseases will generate critical data for
changes in these macromolecules over time, and with associated bio-
logical variables. Such studies will provide insights into assessing
severity, progression or prognosis of various lipid metabolic diseases.

Mapping lipid subtype distributions in Drosophila fat body
Using maximum intensity projection (MIP) of the PRM-SRS hyper-
spectral image of total lipids, we visualized lipid droplets in Droso-
phila fat body cells (Fig. 6a). We also detected lipid subtypes using
different lipid reference standards, including TAG and phosphati-
dylethanolamine (PE). In addition to detecting lipid subtypes, PRM-
SRS can also provide information on subcellular distribution,
including co-localization, of different lipid subtypes. Comparison of
MIP of the PRM-SRS hyperspectral image of total lipids (Fig. 6a) with
mono-unsaturated triacylglycerol (TAG 18:1) reference-matched
image (Fig. 6b) revealed abundant TAG in lipid droplets (Fig. 6a,
b). A critical tenet of unmixing techniques such as PRM is that
spectral shape, rather than intensity, drives the similarity score of
normalized spectra. The MIP in Fig. 6a shows several lipid droplets
with non-uniform maximum intensities, yet the TAG reference
matched image shows a more uniform result. This was because

despite intensity differences that may have arisen from the sample
focus plane, the spectral shapes were still consistent.

Drosophila fat body cells contain lysosome-like structures that
regulate their lipid anabolism and these structures were detected
using reference spectra (Fig. 6c). These spectra, unlike those of indi-
vidual lipid subtypes, have a more dominant CH3 stretching peak at
2935 cm−1, and amore pronounced olefinic peak at 3065 cm−1. PE is one
of themost prominent lipid subtypes in cell/organellemembranes and
canbe visualized by taking PRM-SRS images using their corresponding
reference standard. Figure 6d shows the spatial distribution of the
ratio of the PE and TAG similarity-scored images. Themerged image of
the aforementioned lipid subtypes is shown in Fig. 6e. Upon closer
inspection, Fig. 6f shows the spectra of the apparent pixels are similar
to TAG, and therefore appear darker in those regions in both the TAG
and PE similarity-scored images. However, the lipid cores have a
greater disparity in these similarity scores, with an even greater simi-
larity to TAG and lesser similarity to PE. Therefore, the apparent pixels
are visible because of relative concentrations, as discussed in Supple-
mentary Fig. 2. Reference spectra for the respective lipid subtypes are
overlaid with the mean spectrum from the 90th percentile pixel simi-
larity scores (Fig. 6g). The intensity profiles (Fig. 6h) support the
notion that signal intensity of images based on similarity scores varies
by spectral shape, whereas signal intensity in SRS images varies by
chemical bond concentrations. Thus, a lipid droplet core may appear
more uniform in a TAG reference-matched PRM-SRS image than in an

Fig. 4 | PRM-SRS and fluorescence staining show similar results.
a, b Comparison of PRM-SRS and fluorescence staining in control cells expressing
shCtr (Ctr;a) and PGS1 knockdown (shPGS1;b) HEK293 cells. Panels on the top, two
photon fluorescence microscopy (TPF) images following nonyl acridine orange
(NAO)-labeling of CL. Panels on the bottom, label-free SRS hyperspectral images of
CL at the CH-stretching region. c, d Quantitative analyses of NAO staining signal
intensity and PRM-SRS imaging signal intensity (presented as similarity score in an

8-bit image) of CL in control (n = 31 cells over 2 technical replicates) and
PGS1 knockdown (n = 32 cells over 2 technical replicates) cells. Significantly
decreased signals in shPGS1 cells were detected by both TPF and PRM-SRS micro-
scopy. Values are mean ± SEM. ****p <0.0001 by Student’s t-test. n = 3 biologically
independent experiments. Scale bar, 10 µm. TPF two photon fluorescence, NAO
Nonyl-acridine Orange, CL Cardiolipin, shPGS1 short hairpin phosphatidylglycer-
ophosphate synthase 1. Source data are provided as a Source Data file.
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original SRS image of the CH2 stretching region. Together, these data
demonstrate that PRM-SRS is useful in detecting different lipid sub-
types and their distribution at the subcellular scale.

Analyzing lipid subtypes in mouse brain samples
Wenext applied PRM-SRS to analyzing lipidmetabolism in the context
of the aging using mouse hippocampal samples. We visualized and
compared cholesterol, PC, and PE levels in hippocampal samples from
young (3 months) and old (18 months) mice (Fig. 7a–c; f, g). We also
generated ratiometric images for quantitative analysis, since the signal
intensity has a linear relationship with the concentration of chemical
bonds of the molecules detected. Ratiometric imaging analyses
showed increased Cholesterol/PE ratio in subregions of granule cell
nuclei (Fig. 7d, i; red circles). This increase in the Cholesterol/PE ratio
was more prominent and detected in more granule cells in the old
brain samples as compared with the young ones (compare Fig. 7d
with 7i), indicative of altered cholesterol and/or PE metabolism in the
old brains. These results show that ratiometric PRM-SRS imaging can
detect changes in differential spatial distribution of various lipid sub-
types even when such changes are not obvious in images of individual
lipid subtypes.

Ratiometric images of PC/PE showed higher levels of PC relative
to PE in the granule cell nuclei of the dentate gyrus in both young and
old mice, but lower levels outside the nuclear regions (Fig. 7e, j).
Compared to the young brain sample, the old brain sample showed
no significant changes in the average PC or PE levels in the granule
cells in both individual imaging channels (Fig. 7b, c, g, h) and ratio-
metric images (Fig. 7e, j). This is consistent with the results from Gas
Chromatography Mass Spectrometry (GC-MS) (Fig. 7k, l). However,
we noticed spatial distribution differences in the PC to PE ratio
between young and old samples. The ratiometric images reveal that
more granule cell nuclei had uniformly higher PC/PE ratio in the old
brain sample, whereas the nuclei in the young sample showed less
even distribution of the PC/PE ratio (red areas; see those nuclei
marked by purple arrows) (Fig. 7e, j). These data suggest altered
synthesis, accumulation or clearance of PC and/or PE in the granule

cells in the old brains, consistent with a previous report29. Since PE is
a precursor of PC, higher PC to PE ratios inside the older
hippocampal granule cells suggest that agingbrainsmayhave altered
CTP:phosphocholinecytidylyl transferase (CCT) activity—a rate lim-
iting PC synthesis enzyme with a predominantly nuclear
localization30. This finding is significant because both PRM-SRS ima-
ging and GC-MS analysis show that the young brain samples contain
less cholesterol relative to PE than old ones. However, only through
ratiometric analysis were we able to detect differential subcellular
distribution of lipids, including cholesterol/PE and PC/PE ratio in the
nuclei (Fig. 7d, i, e, j).

For comparison, we analyzed the same samples using GC-MS to
quantify cholesterol/PE and PC/PE ratios (Fig. 7k), whichdemonstrated
an increased cholesterol/PE ratio and no changes in the PC/PE ratio in
old brain samples compared with young ones. Additional results from
other internal lipid standards canbe found in the supplementary Fig. 9.
The PRM-SRS images of nuclei in the tissues weremanually segmented
using ImageJ for quantification of cholesterol/PE and PC/PE ratios
(Fig. 7l). Shotgun lipidomics indicate several PC and PE subspecies are
significantly upregulated or downregulated, as shown in the volcano
plot (Fig. 7m). These data suggest that PRM-SRS may be used for
quantitative lipidomic imaging analyses in tissue samples in the future.

Detecting lipid subtype distributions in human brain tissues
Sphingosine is another crucial lipid subtype whose metabolic altera-
tion has been suggested as a biomarker for neurodegenerative dis-
eases, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases4,31.
To visualize individual cells, we used label-free optical SRS histology
(SRH) imaging of human brain sample (See supplementary Fig. 10) to
create virtual histology images similar to that of hematoxylin-and-
eosin (H&E) staining as previously reported32. Using PRM-SRS, we
visualized sphingosine and CL simultaneously in the human brain tis-
sue sections (Fig. 8a, b). Superimposition of sphingosine and CL ima-
ges illustrates their relative distribution in brain cells (Fig. 8c, d).
Ratiometric imaging (Fig. 8e) and quantitative analyses (Fig. 8f)
demonstrated a clear reduction in the CL to sphingosine ratio inside

Fig. 5 | Label-free hyperspectral detection of different lipid subtypes in situ
using PRM-SRS. a, b SRS image of a human kidney (n = 1, no replicate trials) tissue
section at 2850 cm−1. Panel b shows the enlarged image of the boxed area in panel
(a). Hollow arrowheads, intracellular lipid droplets in tubules. Solid arrowheads,
eosinophilic bodies. Circles, lipid droplets sequestered by podocytes in the glo-
merulus. Scale bar, 200 μm. c PRM-SRS spectra and images of different lipid sub-
types of interest show the distribution of the similarity scores, each with the same

contrast levels. Spectra of the top 10% of similarity score pixels overlaid on the
reference spectrum for each lipid subtype show consistent matches. Resulting
similarity score images were background subtracted to improve the contrast.
Center-line of spectra correspond to mean spectrum for each respective lipid
subtype with 1 standard deviation (SD) error bands. Scale bar, 200 µm. TAG tria-
cylglycerides, Cer ceramide. Source data are provided as a Source Data file.
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the nucleus, consistent with the fact that CL is mainly localized at the
inner mitochondrial membrane but not in the nucleus. These results
show that PRM-SRS can be used to visualize the subcellular distribu-
tion of different lipid subtypes.

Discussion
In this study, we developed a PRM algorithm that can efficiently unmix
and distinguish a variety of lipid subtypes from single SRS HSI stacks.
Compared with fluorescence imaging, our PRM-SRS platform shows
the advantages of multiplexed lipid subtype visualization from single
label-free HSI sets. This also represents a significant expansion in
applications comparedwith traditional SRS imaging, whichoften relies
on detecting total lipids in the CH-stretching mode at 2850 cm−1.

With an improved contrast, PRM-SRS imaging enables us to
identify different lipid subtypes.The spectra of lipid subtype standards
collected from spontaneous Raman scattering microscopy can be
utilized in analyzing HSI data collected from SRS microscopy. Our
PRM-SRS can generate both co-localization and ratiometric data of
individual lipid subtypes simultaneously by mapping their spatial dis-
tributions and quantifying their relative concentrations. In this study,
we established a Raman spectra librarywith 38 lipid subtype standards
(Supplementary Table 1) and demonstrated the simultaneous detec-
tion of a few selected lipid subtypes by PRM-SRS in cells and tissues
(Figs. 3–8, Supplementary Fig. 8). Analyses of human kidney tissue
samples indicate that PRM-SRS can be used to identify different lipid

subtypes associated with renal diseases, suggesting potential appli-
cation of PRM-SRS in diagnosis and prognosis of these diseases,
including those associated with dyslipidemia. Such label-free methods
may be instrumental in the early detection of kidney diseases by
detecting and measuring relative levels of different lipid biomarkers
without the need to stain biopsied samples or perform destructive
imaging, especially on limited clinical samples. Analyses of Drosophila
fat body samples show that PRM-SRS can be used effectively in map-
ping spatial distributions of lipid subtypes at the subcellular scale.
These results highlight the ability of PRM-SRS to selectively visualize
multiple lipid subtypes in a single imagewith ease and freedom akin to
individual-subtype labeled imaging without the need to actually label
them. Analyses of mouse and human brain tissues demonstrate the
importance of measuring relative lipid concentrations through ratio-
metric imaging, which reveals regionally different concentrations of
lipid subtypes that may not be readily apparent in single-channel
images. Although lipid subtypes are not measured in absolute con-
centrations, their relative levels are consistent with results from other
modalities such as mass spectrometry (MS).

The brain is a lipid-rich organ. Lipid subtypes such as cholesterol
and sphingolipids are important components of the brain. Alteration
in lipid subcellular distribution and metabolism impact on brain cell
functionhavebeen associatedwith neurological diseases.Our analyses
of mouse and human brain tissues illustrate the capability of PRM-SRS
in quantitatively mapping and analyzing distribution of different lipid

Fig. 6 | PRM-SRS imaging of Drosophila fat body cells detects different lipid
subtypes and their subcellular distributions. a Maximum intensity projection
(MIP) of the PRM-SRS hyperspectral image of total lipids reveals lipid droplets.
b PRM-SRS detected TAG in lipid droplet cores. c Lysosome-like structures detec-
ted by PRM-SRSusing reference spectrameasured from lysosome-like structures in
Drosophila fat body. d PE:TAG ratiometric images show that the interstitium
between lipid droplet cores and lysosome-like structures has higher relative levels
of PE. e PRM-SRS subtype images are merged to detect co-localization of different
lipid subtypes. f Similarity scores from areas marked by red arrows 1 and 2 in the

lower part of panel D highlight the necessity of evaluating relative concentrations
as opposed to absolute concentrations. g SRS spectra of top 90th percentile pixel
similarity scores in (b–d) lipid subtypes with respective standard reference spec-
trumoverlaid. Center-line of spectra representmeanwith 1 standard deviation (SD)
error bands. h Intensity profiles along the dotted white lines in (a) and (e), upper
and lower panels respectively, show how signal intensity varieswith spectral shape,
rather than concentration in a PRM-SRS image. n = 2 replicate trials. Scale bar,
20 µm. MIP maximum intensity projection, TAG triacylglyceride, PE phosphatidy-
lethanolamine. Source data are provided as a Source Data file.
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subtypes within single cells. These analyses confirm the cross-
applicability of the fingerprint and CH-stretching spectral regions for
quantitative analyses. Further, our PRM-SRS imaging shows that
sphingosine, a catabolic product of sphingomyelin, has a pre-
dominantly nuclear localization. Nuclear sphingomyelinase and
sphingosine kinases regulate the release of ceramides and sphingo-
sine, as well as the conversion of sphingosine to sphingosine-1-
phosphate. Theseprocesses regulate cell proliferation and cell death33.
Sphingosine kinasesmay shift from a cytosolic to a nuclear localization
in brain samples fromAlzheimer’s disease patients34. The development
of new technologies in imaging distinct lipid subtypes and their
metabolism will enhance our ability to investigate molecular
mechanisms underlying different brain disorders.

As shown in Fig. 4, Fig. 8, Supplementary Figs. 2 and 3, PRM-SRS
has sufficient capability to provide quantitative information on lipid
subtype distribution. Theoretically, the similarity scores and con-
centrations of dominant molecules have a linear relationship in a
certain dynamic concentration range. However, spectral shifts caused
by multiple interfering factors (such as change in chemical environ-
ment or instrumentation) may distort the relationship between the
similarity scores and concentrations. Since the spectral shifts can be

caused bymultiple factors, it is difficult to define an exact function of a
spectral shift. Nevertheless, such spectral shifts can be corrected by
using the penalized regression analysis. In brief, the penalty termhelps
us calculate the similarity score to more precisely describe the linear
relationship with concentration. Depending on the equipment used
and the samples of interest, careful tuning of the penalty term in the
PRM algorithm is necessary. At present, the PRM-SRS platform should
be used in well-controlled experiments to limit external chemometric
dimensions. In thisway, spectral signals aremore likely frommolecular
subtypes in the samples, rather than from noises. Since Raman peak
intensities are multiplexed in the sense that a specific peak shape may
be influenced by multiple molecules, it is critical that molecular
makeup is as consistent as possible when using PRM-SRS to estimate
relative concentrations of different molecular subtypes. In the current
PRM platform, users should determine the optimal penalty coefficient
experimentally to avoid artificial increases or decreases of similarity
scores. An extremely low penalty coefficient would allow the com-
parison between reference spectra and pixel spectra to occur at any
offset, which may inflate the overall similarity score. For example,
ceramide has a notably high peak at 2880 cm−1, while pixel spectra
typicallyhave themostprominent peak at the 2940cm−1 area. Allowing

Fig. 7 | PRM-SRS imaging of mouse hippocampal samples. a–j PRM-SRS hyper-
spectral detection of cholesterol, PC, and PE in hippocampus samples from young
and old mice. Overall intensity of detected lipid subtypes shows distinct patterns,
with old brains showing higher cholesterol to PE ratio, but relatively consistent
levels of PE and PC. d, i Ratiometric images of cholesterol to PE shows more nuclei
with higher cholesterol/PE ratio in the old brains. Selected nuclei aremarkedby red
circles. e, j Ratiometric images of PC relative to PE show higher PC/PE ratio in
granule cell nuclei of both young and old brains, but the spatial distribution of the
ratio is more heterogeneous in young samples (see nuclei marked by purple
arrows). k, lMass spectrometry (k) shows results consistent with that obtained by

ratiometric PRM-SRS imaging (l) for biologically independent mice (n = 4) in each
age group. Box plots indicate median and interquartile range, with whiskers indi-
cating 1.5 times the interquartile range. Ratiometric image intensities, corre-
sponding to the ratio of PRM similarity scores of lipid subtypes, are plotted. Error
bars represent standard deviation (SD). *p =0.017; **p =0.006. m Volcano plot
showing significantly altered lipid species (n = 534) between groups. p =0.05, fold
change > 2. Data are filtered such that only lipids present at least three times across
all samples are shown. Scale bar, 20 µm. Chol cholesterol, PC phosphatidylcholine,
PE phosphatidylethanolamine, GC/MS Gas Chromatography Mass Spectrometry.
Source data are provided as a Source Data file.
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spectral offsets without penalty may result in a high similarity score
because the ceramide reference could yield a high similarity scorewith
the pixels with a sharp 2940 cm−1 peak. On the other hand, an extre-
mely high penalty coefficient would be akin to not allowing spectral
offsets during comparison at all, which would be similar to traditional
referencematching. This is disadvantageous because spectra acquired
with different equipment may not be exactly calibrated on the same
x axis, which could artificially decrease the similarity scores. While
these cases do not occur often, the greatest similarity scoredoes occur
at very small offsets. Figure 2d–f shows PRM-SRS imageswith different
penalty coefficients. Although the PRM-SRS pipeline can be further
enhanced by including more comprehensive reference standards and
further increasing analysis speed, this platform is robust for analyzing
different lipid subtypes. Referencematching couldalso be auseful tool
to detect the presence of representative mixtures of compounds, not
simply individual molecules.

The main advantages of PRM-SRS include multiplexed mole-
cular subtype visualization, positive values, and fast speed of simi-
larity score calculation. Similarity scores are always positive values
since Raman intensities cannot be negative. On the other hand,
pseudo-inverse matrix (PINV) coefficients can be negative, which
will make it difficult to normalize the output. Our similarity score
calculation is faster than other methods, such as the pseudo-inverse
matrix (Supplementary Fig. 3). PRM and PINV show similar results in
correlation with relative concentrations. However, PINV-based cal-
culation time increases exponentially with the number of spectra in
the original matrix and image size. When analyzing 1024 × 1024
hyperspectral images using PINV, there are millions of spectra in a

single experiment. On the other hand, similarity score calculation
using PRM-SRS is based on the inner-product, which is easily vec-
torized and split in a parallel pool. The calculation time difference
between PRM and PINV is shown in Supplementary Fig. 2. Con-
sidering the number of spectra in a single HSI stack, the calculation
speed is an important factor as a practical analysis tool for image
analysis. Although the PRM-SRS result cannot provide absolute
concentrations as precisely calibrated linear unmixingmethods, this
approach clearly shows advantages over other methods.

PRM-SRS can also be used together with other chemometric
methods, such as GC-MS for cross validation, as the incidence of
false positivemay still be high. Finally, detection of the vast variety of
lipid subtypes may require further improvement in unmixing
methods and spectral resolution, as the lipid subtype reference
library is expanded, and more lipid subtypes are further evaluated.
With some adjustments, such as using different reference libraries,
this PRM-SRS platform can be extended to analyzing other mole-
cules, including proteins, nucleic acids, and even clinically relevant
molecular complexes (such as protein aggregates or oligo-
mers).Using heavy water (D2O) probed SRS (DO-SRS), metabolic
imaging can also distinguish de novo newly synthesized biomole-
cules, including lipids, proteins, and DNA32,35,36, from old existing
biomolecules in cells and tissues at the subcellular resolution. This
ever-expanding library ofmolecular subtype referencesmaywarrant
broader spectral regions, including the fingerprint, CH-stretching,
andO-H stretching regions to increase the chemometric dimensions.
In this study, due to the stronger signal in the CH-stretching region
than the fingerprint region, we focused on the CH-stretching region

Fig. 8 | Hyperspectral SRS imaging detection of cardiolipin and sphingosine in
a human brain tissue section. a Sphingosine similarity score image of human
brain tissue. Scale bar, 10 µm.bCL in the same regionof interest. cMerged image of
CL and Sphingosine. n = 3 technical replicates for (a–c). d Zoomed-in image of a

single brain cell with CL and Sphingosine similarity scores. Scale bar, 5 µm.
e Ratiometric image of CL to Sphingosine similarity scores in the single brain cell in
(d). f Intensity profile of (e) along the indicated white dashed line. CL cardiolipin.
Source data are provided as a Source Data file.
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to analyze lipids. In our future study applying PRM-SRS to visualize
protein distribution, the fingerprint region will be a focus of our
attention. To achieve this goal, integration of statistical denoising
and regression methods will help increase the power of molecular
subtype matching. Application of higher order signal manipulations
such as digital derivatives and wavelet analyses, will enhance the
ability to extract the most prominent as well as subtle but important
features.

In summary, this study presents a hyperspectral imaging plat-
form—PRM-SRS—that allows for direct identification of multiple
molecular species in situ with subcellular resolution and high che-
mical specificity by leveraging the cross-applicability of spectral
reference libraries andHSImethods. This PRM-basedmethod can be
applied to various microscopy setups, such as SRS, FTIR, and
spontaneous Raman scattering spectroscopy. Compared with
existing HSI methods, PRM-SRS shows a much enhanced speed and
efficiency. With appropriate reference spectra established, PRM-SRS
can be used to detect a wide range of different biomolecules. This
platform can also be applied to studying metabolism of diverse
types of biomolecules in cell and tissue samples. For example, when
combined with transcriptomics analyses following up- or down-
regulation of lipid metabolism genes, it will be highly useful for
investigating metabolic changes under different pathophysiological
conditions. With its easy implementation, PRM-SRS can be com-
bined with high-throughput methods, such as microfluidic/nano-
fluidic devices and single-cell apparatuses, or with large-area HSI
mapping methods. The application of deep learning algorithms,
such as DeepChem, may further improve the imaging speed in
femtosecond SRS imaging10. PRM-SRS could benefit from additional
instrumentation improvements, such as distortion-free polygon
scanning and spectral focusing, as well as from machine
learning to enhance the SNR37. Finally, PRM could easily augment
other unmixing methods, including MCR-ALS, by providing fast
initial component spectra. Thus, PRM-SRS has great potentials in
multiplex cell and tissue imaging with a broad spectrum of
applications.

Methods
Ethical statement
Applicable experimental protocols were approved by the Institutional
AnimalCare andUseCommittee (IACUC) at theUniversity ofCalifornia
San Diego and the IACUC at Duke University, respectively. The
approved IRB in WashU St. Louis has signed off on the MTA (17833)
Transfer Agreement with UC San Diego to ensure the sharing is con-
sistent with the approved IRB application.

Sample preparation
HEK293 cell cultures. The parental HEK293 cell line was obtained
from the American Type Culture Collection (ATCC). Cells were cul-
tured in DMEM supplemented with 5% fetal bovine serum (FBS), 1%
penicillin/streptomycin (Fisher Scientific, Waltham, MA).

The control shRNA construct was as previously described38. A
shPGS1 construct was designed PGS1 by expressing shRNA against
PGS1 (target sequence: 5′-TCGGGTTCCATCCGTTTAAAT-3′) in the
plasmid vector Tet-pLKO-puro (Vector Builder Inc.) to specifically
down-regulate expression of PGS1. The control and shPGS1 con-
structs were transfected into HEK293 cells using lipofectamine
(Invitrogen). Following transfection, cells were selected using pur-
omycin (1 μg/ml) and stably expressing cell clones were obtained.
Control and shPGS1 cells were passaged at 80% confluence and
plated on #1 thickness laminin-coated coverglasses (GG12-laminin,
VWR). After allowing cells to adhere to the coverglasses for 2 h, cells
were fixed using 4% v/v PFA for 15min and stained with 100 nM NAO
in the dark for 30min. Cells were SRS imaged transmissively through
coverglasses.

Immunofluorescence staining was performed following our pub-
lished protocol38 using a polyclonal rabbit anti-PGS1(Sigma-Aldrich,
Cat# AV48896) and secondary antibody conjugated with Alexa-488
(Abcam, Cat# ab150081).

Human kidney tissue preparation. De-identified human kidney tissue
sections (30μm) were prepared from 4% v/v PFA-fixed frozen biopsy
samples using a Compresstome (VF-210-0Z, Precisionary). The kidney
cortex was isolated for imaging. Samples were imaged between 1mm
thick glass slide and #1 thickness coverglass, submerged in 1× PBS.

Human brain tissue preparation. De-identified post-mortem autopsy
human brain sections (6 μm) were prepared from formalin-fixed and
paraffin-embedded cortex tissue of control subjectwithout detectable
neuropathology as previously published39,40. The sections were
deparaffinized following a published protocol13. Subsequent SRS ima-
ging was conducted with the tissue sections sandwiched in PBS
between 1mm thick glass slides and #1 thickness cover glass.

Mouse Brain Samples. Young (3 months) and aged (18 months) mice
were euthanized with 5% isoflurane, and then perfused with 4% par-
aformaldehyde. The brains were harvested and fixed in 4% paraf-
ormaldehyde at 4 °C for overnight. The fixed brains were washed with
PBS and cut into 120-μm thickness slices with Vibratomes (Preci-
sionary). The brain slices were placed in the center of a spacer and
sandwiched between glass slides and coverslip for hyperspectral SRS
imaging.

Drosophila fat body samples. Wild type (w1118 stock #5905) were
originally obtained from the Bloomington Stock Center and have been
maintained in the lab for several generations. Fat bodies were dis-
sected from day 7 adult flies and fixed in 4% PFA (in 1×PBS) for 15min.
Samples were imaged immediately using SRS microscopy for hyper-
spectral imaging. Whole animal experiments were conducted in
compliance with all relevant ethical regulations and based on UCSD
approved protocol.

Spontaneous Raman spectroscopy
Spontaneous Raman scattering spectra were obtained by a confocal
Raman microscope (XploRA PLUS, Horiba) equipped with a 532nm
diode laser source and 1800 lines/mm grating. The acquisition time is
30 swith an accumulation of 4. The excitationpowerwas ~40mWafter
passing through a 100× objective (MPLN100X, Olympus). Output
spectra were background subtracted and vector and simplex normal-
ized. The pure lipid reference standards were placed on glass slides for
spontaneous Raman spectra measurement. All lipid subtype reference
spectra were acquired in the same manner.

Stimulated Raman scattering microscopy
An upright laser-scanning microscope (DIY multiphoton, Olympus)
with a 25× water objective (XLPLN, WMP2, 1.05 NA, Olympus) was
applied for near-IR throughput. Synchronized pulsed pump beam
(tunable 720–990 nm wavelength, 5–6 ps pulse width, and 80MHz
repetition rate) and Stokes (wavelength at 1032 nm, 6 ps pulse
width, and 80MHz repetition rate) were supplied by a picoEmerald
system (Applied Physics & Electronics) and coupled into the
microscope. The pump and Stokes beams were collected in trans-
mission by a high NA oil condenser (1.4 NA). A high O.D. shortpass
filter (950 nm, Thorlabs) was used that would completely block the
Stokes beam and transmit the pump beamonly onto a Si photodiode
for detecting the stimulated Raman loss signal. The output current
from the photodiodewas terminated, filtered, and demodulated in X
with a zero phase shift by a lock-in amplifier (HF2LI, Zurich Instru-
ments) at 20MHz. The demodulated signal was fed into the
FV3000 software module FV-OSR (Olympus) to form the image
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during laser scanning. All SRS images were obtained with a pixel
dwell time 40 µs and a time constant of 30 µs. A stack of 512 pixel
×512 pixel ×76 images in the C–H stretching region took ~15min to
acquire. The PRM analysis of this image-stack took less than 1min.
Laser power incident on the sample was approximately 40mW.
Stimulated Raman histology was performed following published
protocol41.

Gas Chromatography Mass Spectrometry (GC-MS)
Hippocampal slices (n = 4 per group) from 3-month-old and 18-month-
old mice were homogenized in ethanol/water1:1 (v/v) and the homo-
genate were sent to Lipotype GmbH (Dresden, Germany) for mass
spectrometry-based lipid analysis42. Lipids were extracted using a two-
step chloroform/methanol procedure43. Samples were spiked with
internal lipid standard mixture containing: cardiolipin 14:0/14:0/14:0/
14:0 (CL), ceramide 18:1;2/17:0 (Cer), diacylglycerol 17:0/17:0 (DAG),
hexosylceramide18:1;2/12:0 (HexCer), lyso-phosphatidate 17:0 (LPA),
lyso-phosphatidylcholine 12:0 (LPC), lyso-phosphatidylethanolamine
17:1 (LPE), lyso-phosphatidylglycerol 17:1(LPG), lyso-
phosphatidylinositol 17:1 (LPI), lyso-phosphatidylserine 17:1 (LPS),
phosphatidate 17:0/17:0 (PA), phosphatidylcholine 17:0/17:0
(PC),phosphatidylethanolamine 17:0/17:0 (PE), phosphatidylglycerol
17:0/17:0 (PG), phosphatidylinositol 16:0/16:0 (PI), phosphatidylserine
17:0/17:0 (PS), cholesterolester 20:0 (CE), sphingomyelin 18:1;2/12:0;0
(SM), triacylglycerol 17:0/17:0/17:0 (TAG) and cholesterol D6 (Chol).
After extraction, the organic phasewas transferred to an infusion plate
and dried in a speed vacuum concentrator. First step dry extract was
re-suspended in 7.5mM ammonium acetate in chloroform/methanol/
propanol (1:2:4, V:V:V) and 2nd step dry extract in 33% ethanol solution
of methylamine in chloroform/methanol (0.003:5:1; V:V:V). All liquid
handling steps were performed using Hamilton Robotics STARlet
robotic platform with the Anti Droplet Control feature for organic
solvents pipetting.

Samples were analyzed by direct infusion on a QExactive mass
spectrometer (ThermoScientific) equipped with a TriVersa NanoMate
ion source (Advion Biosciences). Samples were analyzed in both
positive and negative ion modes with a resolution of Rm/
z = 200= 280,000 for MS and Rm/z = 200 = 17,500 for MSMS experi-
ments, in a single acquisition. MSMS was triggered by an inclusion list
encompassing corresponding MS mass ranges scanned in 1 Da
increments44. Both MS and MSMS data were combined to monitor CE,
DAG and TAG ions as ammonium adducts; PC, PC O-, as acetate
adducts; and CL, PA, PE, PE O-, PG, PI, and PS as deprotonated anions.
MS only was used to monitor LPA, LPE, LPE O-, LPI and LPS as depro-
tonated anions; Cer, HexCer, SM, LPC, and LPC O- as acetate adducts
and cholesterol as ammonium adduct of an acetylated derivative45.
Data were analyzed with in-house developed lipid identification soft-
ware based onLipidXplorer46. Data post-processing and normalization
were performed using an in-house developed data management sys-
tem. Only lipid identifications with a signal-to-noise ratio >5, and a
signal intensity fivefold higher than in corresponding blank samples
were considered for further data analysis.

Data analysis
Image processing. SRS images were converted to unsigned 16 bit
images viaMATLAB, and were filtered using amorphological top-hat
algorithm with 8 structuring elements, where appropriate. Unless
used in ratiometric calculations, images for display were back-
ground subtracted using a sliding paraboloid with a radius of one
tenth the image length. Intensity profiles and color maps were
generated from ImageJ. All images within a figure have the same
contrast unless specified otherwise. Ratiometric and overlaid ima-
ges were created using the Image Calculator function and Overlay
function, respectively, in ImageJ. Statistical analyses were per-
formed using SPSS.

Penalized Reference Matching Algorithm. Computation was con-
ducted as described in the main text using MATLAB R2021b using an
8 Core Intel i9-9880H CPU, NVIDIA Quadro RTX 4000, and 64GB of
RAM. Spectra were intensity normalized from 0 to 1 following base-
line correction using arPLS (if background spectra were not available
for subtraction). All spectra were interpolated at every integer
wavenumber using the interp1 function to avoid dimension mis-
match errors during inner product calculations. Spectra were also
Euclidean normalized using the standard vecnormor norm functions
inMATLAB. If a spectral shift of the reference spectrum exceeded the
range of the original analyte spectrum, it was padded with zeros on
the leading side, and trimmed on the lagging side. For timing and
efficiency calculations, no parallel workers were used to split the
spectral dataset for processing, but more workers are possible in
MATLAB if supported by the hardware if the dataset is
exceptionally large.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are provided as a
SourceData File including numerical data of important plots in figures.
SomeofMatlab codes for simulation are also included. Source data are
provided with this paper.

Code availability
Example data and source code for PRM-SRS with explanations about
parameters and installation protocol are available at https://github.
com/lingyanshi2020/PRM-SRS.
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