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Molecular Mechanisms and Regulation of Urinary Acidification

Ira Kurtz1,2

1Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA

2Brain Research Institute UCLA, Los Angeles, CA, USA

Abstract

The H+ concentration in human blood is kept within very narrow limits, ~ 40 nM, despite the fact 

that dietary metabolism generates acid and base loads that are added to the systemic circulation 

throughout the life of mammals. One of the primary functions of the kidney is to maintain the 

constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood 

acidity by performing three key functions: 1) reabsorb HCO3
− that is filtered through the 

glomeruli to prevent its excretion in the urine; 2) generate a sufficient quantity of new HCO3
− to 

compensate for the loss of HCO3
− resulting from dietary metabolic H+ loads and loss of HCO3

− in 

the urea cycle; and 3) excrete HCO3
− (or metabolizable organic anions) following a systemic base 

load. The ability of the kidney to perform these functions requires that various cell types 

throughout the nephron respond to changes in acid-base chemistry by modulating specific ion 

transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein 

chemistry is altered appropriately. The purpose of the article is to provide the interested reader 

with a broad review of a field that began historically ~ 60 years ago with whole animal studies, 

and has evolved to where we are currently addressing questions related to kidney acid-base 

regulation at the single protein structure/function level.

Introduction

Systemic acid-base chemistry is very tightly controlled in normal humans, in spite of the fact 

that metabolism of typical diets generates a net H+ load (405). Moreover, there is an inverse 

association between the blood HCO3
− concentration and the dietary H+ load that is greater 

among middle-aged and elderly persons than younger adults (36). Even small changes in 

systemic acid-base chemistry may affect bone, skeletal muscle and insulin resistance (1, 

213, 469). In postmenopausal women administration of base orally has been shown to 

improve bone density and decrease renal nitrogen excretion (222, 337, 640).

Diets rich in arginine, lysine, phosphoproteins, and sulfur containing amino acids when 

metabolized generate net H+ that are delivered into the venous system (430). The H+ 

combine with HCO3
− (and to some extent other body buffers) extracellularly and 

intracellularly according to the following reaction: H+ + HCO3
−→ CO2 + H2O. CO2 

generated in the reaction is excreted by the lungs thereby preventing the systemic CO2 
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concentration from increasing. It is the function of the kidneys to regenerate and delivery to 

the renal veins the required quantity of HCO3
− lost in this process (288, 404). This function 

of the kidney is distinguished from the additional requirement performed predominantly by 

the proximal tubule (and to a lesser extent the thick ascending limb) to reabsorb HCO3
− 

from the glomerular filtrate such that typically less than 0.1% of the filtered HCO3
− is 

excreted in the urine (589).

Whole Body Acid-base Balance

The generation of HCO3
− is an essential function of the kidney ensuring that whole body 

HCO3
− content remains relatively constant despite the loss of HCO3

− due to dietary H+ 

loads. The kidney generates new HCO3
− from metabolizable organic anions including α-

ketoglutarate (derived from glutamine), lactate, citrate, and fatty acids (183, 287, 288). 

These biochemical processes occur predominantly in the proximal tubule and to a lesser 

extent other nephron segments. In the process of generating α-ketoglutarate that is 

subsequently converted into 2 HCO3
− in the Krebs cycle and in gluconeogenesis, 2 NH4

+ 

are produced according to the following mitochondrial reactions (256, 622, 795, 796):

1) glutamine + H2O → glutamate + NH4
+ (catalyzed by phosphate dependent glutaminase)

2) glutamate + H2O + NAD → α-ketoglutarate + NADH +NH4
+ (catalyzed by glutamate 

dehydrogenase)

The partitioning of the generated NH4
+ generated by the kidney between the renal vein and 

urine is an important factor at the whole organ level that has additional significant effects on 

systemic acid-base balance. Although new HCO3
− generated in the proximal tubule is 

delivered to the renal veins, NH4
+ produced in the kidney is partitioned between the urine 

and the renal veins. Of the approximately 75 mEq of NH4
+ per day produced on an average 

North American diet, approximately 50% is transferred to the renal veins and an equal 

amount is excreted (534, 535, 686). Importantly, the NH4
+ delivered to the renal veins 

represents a substance that is HCO3
− consuming, resulting in a decrease the systemic pH. 

Specifically, NH4
+ delivered to the circulation upon reaching the liver consumes HCO3

− in 

the urea cycle according to the following reaction 2 NH4
+ + 2 HCO3

− → urea + 3 H2O + 

CO2 (298). This has led to the concept of “effective new HCO3
− production” defined as 

HCO3
− produced by the kidney, which has not been consumed in the urea cycle and thus is 

available as a buffer for modulating systemic acid-base balance.

The excretion of ~50% of total NH4
+ production requires the coordinated intertubular 

transport of NH3/NH4
+ from its production site predominantly in proximal tubule cells to 

the collecting duct lumen. In metabolic acidosis, both the quantity of new HCO3
− produced 

in the proximal tubule is increased and the intertubular transport of NH3/NH4
+ is altered 

such that a greater percentage of total NH4
+ produced is excreted in the urine (less being 

delivered to the renal veins) thereby significantly increasing the effective new HCO3
− 

delivery to the systemic circulation (101, 535, 686, 687). By altering the total new HCO3
− 

production rate and renal vein/urine NH4
+ partitioning, the kidney possesses powerful 

mechanisms for compensating for the loss of HCO3
− due to dietary metabolic H+ generation 

and in the urea cycle.
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A second source of new HCO3
− generation is derived from tubular luminal protonation of 

HPO4
2− and subsequent excretion of H2PO4

− (titratable acid) (431, 615). Approximately 

75% of titratable acid (TA) is derived from H2PO4
− excretion whereas the remainder is 

composed of protonated creatinine and other less defined organic anions. The site of 

protonation of depends on the luminal pH and the pK of the protonated anion. H2PO4
− 

generation takes place primarily in the proximal tubule as the luminal pH decreases from 7.4 

to ~ 6.7 (475), whereas the protonation of other organic anions (average pK ~ 4.4) occurs in 

the collecting duct (325).

Human urine contains not only NH4
+, H2PO4

−, H+-creatinine, but also ~90 organic anions 

totaling ~40 mEq per day (147, 172, 432). Approximately 50% of these organic anions have 

metabolizable carboxyl groups that can be converted into HCO3
− at the pH of normal blood 

(123, 354). Normal urine also contains ~10 mEq per day of metabolizable organic cations 

(172). Under control conditions and following exogenous acid-or alkali loading, the net 

renal excretion of H+ or base is traditionally calculated according to the following equation: 

NAE (meq/time) = volume/time × [NH4
+ + TA - HCO3]. The urinary excretion of free H+ is 

omitted in the calculation because it’s contribution is minimal i.e. at a urine pH of 4.5, the 

concentration of free H+ is 32 μmol per liter. A similar calculation can be used to quantitate 

the magnitude of renal vein acid or base delivery to the systemic circulation. Because of the 

magnitude of metabolizable organic anion excretion in urine (representing loss of HCO3
−), 

several authors have indicated that NAE should be calculated as: NAE (meq/time) = 

volume/time × [NH4
+ + TA - metabolizable organic anions - HCO3

−] (172, 588). The 

excretion of various metabolizable organic anions is altered predictably during exogenous 

acid and alkali loading and during normal variations in protein intake (123, 246, 290, 292, 

537, 656).

Acid/alkali loading induces changes in NAE associated with alterations in the expression 

and function of H+/base transporters throughout the nephron involving complex signaling 

pathways that will be detailed below. The response of the kidney to exogenous or 

endogenous acid/alkali loads results in a change in both new effective HCO3
− generation 

and HCO3
− transport (absorption and secretion) that ultimately contributes to achieving a 

new steady state.

Proximal Tubule

General Properties of Proximal Tubule HCO3
− Transport

The proximal tubule is the site in the nephron where the majority (~ 75%) of the filtered 

HCO3
− load is reabsorbed into the systemic circulation. The glomerular filtrate has a HCO3

− 

concentration of ~ 25 meq/l and assuming that the glomerular filtration rate (GFR) is ~ 144 

liters/day, the amount of HCO3
− entering the proximal tubule is ~ 3.6 moles/day. The 

urinary excretion of HCO3
− is typically less than 5 mmoles/day. The proximal tubule is 

divided longitudinally morphologically into a convoluted and straight segment and each 

portion of the proximal tubule has a different capacity to absorb HCO3
− (76, 454, 455). 

HCO3
− absorption across the apical membrane is indirect and requires that H+ are secreted 

from the cells into the lumen thereby decreasing the luminal bicarbonate concentration from 

25 to ~ 10 mM, with an associated decrease in luminal pH from 7.4 to ~ 6.8 according to the 
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following reaction: H+ + HCO3
− → H2CO3 → CO2 + H2O. Less HCO3

− is absorbed 

quantitatively in the proximal straight tubule. The proximal convoluted tubule is further 

subdivided into an early S1 segment, and an S2 segment that consists of the end of the 

convoluted portion followed by a straight segment located in the cortex. The S3 straight 

segment representing the terminal portion of the proximal tubule is located in the outer 

stripe of the outer medulla. There are additional differences in the magnitude of HCO3
− 

transport depending on whether the segment is from S1, S2, and S3 superficial or 

juxtamedullary nephrons (3, 58, 387).

The route of HCO3
− absorption in the proximal tubule is transcellular and active since it 

occurs against a chemical (HCO3
−) gradient, and the fact that there is a minimal 

transepithelial voltage (VTE) of −2 mV (early proximal tubule) and +2 mV (late proximal 

tubule) to drive transport paracellularly (53, 227). Given that the proximal tubule cell apical 

membrane voltage is ~ −50 to −70 mV relative to the lumen, with an intracellular pH (pHi) 

of ~ 7.2, luminal H+ secretion is active occurring against an electrochemical gradient (78, 

610, 813). Luminal acidification could theoretically be mediated by direct luminal H+ 

secretion, HCO3
− absorption, CO3

2− absorption, or CO2 secretion. To address this question 

several groups examined whether in the H+ + HCO3
− ↔ H2CO3 ↔ CO2 + H2O reaction, 

H2CO3 and CO2 are at equilibrium and whether slowing of the interconversion of H2CO3 to 

CO2 + H2O with carbonic anhydrase inhibitors resulted in a “disequilibrium pH” (199, 585, 

719). In the absence of carbonic anhydrase inhibition, the measured and predicted pH values 

were found to be essentially equal. However, carbonic anhydrase inhibition generated an 

acid disequilibrium pH (measured luminal pH lower than predicted) demonstrating that net 

luminal H+ secretion occurred. Direct HCO3
− absorption would have resulted in an alkaline 

disequilibrium pH. In addition, these experiments showed that the luminal conversion of 

H2CO3 into CO2 is normally catalyzed by carbonic anhydrase.

Carbonic anhydrase enzymes play a key role in proximal tubule transepithelial HCO3
− 

absorption. Each proximal tubule compartment (cell, lumen, peritubular space) has specific 

CA enzymes that accelerate the interconversion of H2CO3 and CO2 + H2O. In the cytoplasm 

CAII (29 kDa monomeric protein) is the predominant isoform accounting for most of the 

carbonic anhydrase activity in the renal cortex (575). Carbonic anhydrase inhibitors affect 

carbonic anhydrase activity in all three compartments (lumen, cell, and peritubular fluid) 

and because of their high permeability essentially block all proximal tubule HCO3
− 

absorption (171). Several studies have examined the role of the carbonic anhydrase activity 

in the luminal or basolateral compartments specifically. Luminal perfusion with impermeant 

CA inhibitors block HCO3
− absorption almost completely (464). Two CA isoforms have 

been localized to the brush border of the proximal tubule. CAIV is a 

glycosylphosphatidylinositol (GPI) anchored membrane bound enzyme with S2 expression 

> S1⪢ S3 (122, 459, 637). In addition to CAIV, CAXIV has been localized to the brush 

border membrane of S1 and S2 segments in the mouse proximal tubule (355, 509). The lack 

of luminal CA activity in S3 proximal tubules was corroborated in the isolated perfused 

rabbit proximal tubule using a luminal fluorescent pH dye that demonstrated the presence of 

an acid disequilibrium pH (408). On the basolateral membrane immunofluorescence staining 

has localized the transmembrane enzyme CA XII to the S1 and S2 proximal tubule segments 

(411, 541). In addition to CAXII, CAIV is also expressed on the basolateral membrane of 
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the proximal tubule (122, 459, 637). There appears to be species differences in the relative 

activity/abundance of these enzymes. In mouse kidney, CA isoforms other than CAIV (e.g. 

CAXII) account for the bulk of membrane-associated CA activity whereas in rabbit, CAIV 

accounts for most of the membrane-associated CA activity. The role of basolateral 

membrane bound carbonic anhydrase activity is highlighted in rabbit isolated perfused 

proximal tubule experiments where basolateral addition of an impermeant carbonic 

anhydrase inhibitor blocks ~ 60% of HCO3
− absorption (698).

Apical Membrane Transporters: H+-ATPase; NHE3; NHE8; Organic Anion Transporters; 
CFEX

H+-ATPase—HCO3
−-stimulated oligomycin-insensitive H+-ATPase activity and ATP-

dependent H+ translocation in brush border membrane vesicles was first demonstrated by 

Kinne-Saffrin and Kinne (367-369). Additional experiments in rat proximal tubules also 

provided evidence for a Na+-independent apical H+ transport process. Yoshitomi et al 

reported that in the rat perfused tubule in vivo, following perfusion in Na+-free solutions, 

pHi decreased and then recovered (812). Steady state pHi under similar conditions was more 

alkaline than in the presence of Na+ suggesting the presence of a Na+-independent H+/base 

transport process (19). In the S3 proximal tubule perfused in vitro, following acute 

intracellular acidification, pHi recovered in the absence of Na+ (400). The pHi recovery was 

inhibited by the H+-ATPase inhibitors N,N’-dicyclohexylcarbodiimide (DCCD) and N-

ethylmaleimide (NEM), and by glycolytic ATP inhibition. In similar studies, Nakhoul et al 

did not report predictable inhibition by DCCD (521). Additional evidence for an apical H+-

ATPase was derived from experiments by FrÖmter et al using in vivo rat proximal tubules 

perfused in the absence of organics. In the early proximal tubule the VTE was + 1 mV and 

was 0.2 mV in the late proximal tubule) (225). The positive VTE was insensitive to ouabain 

and acetazolamide and therefore compatible with electrogenic H+ secretion (226). These 

findings were ultimately confirmed by labeling of the proximal tubule with H+-ATPase 

specific antibodies demonstrating that the largest expression was at the base of the microvilli 

(118). Studies by Bank et al used luminal DCCD to block ~ 21% of HCO3
− absorption but 

whether complete inhibition occurred is unknown (49) and there are no experiments in mice 

lacking apical H+-ATPase activity (congenital or conditional). It is currently believed that 

the apical H+-ATPase is responsible for ~ ~35% of transepithelial bicarbonate absorption. 

An additional role for H+-ATPase activity in the endosomal pathway was suggested from 

studies of a4 subunit-deficient mice that have proximal tubule transport abnormalities 

including proteinuria, phosphaturia, accumulation of material in lysosomes, and abnormal 

endocytic trafficking (304). Apical H+-ATPase expression appears to be upregulated in 

proximal tubule cells by PKA, and AMP-activated protein kinase (AMPK) decreases the 

PKA-induced increase in H+-ATPase expression (10). Additional regulatory pathways 

involved in modulating H+-ATPase activity are highlighted below in the context of the 

collecting duct.

Several studies have also reported a role for Cl− in modulating proximal tubule H+-ATPase 

activity. In rabbit S3 proximal tubules perfused in vitro, Na+-independent pHi recovery 

following an acid load is dependent on intracellular Cl− (400) and the shuttling of 

cytoplasmic H+-ATPase containing vesicles to the apical membrane is also Cl−-dependent 
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(477). In rat proximal tubules (superficial S1 and S2 segments), H+-ATPase activity was 

shown to be Cl− -dependent (830) and evidence was provided that CFTR and ClC-5 may 

play a role (141).

Na+/H+ exchangers: NHE3 and NHE8—Electroneutral Na+/H+ exchange activity was 

first demonstrated in rat proximal tubule apical membrane vesicles by Murer et al (513). 

Additional studies in vesicles demonstrated that external protons compete with Na+ for a 

single site with a KNa
+ of ~10 meq/l (pH 7.5) and a KH

+ of 35 nM (43, 373, 755). Lithium 

and amiloride were shown to compete with Na+ at an external binding site by 

noncompetitive and competitive mechanisms (331, 371, 372). In the in vitro perfused 

salamander proximal tubule Boron and Boulpaep demonstrated a luminal Na+-dependent 

pHi recovery process that was amiloride-inhibitable (104). Sasaki et al. reported a similar 

transport process in the in vitro perfused rabbit proximal tubule as did Alpern and Chambers 

in the in vivo perfused rat proximal convoluted tubule (21). Transepithelial HCO3
− 

absorption was almost completely inhibited by the removal of Na+ (lumen, bath), by Na+-

K+-ATPase inhibition, and by luminal amiloride (21). In total, these data from various 

preparations and experimental conditions provided convincing functional evidence for an 

apical membrane electroneutral Na+/H+ exchanger that plays a key role in both luminal 

acidification and transepithelial HCO3
− transport.

Na+/H+ exchangers (NHE proteins) are now known to be encoded by separate 9 separate 

genes (191). Two Na+/H+ exchangers, NHE3 and NHE8, have been localized to the apical 

membrane of the proximal tubule (96, 99). Several lines of evidence indicate that in the 

adult, NHE3 is responsible for mediating apical the Na+/H+ exchange that was first detected 

physiologically (28, 30, 32, 62, 65, 87, 133, 134, 532, 533, 555, 566, 624, 691, 692, 751, 

798, 817). In general NHEs are ~ 100 kDa proteins with an intracellular N-terminal domain, 

an ~ 450 aa transmembrane domain composed of 11 or 12 transmembrane regions that 

mediate Na+/H+ exchange, and a C-terminal cytoplasmic tail involved in regulation NHE 

activity (191). Transmembrane region IV is thought to be involved in ion transport, and 

transmembrane region IX is involved in amiloride inhibition (12).

The transporter has been localized by immunocytochemistry to the proximal tubule brush 

border (30, 87, 533, 691). In addition, the inhibitory profile of expressed NHE3 to amiloride, 

amiloride analogues, and HOE694 is comparable to the native apical membrane Na+/H+ 

exchanger (532, 692, 798). Regulation of expressed NHE3 by acidosis, thyroid hormone and 

glucocorticoids, angiotensin II, endothelin, parathyroid hormone, and protein kinase A 

parallels the regulation of native apical membrane Na+/H+ exchange by these factors (28, 

32, 62, 65, 133, 134, 164, 566, 817) .

The contribution of apical NHE3 mediated H+ secretion to proximal tubule HCO3
− 

absorption has been estimated by several approaches. Howlin et al and Chan and Giebisch 

found that luminal amiloride inhibited HCO3
− absorption in the rat proximal convoluted 

tubule but the completeness of Na+/H+ antiporter inhibition remained unclear (152, 317). In 

separate experiments using high concentrations of luminal amiloride and a more potent 

analogue, t-butyl amiloride, it was concluded that ~65% of transepithelial HCO3
− absorption 

was Na+/H+ antiporter dependent (573). In NHE3−/− mice proximal tubule HCO3
− 
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absorption was decreased to ~40% of control (624, 751) and the H+ pump inhibitor 

bafilomycin decreased HCO3
− transport by 60% providing evidence for a component of H+-

ATPase mediated transport (751). Disruption of the NHE3 Slc9a3 gene may lead to 

compensatory changes in apical membrane H+-ATPase activity and potentially other NHE 

isoforms, making it difficult to assess the contribution of NHE3 to transepithelial 

bicarbonate absorption from these studies (162, 752). Moreover attempts to assess the 

contribution NHE3 to HCO3
− absorption in tubules perfused in Na+-free solutions, or by 

inhibition of the Na+-K+-ATPase are also difficult to interpret because of their potential 

effect on altering the activity of basolateral NBCe1-A (see below). Until conditional 

knockout studies of NHE3 are done, the best assessment of the contribution of NHE3 relies 

on studies using inhibitors.

NHE8 may also contribute to bafilomycin-insensitive HCO3
− absorption and has been 

localized to the proximal tubule by immunocytochemistry, Western blotting, and in situ 

hybridization (269, 270). It is currently thought that in neonates, NHE8 likely accounts for 

the majority of apical membrane NHE activity since NHE3 is poorly expressed and 

ethylisopropylamiloride (EIPA) doses that block NHE8 but not NHE3 suppress NHE 

activity (68, 98, 701). In adults, although NHE8 may be predominantly an intracellular 

organelle exchanger (98), studies in senile rats suggest that age-related decrease in proximal 

tubule acidification is due to a decrease in NHE8 expression rather than NHE3 or H+-

ATPase activity (220). The exact mechanism for the age-related switch in apical NHE3 and 

NHE8 expression is unknown but appears to involve both thyroid hormone and 

glucocorticoids (63, 98, 234).

Organic Anion Transport—In the Ambystoma proximal tubule perfused in vitro, Siebens 

and Boron demonstrated the functional presence of an apical membrane Na+-lactate 

cotransporter in parallel with a basolateral membrane H+-lactate cotransporter (or 

equivalently an OH−/lactate exchanger) (652). In the rabbit S3 proximal tubule, Nakhoul 

and Boron reported apical membrane Na+-acetate cotransport activity, and both apical and 

basolateral H+-acetate cotransport (or equivalently OH−/acetate exchange) (519, 521). The 

low intracellular Na+ concentration would generate a chemical driving force for apical Na+-

acetate uptake and subsequent equivalent H+ efflux (with acetate) across either the apical 

and/or basolateral membranes. Geibel examined the importance of this system to 

transepithelial H+ secretion and in the presence of physiologic HCO3
−-buffered solutions, 

concluded it does not play an important role (238).

Cl−/Base Exchange: CFEX (PAT1)—Lucci and Warnock examined the effect of anion 

transport inhibitors on the perfused rat proximal tubule and provided the first evidence that 

apical Na+/H+ exchange is coupled to Cl−/OH− (or Cl−/HCO3
− exchange) (465). Baum et al 

used luminal stilbene and furosemide inhibitors in the in vitro perfused rabbit proximal 

convoluted tubule to inhibit Cl− absorption (60). Several labs showed that pH gradients can 

drive 36Cl transport in voltage clamped apical membrane brush border vesicles and that Cl− 

gradients could drive pH changes transport measured with acridine orange (131, 650, 756). 

Chen et al reported similar results using a Cl− fluorescent probe (156). In contrast, Seifter et 

al failed to document pH gradient driven Cl− transport under voltage clamped conditions 

Kurtz Page 7

Compr Physiol. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(641) and other groups were also unable to measure Cl−-induced pH changes (142, 329). In 

the rabbit proximal straight tubule, Ishibashi et al were also unable to detect Na+-dependent 

apical Cl− transport using Cl− electrodes (326). Similarly, Schwartz was unable in the rabbit 

proximal tubule to demonstrate an effect of luminal Cl− on luminal HCO3
− appearance 

(631). Several studies have failed to document a significant effect of Cl− removal on HCO3
− 

transport and luminal DIDS (an inhibitor of anion exchange) has even been reported to 

stimulate HCO3
− absorption (60, 129, 486, 607). Specifically, following removal of luminal 

and basolateral Cl−, the steady state luminal HCO3
− concentration in rabbit proximal 

convoluted and straight tubules perfused at slow flow rates was Cl− independent (129, 486). 

These findings have been criticized in that apical and basolateral Cl− was replaced with 

nitrate that can potentially be transported by anion exchangers (449). Additional studies 

however in proximal convoluted tubules showed that Cl− substitution with isethionate also 

did not alter transepithelial HCO3
− absorption (607).

Karniski and Aronson advanced the understanding of the underlying transport mechanisms 

in rabbit brush border vesicles, by first showing the presence of formate-driven Cl− transport 

and Cl−-driven formate transport whose activity was significantly greater than Cl−/OH− 

exchange possibly accounting for the previous discrepant results (351). Additional studies 

also revealed the presence of a Cl−/oxalate exchange mechanism (350). In the in vivo 

perfused rat proximal tubule, Alpern and subsequently Baum in the rabbit proximal tubule 

confirmed the presence of apical Cl−/formate exchange by measuring Cl−-induced pHi 

changes in the presence of formate (17, 59). Formate stimulated proximal tubule volume 

absorption in tubules perfused with high Cl− /low HCO3
− (low pH) solutions mimicking late 

proximal tubule composition (617, 618). The finding that there was associated cell volume 

changes and that basolateral DPC (Cl− channel blocker) inhibited the formate stimulation of 

transport provided further evidence that the effect on NaCl transport was trancellular rather 

than paracellular (616, 745, 747). Wang et al reported additional evidence for such a 

transport process by showing that formate and oxalate stimulate volume and Cl− absorption 

in the rat proximal tubule (745, 747). These studies led to the acceptance of a transport 

model with parallel apical Cl−/formate and Na+/H+ (NHE3) exchangers and apical formic 

acid recycling. Saleh et al subsequently identified an apical formate/OH− exchange process 

(distinct from the Cl−/formate exchange) that also could contribute formate recycling (605). 

As predicted, amiloride blocked Cl− transport in formate/oxalate-free conditions, and EIPA 

inhibited the formate-stimulated Cl− transport (60, 574, 745). Unlike formate, oxalate-

stimulated Cl− transport was not EIPA inhibitable and ultimately modeled to be mediated by 

sulfate/oxalate exchange coupled to Na+-sulfate cotransport (40, 41, 745).

An initial difficulty with the formic acid recycling model resulted from the fact that the 

measured formic acid permeability was too low to account for the observed transport rates 

(571). Unstirred layer effects resulting in formic acid accumulation above the bulk 

concentration was raised as a possible explanation, but further analysis suggested that brush 

border microvilli were too short to result in appreciable differences in the formic acid 

concentration (389, 390). Furthermore, the activity of apical Cl−/formate and Cl−/OH− 

exchange was subsequently shown to vary among proximal tubule segments potentially 

accounting for the discrepancy in earlier vesicle studies. Accordingly, Kurtz et al were 
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unable to detect apical Cl−/formate exchange in isolated perfused superficial rabbit proximal 

straight tubule monitoring Cl−-induced changes in pHi however apical Cl−/OH− exchange 

activity was present (406). Furthermore, Sheu et al. detected apical Cl−/formate exchange in 

the superficial proximal convoluted tubule but not in the juxtamedullary segment where 

Cl−/OH− exchange activity was found (648). These findings suggested that apical Cl−/OH− 

exchange may play a more important role in late proximal tubule segments where the 

generation of a lumen to peritubular Cl− gradient favors transcellular electroneutral passive 

Cl− transport.

Identifying the transporter(s) mediating proximal tubule apical anion exchange subsequently 

focused on the SLC26 gene family (15). Although initially SLC26A4 (pendrin) was initially 

thought to be a candidate, immunocytochemistry studies were negative (375) and in pendrin 

knockout mice brush border Cl−/formate exchange was unaffected (352). A second protein, 

CFEX (or PAT1) encoded by SLC26A6 that mediated Cl−/oxalate, Cl−/formate, Cl−/OH−, 

and Cl−/HCO3
− exchange in expression systems, was shown to be localized to the apical 

membrane of mouse proximal tubules (160, 375, 799). In CFEX−/− mice, oxalate stimulation 

of proximal tubule volume absorption was absent however formate stimulation of proximal 

tubule transport was partially impaired (754). Currently it is thought that CFEX (PAT1) 

mediates apical membrane Cl−/oxalate exchange in vivo. Interestingly, in CFEX−/− mice, 

baseline volume (NaCl) reabsorption (in the absence of added formate or oxalate) was 

normal suggesting that CFEX does not mediate significant Cl− absorption via Cl−/OH− and 

Cl−/HCO3
− exchange. Although intracellular pH studies of CFEX−/− proximal tubules 

demonstrated that CFEX mediates Cl−/HCO3
− exchange (754), under physiologic 

conditions, the transporter preferentially mediates Cl− absorption via a Cl−/oxalate exchange 

process. The reason other CFEX modes of anion transport are not apparent might result from 

the concentration and affinity of the various transported substrates in vivo. In addition, 

CFEX may interact with other proteins in vivo such as CAII, which can modulate its 

transport properties, and furthermore, expression studies may not simulate in vivo proximal 

tubule protein-protein interactions (26).

Mathematical models of proximal tubule transport showed that the number of Cl−/formate 

exchangers has no significant effect on NaCl transport whereas changing the density of 

luminal NHE3 does have a significant effect (783). Subsequent studies in NHE3 deficient 

mice demonstrated that formate unlike oxalate failed to stimulate rat proximal tubule 

volume absorption (752). Petrovic et al provided evidence that formate may directly 

stimulate NHE3 in the mouse proximal tubule (560). Currently, it is unclear whether formate 

can directly interact with NHE3 or an accessory protein to modulate apical Na+/H+ 

exchange. In addition, it is unclear why deletion of Slc26a6 in mice leads to decreased 

proximal tubule NHE3 activity.

Basolateral Membrane: NBCe1-A; NHE1; Cl−/HCO3
− Exchange (Na+-Coupled and Na+-

Independent; TASK2; H+-Coupled Organic Anion Transport (see above)

Electrogenic Na+-Base Cotransport: NBCe1-A—In the in vivo perfused rat proximal 

convoluted tubule, Burckhardt et al first suggested the presence of a basolateral membrane 

HCO3
− conductance that was sensitive to SITS (128). Biagi and Sohtell reported similar 
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findings in rabbit proximal tubules (80) and Alpern demonstrated barium-sensitive K+ 

induced pHi changes that suggested the transport process carried a net negative charge (19). 

Definitive experiments by Boron and Boulpaep showed that basolateral transport was 

coupled to Na+ (103). Studying the in vitro perfused salamander proximal tubule, lowering 

peritubular HCO3
− led to the depolarization of the basolateral membrane, and decreased pHi 

and intracellular Na+. Reduction of peritubular Na+ also caused a similar basolateral 

membrane depolarization and decrease in pHi. These changes were Cl−-independent and 

stilbene inhibitable and were compatible with an electrogenic Na+-HCO3
− cotransport 

process. Biagi and Sohtell (79, 80), Alpern (19, 20), Yoshitomi et al (812), and Sasaki et al 

(611), subsequently confirmed these findings in mammalian proximal tubules, and Lopes et 

al reported a similar transport process in Necturus proximal tubules (460). The Na+-

HCO3
−cotransport process was also studied in basolateral membrane vesicles by Akiba et al 

(6), Grassl and Aronson (271, 272), and Soleimani et al (661, 662). 22Na+ flux was found to 

be stimulated by HCO3
− gradients, Na+ gradients could drive HCO3

−, flux (measured by pH 

changes with acridine orange), and the transport process was modulated by changes in 

vesicle potential and was stilbene-inhibitable. Soleimani et al concluded that the ion 

transport stoichiometry was 1:3 (positive charge: negative charge) and that the species 

transported were 1 Na+: 1 HCO3
−: 1CO3

2− (662). Using BCECF to characterize the 

quantitate the activity of basolateral electrogenic Na+-HCO3
− cotransport in S1-S3 

superficial and juxtamedullary proximal tubule segments, Abuladze et al reported significant 

differences axially along the proximal tubule with the activity in S1 proximal tubules ~ 3-5 

fold greater than S2 segments, and the activity in S2 segments ~ 8 times greater than the S3 

segment (3).

Electrogenic Na+-HCO3
− cotransport is now known to underlie the majority of base efflux 

in the mammalian proximal tubule. First, depolarizing the basolateral membrane blocks 

transepithelial HCO3
− absorption (607). Second, Na+ removal almost completely blocks 

transepithelial HCO3
− absorption whereas Cl− removal is without effect (129, 152, 155, 486, 

607). Third, Cl− removal has no effect on basolateral membrane H+/base permeability 

whereas Na+ removal has a significant effect (19, 570, 613, 812) Fourth, basolateral stilbene 

inhibitors block HCO3
− absorption (151). These studies argue against a significant role for 

basolateral Na+-coupled Cl−/HCO3
− exchange in modulating net transepithelial HCO3

− 

transport (that would be expected to function as a Na+-base influx and Cl− efflux process).

The molecular identity of the electrogenic Na+-HCO3
− cotransporter was first determined by 

Romero et al who cloned the protein from Ambystoma kidney (595). The transporter 

(NBCe1-A) has also been identified in mammals (encoded by the SLC4A4 gene) (4) and is 

expressed predominantly in S1 and S2 proximal tubules (480, 620). NBCe1-A is a 

homodimer with each monomer functioning independently (345). Each NBCe1-A monomer 

has a large N-terminal cytoplasmic region, a transmembrane region with 14 transmembrane 

regions, and a short C-terminal cytoplasmic tail (827, 828). Three NBCe1 variants (encoded 

by the SLC4A4 gene) have been identified at the protein level in mammals (NBCe1-A,-B,-

C) and two variants at the transcript level in mice (NBCe1-D and -E) that are expressed in 

various tissues (2, 4, 456, 482). These NBCe1 variants differ in their N-terminal regions 

and/or C-terminal tails, but share the same predicted topological structure and 
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transmembrane (transporting) region as NBCe1-A. Mutations in these NBCe1 variants 

might account for some the extrarenal manifestations of patients with autosomal recessive 

proximal RTA (pRTA) due to mutations in the transporter (see below).

The direction of ion flux mediated by NBCe1-A in the proximal tubule is determined by the 

electrochemical driving force (μ) through the transporter, which is a function of the 

basolateral membrane potential, the substrate ion activities, and the NBCe1-A charge 

transport stoichiometry (407, 829). It has been implicitly assumed (in lieu of in vivo 

measurements of the native human transporter) that the NBCe1-A has charge transport 

stoichiometry of 1:3 (Na+-CO3
2−-HCO3

− cotransport mode) in the human proximal tubule 

largely based on in vivo measurements in other species (512, 564, 812). When expressed in a 

mammalian expression system (829) or oocytes (425), human NBCe1-A has a charge 

transport stoichiometry of 1:2. Various factors including phosphorylation state, (276), cell-

type (275) and cell Ca2+ (511) have been reported to modulate its value and yet the 

relevance of these findings to the proximal tubule in vivo is unclear.

Recent electrophysiologic data using NO3
− as a surrogate for CO3

2− transport indicated that 

human NBCe1-A functioning with a charge transport stoichiometry of 1:2 mediates Na+-

CO3
2− cotransport (829). Preliminary data in the Xenopus oocyte expression system using 

surface pH electrodes has also suggested that rat NBCe1-A transports Na+-CO3
2− (424) 

recent analysis using published rat proximal tubule data showed that NBCe1-A functioning 

as a Na+-CO3
2− cotransporter (1:2 charge transport stoichiometry) would also be capable of 

mediating cell to peritubular base flux while being more sensitive than in the 1:3 mode of 

changes in in the electrochemical gradient across the transporter (829).

Na+/H+ Exchange: NHE1—Boron and Boulpaep first reported apical and basolateral 

Na+/H+ exchange processes in the salamander proximal tubule (104). In renal cortical 

basolateral membrane fractions, initial studies could not detect Na+/H+ exchange activity 

(330, 602), whereas Grassl and Aronson subsequently reported pH gradient driven Na+ 

uptake that was not amiloride inhibitable (271). Experiments in rat and rabbit proximal 

convoluted tubules, showed that peritubular Na+ changes altered pHi but the effect was not 

amiloride sensitive (19, 392). In the rabbit S3 proximal straight tubule, Kurtz provided 

evidence for an amiloride sensitive basolateral membrane Na+/H+ exchanger (401) and 

Giebel et al found a similar process in juxtamedullary S1 and S2 proximal tubules (237). In 

the rabbit, immunocytochemistry studies have detected basolateral NHE1 in all proximal 

tubule segments whereas rat proximal tubules are unstained (88). Cytoplasmic CAII can 

interact with NHE1 and the association between these proteins increases through an ERK-

dependent pathway (446). Holthouser et al reported that in human kidney proximal tubule 

cell lines, ouabain-mediated regulation of Na+-K-ATPase activity is dependent on its 

interaction with NHE1 (310)

Na+-Coupled and Na+-Independent Cl−/HCO3
− Exchange—The presence of 

baslateral Cl−/HCO3
− exchange was first detected in Necturus proximal tubules (202). The 

Na+-dependence of the transport process was subsequently shown by Guggino (280). These 

and other studies concluded the transporter was a Na+-coupled Cl−/HCO3
− exchange 

process (279, 649) whereas Alpern and Chambers reported the presence of both Na+-
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coupled and Na+-independent Cl−/HCO3
− exchange (20). Because the data could also have 

been mediated by electrogenic Na+-base transport in parallel with a basolateral Cl− 

conductive pathway, additional studies were done which concluded that in the rat proximal 

tubule greater than 25% of basolateral H+/base flux is mediated by a Na+-coupled Cl−/

HCO3
− exchange process (570) and similar findings were obtained in the rabbit proximal 

straight tubule (613). The rabbit S3 proximal tubule was reported to have a Na+-independent 

Cl−/HCO3
− exchange process only, in addition to electrogenic Na+-base transport (401, 

520). Grassl et al studying rabbit basolateral membrane vesicles provided evidence for 

electroneutral Cl−/HCO3
− exchange that was not Na+-coupled whereas in rat vesicles, Na+-

dependence could be demonstrated (272). Similarly Chen and Verkman in rabbit basolateral 

membrane vesicles found evidence for a Na+-coupled Cl−/HCO3
− exchange process (157). 

In summary, it appears that the basolateral membrane of the proximal tubule mediates 

Cl−/HCO3
− exchange however its Na+-dependence still remains controversial. Moreover, 

there is currently no data that sheds light on the molecular nature of the specific protein(s) 

involved.

TASK2—TASK2 pH-sensitive K+ channels are expressed on the basolateral membrane of 

proximal tubule cells and TASK2−/− mice have metabolic acidosis and elevated urine pH 

(757). During HCO3
− administration, the fractional excretion of Na+ and Cl− is increased. 

The acid-base abnormalities in these mice are thought to be potentially due to a 

depolarization of the basolateral membrane potential with impaired NBCe1-A base efflux 

leading to a pRTA phenotype. Thus far, mutations in TASK2 have not been reported in 

humans.

H+/OH−/HCO3
− Permeability—Net luminal H+ secretion in the proximal tubule is 

potentially modulated by its H+/OH−/HCO3
− permeability properties. The apical H+/OH− 

permeability using different preparations is ~ 0.5 cm/sec when corrected for surface area 

(328, 586). Passive H+/OH− flux is predicted to be quantitatively unimportant in the early 

proximal tubule where the luminal pH is initially 7.4 and cell pH is ~ 7.3 (571) whereas in 

the later portion of proximal tubule, where the luminal pH decreases to ~ 6.8, it is estimated 

that ~ 30% of secreted H+ would diffuse back into the cells. The basolateral membrane 

H+/OH− permeability of 0.67 cm/s approximates the apical membrane permeability and 

plays a very minor role in basolateral base efflux. The estimated transepithelial H+/OH− 

permeability (0.3 cm/sec) is identical with the transcellular H+/OH− permeability (calculated 

from the apical and basolateral values measured separately) suggesting that paracellular 

H+/OH− flux is insignificant (291, 571, 632). Estimates of the transepithelial HCO3
− 

permeability of 1.7 −3.5 × 10−5 cm/sec in rat proximal convoluted tubule and 2.0 × 10−5 

cm/sec in rabbit proximal convoluted tubules, also indicate that passive HCO3
− flux in the 

early proximal tubule is insignificant (22, 153, 309). However, because of a lower luminal 

pH (and HCO3
− concentration) in the late proximal tubule the calculated peritubular to 

luminal HCO3
− backleak becomes more quantitatively significant (22).
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Regulation of Proximal Tubule H+/Base Transporters and Whole Tubule 

Transport

NHE3

In the current topological model of NHE3, the cytoplasmic C-terminus functions as a 

regulatory domain that dynamically interacts with accessory proteins that modulate NHE3 

function and membrane expression. Several NHE3 binding partners and regulatory proteins 

have been reported including megalin, PDZK1, DPPIV, and Shank2, however their 

functional role in most instances is unknown (86, 242-245, 295). Of the known regulatory 

factors, one of the most important is inhibition by cAMP-dependent phosphorylation via 

PKA (342, 503, 775). In experiments designed to stimulate cAMP acutely, early studies 

showed that the appearance of luminal cAMP as an index of cytosolic cAMP in S1 tubules 

correlated inversely with the proximal tubular HCO3
− transport rate (452). NHE3 is also 

phosphorylated via PKC (349, 492, 774, 789), and regulated through G-proteins (11), and 

tyrosine kinase (244). Rapid regulation of NHE3 is mediated by changes in brush border 

insertion/retrieval NHE3 (94, 212, 305, 821). Early micropuncture and tubule perfusion 

studies had shown that PTH inhibits proximal tubule HCO3
− absorption due to inhibition of 

transcellular H+ secretion (48, 322, 490, 491, 577). Luminal Na+/H+ exchange activity was 

decreased in response to PTH in perfused tubules (184, 289), which mirrored the effect of 

cAMP in tubule suspensions (190) and brush border vesicles (342). PTH decreased the 

sensitivity of NHE3 to changes in intracellular pH (342, 499, 566) and Na+/H+ exchange 

activity increased in parathyroidectimed animals (174). Vesicles studies showed that the 

effect of PTH on Na+/H+ exchange activity and NHE3 phosphorylation occured within 

minutes (212). The scaffolding protein NHERF-1, which contains a C-terminal PDZ domain 

was shown to play a key role in cAMP mediated inhibition of NHE3 (778, 781, 831). 

Specifically, NHE3 and NHERF-1 are linked to the actin cytoskeleton with the PKA 

anchoring protein/actin binding protein ezrin (an ERM family actin binding protein) and the 

interactions between these proteins is required for PKA-mediated inhibition of NHE3 (181, 

723, 776, 777, 779, 780, 782, 819, 831).

The signaling pathways involved in NHE3 modulation have been for the most part 

performed in the OKP cell line that expresses NHERF-1, and has Na+-H+ activity kinetics 

similar to NHE3 (32, 416). These cells were used as a model system for analyzing the 

interaction between NHERF-1 and NHE3, and NHERF-1 and ezrin (773, 777). Ezrin, 

NHERF-1 and NHE3 have been immunolocalized to the brush border of the rat proximal 

tubule where they form a protein complex (724). In mice lacking NHERF-1, NHE3 

inhibition by cAMP is absent and the function of NHE3 in proximal tubule cells cultured 

from these mice is not regulated by PTH (182, 647, 779). cAMP inhibition of NHE3 also 

involves EPAC (exchange protein directly activated by cAMP) (311). Both EPAC and PKA 

each contribute ~50% of the cAMP inhibitory effect on NHE3 (514). NHERF-1 is required 

for cAMP inhibition of NHE3, and occurs via both PKA- and EPAC-dependent mechanisms 

(514). Finally PP1, a calyculin A sensitive phosphatase stimulates NHE3 by 

dephosphorylating the transporter (201).
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The NHE3 residue(s) that are phosphorylated via PKA/cAMP of NHE3 remains 

controversial (503, 822). Kurashima reported the phosphorylation of NHE3-Ser634 and that 

Ser605 is also required for the effect but remains unphosphorylated (398). Zhao reported that 

PKA induces the phosphorylation of NHE3-Ser552 and Ser605 (822). Further studies by 

Kocinsky showed that in normal rats, NHE3-Ser552 is significantly more phosphorylated 

than Ser605 and is localized to the coated pit region of the brush border that has inactive 

NHE3 (378, 379). In addition, phosphorylation at both sites does not alter NHE3 function.

PTH may also modulate NHE3 activity via PKC through phospholipase C activation (318, 

492, 774). Although the data is somewhat conflicting, acute PKC activation appears to 

increase transcellular HCO3
− absorption whereas chronic PKC activation decreases 

transport (64, 744). Changes in cytosolic Ca2+ do not affect the intrinsic function of NHE3 

unlike NHE1, which has a cytosolic calmodulin binding domain (residues 636-656) (729, 

731).

Casein kinase 2 stimulates the basal activity of NHE3 by interacting with the C-terminal tail 

and phosphorylating Ser719, which increases plasma membrane delivery of newly 

synthesized NHE3 (606). PTH decreases the membrane expression of the transporter over a 

period of hours (212). This effect has been observed in brush border vesicles and OKP cells 

(175). Disruption of the actin cytoskeleton leads to an increase in NHE3 expression (148). 

The exact role of actin in the retrieval/insertion of NHE3 in the brush border is unclear 

however its role in PKA mediated NHE3 phosphorylation has been shown (397, 681). 

NHE3 appears to transfer to the base of the microvilli following mediated PKA 

phosphorylation (806). Retrieval of NHE3 with megalin to a vesicle compartment is also 

involved (85, 86). PTH has also been shown to decrease NHE3 expression due to altered 

NHE3 mRNA stability with an associated inhibitory effect on the SLC9A3 promoter (77).

Indirect binding of ezrin to NHE3 via NHERF-1 (NHE3 amino acids 585 to 689) also 

regulates the transporter signaling through cAMP (776, 818, 819), cGMP (144), Ca2+ (363, 

427), and lysophosphatidic acid (161, 426). Ezrin can also bind directly to NHE3 (amino 

acids 475 to 589) affecting NHE3 trafficking (delivery from the synthetic pathway, basal 

exocytosis) and NHE3 movement within the brush border that may alter NHE3 endocytosis 

(145). Ca2+ induced NHE3 inhibition requires PKCα, which binds to E3KARP decreasing 

surface NHE3 expression likely by inducing endocytosis (427). CHP1 (calcineurin 

homologous protein) increases NHE3 membrane abundance and ezrin phosphorylation 

(Thr-567) (187). NHE3 basal activity is currently thought to be regulated by sequential 

effects of Akt and GSK3 acting on the same NHE3 C-terminal ezrin binding domain (658).

NBCe1-A

NBCe1-A has a unique N-terminal autostimulatory domain (ASD) that enhances the 

function of the transporter via an unknown mechanism (482). Mg2+ causes NBCe1-A 

rundown in Xenopus oocytes, that may involve a Mg2+-dependent phosphatase (5′-lipid 

phosphatase) which dephosphorylates PIP2 (797). PIP2 per se activates NBCe1-A, however 

the mechanism has not been determined (797). Various systemic and hormonal factors alter 

the expression and/or function of NBCe1-A. Angiotensin II has a biphasic effect on NBCe1 

mediated transport (176, 177, 313, 558, 823) and NBCe1-A inhibition via the AT1B receptor 
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leads to decreased NBCe1-A surface expression mediated by Ca2+−-insensitive PKCε (558, 

559). Endocytosis of NBCe1-A is modulated by PKCs (PKCαβγ) and a novel PKCδ (54, 

557, 815). ATP increases the NBCe1-A function via an unidentified protein kinase (511).

The function and/or expression of NBCe1-A is also modulated by PTH, norepinephrine, 

dopamine, and changes in blood pressure. PTH decreases the function NBCe1-A in the rat 

(possibly via a cAMP) whereas in the rabbit, PTH is without effect (609). Infusion of 

norepinephrine in rats increases the expression of the transporter (663) whereas dopamine 

decreases the activity of NBCe1-A (396). NBCe1-A expression in the SHR rat was 

increased ~2 fold above control rats via an unknown mechanism (664).

NBCe1-A expression is altered in various models of renal tubular acidosis (RTA). The 

transporter is upregulated in lithium induced distal RTA (dRTA) (364), however in 

hyperkalemic dRTA induced by ureteral obstruction its expression in the proximal tubule is 

decreased (741). In humans, hypothyroidism is associated with incomplete dRTA, and 

NBCe1-A expression is decreased in a rat hypothyroid model (505). Concomitant NH4Cl 

loading increases the expression of NBCe1 (505). The calcineurin inhibitor FK506 which 

has been reported to cause both pRTA and hyperkalemic distal RTA, induces a decrease in 

NBCe1-A expression (506)

Carbonic anhydrase II (CAII) binds to NBCe1-A at a C-terminal D986NDD989 motif and 

Gross et al proposed that CAII and NBCe1 form an intermolecular transport metabolon 

(277). Pushkin et al. and Becker et al. provided further evidence for functional interaction 

between NBCe1 and CAII (69, 578). CAIV and CAIX were subsequently shown to bind 

extracellular loop 4 in NBCe1-B ( and presumably NBCe1-A) (25, 531). Not all groups 

however have been able to demonstrate functional interaction with CAII (461, 563, 803). 

Interestingly, the loss of CAII function results in a moremild phenotype compared to 

patients with NBCe1 mutations (444, 659). Moreover, mutations in CAIV cause retinitis 

pigmentosa (RP17) without a pRTA phenotype having been reported (584). In Xenopus 

oocytes, CAI, CAII and CAIII stimulated NBCe1-A transport is due to carbonic anhydrase 

enzymatic activity rather than intramolecular proton shuttling (623).

Proximal Tubule HCO3
− Transport

Acute and Chronic Changes in Acid-Base Chemistry and K+—The first studies by 

Malnic and Mello Aires addressing the dependence of luminal HCO3
− concentration on 

HCO3
− absorption using the split droplet technique showed that the kinetics were first order 

hence the rate of luminal H+ secretion was proportional to the luminal HCO3
− concentration 

(476). These findings were confirmed by other studies using a similar preparation, and in 

separate tubule perfusion experiments (22, 703). In vivo microperfusion studies that 

accounted for passive HCO3
− flux demonstrated that there is a dependent on H+ secretion 

below a luminal HCO3
− concentration of ~ 45 meq/l (22). Since HCO3

− cannot be 

transported by NHE3, these findings were likely dependent the effect of changes in the 

luminal HCO3
− concentration on luminal pH and/or cell pH, since both factors can 

potentially alter the function of NHE3 and NBCe1-A independently.
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Transepithelial HCO3
− absorption varies inversely with the peritubular HCO3

− 

concentration because of its effect on transcellular H+ secretion with minimal effect on 

paracellular HCO3
− diffusion (23, 151, 239, 493, 608, 703, 826). The effect had been 

attributed to a change in peritubular pH (with secondary changes in cell pH) modulating the 

function of basolateral Na+-base cotransport (NBCe1-A). An elevation of peritubular pCO2 

increases proximal tubule HCO3
− absorption while a decrease has the opposite effect (169, 

333, 438, 493, 608, 826). The exact mechanism is complex to address because of the rapid 

diffusion of CO2 across all proximal tubular compartments with accompanying changes in 

pH and HCO3
−. Moreover, apical and basolateral membrane H+/base transport processes 

have different sensitivities to changes in H+ activity in each compartment. For example, 

apical NHE3 is allosterically regulated by an acidic cytoplasmic pH thereby increasing its 

Na+-H+ exchange function greater than would be predicted from the concentration of the 

transported ions (42). A potential explanation for these findings is derived from studies of 

NHE1 that have identified residues 567-635 in the cytoplasmic C-terminus as playing an 

important role in cytoplasmic pH “sensing” (730).

NHE3 stimulation by a decrease in pH requires the activation of c-Src that complexes with 

Pyk2 (445). A second pathway involves ERK1,2/c-fos and both pathways converge to 

activate the endothelin ETB receptor ultimately increasing NHE3 membrane expression 

(568). In both rat and rabbit proximal tubules, ET-1 stimulates apical Na+/H+ exchange 

(203, 282). In OKP cells transfected with the ETB receptor, ET-1 stimulates NHE3 activity 

and is associated with phosphorylation of the transporter and increased plasma membrane 

expression (164, 554, 555). Metabolic acidosis is associated with increased endothelin-1 

(ET-1) mRNA expression (415, 448). Increased ET-1 expression appears to involve the 

AP-1 transcription factor (312). The metabolic acidosis stimulation of NHE3 activity is 

blocked in mice with targeted disruption of the ETB receptor (415, 448). Tyrosine kinase, 

CaM kinase, and an increase in cell Ca2+ are involved (164, 165). Cortisol levels increase in 

metabolic acidosis and adrenalectomized rats fail to manifest a metabolic acidosis induced 

stimulation of Na+/H+ activity (370, 481). Glucocorticoids act concomitantly with metabolic 

acidosis to increase NHE3 trafficking and plasma membrane expression whereas 

aldosterone has no effect (29).

Using “out of equilibrium” solutions, Boron et al was able to analyze the effect of pH, 

HCO3
−, and CO2 individually and found that pH per se was not a factor in modulating 

proximal tubule HCO3
− transport (825, 826). The authors proposed that the basolateral 

membrane possesses HCO3
− and CO2 sensors that modulate transepithelial HCO3

− 

transport. Genistein (tyrosine kinase inhibitor) eliminated the CO2 sensitivity of HCO3
− 

transport (825). Basolateral CO2 sensing signaled through the apical membrane AT2 

receptor via secreted angiotensin II peptide (824).

Chronic changes in systemic acid-base balance appear to have profound effect on proximal 

tubule H+/base transport processes and transepithelial HCO3
− transport. These studies are 

complicated by the concomitant changes in renal hemodynamics and hormonal milieu that 

can independently modulate HCO3
− transport. Kunau et al showed that chronic metabolic 

acidosis stimulates proximal tubule HCO3
− absorption to a greater extent than more severe 

acute metabolic acidosis (394). Cogan showed that chronic hypercapnia is more potent than 
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acute hypercapnia (168). Cohn et al demonstrated in apical vesicles that the effect of chronic 

metabolic acidosis on Na+/H+ exchange activity was retained in vitro at pH 7.4 (memory 

effect) suggesting a change in membrane expression or structure (174). Further studies 

showed that the effect was indeed due to an increase in Vmax (370, 690). Chronic metabolic 

acidosis also stimulated basolateral electrogenic Na+-base transport (NBCe1-A) that was 

retained in vitro at pH 7.4 (7, 570) whereas chronic metabolic alkalosis had the converse 

effect. NaCl and NaHCO3 administration could modulate proximal tubule HCO3
− 

absorption by decreasing the expression of NBCe1-A thereby contributing to the recovery 

from metabolic alkalosis and/or volume overload (33). Unlike the effect of metabolic acid-

base disorders, mixed results have been reported in chronic respiratory acidosis (7).

Acid-base disorders are often accompanied by changes in K+ balance. K+ depletion 

increases bicarbonate absorption by ~ 25% increase whereas a lowering peritubular K+ has 

no effect (151). These results differ from studies in OKP cells bathed in media with low K+ 

where Na+/H+ exchange activity was stimulated that has been attributed to a decrease in pHi 

(31). In K+ depletion, the expression of NBCe1-A is increased providing a potential 

mechanism for enhancing proximal tubule HCO3
− transport during hypokalemic metabolic 

alkalosis (34).

Luminal Flow Rate, Extracellular Volume, Renin-Angiotensin System, 
Aldosterone and Catecholamines—The phenomenon of glomerulotubular balance 

where increased GFR leads to enhanced proximal tubule HCO3
− absorption prevents 

significant renal excretion of HCO3
−. Experiments in the perfused proximal tubule both in 

vivo and in vitro have shown that tubular HCO3
− absorption is flow-dependent (24, 151, 

196). Possible mechanisms include: 1) an alteration in the axial HCO3
− concentration 

profile; 2) an effect on paracellular permeability; 3) effect on an unstirred layer in the bush 

border; 4) flow is transduced into a torque by its effect on brush border microvilli. Each of 

these potential factors has been studied. Chan et al (151) and Alpern et al (24) showed that 

changes in the axial HCO3
− concentration profile can only account for a small portion of the 

effect. Du et al (196) and Chan et al (153) also showed that changes in paracellular 

permeability are not involved. Preisig et al showed that increased flow results in an increase 

in pHi due to enhanced apical Na+/H+ exchange (569). Involvement of apical Na+/H+ 

exchange was further shown in mice with targeted disruption of NHE3 where 

glomerulotubular balance is impaired (135). Du et al demonstrated flow-dependence in the 

mouse proximal tubule and concluded that the apical H+-ATPase activity was also involved 

(196). Other studies have documented an increase NHE3 or NBCe1-A activity in models of 

chronically increased luminal flow that are also associated with renal hypertrophy 

(uninephrectomy, increased protein intake) (173, 297, 524, 572).

A brush border acidic unstirred layer would be predicted to impede H+ secretion wherein as 

luminal flow increases, the effect of the unstirred layer would diminish thereby enhancing 

luminal H+ secretion. However, experiments in the rat proximal tubule indicated that there is 

not a significant brush border diffusion barrier (24, 569). An alternate mechanism was 

proposed whereby luminal flow varies linearly with the torque on the brush border 

microvilli (195, 196, 742). The flow-dependence of both volume and HCO3
− absorption in 

the mouse proximal tubule was modeled where the magnitude of the torque was the “sensor” 
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that signaled enhanced H+ secretion and HCO3
− absorption. Over a 5-fold increase in 

luminal flow, microvillus torque increased 2-fold, and correlated with HCO3
− transport 

changes. The actin cytoskeleton played an important role in affecting both NHE3 and H+-

ATPase function. Du et al re-analyzed the rabbit tubule perfusion data of Burg and Orloff 

and found that the reported changes in flow would increase microvillus torque by ~43% that 

could account for the observed increase in volume absorption (130, 195). To account for 

these species differences, it was suggested that the rabbit tubule is more distendable so that 

the changes in luminal diameter prevent significant changes in mivrovillus torque that occur 

in the mouse.

Proximal tubule HCO3
− absorption is also modulated by the extracellular volume status and 

pressure independent of altered luminal flow rate. Volume expansion has been shown 

decrease HCO3
− absorption in the rat proximal tubule although the magnitude of the effect 

differs among studies (84, 170). The underlying mechanism involves several factor 

including an increase in paracellular backleak (due changes in paracellular HCO3
− 

permeability), and modulation of net transcellular H+ secretion resulting possibly from 

alteration in peritubular pH and/or HCO3
− (18, 23) Interestingly, parathyroidecomized rats 

have a significantly decreased response without the underlying the mechanism(s) having 

been defined (496). A decrease in dietary Na+ was also shown to induce an increase in brush 

border Na+/H+ exchange in vitro due to an increase in Vmax (504). Conversely, chronic 

dietary Na+ loading induced the phosphorylation of NHE3-Ser552, and redistribution of 

NHE3 to the base of the microvilli driven by myosin VI, and redistribution of the NHE3 

regulator DPPIV (807).

Because the proximal tubule synthesizes and secretes angiotensinogen, the luminal 

concentration of angiotensin II is 1 – 10 nM while the systemic concentration is significantly 

less (0.01-0.1 nM) (108, 565, 642). In the in vivo perfused rat proximal tubule, angiotensin II 

was shown to enhance HCO3
− absorption (452, 453). In the in vitro perfused rabbit proximal 

tubule, the mechanism of the stimulation involved both apical Na+/H+ exchange and 

basolateral Na+-base transport (236). Angiotensin II increased the Vmax of apical Na+/H+ 

exchange and at higher concentrations also increased H+-ATPase activity in a proximal 

tubule OKP cell line by enhancing plasma membrane expression involving signaling 

through tyrosine kinase, PI3K, and P38 (140, 603). Angiotensin II has also been reported to 

increase apical H+-ATPase membrane vesicle insertion in rat proximal tubule fragments 

(727). Peritubular angiotensin II has a biphasic effect on transepithelial Na+ transport in rat 

and rabbit proximal tubules where lower concentrations are stimulatory and higher 

concentrations that are likely unphysiologic are inhibitory; a similar phenomenon was 

shown in OKP cells examining NHE3 activity (134, 316, 629). The inhibitory effect was 

reported to involve angiotensin III interacting with AT2 receptor (284, 538, 539). Studies in 

rat tubules and cortical homogenates have concluded that angiotensin II signals through a 

decrease in adenyl cyclase activity, however in OKP cells, NHE3 activity was stimulated by 

angiotensin II in the absence of changes in cAMP (134, 452, 794). In both OKP cells and 

rats treated chronically with angiotensin II, NHE3 activity was increased likely due to 

increased functional protein content (189, 802). Other investigators found no effect on 

NHE3 content but detected increased NBCe1-A protein that was blocked using an AT1 
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receptor blocker (700). An additional effect involves angiotensin II mediated translocation 

of NHE3, NHERF-1, ezrin and the H+-ATPase from the tip to the base of the brush border 

microvilli (433, 593). Others have shown that PKC, CaM kinase, c-Src, and PLA2 are 

involved in angiotensin II signaling and that a functional intracellular angiotensin system is 

active in the proximal tubule (205) Acid-base disturbances such as metabolic acidosis can 

also increase AT1 receptor expression and thereby modulate angiotensin II signaling (518).

Unlike angiotensin II, the plasma peptide ANG-(1–7) concentration increases following 

extracellular volume expansion (341, 551, 552). In vivo stationary microperfusion studies in 

rat proximal tubules have shown that luminal ANG-(1–7) has a biphasic dose-dependent 

effect on HCO3
− reabsorption mediated by the Mas receptor via NHE3 (143). Unlike 

angiotensin II high concentrations of ANG-(1–7) stimulate HCO3
− reabsorption whereas 

low concentrations inhibit transport. In the rat proximal straight tubule, basolateral ANG-(1–

7) has a biphasic mediated by AT1 receptors such that at physiologic levels, it increases 

HCO3
− reabsorption, whereas at high concentrations, it decreases transport (231).

Basolateral membrane transporters are also affected by renin-angiotensin signaling. 

Specifically, angiotensin II (see above) increases NBCe1-A activity in part via PKC and by 

increasing transporter density (594, 599). Additional effects include a stimulation of the 

basolateral Na+-K+-ATPase via phosphorylation (810), and an increase basolateral 

membrane K+ conductance (176). Apical Na+ uptake pathways appear to predominate since 

angiotensin II increases intracellular Na+ (587).

Aldosterone in rats increased proximal tubule NHE3 brush border protein content and 

stimulates transepithelial water reabsorption (393). In microperfusion studies of rat S2 

proximal tubules, Pergher found that aldosterone (luminal or peritubular) stimulated HCO3
− 

absorption via glucocorticoid receptors through a nongenomic mechanism (556). In cultured 

human proximal tubule cells, aldosterone signaling was reported to be mediated through the 

EGF receptor (194). Basolateral NHE1 is regulated by aldosterone through genomic 

(aldosterone receptor) and nongenomic mechanisms. At lower concentrations, aldosterone 

increases intracellular Ca2+ and stimulates basolateral NHE1, whereas higher concentrations 

(10−6 M) decrease intracellular Ca2+ and inhibit the transporter (428). The glucocorticoid 

receptor appears to be involved in the rapid nongenomic effects of aldosterone on NHE1 

activity that may play a role during changes in volume status.

Proximal tubule transport is reduced ~40% following renal denervation (72). Conversely, an 

increase in renal nerve activity can stimulate transport by ~ 30% (70). In the rabbit perfused 

proximal tubule, norepinephrine increased both HCO3
− and Cl− transport (67). In rabbit 

proximal tubule suspensions and rat proximal tubules perfused in vivo, catecholamines 

stimulated Na+/H+ exchange activity (150, 525). NHE3 stimulation is mediated by α2 

receptor binding associated with decreased adenyl cyclase signaling through Gαi, and α1 

receptor binding signaling through MAPK (451). β2 receptor stimulation increases the 

association of NHERF-1 with the receptor resulting in increased Na+/H+ exchange by 

preventing cAMP driven downregulation of NHE3 (285). Sympathetic nerve activity may 

also stimulate NBCe1-A through PKC (598). Renal nerves also modulate local angiotensin 

synthesis and potentially AT1 receptor density (386, 580, 581). Proximal tubule Na+ 
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transport is modulated by NO that is generated from renal nerve activity or interstitial 

endothelial cells or (447). NO release in pericapillary perfusion experiments increased apical 

Na+/H+ exchange (37). Mice lacking neuronal NOS have decreased proximal tubule HCO3
− 

transport (749). Wang et al shed light on these findings by showing that tubule perfusion 

with sodium nitroprusside was dose-dependent where a low dose increased transport, a high 

does decreased transport, and NOS inhibition decreased HCO3
− absorption (743). NO 

signaling appears to be mediated through cGMP (338). NO stimulates cultured human 

proximal tubule cells expressing soluble guanylate cyclase to secrete cGMP resulting in 

inhibition of apical NHE3 through Src (612).

Dopamine, Glucorticoids, Insulin, and Uroguanylin—Dopamine receptors are 

present on the luminal and basolateral membranes of the proximal tubule (527). In the 

proximal straight tubule, and tubule suspensions, dopamine inhibits Na+ transport (73, 417). 

Other studies suggest that prior exposure to norepinephrine is required for the dopamine 

inhibitory effect (66). The inhibitory effect of dopamine is mediated through NHE3 (cAMP/

PKA) and the Na+-K+-ATPase (PKC) (241). In the rat in vivo, dopamine mediated 

phosphorylated NHE3 shifts from the brush border to a subapical region (379). Dopamine 

also decreases the activity of basolateral NBCe1-A (396).

Glucocorticoids stimulate NHE3 activity through several mechanisms. Acutely, 

dexamethasone administration increases NHE3 trafficking to the apical membrane following 

phosphorylation of NHE3-Ser663 via glucocorticoid-dependent kinase 1 (SGK1) (97, 739). 

ClC-5 appears to play a key role in basal and dexamethasone-stimulated exocytosis of 

NHE3 (450). As discussed in the context of metabolic acidosis, glucocorticoids 

synergistically increase NHE3 trafficking to the plasma membrane (29). Systemic 

administration of glucocorticoids or in vitro exposure of proximal tubule cell cultures or 

OKP cells stimulate NHE3 activity via the glucocorticoid receptor by modulating NHE3 

mRNA abundance (62, 65, 740).

Insulin stimulates fluid absorption in the proximal tubule perfused in vitro (61) and alters 

NHE3 activity both acutely and chronically via separate mechanisms. Although the 

mechanism of acute activation is unknown, several potential pathways have been ruled out 

including phosphatidylinositol 3-kinase-serum- and glucocorticoid-dependent kinase 1 

(PI3K-SGK1), cbl/CAP/TC10, NHE3-megalin interaction, NHE3 phosphorylation, and 

increased apical membrane trafficking (228). Chronically, insulin stimulates NHE3 activity 

via PI3K-SGK1(228). Glucocorticoids also augment the effect of insulin on NHE3 

potentially via the induction of SGK1 (374).

Uroguanyln is a member of the guanylin family of peptides that are involved in pH and 

volume regulation (434). Renoguanylin was first isolated from eels and is expressed in 

kidney and intestine (816). In microperfused rat proximal tubules renoguanylin decreased 

HCO3
− absorption via an inhibition of apical Na+/H+ exchange and H+-ATPase via a protein 

kinase dependent pathway (434). In additional studies in rat proximal tubules and LLC-PK 

cells, NHE3 inhibition involved the activation of both cGMP/PKG and cAMP/PKA, NHE3 

phosphorylation, and decreased NHE3 surface expression (435).
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Isolated Familial Proximal Renal Tubular Acidosis: Mutations in NBCe1—Of 

the proteins responsible for H+/base transport in the proximal tubule, only mutations in 

NBCe1 cause a severe form of isolated pRTA as no mutations in NHE3 have been described 

and CAII mutations often cause a mild form of combined proximal and distal RTA. pRTA is 

the end result of both acquired and genetic abnormalities in multiple pathways that mediate 

proximal tubular HCO3
− absorption (reviewed in detail (296)). Defective proximal tubule 

HCO3
− absorption can occur in isolation or accompanied by other proximal tubule transport 

defects (Fanconi’s syndrome). Mutations in NBCe1 are the only known cause of isolated 

familial pRTA (321). While other proximal tubular transport functions are normal, patients 

have extrarenal abnormalities including short stature, neurological findings (mental 

retardation, basal ganglia calcifications, migraine headaches), ocular abnormalities 

(cataracts, band keratopathy, glaucoma), tooth (enamel) defects, and elevated amylase and 

lipase (402). The extrarenal manifestations are likely due to local abnormalities in H+/base 

transport due to defective NBCe1 variant function. The additional role that systemic 

acidemia may play remains to be determined.

2 nonsense mutations (Q29X, W516X), 2 frameshift deletions (2311 delA, and a C-terminal 

tail 65bp-del), and 8 missense mutations (R298S, S427L, T485S, G486R, R510H, L522P, 

A799V, and R881C), have been reported. All cases reported thus far are inherited in an 

autosomal recessive fashion. Whether individuals heterozygous for NBCe1 mutations have 

subtle defects in proximal tubule bicarbonate transport and/or mild ocular, brain, growth, 

and pancreatic enzyme abnormalities is unknown. Mice with targeted disruption of NBCe1 

have a shortened lifespan and neurologic and ocular manifestations do not occur suggesting 

that these abnormalities require a longer time period to develop (235, 413). Headaches have 

been reported in patients with R510H, L522P, R881C, 2311 delA, and 65bp-del mutations, 

and also in heterozygous family members of a patient with a 65 base-pair C-terminal 

deletion and the L522P mutation (680). It has been hypothesized that headaches are due to 

ER retained misfolded NBCe1-B in brain astrocytes associated with abnormal NMDA-

mediated neuronal hyperactivity (804).

Autosomal dominant isolated pRTA has also been reported in patients with decreased bone 

density and short stature (109, 353, 429). Various proximal tubule proteins involved in H+/

base transport including CA II, IV, and XIV; NBCe1; NHE3; NHE8; NHERF-1 and -2, and 

PAT1 (CFEX) were not found to have mutations in their coding regions. It remains to be 

determined whether any of these genes are mutated in their intron and promoter regions.

Loop of Henle

Approximately 10-20% of the filtered HCO3
− load entering the nephron is absorbed in the 

loop of Henle (139) and the major site of active HCO3
− absorption is thought to be the thick 

ascending limb (TAL; (126, 198, 255, 267). The initial segment of the loop of Henle, the 

thin descending limb, has apical and basolateral Na+/H+ exchangers that likely function to 

regulate pHi (399); with little else known about it’s H+/base transport properties. Passive 

processes are potentially involved that promote HCO3
− absorption in the thin descending 

limb. Osmotic equilibration due to water absorption in the thin descending limb (384, 385) 

would be predicted result in an increase in the concentration of HCO3
− and an elevation of 
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the luminal pCO2. The subsequent flux of CO2 down its concentration (depending on the 

CO2 permeability of the thin descending limb) would increase the luminal pH resulting in 

the back-titration of HCO3
− from other luminal buffers (NH4

+ and H2PO4
−). This process 

would effectively mediate the efflux of HCO3
− in the form of CO2. The elevated luminal pH 

also plays an important role in the transport of ammonia from the thin limbs to the collecting 

ducts (257). Unlike the descending limb of Henle, the ascending limb is water impermeable 

with a high Na+ and Cl− permeability (323, 324). Na+ transport is mediated by passive 

diffusion whereas Cl− transport occurs via passive diffusion and an undefined carrier-

mediated process. Whether HCO3
− transport occurs in this segment is unknown.

The main site of HCO3
− absorption is the medullary and cortical TAL (mTAL and cTAL 

respectively) (255, 267). In the TAL, in addition to apical NHE3 which plays the same role 

as in the proximal tubule, NHE2 and the vacuolar H+-ATPase have also been localized to 

the apical membrane however their role in HCO3
− absorption is unclear (30, 89, 118, 414, 

601, 678, 748, 766). As in the proximal tubule, luminal HCO3
− is absorbed across the apical 

membrane indirectly via H+ secretion mediated by NHE3 that combines with luminal 

HCO3
− generating CO2 and H2O that are transferred across the apical membrane (414, 748). 

In addition, an apical K+-dependent HCO3
− transport process that opposes transepithelial 

HCO3
− absorption has also been described (763). K+-dependent ATP-ase activity has also 

been reported (814). TAL cells express cytoplasmic CAII and XV, apical and basolateral 

CAIV, basolateral CAXII, and apical CAXIV however species differences exist (411, 575, 

600, 633). Loop diuretics such as furosemide that block cellular Na+ uptake via NKCC2 

stimulate HCO3
− transport potentially via enhanced NHE3 activity or changes in membrane 

potential (255).

A basolateral stilbene-sensitive Na+-base transport process was initially described in the rat 

and mouse TAL however its molecular identity is unknown (357, 391). Both electrogenic 

Na+-base transport and the AE2 anion exchanger (16, 204, 224, 436, 583) that is also 

expressed on the basolateral membrane may potentially contribute to cell HCO3
− efflux and 

transepithelial HCO3
− absorption. HCO3

− uptake across the basolateral membrane of the 

mTAL is currently thought to be mediated in part by NBCn1, an electroneutral stilbene-

insensitive sodium bicarbonate cotransporter that could also play a role in cellular NH3 + H+ 

efflux and transepithelial tubular ammonia absorption (106, 410, 721). A basolateral K+-

dependent HCO3
− transport process has been reported in the rat mTAL (93). These 

transporters could play important roles in transepithelial HCO3
− absorption, intracellular pH 

regulation, cell volume regulation, and NH3/NH4
+ transport although their exact roles in 

each of these processes is currently unresolved.

Basolateral membrane ClC-K1 and ClC-K2 chloride channels (or their human orthologs 

ClC-Ka and ClC-Kb, respectively), play an important role in transcellular Cl− absorption 

(209, 211, 377, 706). Bartter’s syndrome (a cause of Cl−-resistant metabolic alkalosis) types 

3 and 4 is caused by mutations in genes coding for ClC-Kb and the regulatory subunit, 

Barttin (90, 388, 655). Barttin promotes ClC-K insertion into the plasma membrane (209, 

412, 732). Rarely Bartter’s syndrome can be caused by compound mutations in ClC-Kb and 

ClC-Ka (619). The membrane expression and physiologic role differ among species and in 
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that ClC-K2−/− mice die at a young age and ClC-K1−/− mice have nephrogenic diabetes 

insipidus (478).

The TAL is also an important sight for transporting NH3/NH4
+ from the lumen to the 

peritubular interstitium for subsequent transport into the collecting duct (233, 248, 267, 358, 

359, 764, 771). NH4
+ is transported across the apical membrane via NKCC2 and potentially 

via the ROMK potassium channel. The very low apical membrane NH3 permeability 

prevents the backflux of NH3 from cell to lumen following apical NH4
+ uptake (358). The 

basolateral Na+/H+ exchanger NHE4 mediates the cell peritubular efflux of NH4
+ (NH3 may 

also exit the TAL passively) (107, 315). In metabolic acidosis, NHE4 mediated NH4
+ efflux 

is stimulated (107).

Regulation of Thick Ascending Limb Bicarbonate Transport

Acute and Chronic Changes in Acid-base Chemistry

As in the proximal tubule changes in acid-base status alter HCO3
− transport in the TAL. 

Acute and chronic metabolic acidosis stimulate HCO3
− transport in both rat microperfusion 

and isolated perfused mTAL studies (138, 249). Chronic metabolic acidosis also stimulates 

mTAL ammonia absorption (249). These effects are associated with the upregulation of 

NHE3 and AE2 (HCO3
− transport); and NBCn1 (ammonia transport) (360, 410, 414, 583). 

In the cortex, sodium bicarbonate loading had no effect on AE2 expression unlike potassium 

bicarbonate loading that decreased AE2 expression, whereas in the outer medulla, sodium 

bicarbonate loading increased AE2 expression (583).

Basolateral Na+/H+ exchange mediated by NHE1 and NHE4 play an important role in 

modulating the function of apical NHE3, NH3/NH4
+ transport, and cell volume regulation 

(107, 268). Changes in NHE1 mediated transport are coupled to apical NHE3 via the actin 

cytoskeleton (759). In NHE1−/− mice, HCO3
− transport in mTALs is significantly reduced 

(268). Furthermore, the inhibition of HCO3
− transport by NGF is mediated through mPI3K-

mTOR and ERK signaling pathways that result in NHE1 inhibition (253, 263, 765). NHE1 

is also involved in the inhibition of mTAL HCO3
− absorption by LPS (760) (see below).

Aldosterone, Glucocorticoids, Peptide Hormones, PGE2, and Sepsis

Although less studied than the proximal tubule, various hormones and peptides modulate 

HCO3
− transport in the loop of Henle and TAL (139). In vivo microperfusion studies in rats 

showed that infusion of angiotensin II stimulates loop segment HCO3
− absorption thought to 

involve the TAL although the exact tubule segment involved cannot be discerned from these 

studies (138). In similar microperfusion studies, the in vivo administration of high dose 

aldosterone and glucocorticoids restored HCO3
− absorption to basal levels in 

adrenalectomized rats (704). Aldosterone inhibits TAL HCO3
− transport via a nongenomic 

ERK-dependent inhibition of apical NHE3 (261, 264, 758) and angiotensin II inhibits 

HCO3
− absorption through a cytochrome P-450 dependent pathway (260). Furthermore, 

glucagon and arginine vasopressin (AVP) inhibit transport via a cAMP dependent process 

(82, 252, 495). In the mTAL nerve growth factor inhibits HCO3
− transport but stimulates 

absorption in the presence of AVP through distinct signaling pathways (253, 765). The 

effect of AVP on transport is distinct from the effect of osmolality (250, 251). Specifically, 
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an increase in osmolality inhibits luminal NHE3 and transport via tyrosine kinase signaling 

whereas a decrease in osmolality increases HCO3
− transport through PI-3 kinase signaling 

(250, 251, 258, 766). The effect of AVP but not hyperosmolality can be reversed by PGE2 

through PKC and G protein (pertussis toxin-sensitive) pathways (254, 259). The stimulatory 

effect of hyposmolality on HCO3
− absorption is blocked by AVP and cAMP (258). PTH 

directly inhibits transport in the isolated perfused rat mTAL (252). In vivo PTH stimulates 

HCO3
− transport however this effect is complicated by potential changes in the luminal 

HCO3
− concentration profile (83).

HCO3
− absorption in the mTAL is inhibited by gram-negative lipopolysaccharide (LPS) by 

activation of TLR4 (toll-like receptor 4) and by gram-positive lipoteichoic acid and 

peptidoglycan through TLR2 (toll-like receptor 2) activation (262, 265, 266). Basolateral 

LPS inhibits blocks HCO3
− absorption via through ERK-dependent inhibition of NHE3 

(262, 761). Apical LPS inhibits HCO3
− absorption via TLR4/MyD88-dependent activation 

of the PI3K-Akt-mTOR pathway coupled to inhibition of NHE1 (760, 762).

Distal Convoluted Tubule/Connecting Tubule

The distal convoluted tubule (DCT) is the next segment of the nephron that is capable of 

HCO3
− transport. HCO3

− absorption has been documented in micropuncture studies and in 

microperfusion experiments although the magnitude varies among studies (136, 137, 154, 

395, 439, 440, 463). In the early DCT, apical H+ secretion is mediated by Na+/H+ exchange 

(NHE2) and H+-ATPase activity (46, 149, 750). In the latter portion of the DCT, luminal H+ 

secretion is mediated by H+-ATPase and H+-K+-ATPase transport (216, 717, 750, 785). It is 

difficult from micropuncture and in vivo microperfusion studies to clearly determine 

whether the next portion of the nephron, the connecting tubule (CT), and even the early 

cortical collecting duct (CCD) is accounting for the reported experimental results. The 

colonic form of the H+-K+-ATPase has been localized to the connecting and early cortical 

collecting duct (216, 717). In addition to HCO3
− absorption, studies by Levine have also 

provided evidence for luminal HCO3
− secretion (443, 750). This transport process is likely 

mediated by luminal pendrin, which will be discussed below.

Collecting Duct: Cortical, Outer Medullary and Inner Medullary Collecting 

Ducts

The collecting duct is subdivided anatomically into the CCD, and outer medullary (OMCD) 

and inner medullary collecting ducts (IMCD), with each tubule segment having unique H+/

base transport properties. The CCD has a heterogenous cell population with ~ 60% of the 

cells being principal cells (PCs) that are responsible for Na+ absorption, K+ secretion, and 

water absorption in response to AVP (528). PCs also possess H+/base transport pathways 

that are involved in pHi regulation rather than transcellular H+/base transport (146, 753, 

768). Approximately 40% of the cells in this tubule segment are intercalated cells (ICs) that 

are further subdivided into Type A and Type B subtypes (sometimes referred to as alpha and 

beta IC cells respectively). Morphologically Type A ICs have apical microplicae and 

microvilli and intramembranous rod-shaped particles whereas Type B ICs have few apical 

microvilli and have basolateral rod-shaped particles (473, 714, 715). Type A ICs mediate 

Kurtz Page 24

Compr Physiol. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HCO3
− absorption whereas Type B ICs secrete HCO3

−. Type A cells have an apical H+- 

ATPase and basolateral anion exchange mediated predominantly by AE1, whereas Type B 

ICs have apical Cl−/HCO3
− exchange mediated by pendrin (SLC26A4) and basolateral or 

diffuse H+-ATPase expression (14, 117, 118, 365, 500, 501, 712). These properties are best 

distinguished and characterized in the rat.

Among mammalian species, heterogeneity exists in the expression of these transporters and 

the overall HCO3
− transport properties of ICs. For example, at the whole tubule level, rabbit 

CCDs secrete HCO3
− whereas rat CCDs absorb HCO3

− (44, 240, 457, 485, 626, 628, 669). 

Intramembranous rod-shaped particles that are thought to be associated with the H+-ATPase 

are present in the apical membrane of rat Type A ICs and absent in rat Type B ICs (714). In 

the majority of rabbit ICs, these particles are present apically and basolaterally to varying 

degrees (592). In addition, rat Type B ICs have basolateral H+-ATPase staining whereas in 

the rabbit staining is typically diffuse (628). Moreover, the majority of ICs in the rabbit 

unlike the rat have H+-ATPase restricted to cytoplasmic vesicles (713). In the mouse CCD, 

Type B ICs are less common then in rat or rabbit and lack a dark cytoplasm with numerous 

mitochondria typical of other species (685). In addition, in mouse Type B ICs, small vesicles 

without studs are localized beneath the apical gray zone (685). AE1 in the rat is localized to 

the basolateral membrane of Type A ICs (711, 712) whereas in the rabbit, it is primarily 

located in multivescicular bodies and cytoplasmic vesicles and occasionally on a portion of 

the basolateral membrane (471). Differences in IC CA isoform expression among various 

species also exists (see below).

Cells that don’t fit the classic model of Type A or Type B ICs have also been described. 

Intercalated cells in the rabbit CCD termed γ or G cells have been identified functionally as 

having apical and basolateral Na+-independent Cl−/HCO3
− exchange, however the 

percentage of ICs with this property is controversial (207, 772). While the apical transporter 

is thought to be pendrin, the transporter responsible for basolateral Cl−/HCO3
− exchange is 

not known. Based on their specific ultrastructural properties, Kim et al (362) and Madsen et 

al (474) reported ICs in the CNT that that differed from classic Type A and Type B ICs that 

are called non-A non-B ICs. Subsequent studies in mice and rats showed that these cells 

express apical H+-ATPase and pendrin, but not basolateral AE1 (362, 365, 685). Breton and 

Brown have suggested that they are a modified Type B IC (115). The categorization of ICs 

into various subtypes becomes more complex given that the expression of the H+/base 

transporters (pendrin, H+-ATPase, AE1) in these cells may be modulated by systemic acid-

base status and other factors (55, 639).

In addition to the aforementioned transport proteins, Type A and Type B ICs possess other 

key transporters whose molecular identity is unclear. In Type A ICs, basolateral Cl− 

channels have been demonstrated in the CCD and in other collecting duct segments 

(380-382, 516). In Type B ICs, a basolateral Cl− conductive pathway contributes to 

transcellular Cl− transport that is stimulated by cAMP, modulated by the intracellular 

HCO3
− concentration, and is inhibited by DPC and anthracene-carboxylate (479, 625, 682, 

683). ClC-3 mRNA is expressed in Type B ICs (530) however it has not been localized in 

these cells at the protein level. Type A and B cells also possess an unidentified basolateral 
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Na+/H+ exchange process likely plays a role in pHi regulation rather than transcellular 

transport (500, 768).

Unlike the CCD, which can secrete or absorb HCO3
−, the OMCD only absorbs HCO3

− (44, 

457, 487). In the outer stripe portion (OMCDos) approximately 2/3 of the cells are PCs and 

1/3 are Type A ICs (715). Type A ICs are distinguished from PCs in that they have a 

basolateral Cl− conductive pathway, a lower basolateral membrane voltage, and essential no 

apical conductive pathways (381). In the OMCD Type A ICs generate the lumen positive 

transepithelial voltage due to electrogenic apical H+ secretion; with basolateral HCO3
− 

efflux mediated by the AE1 Cl−/HCO3
− exchanger coupled to Cl− recycling across the 

basolateral membrane (628). Given the lack of Cl− chloride channels on the apical 

membrane, Cl− is thought to enter the lumen paracellularly driven by the positive luminal 

transtubular potential. Type A ICs in the OMCD also express the basolateral SLC26A7 

anion exchanger and endosomes containing the transporter are targeted to the basolateral 

membrane during hypertonicity and K+ depletion (51, 561, 801). These cells also have 

intracellular H+-K+-ATPase activity (see below) (790).

In the rat and rabbit in the OMCDos and inner stripe portion of the OMCD (OMCDis), ~33% 

of the cells are Type A ICs (715). In the rabbit OMCDis, the outer portion of the OMCDis 

has Type A ICs, however the inner portion has cells which cannot be classified as PCs or 

ICs morphologically and have been termed inner stripe cells (592). Furthermore in the 

OMCDis there is cell-cell heterogeneity with regards to both H+-ATPase and AE1 

expression (118, 627, 628). The cells on electron microscopy (in the rabbit) have apical 

intramembranous particles that are thought to represent H+-ATPase transporters (592) and 

there is functional evidence for both apical Na+-independent H+ transport and basolateral 

Cl−/HCO3
− exchange (112, 301, 302). An unidentified basolateral Na+/H+ exchange process 

is also present (112, 301). HCO3
− absorption appears to mediated in part by an apical H+-

K+-ATPase and a Na+-dependent process that has not been characterized (38, 39, 697, 811). 

Finally unlike the CCD, there is physiologic evidence for apical membrane carbonic 

anhydrase activity (670). The basolateral membrane of ICs in the OMCDis is predominantly 

Cl−-conductive (380, 516) that can potentially be modulated by HCO3
− (302).

The IMCD is divided anatomically into either the initial (IMCDi) and terminal segment 

(IMCDt), or categorized into thirds (IMCD1, IMCD2, and IMCD3) (167, 470). As in the 

OMCD, species differences are apparent. In the rabbit, the IMCD1 cells are of a single type 

and resemble inner stripe cells with respect to their staining positive for carbonic anhydrase 

and Na+-K+-ATPase (592), whereas in the rat ~ 10% of the cells are Type A ICs (167, 470). 

Like the OMCDis, in the IMCDi there is functional evidence for apical carbonic anhydrase 

activity (lack of an acid luminal disequilibrium pH) (734). Unlike Type A ICs, IMCD cells 

lack staining for the H+-ATPase, AE1, and H+-K+-ATPase. In the rat IMCDi and IMCDt 

segments, there is evidence for H+ secretion and HCO3
− absorption via a Na+-independent 

mechanism (736, 737). Although there is conflicting evidence for an H+-ATPase, the data in 

rat IMCDt suggests there is H+-K+-ATPase activity (737). In the rabbit, no evidence for 

luminal H+ secretion has been found (327). Basolateral base transport is mediated by a 

Cl−/HCO3
− exchanger that is possibly AE2 (16, 217, 668, 676). In the basolateral membrane 
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there is functional evidence for a Na+/H+ exchange process (307) and a HCO3
− conductance 

whose molecular identities are unknown (667).

H+-ATPase (V-ATPase), Pendrin, OXGR1, NDCBE, AE4, KCC4, H+-K+-ATPase, Carbonic 
Anhydrase

H+-ATPase—The H+-ATPase is assembled into two domains: A Vo transmembrane 

domain and a V1 cytplasmic domain (ATP6V1) (111, 166, 221, 725). The V1 domain is 

composed of eight separate subunits with a specific stoichiometry whereas the Vo domain is 

composed of four subunits. ATP hydrolysis in the V1 domain occurs at the B/A subunit 

interface. H+ in the Vo domain are translocated between the a- and c-ring. In addition to 

transcellular and organelle H+ transport, additional functions include the regulation of 

GTPase activity (314), modulation of Wnt (180), and notch signaling (805).

Transcellular H+ flux in the CCD depends on the cell membrane voltage, which is 

influenced by Cl− (possibly directly) and by other electrogenic processes such as Na+ 

transport in PCs. Although the ClC-5 Cl− channel colocalizes with the apical H+-ATPase in 

Type A ICs, Cl− channel activity has not been demonstrated in the native tubule (380, 381, 

604). The ClC-5 chloride channel that co-localizes with the apical H+-ATPase in Type A 

ICs may play a role in endocytosis rather than transepithelial transport (604). Regulation of 

H+ secretion in Type A ICs is also mediated by several factors including recycling of 

subapical H+-ATPase containing vesicles, modulation of the interaction between the two 

H+-ATPase domains which has been studied in lower organisms (188, 343, 344, 510, 722), 

and potentially changes in the coupling efficiency between the enzymatic and H+ 

translocating machinery.

Recycling of vesicles represents an important mechanism for modifying the number of H+-

ATPase molecules expressed on the cell surface (120, 472). The actin cytoskeleton plays an 

import role where subunits B1, B2, and C bind to actin (158, 308, 720). Inhibition of RhoA 

depolymerizes actin and increases H+-ATPase membrane expression (651). Changes in 

systemic acid-base status also modulate the recycling machinery. An increase in the pCO2 

stimulates exocytosis of vesicles that is inhibited by colchicine (634). During exocytosis the 

H+-ATPase interacts with the SNARE complex (47). Although the exact mechanism is 

unclear, vesicles coated on their surface with H+-ATPase enzyme direct the recycling 

process (116) or help to recruit coat proteins to endosomes (498).

Alterations in pH are potentially sensed by soluble adenylate cyclase (sAC), which is 

expressed in ICs and has been found to co-immunopreciptate with the H+-ATPase (545). It 

is hypothesized the an increase in cytoplasmic HCO3
− concentration increases cAMP 

leading to PKA activation and increased plasma membrane H+-ATPase expression (542, 

543, 545). The PDZ motif in C-terminal tail of the electroneutral sodium bicarbonate 

cotransporter NBCn1 also interacts with H+-ATPase B1 subunit in keeping with the 

presence of a HCO3
−-sensing signaling pathway (579). The specific H+-ATPase subunit that 

is phosphorylated is unclear but has been shown to involve the A subunit (27, 286). pH 

sensing may signal through GPR4 as a mechanism for increasing cAMP (247, 546). Studies 

in other cell types suggest that purinergic receptor and Ca2+ signaling may also be involved 

(71, 159).
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In Type A ICs, angiotensin II increases H+ secretion likely via stimulation of translocation 

from a cytoplasmic pool to the apical membrane (550, 596, 728) PKC signaling is involved 

following binding of angiotensin II to the AT1 receptor (596). Aldosterone stimulates proton 

secretion in the collecting duct acutely via a nongenomic effect mediated by Gαq, PKC, and 

the ERK1/2 MAPK kinase pathway (792, 793). Chronic exposure to aldosterone increases 

translocation to the plasma membrane (792). Loss of aldosterone signaling leads to 

hyperkalemic dRTA partially due to loss of aldosterone-dependent signaling of H+-ATPase 

mediated Type A IC apical H+ secretion (409).

Patients with mutations in the B1 subunit have autosomal recessive hypokalemc dRTA 

(347). Since B1−/− mice don’t have a hyperchloremic metabolic acidosis and it has been 

suggested that B1 subunit mutations in humans prevents the adaptive formation and 

expression of B2 subunit containing H+-ATPase transporters. (219, 547). Patients with 

mutations in the a4 subunit have autosomal recessive hypokalemc dRTA (660). Studies in 

a4−/− mice have led to the suggestion that patients with ATP6V0A4 gene mutations have 

both proximal and distal acidification defects accounting for their severe metabolic acidosis 

(304, 526). Loss of the a4 subunit also leads to downregulation of other H+-ATPase subunits 

and may affect the assembly of the transporter. The transcription factor Fox1 directly 

regulates the expression of the a4 subunit and Fox1−/− mice have loss of the a4 subunit in 

addition to pendrin and AE1 (95, 718).

Pendrin—Pendrin, the apical Cl−/HCO3
− exchanger in Type B ICs and non-A, non B ICs 

(365, 597) was first shown to be an iodine transporter that was mutated in Pendred 

syndrome (goiter and deafness) (192, 210). Whether patients with Pendred syndrome have a 

defect in Type B IC HCO3
− secretion is unknown. Mice with targeted disruption of pendrin 

either lack CCD HCO3
− secretion (597) or have reduced apical Cl−/HCO3

− exchange and 

CCD HCO3
− secretion (35) suggesting that at least in mouse, additional apical Cl−/HCO3

− 

exchange process(es) may be present. Loss of pendrin in mice also modulates the expression 

of several Na+, Ca2+, H+/base and NH3 transporting proteins (52, 366, 549). Pendrin 

overexpression in mice results in Cl-sensitive hypertension (335). The transporter in CCD 

Type B cells has the following halide affinity, Cl− ~ Br− >I− > F− (206), with an apparent 

affinity for luminal Cl− of ~ 10 mM in the rabbit (625). Pendrin mediated transport is 

modulated by changes in luminal Cl− concentration and likely plays an important role in the 

recovery phase of Cl−-sensitive metabolic alkalosis following administration of Cl−-

containing salts (232, 443, 669). Pendrin mediated HCO3
− secretion via Type B ICs is 

acetazolamide inhibitable (696) and stimulated by cAMP (625, 626). cAMP/PKA signaling 

appears to mediate the isoproterenol (β-adrenergic agonist) induced increase in pendrin 

membrane expression/activity (45). Changes in whole body Cl− balance, and water balance 

also modulate pendrin expression (507, 582, 710, 735). Pendrin expression is also affected 

by acid and base loading, and mineralocorticoids (223, 507, 562, 709, 726) but is not 

involved in Type B IC pHi regulation (767).

Recent studies have shown that luminal α-ketoglutarate (α-KG) via the OXGR1 α-KG 

receptor that is localized to the apical membrane of Type B and non-A, non-B ICs in the 

CNT and CCD modulates pendrin and Type B IC function (688). In isolated perfused CCDs, 

α-KG stimulates apical Cl−/HCO3
− exchange, and transtubular Na+ and Cl− transport that is 
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thiazide inhibitable. Base loading significantly increased urinary α-KG levels providing a 

luminal signal to enhance CCD Type B IC cell HCO3
− secretion. OXGR1−/− mice do not 

respond to luminal α-KG with enhanced Cl−/HCO3
− exchange and have reduced ability to 

excrete a base load.

ENaC, NDCBE, Pendrin and Type B IC Na+ Transport—There is recent evidence 

suggesting that the function of Type B ICs modulates Na+ transport in PCs, and that type B 

ICs per se transport Na+. Pendrin−/− mice have decreased expression of ENaC in PCs and 

changes in luminal HCO3
−/pH (pendrin function) can alter ENaC Na+ transport (549, 738). 

Secondly, studies in mice suggest that Type B ICs in addition to apical pendrin, have a 

thiazide sensitive Na+-coupled Cl−/HCO3
− exchange process that is thought to be mediated 

by NDCBE (Slc4a8) providing an additional mechanism for coupling the transport of Na+ 

and Cl− (278, 437). The coupling of pendrin (2Cl−/2HCO3
− exchange) and NDCBE (Na+-

coupled Cl−/2HCO3
−) transport would be predicted to mediate the net cell influx of NaCl. 

Thirdly, Type B ICs B1−/− mice have renal loss of Na+, Cl−, K+, polyuria, decreased ENaC 

expression in PCs, and decreased pendrin expression in Type B ICs (278). The expression of 

ENaC, the large conductance calcium-activated potassium channel, and aquaporin 2 were 

normalized when Type B IC ATP-triggered PGE2 paracrine signaling was blocked.

In addition to purported NDCBE, another member of the SLC4 base transporting family 

AE4 has been localized to CCD IC cells. AE4 was initially thought to mediate Cl−/HCO3
− 

exchange (693) however its amino acid sequence more closely resembles members of the 

family that mediate Na+-coupled base transport (403). The expression pattern varies among 

studies and between species. AE4 has been immunolocalized to the apical and lateral 

membranes of rabbit CCD Type A ICs (376). A separate study in rabbit showed apical co-

localization with peanut lectin (a Type B IC marker) (800). In the rat, AE4 is expressed on 

the basal and lateral membrane of CCD Type A and B ICs (376). In the mouse AE4 is 

localized to the basolateral membrane of CCD Type B ICs (95, 306). Mice with targeted 

disruption of AE4 do not have an overt phenotype however CCD Type B IC function was 

not reported (657).

KCC4—Mice with loss of the KCl cotransporter KCC4 develop dRTA and deafness 

suggesting a role for the transporter in basolateral Cl− efflux in Type A ICs (100). In the 

rabbit, KCC4 has been immmunolocalized to the basolateral membrane of cells in the DCT, 

CNT, that dissipates gradually with the transition to the CCT (708).

H+-K+-ATPase—H+-K+-ATPases are ATPases (E1, E2 or P-type) secrete H+ in exchange 

for K+ electroneutrally (179, 274, 281). The transporter consists of an α and β subunit, and 4 

α subunit isoforms and 2 β subunit variants have been characterized. The known variants 

differ in their inhibitory profiles (127). The gastric or HKα1 variant is inhibited by 

SCH28080 and omeprazole and not ouabain. The colonic form, HKα2, is inhibited by 

ouabain but not SCH 28080. The HKα4 form found in skin is sensitive to ouabain and SCH 

28080. There is evidence that HKα1 and HKα2 mediate the functional activity in the mouse 

collecting duct (132, 186, 274, 281). The inhibitory profile in the CCD and OMCD of K+-

replete rats is the same as the gastric isoform (type I profile) whereas in K+-depleted animals 

activity was partially SCH 28080- and ouabain-sensitive and K+ could be replaced by Na+ 
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(type III profile) (127). Type I activity was not detectable in mice with disruption of HKα1 

(Atp4a gene) and the type III activity was preserved, whereas in mice with loss of HKα2 

(Atp12a), type I activity was present and type III activity was lost (186). These findings and 

subsequent studies by Shao et al (646) suggest that either the kidney also expresses an 

HKα2 different from the colonic variant, or technical experimental reasons account for the 

findings. Mice with loss of both HKα1 and HKα2 have normal acid-base parameters 

possibly due to upregulation of compensatory mechanisms (494, 666). Lynch et al examined 

acid secretion in ICs of CCDs from HKα1−/− and HKα2−/− or combined HKα1−/−/HKα2−/− 

mice and demonstrated a decrease in H+ transport in both Type A and Type B ICs (467, 

468). Interestingly, 35-70% of HCO3
− transport in the OMCDis is thought to be H+-K+-

ATPase dependent (283, 697). In the CCD, acute respiratory acidosis appears to stimulate 

H+-K+-ATPase transport (654). Calcitonin and isoproterenol also activate H+-K+-ATPase 

activity via ERK and cAMP (218, 418). HKα2−/− mice have reduced colonic ENaC activity, 

which is of interest since Na+-transporting PCs in the rabbit collecting duct (in addition to 

IC and OMCD cells) express HKα2c (717). Whether the collecting duct H+-K+-ATPase 

plays a role in mediating Na+ transport per se is unclear, however a low Na+ diet has been 

reported to stimulate its activity (178, 653).

Carbonic Anhydrase—In general, HCO3
− transport in the collecting duct is sensitive to 

carbonic anhydrase inhibition (457, 483, 484, 487, 591, 702). ICs in the collecting duct in all 

species stain for cytoplasmic CAII (119, 121, 458, 665) however differences exist among 

various species in the expression of membrane anchored CAIV (122, 459, 694). The 

expression of both CAII and CAIV is increased by metabolic acidosis (694, 791). In 

addition to playing a role in H+/base transport, studies in mice suggest that CAII may be 

important for the development of IC cells and for the expression of other transporters. In 

CAII−/− mice there is a loss of Type A and Type B ICs (110), and pendrin expression is 

significantly decreased (679). Cells in the CCD lack luminal carbonic anhydrase and 

because of this, a spontaneous luminal disequilibrium pH is present due to net luminal H+ 

secretion. In addition to the CCD, the superficial DCT, OMCDos, and IMCD lack luminal 

carbonic anhydrase. The basolateral membrane of PCs stains for CAXII whose significance 

in unclear but may play a role in pHi regulation (411, 638).

NH3-NH4
+ Transport: Rhesus Proteins RhBG and RhCG and Sulfatides—The 

acidification of the collecting duct lumen is associated with the secretion of NH3 from the 

interstitium and its protonation in the lumen to NH4
+ (770, 771). NH3 permeates the 

collecting duct plasma membrane via specific rhesus (Rh) membrane proteins. RhBG and 

RhCG are expressed in murine and human collecting ducts in essentially the same pattern 

except that in humans, PCs don’t express either protein. RhBG is expressed basolaterally in 

the CNT, Type A ICs, and non-A, non-B cells (294, 716), whereas RhCG is expressed on 

both the apical and basolateral cell membranes of the DCT, CNT, Type A ICs, and non-A, 

non-B cells (293, 361). Chronic metabolic acidosis increases RhCG expression in both 

OMCD and IMCD ICs (643) and in the OMCDis increases apical RhCG expression in ICs 

and PCs (644). In mice lacking IC RhBG basal urinary NH4
+ excretion is essentially normal, 

however following acid-loading or K+-depletion, NH4
+ excretion is significantly decreased 

(91, 92). Mice with targeted loss of RhCG in the collecting duct or specifically in ICs have 
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normal acid–base parameters with only mildly reduced urinary NH4
+ excretion, however 

following acid-loading, a more severe metabolic acidosis develops with decreased urinary 

NH4
+ excretion (421, 422). In mice with deletion of RhCG in the collecting duct with intact 

RhCG in the CNT, a less severe phenotype exists suggesting that the CNT and possibly the 

late DCT contribute to RhCG mediated NH3 permeation (422). Complete loss of RhCG 

leads to an 80% decrease in CCD NH3 permeability (105). Mice with RhCG 

haploinsufficiency have a 40% decrease in CCD NH3 permeability and following chronic 

acid loading have a blood HCO3
− that is less than controls (105). Combined collecting duct 

RhBG−/−/RhCG−/− mice have normal acid-base base parameters but following acid-loading 

have a more severe metabolic acidosis than controls (423). These studies in mice establish 

the role of Rhbg and Rhcg in the renal response to extrarenal metabolic acidosis. 

Interestingly, Rh gas channels also mediate CO2 permeation however the relevance to 

collecting duct H+/base transport is currently unknown (515). Recently, highly charged 

anionic glycoshingolipids (sulfatides) have been reported to play an important role in 

maintaining the high concentration of NH4
+ in the papillary interstitium required for 

collecting duct NH3 secretion (673).

Regulation of Collecting Duct Acidification

Acid-Base and Electrolyte (Na+, Cl−, K+, and Ca2+) Chemistry

In the CCD and OMCD, an acute decrease in basolateral pH and HCO3
− stimulates 

bicarbonate absorption in perfused tubules in vitro (113, 327, 334). Raising the basolateral 

pCO2 in the CCD has led to conflicting results that may be due to differences unidirectional 

HCO3
− absorption versus secretion at baseline (113, 489). In the OMCD, raising the 

basolateral pCO2 increases HCO3
− absorption (489). Although not yet determined, the 

stimulation of transport could result changes in pHi and or the intracellular HCO3
− 

concentration that kinetically alter the rate of apical H+-ATPase and basolateral Cl−/HCO3
− 

exchange in Type A ICs. In addition, in the CCD, Type B and non-A, non-B IC 

HCO3
−secretion could decrease. As discussed above other mechanisms including H+-

ATPase pH sensing and recycling of H+-ATPase containing vesicles into the plasma 

membrane likely play an important role in modulating collecting duct acidification in 

response to acute acidosis (metabolic and respiratory). The insulin receptor-related receptor 

(InsR-RR) is expressed on the basolateral membrane of Type B ICs and non-A and non-B 

ICs that may act as an alkaline pH sensor signaling through ERK1/2, the actin cytoskeleton, 

and modulation of pendrin expression (56, 185, 536)

Chronic changes in systemic acid-base balance induce changes in collecting duct transport 

that can be demonstrated in vitro in dissected tubules (memory effect). This is best 

illustrated by studies showing the direction of net HCO3
− transport (absorption and 

secretion) can be predictably altered in CCDs dissected from animals with metabolic 

acidosis or alkalosis (44, 484, 485, 671). Similar effects have been described in rat DCTs 

perfused in vivo (320, 442). HCO3
− transport by the IMCD is also regulated in metabolic 

acidosis and alkalosis (74, 75, 702, 736). In contrast the OMCD does not appear to be 

regulated by systemic acid-base balance (420, 457, 487).
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In the CCD, early studies suggested that Type A and Type B ICs interconvert in response to 

in vivo acid-base changes (636). Subsequent studies reported modulation of transport and 

anion exchanger expression in CCDs exposed to acidic peritubular fluid in vitro (576, 614, 

639, 695). Al-Awqati and colleagues reported that the changes in the transport properties of 

ICs are due to hensin/DMBT1 that interacts with galectin-3 and cypA (9, 630, 635, 639, 

684, 705) and cyclophilins are also reportedly involved (8, 230, 553). Other studies have 

suggested that there is remodeling of individual Type A and Type B cells and intermediary 

hybrid cells rather than a strict change in polarity (55, 117, 628, 714). A reversal of polarity 

is now considered unlikely given that IC expression of apical AE1 and basolateral pendrin 

have never been detected.

In the mouse, Type A ICs proliferate in response to metabolic acidosis that involves 

signaling through GDF-15 (200). More recent studies in rat have shown that chronic 

metabolic acidosis leads to Type A IC proliferation in the CCD and OMCD (784). PCs also 

proliferate but Type B ICs under the same conditions do not. Because acetazolamide 

induced the same response as NH4Cl loading, systemic rather than urinary pH likely 

mediated the proliferative response (784).

Unlike peritubular pH, luminal pH changes are unlikely to alter intracellular pH in the DCT, 

CCD, and OMCDis because of the low H+/HCO3
− apical permeability (113, 154, 302, 668, 

767). The lack of change in pHi also suggests that the H+-ATPase in Type A and IMCD 

cells is rather insensitive to changes in luminal pH. In the DCT, luminal flow rate and the 

axial profile of the luminal HCO3
− concentration modulate HCO3

− absorption as in the 

proximal tubule (136, 154, 320). In Type B ICs that secrete HCO3
− via pendrin, changes in 

the luminal HCO3
− concentration also alter the rate of apical Cl−/HCO3

− exchange (767).

Increasing the Na+ concentration in the lumen of the CCD increases PC Na+ transport and in 

the absence of transportable anions (particularly in the presence of aldosterone), leads to an 

increased transepithelial voltage (383, 419). In this setting although Type A ICs don’t absorb 

Na+, it would be predicted that their apical membrane would depolarize due to circular 

intraepithelial current loops leading to enhanced H+ secretion. Accordingly, diseases such as 

Liddle’s syndrome where PC ENaC mediated Na+ transport is increased (567) secondarily 

enhances Type A IC H+ secretion. Conversely blocking ENaC in PCs with amiloride would 

in the CCD be predicted to hyperpolarize the apical membrane of ICs as has been shown in 

the OMCDos (382) leading to decreased electrogenic H+ secretion and HCO3
− absorption 

(529).

The luminal Cl− concentration is a factor determining the rate of Type B cell apical 

Cl−/HCO3
− exchange, and the magnitude paracellular Cl− transport (232, 443, 625, 669). In 

Cl−-sensitive metabolic alkalosis, increasing the Cl− concentration in the lumen of the CCD 

likely enhances pendrin (Km for luminal Cl− ~ 5-10 mM) mediated HCO3
− secretion 

associated with an increase in basolateral H+-ATPase transport (711) contributing to the 

correction of the acid-base disorder. The apparent Km of basolateral Cl−/HCO3
− exchange 

for basolateral Cl− in the OMCDis is ~ 115 mM (302) however whether clinical variations in 

the peritubular Cl− concentration are physiologically relevant remains to be determined.
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Determining the direct role of K+ on collecting duct H+/base transport is complex given that 

its effect(s) in vivo are potentially mediated by changes in extracellular and/or intracellular 

K+. Moreover, in clinical disorders affecting K+ balance, there often are accompanying 

changes in mineralocorticoid levels and systemic acid-base balance that can independently 

modulate tubule transport. In the DCT, hypokalemia enhances HCO3
− absorption (136, 

137). CCDs dissected from K+ depleted animals (with hypoaldosteronism and metabolic 

acidosis) have increased HCO3
− absorption in vitro whereas OMCD HCO3

− absorption is 

decreased (488). K+ depletion is also associated with increased collecting duct H+-K+-

ATPase activity as discussed (193), and increased expression of apical H+-ATPase, 

basolateral AE1, and basolateral Slc26a7 (50, 672).

Ca2+ (5.0 mM) and the CaSR agonist neomycin significantly enhance H+-ATPase activity in 

the OMCD (590). In TRPV5−/− mice, activation of apical CaSR (Ca2+-sensing receptor) 

increased luminal Ca2+ concentration in the DCT and collecting duct could potentially 

increase H+-ATPase activity lowering urinary pH and downregulate AQP2 (aquaporin 2) 

thereby preventing stone formation (590). In addition, disruption of the Atpv1b1 gene in 

TRPV5−/− mice results in normalization of urinary pH and tubular precipitation of Ca2+-

phosphate in the medullary collecting duct. These observations indicate that increased H+-

ATPase–mediated urinary acidification in TRPV5−/− mice protects against renal Ca2+-

phosphate stone formation.

Peptide Hormones, Renin-Angiotensin System, Mineralocortocoids, and Prostaglandins

In the rat DCT and CCD, ADH converts HCO3
− secretion to net HCO3

− absorption however 

the mechanism is unknown (82, 441, 689). Glucagon stimulates HCO3
− secretion and/or 

decreases HCO3
− absorption in the DCT and collecting duct potentially via signaling 

increase through cAMP (208, 495).

Isoproterenol or VIP increases HCO3
− absorption in the rat DCT, (441). In the CCD, 

isoproteronol increases cAMP and stimulates HCO3
− secretion likely via an increase in 

apical pendrin activity and the basolateral Cl− conductance (299, 625, 626, 682). H+-ATPase 

expression is modulated by cAMP/PKA and sAC as discussed whereas signaling through 

PKC doesn’t appear to play a role (247, 303, 542, 543, 545).

PTH increases adenylate cyclase in the DCT and CNT (508, 540). In metabolic acidosis 

PTH is increased and the increase in collecting duct acidification induced by PTH may be 

due to enhanced phosphate delivery where phosphate acts as a buffer or a non-reabsorbable 

anion (81, 497). Metabolic acidosis may also downregulate the PTH receptor (340).

In the DCT, ET-1 administration in vivo increases acidification by stimulating H+ secretion 

and by decreasing and decreasing HCO3
− secretion (following HCO3

− loading) (787). 

Metabolic acidosis stimulates endothelial ET-1 secretion (788). In the DCT, inhibition of the 

ETB receptor following protein loading (mild metabolic acidosis) in vivo blocks the 

aldosterone induced stimulation of H+ secretion (356). In the CCD, binding of endothelin to 

the ETB receptor decreases HCO3
− secretion signaling through NO-guanylate cyclase (699).
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Prorenin binds to the (pro)renin receptor ((P)RR) inducing renin-angiotensin system activity. 

The signal transduction pathway is independent of angiotensin II generation (522, 523). 

(P)RR has been identified as an accessory protein of the H+-ATPase (466) and colocalizes 

with the H+-ATPase in the collecting duct (5). Evidence in Madin-Darby canine kidney 

(MDCK) cells suggests that (P)RR and H+-ATPase activity is required for prorenin-induced 

activation of ERK1/2 (5). Activation of the H+-ATPase by aldosterone and angiotensin II is 

also dependent on ERK1/2 (596). Knockdown of (P)RR expression in MDK cells blocked 

prorenin and AVP-induced H+-ATPase activation perhaps via changes in membrane 

insertion, suggesting that (P)RR is needed for prorenin-dependent and -independent 

activation of the H+-ATPase (462). The importance of the prorenin induced stimulation in 

vivo is unclear given the unphysiologic concentration of prorenin required.

The effect of angiotensin II on collecting duct H+/base transport is complex. Angiotensin II 

has been reported to increase luminal HCO3
− secretion in the rabbit CCD (769) and Type B 

IC H+-ATPase activity in the mouse CNT and CCD (728); whereas in rat, HCO3
− 

absorption is increased (746). In the mouse, Pech et al (548, 550) have shown that 

angiotensin II directly stimulates the Type A IC H+-ATPase with increased plasma 

membrane expression and that Type B IC HCO3
− secretion is secondarily increased 

potentially via a lowering of the luminal HCO3
− concentration (increased driving force) and 

generation of luminal CO2 (501). In the mouse although angiotensin II increases Type B IC 

H+-ATPase membrane expression, pendrin expression is unchanged (728) HCO3
− 

absorption is decreased in the OMCD in response to angiotensin II (733).

The are several mechanisms by which mineralocorticoids stimulate luminal H+ secretion in 

the collecting duct. In the CCD, mineralocorticoids stimulate PC ENaC mediated Na+ 

transport that indirectly depolarizes the apical membrane of Type A ICs resulting in an 

increase in H+ secretion (544). Furthermore there is a direct effect on Type IC H+-ATPase 

transport in both the CCD and OMCDis (383, 674). H+ secretion in the rat IMCD is also 

stimulated by mineralocorticoids (197). A nongenomic mechanism causes rapid 

translocation of H+-ATPase to the apical membrane signaling through G(αq) protein-

coupled receptors, and intracellular Ca2+ signaling, PKC, and ERK1/2 are involved (792). In 

addition, cAMP/PKA has a modulatory role. In mice lacking the V1a receptor that develop 

type 4 RTA fludrocortisone ameliorated the acidosis by restoring excretion of urinary 

ammonium via increased expression of H+-K+-ATPase and RhCG and decreased H+-

ATPase expression (332). The activity and expression of the H+-K+-ATPase regulated by 

mineralocorticoids involves increased α2 subunit mRNA (273). HCO3
− secretion by the 

Type B IC is stimulated by mineralocorticoids (383, 674). This effect is blocked by 

ameliorating the accompanying metabolic alkalosis with acid-loading (232).

As discussed in Type B ICs, proton pump inactivation induces release of PGE2 via calcium-

coupled purinergic receptor activation (278). In the OMCDis PGE2 inhibits HCO3
− 

absorption (300). Base loading increases the urinary excretion of PGI2 associated with 

increased HCO3
− secretion in the rat DCT via changes in cAMP signaling (786).
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Isolated Familial Distal RTA: Mutations in CAII, AE1, H+-ATPase Subunits

Patients with mutations (23 mutations reported thus far) in CAII have autosomal recessive 

combined pRTA and dRTA because of the presence of CAII in proximal tubule cells, Type 

A intercalated cells, and medullary collecting duct cells. (57). CAII deficiency tends to have 

a higher incidence in the Arabian Peninsula possibly due to consanguinity with more than 

70% of the cases described from this region (214, 319). A splice site mutation at the junction 

of exon 2–intron 2 (c.232+1 G > A) is commonly detected in these patients (215). Extrarenal 

manifestations include osteopetrosis, intracerebral calcification and developmental delay 

(645). Mild hearing loss due to a conductive defect has also been reported (517).

AE1 is a 12-14 transmembrane spanning protein whose topologic structure has been recently 

modeled after prokaryotic ClC channels (102). Two variants, kAE1 (kidney AE1) and eAE1 

(erythrocyte AE1) are transcribed by the SLC4A1 gene that differ in their N-terminal 

sequence; kAE1 is shortened by 65 residues in its N-terminus because of alternative 

promoter usage. eAE1 is expressed in the erythrocyte and kAE1 is localized to the 

basolateral membrane of Type A ICs (114, 621, 820). AE1 mutations causing dRTA were 

first reported by Bruce et al and subsequently by Karet et al (124, 348). Mutations in AE1 

also cause hereditary spherocytosis (HS) without dRTA (336). Only in very rare instances 

do patients have both dRTA and red cell hemolysis (125). Thus far, 16 separate mutations in 

AE1 have been reported to cause dRTA with associated hypokalemia, nephrocalcinosis, 

hypercalciuria, and nephrolithiasis; both autosomal recessive and dominant inheritance has 

been described. Interestingly, the mutated proteins have been found to function essentially 

normally in vitro suggesting other mechanisms such as misfolding and ER or Golgi 

retention, or mistargeting to the plasma membrane play an important role. Importantly, there 

are no patient biopsy results that have addressed this issue; rather, interferences are made on 

mutated AE1 ER/golgi retention, or mistargeting using in vitro cell model systems. Loss of 

polarized expression has been reported in the context of the C-terminal R901X truncation 

mutant, AE1-G609R, and M909T, whereas intracellular retention in polarized cells 

characterizes the C479W, R589H, S613F, and G701D mutants (summarized in (13, 57)). 

AE1 is a dimer and it has been shown that in the context of autosomal dominant mutations, 

mixed mutant/wild-type dimers are retained intracellularly and cannot be rescued by the 

wild-type monomer (809). In contrast, mutations inherited autosomal recessively can be 

expressed on the plasma membrane normally as mutant/wild-type dimers (809). Recent 

experiments have shown that trafficking of kAE1 mutants can be partially restored in vitro 

by various treatments (163).

Karet et al described patients with autosomal recessive dRTA and sensorineural hearing loss 

that have mutations in the ATP6V1B1 gene encoding the H+-ATPase B1 subunit (347). The 

hearing loss is progressive however occasionally a conductive component is present and 

bilaterally enlarged vestibular aqueducts have been reported (339). In addition, the patients 

are hypokalemic with nephrocalcinosis, and can have hypercalciuria and rickets. Karet et al 

also reported mutations in the ATP6V0A1 gene encoding the a4 subunit in patients with 

dRTA and normal hearing (346). The patients also had hypokalemia with nephrocalcinosis, 

and several had hypercalciuria. Auditory brain stem response tests were normal. Subsequent 

studies of patients with mutations in the a4 subunit did have hearing loss, such that hearing 
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loss per se can no longer be considered diagnostic for a specific H+-ATPase subunit 

abnormality (502, 675, 707). Underlying mechanisms include abnormal pump assembly, 

impaired function, abnormal targeting, and loss of interaction with 

phosphofructokinase-1(PFK-1) (229, 677, 808).
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