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Loss of TGFβ signaling increases alternative end-joining DNA repair 
that sensitizes to genotoxic therapies across cancer types 
 
One Sentence Summary:  The impact of TGFβ signaling on DNA repair competency is observed in pan-

cancer analysis of survival  after treatments that cause DNA damage.   
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Abstract 

Amongst the pleotropic roles of transforming growth factor β (TGFβ) signaling in cancer, its 

impact on genomic stability is least understood. Inhibition of TGFβ signaling increases use of 

alternative end-joining (alt-EJ), an error-prone DNA repair process that typically functions as a ‘back-

up’ pathway if double strand break repair by homologous recombination or non-homologous end-

joining is compromised.  However, the consequences of this functional relationship on therapeutic 

vulnerability in human cancer remain unknown. Here, we show that TGFβ broadly controls the DNA 

damage response and that it suppresses alt-EJ genes that are associated with genomic instability. 

Mechanistically-based TGFβ and alt-EJ gene expression signatures were anti-correlated in 

glioblastoma, squamous cell lung cancer, and serous ovarian cancer.  Consistent with error-prone 

repair, more of the genome was altered in tumors classified as low TGFβ and high alt-EJ, and the 

corresponding patients had better outcomes. Pan-cancer analysis of solid neoplasms revealed that alt-

EJ genes are coordinately expressed and anti-correlated with TGFβ competency in 16 of 17 cancer types 

tested. Moreover, regardless of cancer type, tumors classified as low TGFβ and high alt-EJ were 

characterized by an insertion-deletion mutation signature containing short microhomologies and were 

more sensitive to genotoxic therapy.  Collectively, experimental studies revealed that loss or inhibition 

of TGFβ signaling compromises the DNA damage response, resulting in ineffective repair by alt-EJ.  

Translation of this mechanistic relationship into gene expression signatures identified a robust anti-

correlation that predicts response to genotoxic therapies, thereby expanding the potential 

therapeutic scope of TGFβ biology.   
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Introduction 

The cytokine transforming growth factor β (TGFβ) is considered a canonical tumor suppressor 

that exerts profound control upon epithelial proliferation. Although cancer must evade TGFβ growth 

regulation, complete loss of TGFβ signaling competency is not universal because autocrine TGFβ 

promotes malignant phenotypes, such as invasion, and paracrine TGFβ has pro-tumorigenic effects on 

the tumor microenvironment (reviewed in (1)).  Some cancers, including colorectal cancer, pancreatic 

cancer, and head and neck squamous cell carcinoma (HNSC), exhibit genetic alterations of key 

pathway components, including somatic mutations of SMAD4 (mothers against decapentaplegic 

family member 4) and TGFBR2 (transforming growth factor beta receptor 2) (2). The conversion from 

tumor suppressor to tumor promoter is one of the paradoxes that have complicated the targeting of 

TGFβ in cancer therapy.   A clearer understanding of its detrimental effects on cancer biology could 

provide an actionable rationale for TGFβ inhibition in cancer therapy.  

One aspect of TGFβ biology that remains poorly understood is its role in genomic stability, which 

was initially recognized more than 25 years ago (3). Over the last decade it has been established that 

TGFβ regulates the expression or function of key DNA repair proteins, including ATM (ataxia 

telangiectasia mutated), BRCA1 (breast cancer 1 gene), and LIG4 (DNA ligase 4), which are necessary 

for maintenance of genomic integrity (reviewed in (4)). Faulty DNA repair is a hallmark of cancer, and 

specific repair defects can provide the basis for response to precise therapies (5).   Moreover, key DNA 

repair effectors are attractive targets for drug development, which can be deployed in cancers with 

specific vulnerabilities, as evidenced by the success of poly(ADP-ribose) polymerase (PARP) inhibitors 

in BRCA1/2 mutant tumors (6).  

Human papilloma virus (HPV) positive HNSC exhibits striking sensitivity to standard of care 

genotoxic therapy with cisplatin and radiotherapy (7).  We demonstrated that loss of TGFβ 

competency in HPV-positive cancer in turn compromises the canonical DNA double strand break (DSB) 

repair pathways, homologous recombination repair (HR) and non-homologous end-joining (NHEJ) (8).  

Pharmaceutical TGFβ inhibition in HPV-negative cancer cells replicates the DNA repair defects 

exhibited by HPV-positive cancer cells and tumors. When classical DSB repair is defective, alternative 

end-joining (alt-EJ, also called microhomology-mediated end-joining) is thought to take over as a back-

up repair (9, 10). In support of this, we demonstrated that alt-EJ is increased in HPV-positive cells, and 

in HPV-negative cells in which TGFβ signaling is blocked (8).  DSB repair by alt-EJ is highly error-prone 

because it generates frequent genomic deletions and insertions with microhomologies at processed 
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ends (11, 12). Hence cells using alt-EJ are more sensitive to genotoxic chemotherapy or radiotherapy 

(8).  Because radiosensitivity is increased when TGFβ signaling is inhibited (8, 13-15), defective TGFβ 

signaling may present a specific therapeutic opportunity. 

The view that alt-EJ provides a survival mechanism in the face of classical DNA repair failure has 

spawned efforts to target its effector, polymerase  (Pol , encoded by POLQ), an approach supported 

by the high POLQ expression in HR-deficient breast and ovarian tumors (16).  More recently, 

experiments using alt-EJ and HR competition repair substrates demonstrated that alt-EJ can be used 

to repair 10-20% of DSB even in mammalian cells where both HR and NHEJ are available (17) and provide 

evidence that Pol  deletion compromises cell survival even when canonical DSB repair pathways are  

intact (18).  Thus alt-EJ function may be more complex than a simple back-up system (9), especially if 

alt-EJ is used as a fail-safe primarily by cancer cells, which would provide a considerable therapeutic 

opportunity if it could be identified prospectively.   

Because TGFβ responsiveness is modulated by multiple genetic and epigenetic mechanisms and 

varies widely across human cancers, measuring TGFβ signaling status could be a strategy for selecting 

the most effective therapy for patients.  Informed by this perspective, we identified TGFβ and alt-EJ 

gene signatures to further examine the consequences of this relationship using The Cancer Genome 

Atlas (TCGA) data.  We determined that these signatures are anti-correlated in 16 of 17 solid 

malignancies tested, and that tumors exhibiting low TGFβ and high alt-EJ signatures have more 

mutations, a specific mutational signature, and better patient outcomes in response to genotoxic 

therapy.  This research provides an avenue by which TGFβ impacts response to cancer therapy and a 

rationale for TGFβ inhibitors to sensitize previously unresponsive cancers to genotoxic therapies.   

Results 

Inhibition of TGFβ broadly compromises DNA damage response (DDR)  

TGFβ affects the DDR by multiple mechanisms.  Blocking TGFβ signaling decreases 

autophosphorylation of ATM protein kinase, which is a major mediator of the DDR (19).   ATM 

autophosphorylation is a robust biomarker of activation of the ATM-centered signaling network that 

broadly initiates DDR by affecting critical effector signals (20).  Inhibiting TGFβ decreases 

autophosphorylation ATM as well as phosphorylation of key effectors and increases radiosensitivity in 

breast, brain, lung, and squamous cell cancer cell lines (8, 13-15).  In addition, TGFβ affects BRCA1 via 

suppression of miR-182, which directly degrades BRCA1 mRNA (21).  MiR-182 also affects ATM kinase 
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activity via FOXO3 (forkhead box O3) (8).   Moreover, TGFβ facilitates NHEJ by increasing LIG4 

expression (22).  

To characterize TGFβ effects on ATM-dependent phospho-signaling in response to DNA damage, 

we irradiated TGFβ-competent HPV-negative HNSC cells (SAS cell line) in the presence of LY2157299 

(galunisertib), a small molecule inhibitor of TGFβ type I receptor and quantified changes in the 

phosphoproteome using two well-established targeted mass spectrometry-based assays (23-26).  The 

results show that radiation-induced ATM autophosphorylation at S2996 was blocked by TGFβ 

inhibition, as was phosphorylation of ATM targets BRCA1 S1524 and NBN S343 (Fig. 1A).  Unsupervised 

clustering of the results of the multiple reaction monitoring (MRM) assays revealed that TGFβ 

inhibition compromised the radiation-induced phosphorylation of a block of proteins (Fig. 1B; table S1 

in data file S1).  Phosphorylation of three proteins, TP53 (tumor protein 53) at S315, NBN (nibrin)  at 

S432, and UBE2T (ubiquitin-conjugating enzyme E2 T) at S184, was increased by TGFβ inhibition in the 

absence of radiation, and decreased TP53 phosphorylation was observed in irradiated cells (Fig. 1B).  

Where there was overlap of the two independent MRM-based assays, comparable results were 

observed (fig. S1A, table S2 in data file S1).   

HR and NHEJ are thought to be backed up by alt-EJ in that failure of either process can increase 

deployment of this alternative repair pathway (27).  Thus, increased use of alt-EJ could be considered 

a consequence of defective HR.   If so, restoration of BRCA1 should rescue HR and suppress alt-EJ.  To 

test this, we antagonized miR-182 in TGFβ competent SAS cells, and measured the effect of TGFβ 

inhibition on HR and alt-EJ function by flow cytometry (fig. S1B) using pathway-specific reporters for 

HR (pDRGFP) and distal end-joining by either-NHEJ or alt-EJ (pimEJ5GFP and EJ2GFP, respectively) (28).  

Cells expressing the miR-182 antagomir were HR-competent when TGFβ was inhibited (Fig. 1C), 

consistent with the necessity of BRCA1 for HR competency; however, alt-EJ repair remained increased 

upon TGFβ inhibition (Fig. 1D).  This observation demonstrates that HR deficiency is not required for 

alt-EJ to increase when TGFβ is inhibited.   

We next sought to test whether TGFβ inhibition would increase alt-EJ in the context of NHEJ 

inhibition.  Here we used pulsed-field gel electrophoresis to measure residual DSBs in SAS cells after 

irradiation with 20 Gy (fig. S1C). NHEJ was blocked by treating cells with the DNA-protein kinase 

inhibitor KU57788 for 1 hour before irradiation, and TGFβ signaling was blocked for 24 hours with 

LY364947, a small molecule inhibitor of TGFβ type I receptor kinase similar to LY2157299 (29).  As 

expected, KU57788 inhibited repair of radiation-induced DSBs, which was partially rescued by 

pretreatment with LY364947 (Fig. 1E).   This observation supports the idea that TGFβ inhibition 
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promotes an alternative process of repair.  Together, these data show that TGFβ signaling is essential 

for both the fundamental molecular mechanisms of DNA repair, as evidenced by ATM kinase activity, 

and the functional consequences such as DNA repair pathway choice and resolution of DSBs. 

 

TGFβ regulates expression of DDR genes 

To further investigate TGFβ impact on DDR, we evaluated the expression of DNA repair-

associated genes using the NanoString DDR gene panel.  Treatment of SAS cells for 24 hours with TGFβ 

plus or minus its inhibitor LY2157299 revealed striking reciprocal regulation of 180 DDR genes (Fig. 2A).  

According to KEGG pathway analyses, expression of genes implicated in HR and NHEJ was increased 

by TGFβ and reduced by its inhibition (table S3 in data file S1). Consistent with prior literature (30, 31), 

CDKN1A was strongly induced by TGFβ and blocked by LY2157299 (fig. S1D), even though SAS cells, like 

most cancer cells (32), are insensitive to TGFβ-mediated cell cycle control (8).  BRCA1 expression was 

increased by TGFβ and suppressed by LY2157299, as were ABL1 (ABL proto-oncogene 1, non-receptor 

tyrosine kinase) and POLD4 (DNA polymerase delta 4, accessory subunit; table S4 in data file S1).  In 

contrast, TGFβ decreased and LY2157299 increased expression of LIG1 (DNA ligase 1), PARP1, and POLQ 

(Fig. 2B), which are key genes involved in alt-EJ (33).  

Given that miR-182 was essential for TGFβ-mediated control of HR and microRNAs can target 

hundreds of genes, we next determined whether miR-182 was involved in TGFβ-regulated DDR gene 

expression.  SAS cells in which miR-182 was overexpressed or antagonized were treated as above and 

then analyzed using the NanoString panel (Fig. 2C). TGFβ-mediated changes in BRCA1 expression were 

miR-182-dependent, as previously reported (21), as were its effects on MRE11A (meiotic recombination 

11 homolog A), MYD88 (myeloid differentiation primary response 88) and PARP3 expression (table S5 

in data file S1).  In contrast, changes in CCND2 (cyclin D2), CDKN1A (cyclin dependent kinase inhibitor 1A)  

and POLD4 expression were miR-182-independent, consistent with the presence of SMAD binding 

elements in these genes (34). Notably, expression of the alt-EJ genes, LIG1 (DNA Ligase 1), PARP1, and 

POLQ, was found to be miR-182-independent (Fig. 2B,C).  Together these data confirm that TGFβ has a 

broad impact on DDR via expression and molecular regulation of many genes and via ATM kinase 

activity (8, 21). They also extend the range of TGFβ influence on expression of DDR-associated genes 

and show that this occurs through both miR-182-dependent and -independent mechanisms.  Because 

neither alt-EJ execution (Fig. 1C, 1D) nor expression of critical genes in this process (Fig. 2B, 2C) are 

miR-182-dependent, these data mechanistically separate the effects of TGFβ on HR from those on alt-

EJ.   
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LIG1and POLQ do not contain recognizable SMAD-binding elements (34), yet their expression was 

decreased upon exposure to TGFβ.  To confirm this effect, we conducted quantitative gene expression 

measurements as a function of duration of TGFβ stimulation or small molecule receptor kinase 

inhibition in SAS cells.  The expression of each of the three genes was reciprocally suppressed by TGFβ 

signaling (Fig. 2D) and increased by its inhibition (Fig. 2E).  Although the early (6 hours) regulation of 

POLQ may be consistent with direct SMAD-mediated  transcriptional regulation, the delayed impact on 

LIG1 and PARP1 suggests an indirect effect (35).  

The above observations led us to hypothesize that TGFβ suppression of alt-EJ gene expression is 

a distinct mechanism that influences differential DNA repair pathway use.  To test whether this biology 

is broadly observed beyond HNSC, we considered glioblastoma (GBM) because high TGFβ ligand and 

receptor expression correlate with poorer survival in this cancer type, and because TGFβ inhibition 

enhances radiosensitivity in GBM cell lines and primary tumor explants (14, 36).  Consistent with this, 

GBM patients in TCGA with low TGFB1 (transforming growth factor beta1) expression had significantly 

better overall survival (OS; log-rank test, P = 0.045) and progression-free survival (PFS; log-rank test, P 

= 0.034) compared to those with high TGFB1 expression. We first evaluated the U251 human GBM cell 

line using the NanoString panel (table S6 in data file S1).  As observed in HNSC SAS cells, TGFβ inhibition 

increased expression of the key alt-EJ genes, LIG1, PARP1, and POLQ, in GBM cells (Fig. 2F).  These results 

were validated by quantitative expression assays in response to a time course of TGFβ treatment (Fig. 

2G) and TGFβ signaling blockade with LY2157299 (Fig. 2H).  As in HNSC cells, expression of LIG1, PARP1, 

and POLQ was decreased upon TGFβ treatment and increased when TGFβ signaling was blocked.  We 

further established U251 reporter cells (EJ2GFP) to evaluate alt-EJ repair. Consistent with SAS data, 

LY2157299 and LY364947 markedly increased alt-EJ events (Fig. 2I), effects that were again 

independent of miR-182 status (Fig. 2J).  Data file S2 contains primary data for experimental data in 

Figs. 1 and 2. 

To interrogate more extensively the interplay between TGFβ and alt-EJ, we curated a 36-gene alt-

EJ competency signature based on the literature and results of DDR-gene knockdown screen using the 

EJ2GFP reporter (11, 33). This signature was evaluated in concert with a previously described (8) 50-

gene set that is induced by chronic TGFβ stimulation (Fig. 3A).  There were no known targets of TGFβ 

in the alt-EJ signature gene list, nor vice versa.  Unsupervised clustering of HNSC TCGA data using the 

chronic TGFβ signature had previously shown HPV-positive cancers to be TGFβ unresponsive (8).  Here 

we found that they are also characterized by high alt-EJ gene expression (Fig. 3B). Given that HPV-

positive cancers clustered with low expression of TGFβ target genes and high expression of alt-EJ 



 

8 
 

LIU ET AL.  ABC4465 R2 

genes, we conducted single specimen gene set enrichment analysis (ssGSEA) to determine the 

signature correspondence across TCGA HNSC tumors (Fig. 3C). Consistent with the biology described 

above, TGFβ and alt-EJ signatures were negatively correlated (Pearson’s correlation coefficient (PCC) 

= -0.4, P < 0.00001; fig. S2A). The negative correlation remained after removing HPV-positive cancers, 

indicating that the relationship is also present in HPV-negative cancers (fig. S2B).  We next used ssGSEA 

scores of both signatures to examine unsupervised clustering of GBM TCGA microarray data.  Patients 

with GBM clustered into two major groups that differed in their alt-EJ signature scores (Fig. 3D).  This 

signature was negatively correlated with the TGFβ signature (PCC = -0.35, P < 0.00001).  Consistent 

with the biology observed in cell lines, these analyses reveal a reciprocal relationship between TGFβ 

competency and alt-EJ gene expression in two human cancer types. 

 

Low TGFβ/high alt-EJ signature predicts better outcomes after genotoxic therapy 

Compared to canonical NHEJ, alt-EJ repair is both more error-prone, resulting in more genome 

alterations, and less efficient, such that cells using this pathway have greater sensitivity to DSB-

inducing agents (11).  Consistent with this, Tgfb1-null murine cells are genomically unstable (3), as are 

human cells in which TGFβ signaling is inhibited (37).  Loss of TGFβ signaling, whether through HPV 

infection, ligand neutralizing antibodies, or TGFβ receptor kinase inhibitors, increases sensitivity to 

DSB induced by ionizing radiation and platinum drugs (8, 13-15).  Because genotoxic therapy is 

standard-of-care (SOC) for many cancers, we postulated that patients with tumors characterized by 

low TGFβ and high alt-EJ signatures would have more genome alterations and be more responsive to 

genotoxic therapy than those with high TGFβ and low alt-EJ signatures.  

To classify patients according to their TGFβ and alt-EJ transcriptional profiles, we calculated a Alt 

score as the difference between the alt-EJ and TGFβ normalized signature value in primary, untreated 

tumors, where a high βAlt score represents specimens in which expression of TGFβ target genes is low 

and expression of alt-EJ genes is high. We then tested the association between βAlt and the fraction 

of the tumor genome altered, defined as the percentage of altered copy number regions out of all 

measured regions, and between βAlt and OS and PFS or disease-free survival (DFS) for patients who 

were treated with genotoxic agents. We compared tumors in the upper and lower βAlt tertiles using 

TCGA pan-cancer clinical data resource (TCGA-CDR) (38). 

To analyze the signatures in GBM, we first excluded tumors categorized as ‘neural’ because this 

subtype is now thought to represent samples contaminated by normal brain tissue (39), resulting in 

442 cases.  Again, TGFβ and alt-EJ signatures were significantly anti-correlated in GBM (PCC = -0.35, P 
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< 0.00001; Fig. 4A). Although GBMs generally exhibit low somatic mutation burden (40), the fraction 

of genome altered was significantly associated with βAlt (Mann-Whitney test, P < 0.001; Fig. 4B).  SOC 

treatment for newly diagnosed GBM consists of surgery, radiotherapy (RT) and chemotherapy (ChT) 

with temozolomide (41).  To evaluate patient survival, datasets were curated to eliminate specimens 

from patients who were not treated with both RT and ChT, leaving a total of 274 cases.  While OS (log-

rank test, P = 0.096, Fig. 4C) was not different, PFS of patients with a high βAlt score was greater than 

those with a low score (log-rank test, P = 0.031; Fig. 4D).  Hypermethylation of the MGMT promoter 

(40) and mutation of IDH1/2 (42) are known prognostic biomarkers in GBM, but few TCGA specimens 

had IDH1/2 mutations (n = 8).  We conducted a multivariate Cox regression analysis that included MGMT 

status; the Cox regression coefficient (β) corresponding to the βAlt score was associated with OS (β = 

-0.36, P = 0.026) and PFS (β = -0.42, P= 0.006), indicating that TGFβ and alt-EJ signatures are 

independent of MGMT status. In a multivariate analysis that also included age, the βAlt score 

maintained significant association with PFS (β = -0.35, P = 0.027), although not with OS (β = -0.26, P = 

0.12; table S7 in data file S1). 

Patients with lung squamous cell carcinoma (LUSC) are generally treated with surgery, RT, and/or 

ChT depending on tumor stage and lung function (43). TCGA specimens of LUSC (n = 502) also 

exhibited significant (PCC = -0.43, P < 0.00001; Fig. 4E) anti-correlation of TGFβ and alt-EJ signatures. 

The fraction of the genome altered was also significantly greater (Mann-Whitney test, P < 0.00001; Fig. 

4F) in patients with high βAlt scores.  To assess outcomes following ChT and/or RT, patients in whose 

treatment variables were null were excluded, as were stage I patients because they are usually treated 

with surgery alone. Based on SOC, the remaining patients (n = 231) were likely to have been treated 

with ChT, RT or both. The OS did not reach significance in patients with high βAlt scores (log-rank test 

P = 0.05; Fig. 4G), but PFS of these patients was significantly increased (log-rank test P = 0.025; Fig. 4H). 

In a multivariate Cox regression analysis including patient age and tumor stage, the βAlt score was 

significantly associated with OS (β = -0.62, P = 0.035) and PFS (β = -0.86, P = 0.010; table S7 in data file 

S1). 

The anti-correlation of TGFβ and alt-EJ signatures in ovarian cancer (OVCA; n = 541) was also 

significant (PCC = -0.32, P < 0.00001; Fig. 4I) and the fraction of altered genome was greater in those 

with higher Alt scores (Mann-Whitney test P < 0.00001, Fig. 4J).  Patients with stage II-IV serous 

ovarian cancer in the TCGA data set were treated with surgical resection followed by systemic 

treatment with platinum and taxane genotoxic agents (44).  Compared to those with low βAlt scores, 

both OS (log-rank test P = 0.004, Fig. 4K) and PFS (log-rank test P = 0.003; Fig. 4L) were significantly 
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increased in patients with tumors characterized by high βAlt. As above, in a multivariate Cox regression 

analysis including patient age and tumor stage, the βAlt score maintained significant association with 

OS (β = -0.33, P = 0.035) and PFS (β = -0.43, P = 0.002; table S7 in data file S1).  To further evaluate 

signature associations with therapeutic outcome, we analyzed an expression dataset from a 

randomized clinical trial that evaluated response to carboplatin in OVCA (CTCR-OV01, GSE15622; (45)). 

TGFβ and alt-EJ signatures were significantly anti-correlated (PCC= -0.83, P = 0.0001; fig. S3A) and in 15 

cases treated with carboplatin, tumors that were sensitive to this drug had significantly higher alt-EJ 

signature scores (Mann-Whitney test, P < 0.01) and βAlt scores (P < 0.05) than those that were resistant 

(fig. S3B). 

These patient data show that, despite different tissue origins and treatment regimens, a high βAlt 

score is consistently associated with better outcome for cancer patients treated with genotoxic 

agents.  This provides evidence that the mechanisms by which TGFβ impacts alt-EJ repair have 

biological and clinical consequences, including associations with genomic alterations and response to 

cancer therapy.  

 

TGFβ and alt-EJ genes are anti-correlated across solid cancer  

The coordinated expression of alt-EJ genes in HNSC was unanticipated because these genes have 

not previously been identified as a network or pathway.  To further evaluate this observation, we 

conducted consensus clustering of both gene sets across all solid cancers in TCGA (n = 10,848; Fig. 5A).  

As expected, subsets of TGFβ target genes clustered together, which is likely due to the pleiotropic 

actions of TGFβ in both cancer cells and the tumor microenvironment.   A block containing 27 of the 

alt-EJ signature genes indicates that they are highly co-regulated.   

Next, we asked whether specific cancers were driving this anti-correlation.  Among the 17 cancer 

types analyzed, the TGFβ and alt-EJ signatures were anti-correlated in 16 (Fig. 5B).  These data indicate 

that this relationship is broadly present in human solid cancers. Pancreatic adenocarcinoma (PAAD, n 

= 177) was the only cancer type in which the signatures were not significantly anti-correlated (PCC = -

0.08).  

TGFβ signaling in the tumor microenvironment affects diverse responses within and between 

tumor, immune, and stromal cells, any of which may contribute to the relationship between TGFβ and 

alt-EJ.  To assess this, we used immune and stromal cell inference (46) to test the association of these 

factors with TGFβ/alt-EJ signatures across different cancer types.  There were no specific associations 
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of the signatures with inferred immune and stromal cell content (fig. S4), lending credence to the 

hypothesis that TGFβ suppression of an alt-EJ program is a cancer-cell autonomous feature.   

To assess the cancer cell autonomy of this relationship further, we analyzed the TGFβ and alt-EJ 

signatures across multiple cancer cell lines (47). As observed in primary tumors, the overall negative 

correlation was strongly maintained (n = 966, PCC = -0.35,  P < 0.00001) and negative correlations were 

observed in many cancer cell types (Fig. 5C), which  included cell lines from GBM (n = 35, PCC = -0.43, 

P < 0.01), HNSC (n = 42, PCC = -0.57, P < 0.001), and LUSC (n = 15, PCC = -0.68, P < 0.001).  

 

Pan-cancer TGFβ and alt-EJ signatures associate with specific microhomology indel mutation 

and survival after genotoxic therapy 

Because the TGFβ and alt-EJ signatures frequently showed a negative correlation in solid cancers, 

we sought evidence of functional consequences. The alt-EJ process is inherently mutagenic because it 

uses sequence microhomology to facilitate DSB ligation (48, 49).  Hence, we predicted that the TGFβ 

and alt-EJ signature relationship would be associated with the frequency of specific genomic 

alterations across cancers.  To evaluate this, signature scores in tumors were assessed for their 

association with the somatic frequencies of small insertions and deletions, and with silent non-coding 

mutations of 11 malignancies cancers in which analysis of these mutations have been published (50).  

The alt-EJ signature was positively correlated with higher frequencies of these mutation types in 

several cancer settings; 26 positive correlations were identified with false discovery rate < 5%, while no 

negative correlations reached significance (fig. S5A). In contrast, the TGFβ signature was negatively 

correlated with these types of mutations in 15 instances, and only four positive correlations were 

detected.  The alt-EJ signature was positively correlated with higher frequencies of these mutation 

types in most cancers (fig. S5B). The average distribution of the observed PCC for alt-EJ was 

significantly higher than 0 (t-test, P < 0.00001). In contrast, the TGFβ signature was negatively 

correlated with these types of mutations in several cancer settings (PCC average < 0, t-test, P = 0.009). 

Consistent with these results, the frequency of distinct types of somatic structural variants, including 

chromosomal translocations, was also positively correlated with the alt-EJ signature and negatively 

with the TGFβ signature (fig. S5C). 

These results led us to consider a recent comprehensive analysis of mutational signatures of 

cancer genomes in which we focused on insertion-deletion (indel, ID) signatures (51).  Indels 

designated ID6 and ID8 are characterized by >5-base pair deletions, but ID6 contains overlapping 

microhomology at deletion boundaries with a mode of 2-base pairs.  This signature pattern is 
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consistent with end-joining by either NHEJ or alt-EJ.  Notably, a similar pattern can be experimentally 

induced in cells in a Pol-dependent manner (52).  Therefore, we matched samples in the cancer 

genome study (51) to our TCGA analyses of TGFβ and alt-EJ expression signatures, and evaluated 

correlations for each gene set with ID pattern probabilities (table S8 in data file S1).  The heatmap of 

PCCs shows that the gene signatures are differentially associated with ID patterns (Fig. 5D). ID6, which 

exhibited microhomology at deletion boundaries (51), was positively correlated with the alt-EJ 

signature and negatively correlated with the TGFβ signature. In contrast, ID10 and ID13, which are 

linked to a different DNA damage process (51), showed the opposite correlation with TGFβ and alt-EJ.  

The reciprocal correlation of alt-EJ and TGFβ with ID6 indicates that it is a genomic scar of alt-EJ, which 

further endorses their functional relationship.   

Given the evidence that the biology represented in these signatures did not depend on cancer 

type, we conducted OS pan-cancer analysis for patients who were treated with RT (n = 1,737).  The anti-

correlation of signatures was comparable to the full set of specimens (Fig. 6A), which represented 17 

malignancies (table S9 in data file S1).  Patients with high βAlt scores fared significantly better (P < 

0.0001, hazard ratio = 0.56, 95% CI 0.43-0.73) than those with low βAlt scores (Fig. 6B).  Because 

chemotherapy is not reported in detail in TCGA, we then selected patients for whom SOC would 

include RT and/or genotoxic ChT, based on cancer type and stage (n = 3,577).  The signature anti-

correlation was comparable to the full set of specimens (Fig. 6C) and represented 17 malignancies 

(table S10 in data file S1).  Patients with high βAlt scores again showed better survival (P < 0.0001; 

hazard ratio = 0.60, 95% CI 0.52-0.97; Fig. 6D).  Although the βAlt score was significantly anti-correlated 

with age in all specimens (PCC = -0.040, P = 0.001; Fig. S6), a multivariate Cox regression analysis 

including age and tumor stage maintained the βAlt score association with OS in patients who had been 

treated with radiotherapy (β = -0.73, P = 0.003) as well as in patients who had been treated with 

radiotherapy and/or probably genotoxic chemotherapy (β = -1.11,  P < 0.001; table S11 in data file S1). 

Thus, survival duration in response to genotoxic therapy associates with loss of TGFβ competency and 

implementation of alt-EJ. 

 

Discussion  

This study uncovered an unexpected reciprocal relationship between TGFβ signaling and alt-EJ-

mediated DNA damage repair that has implications for understanding cancer therapeutic vulnerability. 

Proteomic, gene expression, and functional evidence from HNSC and GBM cancer cells demonstrates 
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that TGFβ signaling has extensive influence on DNA damage responses.  In contrast to the TGFβ-miR-

182-BRCA1 axis that regulates HR, TGFβ inhibition increases the use of alt-EJ and expression of key 

components in this process in a miR-182-independent manner.  DNA repair by alt-EJ is both inefficient 

and error-prone, which leads to more residual damage and cell death that we postulated would be 

reflected in human cancers by mutational burden and response to genotoxic therapy. To test this, alt-

EJ and TGFβ competency signatures were analyzed in GBM, LUSC, and OVCA TCGA data, which 

revealed signature anti-correlation in each setting and, therefore, associations with both mutational 

burden and survival outcomes. Expanding on these cancer types, the signatures were frequently anti-

correlated in solid cancers, reciprocally linked to a recently reported indel signature, ID6 (51), and 

associated with survival benefit from genotoxic therapies across all cancer patients studied. 

Several insights are gained from this study.  First, it substantiates that TGFβ pro-tumorigenic 

biology includes regulation of genomic instability, which was first reported in mice 25 years ago by 

Glick et al. (3) and extended to human cells in our initial research (37).  Genomic instability due to 

defective DNA repair is a hallmark of cancers (53).  Thus, both maintenance and loss of TGFβ signaling 

in cancer contribute to carcinogenesis, the former by promoting DDR to enable survival of malignant 

cells, and the latter by creating the genetic diversity that is a prerequisite for the evolution of cancer.   

Second, although TGFβ inhibitors are currently being tested in clinical trials for cancer patients, 

their use in conjunction with DNA damaging agents has been limited.  The key information predicting 

the utility of such combinations is the experiment of nature provided by HPV-positive HNSC.  Analyses 

in this cancer type provide compelling evidence that loss of TGFβ signaling is not only pro-oncogenic, 

but also creates a vulnerability that can be exploited for clinical benefit. HPV-positive cancers are more 

sensitive to cytotoxic agents (54-56), exhibit decreased DNA repair capacity (57, 58), and confer a 

markedly better prognosis than those identified as HPV-negative (7). Although HPV degrades p53 and 

retinoblastoma protein, it also blocks TGFβ by multiple means (59). We demonstrated that loss of TGFβ 

signaling contributes to the striking sensitivity to cisplatin and radiotherapy of HPV-positive HNSC, and 

that TGFβ inhibition in HPV-negative cancer cells and tumors phenocopies HPV-associated sensitivity 

(8).  We used small molecule inhibitors of the TGFβ type I receptor kinase, which specifically decreases 

phosphorylation of SMAD2, abrogating activation of the TGFβ canonical pathway.   It may be that non-

canonical signaling or crosstalk with other major signaling pathways, such as tyrosine kinase, G-

protein-coupled, or cytokine receptors that are also mediators of gene regulation could contribute as 

well (60), which underscores the complex nature of TGFβ signaling.   Nonetheless, our analysis of HPV-

positive cancers in which TGFβ signaling is lost showed that they are characterized by high expression 
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of an alt-EJ signature that we curated from the literature (11, 33), which indicates a functional network 

and its relationship with TGFβ. 

Third, we identified a specific DNA repair deficit that provides a potential target for individualized 

cancer therapy (61).  A prime example is the use of PARP inhibitors in HR-deficient cancers based on 

an initially unexpected synthetic lethality (6).  Because alt-EJ critically depends on PARP function, 

TGFβ-unresponsive HPV-positive HNSC cell lines are more sensitive to the PARP inhibitor olaparib than 

TGFβ-responsive HPV-negative cancer cells; furthermore, TGFβ inhibition increased olaparib sensitivity 

in TGFβ-responsive cell lines (8). A case in point is GBM, in which there is an incontestable unmet need 

to identify and overcome mechanisms of resistance to radiation therapy and chemotherapy, which 

have failed to improve outcomes beyond 16 months median survival (62).  Despite chemoradiation, 

90% of tumors recur within the original tumor volume (63), an observation that has largely been 

attributed to efficient DNA damage repair, despite numerous trials of radiation dose escalation and 

alternative fractionation schedules (64, 65).  TGFβ signaling is associated with poor prognosis (66) and 

the mRNAs of ligands, targets, and receptors are increased in recurrent tumors (36).  Indeed, we noted 

that TCGA GBM patients with low TGFB1 expression had better OS and PFS compared to those with 

high TGFB1 expression. When adjusted for MGMT status, patients whose tumors were classified as 

TGFβ low and alt-EJ high had longer survival after radiotherapy and chemotherapy.  Together with the 

PARP dependence of alt-EJ, our data suggest that βAlt scores might be useful to select GBM patients 

for optimal response to PARP inhibitors, which are currently being evaluated in combination with 

radiotherapy (67). Expanding the study to all cancers, our analyses found that patients classified as 

low TGFβ and high alt-EJ exhibit better response to SOC genotoxic therapy. The mechanism-based 

assays in vitro combined with extensive analysis of human cancer data provide a rationale for using 

this relationship between TGFβ and DDR to identify patients likely to benefit from specific therapies. 

Fourth, we have added to understanding of the mechanisms by which TGFβ signaling affects DDR 

in cancer cells, through which loss or inhibition of this signaling compromises both HR and NHEJ. TGFβ 

inhibition impedes radiation-induced autophosphorylation of ATM (19), essential to both HR and NHEJ, 

as well as reducing expression of LIG4, a critical component of NHEJ (22).  More recently, we have 

demonstrated that TGFβ suppresses miR-182, which in turn suppresses both BRCA1, a necessary 

component of HR, and FOXO3, which is required for ATM kinase activity (8). Blocking each of these 

steps via different strategies confirmed that TGFβ signaling was the critical regulator of DDR pathway 

choice. Indeed, TGFβ promotes resistance to chemotherapy (68) and genomic stability (37), whereas 

inhibition of TGFβ, either by neutralizing antibodies or small molecule inhibitors of its receptor kinase, 
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increases clonogenic cell death and tumor control in response to ionizing radiation, cisplatin, and 

temozolomide in multiple preclinical models (8, 13-15, 69-71). Although the current studies used cell 

lines that are P53 mutant, this prior work showed that TGFβ inhibition radiosensitized T53 wildtype 

cells. The use of alt-EJ upon loss of TGFβ signaling creates a specific DDR deficit that is exploitable 

within the current cancer therapy repertoire, although further investigation may also provide 

additional targets through which to overcome resistance to standard of care genotoxic therapy.  

Last, even though earlier studies implicated TGFβ in genomic instability and DNA damage repair 

fidelity (3, 37), the strong anti-correlation of TGFβ and alt-EJ signatures across multiple cancer types 

and cancer cell lines was unexpected. When classical DNA repair pathways are compromised, 

inefficient alternative repair processes are used, which are characterized by a distinct pattern of 

mutation (12). Alt-EJ acts on the same 5’ to 3’ resected DSBs as HR, but repairs using a synthesis-

dependent mechanism that is directed by short tracts of flanking microhomology (18). Our finding of 

the positive correlation of alt-EJ signature with the ID6 mutation pattern is consistent with this 

knowledge.  Most studies in cells report low frequencies of alt-EJ repair events under standard 

conditions, and an increase when HR or NHEJ are defective (28, 72).  Such data are the basis for the 

prevailing model in which alt-EJ is a backup mechanism to repair DSB.  Here, we were able to 

functionally dissociate the TGFβ-mediated HR deficit from alt-EJ use. 

Conclusions from our studies are limited by several considerations.  First, although the alt-EJ 

signature was correlated with specific indel mutations in tumors, a definitive test of this statistical 

correlation requires abrogating TGFβ signaling in cell lines with stable genomes for an extended period 

of culture and subsequent subcloning to determine the type of genomic alterations . In the absence 

of such studies, the implied relationship between specific mutation patterns and alt-EJ remain to be 

verified. Second, we restricted our analysis to solid carcinomas, without consideration of 

hematopoietic cancer or childhood cancers. The negative correlation of βAlt score with age in adult 

cancer suggests that the signature should be explored in childhood cancers, in which the most 

common cancers are leukemia and lymphoma. However, the impact of TGFβ in hematological cancers 

may differ from that of epithelia.  Third, analysis of outcomes from TCGA is limited due to the 

retrospective collection of information and the minimal annotation of treatment, which led us to make 

assumptions based on current standard of care.  We reported a reciprocal association of the βAlt score 

and outcome from one clinical trial dataset, but more extensive analysis of trial data with associated 

transcriptomic profiling is warranted.  It may be possible to refine or extend the utility of our signatures 

upon publication of more gene expression data from clinical trials.  Another possibility is retrospective 
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analysis of βAlt association with outcomes by using a gene expression platform amenable to using 

RNA extracted from tissue blocks.   Although our signatures were applicable for predicting patient 

responses to the combination of genotoxic chemotherapy and radiotherapy, they have not been 

extended to investigate predictive power for specific classes of chemotherapy or targeted therapy 

agents. 

Although alt-EJ is not commonly defined or identified as a functional network, our data support 

the existence of such a network by reciprocal pattern of expression of TGFβ and alt-EJ genes in GBM, 

LUSC, and OVCA, and are strongly endorsed by consensus clustering of the genes across more than 

10,000 cancer specimens represented in TCGA.  Twenty-seven (75%) of the genes in the alt-EJ signature 

were identified in one consensus cluster, strongly suggestive of co-regulation.  Correlation analysis of 

the signatures across TCGA demonstrated that a strong anti-correlation persists in the context of 

tumor heterogeneity in almost all (16/17) cancer types tested. Similarly, most cancer cell lines exhibit a 

similar pattern, consistent with a cancer cell-intrinsic program. Therefore, this feature of cancer 

reveals opportunities to improve the care of patients, from estimating prognosis to selection of 

therapeutic approaches that exploit this vulnerability. 

 

Materials and Methods 

Study Design 

This study was designed to evaluate the effect of TGFβ on the DNA damage response to genotoxic 

therapies in cancer cell lines and primary patient tumors.  Experiments were performed in biological 

replicates of three or more. Based on the initial results, gene signatures were used to evaluate the 

identified functional relationship in regard to cancer genomes and patient outcomes. Criteria for data 

exclusion are reported for each analysis. The researchers were not blinded.  

Cell Culture 

HNSC cell line SAS was obtained from RIKEN BRC (#RCB1974). Human GBM cell line U251 was a 

gift from Dr. Kevin Camphausen (National Cancer Institute). Both cell lines harbor homozygous TP53 

mutations (SAS, CDS mutation: c.1006G>T; AA mutation: p.E336*; U251, CDS mutation: c.818G>A; AA 

mutation: p.R273H) according to COSMIC database (https://cancer.sanger.ac.uk/cell_lines). Cells were 

cultured as described in our previous publications (8, 14).  Briefly, SAS and U251 were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% bovine growth serum (HyClone), 

100 IU/ml streptomycin-penicillin, and 1% GlutaMAX (all Gibco Thermo Fisher unless indicated 
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otherwise). Cell lines were routinely tested and confirmed to be mycoplasma-free and authenticated 

according to the microsatellite markers in their genome (IDEXX). Cells in exponential growth were 

maintained in a humidified incubator at 37°C and 5% CO2 after resuscitation, and less than 10 passages 

were used for all experiments.  

Treatments 

The selective inhibitors for TGFβ receptor type I kinase, LY2157299and LY364947 (SelleckChem), 

were used at 2 M. DNA-protein kinase inhibitor NU7441 (KU57788, 5 M; SelleckChem) was added 1 

hour before irradiation. Both small molecular inhibitors were dissolved and stocked in dimethyl 

sulfoxide (DMSO, Sigma-Aldrich) at more than 1000-fold concentrations than the final concentration 

on cells. Drugs were aliquoted and stored at -20°C for up to 6 months with protection from light. 

Recombinant human TGFβ (2 ng/ml as indicated; R&D Systems) was used to stimulate TGFβ signaling 

in cells. 220 kV X-ray radiation was generated by a small animal radiation research platform (Xstrahl 

Medical & Life Sciences).  

qRT-PCR 

Total RNA was prepared from the exponentially growing cells after treatments using the Qiazol 

reagent and miRNAeasy Mini Kit following the manufacturer’s manuals (Qiagen). First strand cDNA 

was synthesized on the Veriti Thermal Cycler (Applied Biosystems) from 1 µg of total RNA using the 

SuperScript IV First-Strand Synthesis System (Invitrogen). Quantitative PCR was performed on a 

QUANT STUDIO 5 system (Life Technologies) using SYBR Green Mix (Applied Biosystems). Primers 

validated by the vendor were used (Bio-Rad POLQ: qHsaCID0018136; PARP1: qHsaCED0045162; LIG1: 

qHsaCID0008449).  GADPH primer sequences were forward: 5'-CAGCCTCCAGATCATCAGCA-3’ and 

reverse: 5’-TGTGGTCATGAGTCCTTCCA-3’).  Comparative Ct method was used to calculate the relative 

expression of each gene to the expression of the housekeeping gene GADPH. 

Gene expression analyses 

Total RNA was extracted using the miRNAeasy Mini kit (Qiagen).  Sample RNA (250 ng) was used 

for the DNA Damage Repair Gene Expression panel, consisting of 180 DDR genes and 12 housekeeping 

genes for normalization, according to manufacturer’s instructions (NanoString Technologies, Inc.).  

Hybridization efficiency and background signals were evaluated based on internal positive and 

negative control probes analyzed using nCounter Gene Expression.  The raw counts, gene expression, 

and expression ratios between treated and untreated samples were analyzed by the nSolver software. 

Ratios from 2-3 biological repeats were used for further analysis and graphs. 
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DSB repair reporter assay 

DSB repair reporters for HR (pDRGFP, 26475, Addgene) or Alt-EJ (EJ2GFP-puro, 44025; 

Addgene) were established in SAS and U251 cells as previously described, using plasmid constructs 

provided by Dr. J. Stark (City of Hope, CA) (28). Linearized plasmids were transfected by Lipofectamine 

3000. Permanently transfected cells were then selected in 2 µg/ml puromycin-containing medium. 

Single cell clones were established by seeding at limiting dilution into 96-well plates. I-SceI expressing 

retrovirus was used to generate DSBs (73).  Following the generation of DSB in the established 

reporter clones by expression of I-SceI endonuclease, the expression of the integrated GFP gene from 

the plasmid constructs pDRGFP (74) or EJ2GFP-puro (75) is indicative of DNA repair by HR or alt-EJ 

respectively. GFP-positive cells were quantified by flow cytometry.   

Pulsed-field gel electrophoresis  

SAS cells, treated and allowed to repair as indicated, were embedded in agarose blocks. Cells were 

lysed using a high temperature lysis protocol, where agarose blocks were placed in freshly prepared 

lysis buffer (10 mM Tris–HCl, pH 7.6, 50 mM NaCl, 100 mM EDTA, 2% N-lauryl sarcosyl, NLS, and 0.2 

mg/ml protease) at 50°C for 18 h (76). Gels cast with 0.5% agarose (Bio-Rad) were used for 

electrophoresis in the presence of 0.5 μg/ml ethidium bromide. Gel images were obtained by 

"Typhoon" scan, and the fraction of DNA released from the well into the lane was quantified by Image 

Quant 5.2 (GE-Healthcare). 

TCGA and Sanger database analysis 

TCGA data were obtained from cBioPortal (http://www.cbioportal.org/public-portal/), from the 

Genomic Data commons (GDC) using the R package “TCGAbiolinks” from the University of California 

Santa Cruz Xena platform using the R package “UCSCXenaTools”, or from the corresponding TCGA 

publications. Somatic mutations at the individual level were obtained following approval by the dbGaP 

Data Access Committee (project #11689). The “fraction of genome altered” corresponded to the 

percentage of the genome that was detected affected by copy number gains or losses and was 

obtained from the Oncoprint tab of cBioPortal. The numbers of different types of genomic alterations 

in each primary tumor were taken from the corresponding TCGA publications (38, 50), and the ID 

mutational profiles from the PCAWG-ICGC results (51).  Metastases and recurrent tumors were 

excluded from this study, making primary tumor samples the focus of the analyses. Cancer types are 

named using the corresponding TCGA study abbreviations (https://gdc.cancer.gov/resources-tcga-

users/tcga-code-tables/tcga-study-abbreviations). A chronic TGFβ signature was defined using data 

from  non-malignant epithelial cell line, MCF10A, exposed to TGFβ or LY364947 for 7 days and analyzed 
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using Affymetrix gene expression microarray (77).  Genes involved in alt-EJ were identified from a 

functional study (72) and from a study of RNAi library screening against 238 DDR genes targeted by 

siRNA that decreased alt-EJ events with a cutoff of lower than 0.5 fold decrease compared to controls 

(28). The normalized gene signature scores were based on ssGSEA computed using the Gene Set 

Variation Analysis (GSVA) software package (78) and used for survival based on PCC analyses, or on 

the Kendall rank correlation coefficient when assessing somatic mutation profiles. Signature 

association with patient survival was computed in R software with survfit package using multivariate 

Cox regression analyses and log-rank tests comparing the survival curves of tertiles 1 versus 3 of 

patients. To calculate the hazard ratio between tertiles 1 and 3, univariate Cox regressions were 

performed. Multivariate Cox regressions between the βAlt score and OS/PFS were performed in TCGA-

GBM including the MGMT status and in TCGA-HNSC including the HPV status. Unsupervised hierarchical 

clustering used ssGSEA scores of TGFβ and alt-EJ signatures (79). Euclidean distance was used as the 

similarity metric and the Ward.D2 method as the between-cluster distance metric. Hierarchical 

clustering based on Euclidean distance was used to generate heatmap plots. Consensus clustering 

analysis of TGFβ and alt-EJ signatures in 10,848 patients with solid cancers from TCGA Pan-Cancer 

dataset were computed with 1,000 resampling using ConsensusClusterPlus based on Spearman’s 

correlation (80). All data were downloaded from the TCGA PanCancer website 

(https://gdc.cancer.gov/about-data/publications/pancanatlas).  

To classify patients according to their expression pattern of the TGFβ and alt-EJ gene signatures, 

a βAlt score was calculated for each sample in an open source package, genScore 

(https://github.com/pujana-lab/genScore). The βAlt score collapses in one dimension the position of 

TGFβ versus alt-EJ normalized signature ssGSEA scores as follows: 

  

Multiplexed multiple reaction monitoring (MRM) mass spectrometry  

Two well-established multiplexed targeted mass spectrometry-based assays were used for 

quantification of protein and protein phosphorylation in response to radiation (23-26). The immuno-

MRM assay targeted 97 peptides (46 modifications, 53 proteins), and the IMAC-MRM assay targeted 

236 phosphorylated peptides (41 overlapping with the immuno-MRM panels) for 182 proteins. Briefly, 

after treatments cells were lysed by freshly-prepared ice-cold 6 M urea lysis buffer that contained 

25 mM Tris (pH 8.0), 1 mM EDTA, 1 mM EGTA, 1% phosphatase inhibitor cocktail 2, 1% phosphatase 
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inhibitor cocktail 3, and 1% protease inhibitor cocktail (all Sigma Aldrich unless otherwise noted). Cell 

lysates were sonicated for 2X 10 seconds using a Sonic Dismembrator Model 100 (Fisher Scientific). 

Lysates were transferred to microcentrifuge tubes, vortexed, and then cleared by collecting 

supernatants after centrifugation at 20,000 × g for 10 min at 4 °C. Supernatants were stored at -80 °C. 

Protein concentrations were measured in triplicate using Micro BCA Protein Assay Kit (Thermo # 

23235). A negative control containing 100 μL of 1X PBS, 0.01% CHAPS, and 100 μl of lysis buffer was 

analyzed in parallel. Lysates were reduced, alkylated with iodoacetamide, and digested by the addition 

of Lys-C at a 1:50 enzyme:protein ratio (by mass). After 2 hours, a trypsin aliquot was added at a 1:50 

enzyme:protein ratio and incubated overnight at 37°C with shaking. After 16 hours, the reaction was 

quenched with formic acid (final concentration 1% by volume). A mix of stable isotope-labeled peptide 

standards was added to the digest at 150 fmol/mg. Peptide immunoaffinity enrichment and MRM-MS 

were conducted as previously described (23, 81) using custom monoclonal antibodies coupled to 

Protein G agarose magnetic beads (GE Sepharose, #28-9513-79) in two panels enriched in a serial 

fashion. The elution plate was covered with sealing foil and stored at −80 °C until analysis with LC-

MRM-MS. The eluted peptides were thawed and analyzed by an Eksigent Ultra nanoLC system with a 

nano autosampler and chipFLEX system (Eksigent Technologies) coupled to a 5500 QTRAP mass 

spectrometer (SCIEX). Peptides were loaded on a trap column (C18, 5 mm x 200 m) at 5 L/min for 3 

minutes using mobile phase A (0.1% formic acid in water) and eluted at 300 nL/minute using a linear 

gradient of mobile phase B (90% acetonitrile and 0.1% formic acid in water) developed from 3-14% B in 

1 minute, 14-34% B in 20 minutes, 34-90% B in 2 minutes on a 15 cm x 75 m chip column (Reprosil AQ 

C18 particles, 3 m). The mass spectrometer was operated in the positive ion MRM mode with 

optimized collision energy (CE) values.  Scheduled MRM transitions used a retention time window of 

100 seconds and a desired cycle time of 0.5 seconds, enabling enough points across a peak for 

quantitation. MRM data were analyzed by Skyline with manual review of peak integrations to confirm 

transitions from analyte peptides, and heavy stable isotope-labeled peptides had equivalent retention 

times and relative areas of transitions (82, 83). Transitions with detected interferences were not used 

in the data analysis. The data were shown as the peak area ratio (light:heavy). 

Statistical analysis 

All experiments were repeated more than three times unless otherwise noted. Results are 

presented as means ± SEM and considered significantly different at P < 0.05 based on two-tailed 

Student's t-test or as otherwise indicated. * P< 0.05, **P< 0.01, *** P< 0.005. The data were analyzed 

by Prism 6 (GraphPad, Inc.) 
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Figure Legends 

Fig. 1. Blockade of TGFβ signaling disrupts DDR and increases alt-EJ.  (A) SAS cells were treated with 
radiation (5 Gy, 1 hour), LY2157299 (2 M, 24 hour), or combination, and cell lysates were prepared for 
proteomic analysis. Protein phosphorylation analyses was performed using two targeted, multiple 
reaction monitoring mass spectrometry (MRM-MS)-based assays (tables S1-S2). Representative 
phospho-analytes are plotted in the figure, including ATM phosphorylation at Ser2996, NBN 
phosphorylation at Ser343, and BRCA1 phosphorylation at Ser1524 quantified using the two 
independent assay panels that gave comparable results as shown in lower left and right panels. Precise 
quantification of the phospho-analytes relative to stable isotope labeled spiked-in standards are 
shown as peak area ratios. Fold changes of these proteins between irradiated cells and LY2157299 
pretreated and irradiated cells are indicated. Data shown as means ± SEM of n = 3. Experiment was 
performed once. (B) Protein expression and phosphorylation in SAS cells treated with IR (5 Gy), 
LY2157299, or combination of both. Unsupervised clustering of Z-score data is shown as a heatmap. 
Representative proteins that are reciprocally regulated are indicated in red box and protein 
phosphorylations increased by LY2157299 are shown in blue box. (C) The frequency of HR measured 
by flow cytometry using reporter plasmid-transfected SAS cells that expressed miR-182, anti-miR-182, 
or scramble miRNA, and were treated with or without TGFβ receptor inhibitor LY2157299. (D) Alt-EJ 
repair frequency measured by flow cytometry of EJ2GFP reporter transfected SAS cells expressing 
anti-miR-182 or scrambled anti-miR and treated with or without LY2157299. (E) DNA repair efficiency 
measured by the PFGE assay after irradiation (IR, 20 Gy) of SAS cells pre-treated with DNA-dependent 
protein kinase inhibitor KU57788, TGFβ inhibitor LY364947, or both. Percentages of residual DNA 
damage at the indicated time points after IR are shown. Statistical significance is indicated according 
to Student’s t-test: *, P < 0.05; **, P < 0.01; ***, P < 0.005; n.s., P > 0.05.   
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Fig.  2. TGFβ signaling regulates DDR gene expression. (A) Gene expression measured in SAS cells that 
were treated with TGFβ, LY2157299, or combination of both for 24 hours using the NanoString panel. 
Unsupervised clustering of Z-score gene expression values is shown as a heatmap. Alt-EJ genes LIG1, 
PARP1, and POLQ are indicated. (B) Percentage of TGFβ-induced gene expression change versus 
LY2157299-induced gene expression, normalized to control, for SAS cells. Genes reciprocally regulated 
by TGFβ or LY2157299, including ABL1, CCND2, CDKN1A, LIG1, PARP1, POLD4, and POLQ, are indicated by 
red dots. (C) Percentage of TGFβ-induced gene expression in SAS cells overexpressing (OE) anti-miR-
182 versus LY2157299-induced gene expression, normalized to control samples. Genes reciprocally 
regulated by TGFβ or LY2157299 independent of miR-182 are indicated by red dots. (D-E) qRT-PCR of 
POLQ, PARP1, and LIG1 in SAS cells treated with TGFβ (D) or LY2157299 (E) for 72 hours, normalized to 
untreated control.  (F) Changes in gene expression in U251 GBM cells treated with 2 M LY2157299 for 
24 hours as measured using the NanoString panel. (G-H) Gene expression of PARP1, LIG1, and POLQ 
measured by qRT-PCR in U251 cells treated with TGFβ (G) or LY2157299 (H) for 72 hours. (I) Alt-EJ repair 
event frequency measured by EJ2GFP reporter in U251 cells in which TGFβ signaling was inhibited with 
either LY2157299 or LY364947. (J) Alt-EJ repair event frequency measured by EJ2GFP reporter in U251 
cells transfected with anti-miR-182 or scramble anti-miR and treated with or without LY2157299, 
normalized to untreated control. Two-tailed Student’s t-test; *, P < 0.05; **, P < 0.01; ***, P < 0.005. 
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Fig. 3. TGFβ and alt-EJ gene expression signatures are anti-correlated in HNSC and GBM. (A) 
Schematic illustration of compiled signatures for TGFβ-induced and alt-EJ-linked genes. The TGFβ 
signature was established from MCF10A cells that were treated with TGFβ or LY364947 for seven days. 
The 36 gene alt-EJ signature was curated from the literature (11, 33). (33)(B) Unsupervised clustering 
of TCGA HNSC primary tumors based on the expression profiles of all genes included in the alt-EJ 
signature.  The dataset included 243 HPV-negative and 36 HPV-positive (red bars) cases. The HPV-
positive ones were clustered by high expression of alt-EJ genes. (C) Unsupervised clustering of HNSC 
based on the ssGSEA scores of the alt-EJ or TGFβ signatures. HPV positivity indicated in red. The two 
signatures are significantly anti-correlated (PCC = -0.42, P < 0.00001). (D) Heatmap based on 
unsupervised clustering of ssGSEA scores for alt-EJ and TGFβ signatures in the TCGA GBM microarray 
dataset; IDH1 mutation (black) and MGMT methylation status (green) are indicated. The two signatures 
are significantly anti-correlated (PCC = -0.35, P < 0.00001).    
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Fig. 4. TGFβ and alt-EJ signature status associated with differential clinical outcomes after genotoxic 
therapy. (A) Negative correlation of TGFβ and alt-EJ scores of TCGA GBM cases excluding the neural 
samples (PCC = -0.35, P < 0.00001); orange dots indicate low βAlt score tertile and blue dots indicate 
high βAlt score tertile, here and in E and I. (B) Fraction of genomic alterations as a function of βAlt 
score tertiles (Mann Whitney test P < 0.0001). (C-D) Kaplan-Meier graphs corresponding to the (C) OS 
(P = 0.096) or (D) PFS (P = 0.031) for subpopulations of patients with GBM treated with chemoradiation 
classified by βAlt score tertiles as shown in panel A. (E) Negative correlation of TGFβ and alt-EJ scores 
of TCGA LUSC cases (PCC = -0.43, P < 0.00001).  (F) Fraction of genomic alterations as a function of βAlt 
score tertiles (Mann Whitney test P < 0.0001). (G-H) Kaplan-Meier graphs corresponding to the (G) OS 
(P = 0.05) or (H) PFS (P = 0.02) for subpopulations of patients with LUSC treated with chemotherapy 
and/or radiotherapy classified by βalt score tertiles as shown in panel E.  (I) OVCA tumors exhibit a 
negative correlation of the two signatures (PCC = -0.32, P < 0.00001).  (J) Fraction of genomic 
alterations as a function of βAlt score tertiles for OVCA tumors (Mann Whitney test, P < 0.001).  (K-L) 
Kaplan-Meier graphs corresponding to the (K) OS (P = 0.004) or (L) PFS (P = 0.0027) for TCGA patients 
with OVCA in subpopulations classified by βAlt score tertiles as shown in panel I. 
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Fig. 5. Pan-cancer analysis shows that TGFβ and alt-EJ gene expression are anti-correlated and 
associated with genomic alterations. (A) Gene co-expression analyses for TGFβ and alt-EJ signature 
genes across solid tumors in TCGA database. Major clusters containing most of the alt-EJ and TGFβ 
signature genes are indicated: cluster A contains 27/32 (85%) of the alt-EJ signature genes, and cluster 
B contains 32/33 (97%) of the TGFβ signature genes. (B) Forest plot showing the PCC and 95% 
confidence interval (CI) in each cancer type (numbers of tumors included in each setting are indicated). 
A non-significant, negative PCC corresponds to pancreatic adenocarcinoma (PAAD, gray bar). (C) 
Forest plot showing the PCC and 95% CI for cell lines of each cancer type (numbers of each are 
indicated). Non-significant PCCs are indicated by gray bars. (D) Heatmap showing the PCC for each 
indel (ID) pattern versus the TGFβ and alt-EJ signatures.  The signatures are reciprocally associated 
with ID6, ID10, and ID13.   
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Fig. 6. Pan-cancer βAlt signature status associates with clinical outcomes after genotoxic therapy. 
(A) Negative correlation of TGFβ and alt-EJ scores of TCGA cases treated with RT (PCC = -0.234, P < 
0.0001). Symbols indicate βAlt low (orange) and βAlt high (blue) tertiles here and in C. (B) Kaplan-
Meier graphs corresponding to the OS subpopulations classified by βalt score tertiles as shown in 
panel A. The HR, 95% CI, cases (n) included in the analysis, and log-rank test P value are shown.  (C) 
Negative correlation of TGFβ and alt-EJ scores of TCGA cases treated with RT and/or ChT (PCC = -0.159, 
P < 0.0001). (D) Kaplan-Meier graphs corresponding to the OS of subpopulations classified by βAlt 
score tertiles as shown in panel C. The HR, 95% CI, cases (n) included in the analysis, and log-rank test 
P value are shown. 
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SUPPLEMENTARY MATERIALS 

Fig. S1. Blockade of TGFβ signaling disrupts DDR. (A) Protein phosphorylation analysis in SAS cells that 
were treated with IR (5 Gy, 1 hour), LY2157299 (2 M, 24 hours), or combinations of both, using the 
published mass spectrometry method IMAC (see Materials and Methods). Unsupervised clustering of z-
scored data is shown as a heatmap. Proteins in red and blue boxes are shown on the right. (B) 
Representative images from flow cytometry of alt-EJ reporter cells showing gating and analysis strategy: 1. 
select the major cell populations; 2. exclude dead cells as propidium iodide-positive cells; 3. dot plot to gate 
the GFP-positive cells; 4. histogram showing percentage of GFP-positive cells. (C) Representative PFGE 
images for Fig. 1E. “untr” stands for untreated control. The fraction of DNA released from the well into the 
lane was quantified by Image Quant 5.2 (GE-Healthcare). (D) Percentage of CDKN1A expression after TGFβ 
stimulation or LY2157299 inhibition compared to control samples of SAS cells analyzed by NanoString assay. 
Two-tailed Student’s t-test, *, P < 0.05; **, P < 0.01.  



 

38 
 

LIU ET AL.  ABC4465 R2 

Fig. S2. Negative correlations between TGFβ and alt-EJ signatures are independent of HPV status. (A) 
ssGSEA scores for TGFβ versus alt-EJ signatures in HNSC TCGA (n = 500; HPV-positive, red, n = 36) are 
negatively correlated (PCC= -0.40, P < 0.00001).   (B) ssGSEA score from panel A showing that a significant 
correlation remains without HPV-positive tumors (PCC= -0.37, P < 0.00001).  
 

 
Fig. S3. Negative correlation between TGFβ and alt-EJ signatures is associated with sensitivity to cisplatin 
in OVCA. (A) The TGFβ and alt-Ej signatures in OVCA (n = 29) from the CTCR-OV01 trial (GSE15622 dataset) 
are significantly anti-correlated (PCC= -0.83, P = 0.0001). Symbols are colored according to Alt score.  (B) 
TGFβ, alt-EJ and Alt scores in OVCA deemed resistant (orange) or sensitive (blue) to cisplatin (*P < 0.05; 
** P < 0.01). 
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Fig. S4. The anti-correlation between TGFβ and alt-EJ signatures is independent of immune and stromal 
cells.  Unsupervised clustering of immune and stromal cell signatures with TGFβ-induced and alt-EJ 
signatures in TCGA.  
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Fig. S5. TGFβ and alt-EJ gene expression signatures are reciprocally associated with genomic alterations 
in TCGA pan-cancer data set. (A) Graph showing the statistical significance (Y-axis, -log10 false discovery 
rate-adjusted P value) of the correlations (X-axis, Kendall rank τ) between the TGFβ (pink) and alt-EJ 
(brown) signatures and the number of observed somatic mutations as depicted in the inset. The thresholds 
of significance (adjusted P = 0.05) and no-correlation (τ = 0) are marked in on the corresponding axes. The 
indicated TCGA cancers (acronyms) with significant signature-mutation correlations are shown. (B) 
Unsupervised clustering of correlations between the TGFβ (pink) and alt-EJ (brown) and eight types of 
somatic structural variants across 11 solid TCGA malignancies, in which these alterations are published (50), 
are segregated according to their correlation status (Kendall rank τ positive vs negative). (C) Graph 
showing the statistical significance (Y-axis, -log10 false discovery rate-adjusted P value) of the correlations 
(X-axis, Kendall rank τ) between the TGFβ (pink) and alt-EJ (brown) signatures and the ID6 mutational 
signature defined by Alexandrov et al. (51) in the Pan-Cancer Analysis of Whole Genomes (PCAWG) study . 
The thresholds of adjusted significance (P = 0.05) and no-correlation (τ = 0) are marked in the 
corresponding axes. The ID6 mutations with significant correlations are indicated.  
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Fig. S6. βAlt score is negatively associated with age in TCGA pan-cancer data set.  Graph showing that βAlt 
scores of TCGA solid malignancies (n = 6,949) are negatively correlated with age at diagnosis (PCC = -0.040; 
P < 0.001). 
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Data file S1 contains tables S1-S11: 
table S1. Immuno-mass spectrometry data from SAS cells. 
table S2. IMAC mass spectrometry data from SAS cells. 
table S3. KEGG pathway analyses. 
table S4. Gene expression ratios in SAS cells with differential TGFβ signaling measured by NanoString assay. 
table S5. Gene expression ratios measured by NanoString assay for SAS cells in which miR-182 was 
manipulated. 
table S6. Gene expression ratios in U251 cells with differential TGFβ signaling measured by NanoString assay. 
table S7. Multivariate Cox regression analyses for overall survival and progression free survival in TCGA 
OVCA, LUSC and GBM patients. 
table S8. Expression signature correlations with indel signatures in PCAWG. 
table S9. Selected TCGA patients based on type and stage treated with RT. 
table S10. Selected TCGA patients based on type and stage for whom SOC would include RT and/or ChT. 
table S11. Multivariate Cox regression analyses for overall survival in TCGA pan-cancer patients. 
Data file S2 primary data for experimental data in fig. 1 and 2 
  
 

 




