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ABSTRACT OF THE DISSERTATION 

 

Science-based approaches to water resources management: 

Studies in remote sensing, groundwater and California's Central Valley 

 

by 

 

Michelle Elizabeth Miro 

 
Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2017 

Professor Steven Adam Margulis, Chair 

 

This dissertation is motivated by the principle that data availability and scientific analysis are 

fundamental for effective natural resources management. The research in this thesis presents 

approaches that can enhance water management institutions’ ability to more comprehensively 

measure and manage groundwater resources. This research draws from a diverse scientific body 

of work in numerical modeling, remote sensing science, hydrology and public policy. A robust, 

artificial neural network model is presented that downscales GRACE gridded land datasets 

(~150,000km2) to higher-resolution (~16km2) groundwater storage change estimates, a 100-fold 

higher resolution. This modeling approach uses minimum input data - five key data sets and 

minimally processed GRACE data - and thus has applicability to data scarce regions. For 

California’s Central Valley, downscaled groundwater storage change maps can be used to inform 

groundwater management as they point to specific sub-regional patterns in groundwater storage 
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change. This dissertation also presents a framework intended to strengthen the scientific 

underpinnings of groundwater management in California. A methodology is developed to 

calculate sustainable yield under California's new Sustainable Groundwater Management Act 

(SGMA) that is flexible to varying input data as well as to a given region’s local socio-economic 

and environmental dynamics. The long-term implications of three different determinations of 

sustainable yield are assessed through an empirical groundwater balance that is projected to 

2040. The results of these three scenarios show that there are tradeoffs to be had between 

groundwater availability, future climate uncertainty and socio-economic preferences that must be 

carefully weighed. Finally, research is presented that addresses the future of remote sensing. A 

novel approach to quantify the value of geospatial data for decision makers is presented, along 

with an unbiased assessment of a rapidly developing branch of remote sensing – privately-owned 

and privately-funded small satellites. Overall, groundwater management in California is a critical 

example of the need for robust management strategies in the face of increasing resource scarcity 

and rising climate variability. California is not alone in this task. The lessons and takeaways 

presented in this dissertation can be applied to address similar natural resource management 

challenges across the globe. 
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1. Introduction 

Groundwater is the most heavily extracted raw material worldwide [NGWA, 2013]. For 

many communities, it is the primary source of water, accounting for 40 percent of the global 

drinking water supply and 38 percent of the water used for irrigation [NGWA, 2013]. During 

times of drought and in water-stressed, arid regions, these percentages increase dramatically as 

the availability of surface water diminishes, and communities become even more dependent on 

groundwater to meet their needs. As a result, many aquifers have become severely, and even 

irreversibly, depleted. In California’s Central Valley, which accounts for one-fifth of the 

nationwide demand for groundwater, water tables have been declining over the past few decades 

[Faunt et al., 2009]. This intensive overuse of groundwater resources has resulted in land 

subsidence, degraded water quality and increasing costs of extraction as water tables decline. 

Government officials and scientists have extensively reported these impacts, drawing from 

monitoring data, hydrologic models, first-hand accounts and satellite observations. A recent 

study has shown that the Central Valley lost 20.3 cubic kilometers of water between 2003 and 

2010 [Famiglietti et al., 2011]. Much of this loss was due to extensive groundwater pumping to 

support irrigated agriculture [Famiglietti et al., 2011]. Moreover, significant drought conditions 

that began in 2011 caused additional declines in the Central Valley of approximately 10 cubic 

kilometers of freshwater annually in 2012 and 2013 [Famiglietti, 2014]. The dichotomy of rapid 

depletion and increasing dependence on groundwater was highlighted by drought in California 

between 2011-2015, gaining the eye of both the media and politicians. In September of 2014, 

California Governor Jerry Brown signed landmark groundwater management legislation [CA 

DWR, 2015]. This series of bills, known collectively as the Sustainable Groundwater 

Management Act (SGMA), are targeted at providing a statewide framework for local 
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groundwater management and imposing regulations on groundwater extraction [Water Education 

Foundation, 2015]. As a result of SGMA, groundwater, formerly unregulated in most of the 

state, will now be subject to mandatory sustainability plans and increasing government 

intervention and oversight.  

In California, traditional water management paradigms have focused heavily on surface 

water and therefore lack the institutional structures, mandates and informational frameworks 

necessary for effective groundwater management. Thus, the implementation of SGMA presents a 

new opportunity for water management agencies to manage groundwater resources in a more 

judicious and sustainable way. To do so, water managers and institutions need to learn to bridge 

the gap between hydrologic science and policy - to develop the tools necessary to craft and 

administer institutionally appropriate and physically relevant groundwater management plans.  

The overall motivation of this dissertation is to develop science-based tools that provide 

utility to water management and is based on the premise that data availability and scientific 

analysis are fundamental for effective management. This dissertation is thus targeted at 

enhancing institutions’ ability to measure groundwater resources and to manage groundwater 

extractions by fusing hydrologically-based methods, numerical models and remote sensing.  

1.1 Research questions 

Groundwater management in California serves as a critical example of a resource that 

requires data availability and scientific tools as it begins adopting new institutions and 

regulations under conditions of dramatic and ongoing change. In this context, the following 

research questions guided the work that is detailed in subsequent chapters.   
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I. Can we better characterize the spatial and temporal patterns in California 

groundwater? 

To address this question in Chapter 2, research is presented that compares three different 

sources of information on California groundwater in a portion of the Central Valley. These 

three sources are i) in situ groundwater well data from publicly available monitoring 

networks, ii) satellite-based remote sensing of water storage and iii) downscaled remote 

sensing data obtained empirically by combining data sources i) and ii). 

II. How can groundwater water agencies methodologically implement the concept of 

sustainable yield into groundwater management plans? 

In Chapter 3 of this dissertation, a framework for calculating sustainable yield according to 

California’s new groundwater management paradigm, SGMA, is detailed. This framework is 

both flexible and systematic, and includes modifications to traditional methodologies that 

make them appropriate for California’s hydrology and established approaches to water 

management.  

III. How should groundwater sustainability be defined and assessed for California? 

Chapter 3 of this dissertation also addresses this question. The work synthesizes a large body 

of literature on sustainability in groundwater management and applies it to California. It also 

examines the long-term impacts of three management strategies on groundwater levels in a 

sub-region of California’s Central Valley.  

IV. Is the privately-owned, commercial remote sensing industry robust enough to provide 

information in the future? 

Chapter 4 assesses the overall health of the private remote sensing market. The first section 

of this chapter integrates expert interviews and existing customer data to show that the 
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private remote sensing industry has stagnated. Three strategies are then presented as a means 

to generate the industry growth necessary to sustain it into the future. These strategies also 

provide insight into the future potential of privately-owned remote sensing data. 

V. What is the value of remote sensing based information? 

Chapter 4 also addresses this question. It presents a case study that values remote sensing 

based temperature data for a private company. Using publicly available sales data, this 

chapter details a model that quantifies the value-added of remote sensing data to store-level 

revenue.  

1.2 Organization 

The following three chapters, which together make up this dissertation are each complete 

with a review of relevant literature and descriptions of the study region. They will also answer 

the presented research questions and detail how specific scientific objectives were addressed. 

Chapter 2 presents an overview of groundwater monitoring in California, a theoretical approach 

to applying neural networks to downscale remote sensing data and three modeling approaches 

for a neural network downscaling model in California’s Central Valley. Chapter 3 describes a 

three-step framework for calculating sustainable yield under SGMA. Chapter 4 details a two-part 

study that investigates the health of commercial remote sensing and then quantifies the value-

added of remote sensing data for decision makers. The main contributions of each chapter and 

future work are presented in the Conclusion.   
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2. Downscaling GRACE remote sensing datasets to high-resolution groundwater maps of 

California’s Central Valley 

	
2.1 Introduction and background 

Groundwater monitoring has historically relied on a network of local observations of well 

levels, or in situ measurements. In the United States, the United States Geological Survey 

(USGS) maintains a network of 850,000 active monitoring wells that provides fundamental data 

on groundwater quantity and quality [Taylor and Alley, 2001] and enables essential regional 

studies [Faunt, 2009; Faunt and Sneed, 2015].  In many other parts of the world, however, 

groundwater observation networks often lack adequate spatial and temporal coverage, they are 

often underfunded, and therefore they may well be unreliable [Mogheir et al., 2005; Shah et al., 

2000]. Even in the United States, where a relative abundance of well data provides information 

to water managers on short- and long-term water level trends at specific locations, more 

monitoring sites are needed to better understand the groundwater surface and the spatial 

distribution of pumping patterns [Taylor and Alley, 2001].  

To overcome the shortcomings from sparse observation networks and insufficient in situ 

data, significant progress has been made in the way the groundwater surface and its behavior are 

represented. These advances have come from the fields of groundwater modeling [Harbaugh et 

al., 2000; Faunt, 2009; Dagan, 1982; Hendricks Franssen and Kinzelbach, 2008], monitoring 

network design [Reed et al., 2000] and geostatistical analysis of groundwater data [Hughes and 

Lettenmaier, 1981; Kitanidis and Vomvoris, 1983; Sun et al., 2009]. While this research has 

made huge strides in characterizing groundwater from limited data, many of these studies 

focused on small, sub-basin scales and failed to capture wider spatial trends in groundwater.  
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Satellite remote sensing can complement existing monitoring networks and modeling 

studies and can help compensate for gaps in spatial and temporal coverage. In particular, 

following the work of Rodell and Famiglietti, [2002], Yeh et al. [2009] and Rodell et al., [2007], 

several authors have now demonstrated that NASA’s Gravity Recovery and Climate Experiment 

(GRACE) can reliably measure monthly groundwater storage changes in the large aquifer 

systems of the world. Some examples include the Ogallala aquifer [Strassberg et al., 2007], 

northwestern India [Rodell et al., 2009], California’s Central Valley [Famiglietti et al., 2011], 

South America’s Guarani aquifer [Munier et al., 2012], the Middle East [Voss et al., 2013], the 

North China Plain [Feng et al., 2013] and several others [Famiglietti, 2014; Richey et al., 2015 

a,b].   

Despite these studies, the ability of GRACE to monitor changes at finer scales, which 

could directly benefit local water management authorities, is limited. This is largely due to the 

low spatial resolution of its observations (~200,000 km2), and researchers and hydrogeologists 

have noted these drawbacks [Famiglietti and Rodell, 2013; Alley and Konikow, 2015]. The lack 

of ground truthing and the potential errors in retrieval algorithms are also cited as deficiencies in 

remotely sensed data [Fekete et al., 2015]. A higher-resolution GRACE data product would 

significantly improve information availability for local-scale decision makers, as well as offer 

novel data for regions that do not have adequate in situ monitoring networks. To supplement the 

shortage in regional in situ data and improve upon the resolution of GRACE data, this study 

downscales GRACE and creates a hybrid product that utilizes available local observations along 

with GRACE estimates of changes in total water storage to accurately characterize local changes 

in groundwater availability. Our approach has potential for use in data scarce regions worldwide, 
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as it requires only minimal hydrologic data and GRACE estimates of changes in total water 

storage to simulate groundwater storage change in a complex aquifer system. 

2.1.1 Downscaling GRACE data 

The majority of research approaches for downscaling remote satellite data originate in the 

climate modeling literature, owing to the need to better understand the regional impacts of global 

change. Two approaches, dynamical and statistical, are the most common [Wilby and Wigley, 

1997]. Dynamical methods typically utilize a higher-resolution, physically-based model using 

low-resolution data, such as those from a global climate model or general circulation model, as 

the lateral boundary conditions. The GRACE data assimilation approach of Zaitchik et al. [2008] 

was effectively a form of dynamical downscaling. Monthly GRACE observations of terrestrial 

water storage change (i.e. the change in the sum of snow, surface water, soil moisture and 

groundwater) were assimilated into a physically-based land surface model at the scale of the 

major watersheds of the Mississippi River Basin [Zaitchik et al., 2008]. The output of the 

physical models – the higher resolution, modeled water storage changes within the major 

watersheds – was forced to sum to the lower-resolution assimilated constraint from GRACE. The 

physics of the land surface modeling and atmospheric forcings were used to distribute the 

GRACE data to finer scales. Data assimilation methods have the strong advantage of being 

physically consistent but, at the same time, require significant computational time, limiting their 

applicability [Schoof, 2013].  

Statistical downscaling methods, instead, draw upon relationships between coarser-scale 

input data and finer-resolution target data. [Wilby et al., 1998]. A variety of statistical techniques 

have been applied and studied in the downscaling literature, including classification-based 

methods, regression models, Markov chains and stochastic models [Wilby et al., 2004]. The 
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advantages of these methods are that they are relatively flexible to various data types and spatial 

and temporal scales, they can generate uncertainty estimates of parameters and model output and 

they are generally easy to apply [Wilby et al., 2004]. Statistical methods are, however, based on 

the assumptions that the input and target data fully capture the dynamics of the system under 

study and that these dynamics are valid even outside of the observation period [Wilby et al., 

2004]. Studies that have compared dynamical and statistical downscaling approaches have 

revealed relatively similar results between the two types of methods [Schoof, 2013].  

Some researchers have also opted for a hybrid option. Huang et al. [2015] developed a 

physically-based statistical modeling approach that combines both methods, promoting the 

decrease in computational time as one of the method’s advantages. Purely statistical methods, 

though, offer ease of use, even lower computational requirements and simplicity, which has been 

shown to be an advantageous attribute for downscaling hydrologic data [Chiew et al., 2010; 

Fasbender and Ouarda, 2010; Frost et al., 2011]. 

Given these benefits, we have adopted a tried and true statistical downscaling approach 

that will be novel in its application to downscale GRACE data. It will rely on derived 

relationships from local observations instead of on equations based on physical processes. Of the 

possible numerical methods available for this approach, artificial neural networks were selected. 

This technique has been widely used for statistical downscaling in the hydrosciences [Schoof and 

Pryor, 2001; Dibike and Coulibaly, 2006; Fowler et al., 2007], in spatial data analysis [French et 

al., 1992; Zhu, 2000; Jin et al., 2006], in studies for groundwater management [Chu and Chang, 

2009], for predicting groundwater levels [Daliakopoulos et al., 2005; Krishna et al., 2008; Yang 

et al., 2009; Yoon et al., 2011; Taormina et al., 2012], as well as for predicting groundwater 

levels with GRACE data [Sun, 2013]. Neural network studies have also illustrated the method’s 
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ability to simulate complex hydrological characteristics across various regions and time periods 

[Hsu et al., 1997; Hsu et al., 1995]. In addition, artificial neural networks are highly capable of 

processing different types of data efficiently [Turban et al., 2008]. This allows the proposed 

model to use input data (GRACE, meteorological forcings and soil types) similar to previous, 

well-established data assimilation studies, yet depart from these physically-based methods 

conceptually and offer a quicker computational time. The neural network model also has the 

flexibility to incorporate alternative data sets and future GRACE data releases, such as GRACE 

RL05M Mascon Solutions and future GRACE Follow-On (GRACE-FO) data [Wiese, 2015; JPL, 

2016].   

2.1.2 Goals and objectives  

Here we present a neural network model to spatially downscale GRACE data from 

~200,000 km2 to ~16 km2
, as well as to vertically isolate the groundwater component from 

GRACE estimates of total water storage. We apply the downscaling model to the time period 

2002-2010 in order to generate a series of annual, high-resolution maps of changes in 

groundwater storage over a portion of California’s Central Valley. In doing so, we seek to 

determine whether or not a neural network, numerical downscaling approach is appropriate for 

downscaling remote sensing data. We also examine the optimal spatial and temporal 

characteristics of the calibration dataset that would inform future work and a more widespread 

application of downscaled remote sensing data to groundwater management. We assess this by 

testing the type of groundwater information (i.e., point data or interpolated surfaces) that 

improves the neural network’s estimate of groundwater change in a given year. Finally, our 

modeling approach also investigates the best way to calibrate and validate the model in time and 

if the method has the capability to project forward in time.  
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2.2 Study region: California’s Central Valley  

In California’s Central Valley (see Figure 2.1), where agricultural water use accounts for 

one-fifth of the nationwide demand for groundwater, groundwater levels have been declining 

dramatically over the past few decades [Faunt, 2009]. Dependence on groundwater resources is 

even more pronounced during times of drought as communities and farmers have few 

alternatives to meet their water needs [Howitt et al., 2015]. In many areas of the Central Valley, 

the intensive overuse of and reliance on groundwater resources has resulted in land subsidence, 

degraded water quality and increasing costs of extraction due to deepening water tables [Howitt 

et al., 2015; Faunt and Sneed, 2015]. Faunt and Sneed [2015] show the region has lost 100 km3 

of groundwater since the 1960s. Between 2003 and 2010, GRACE satellite observations showed 

that the Central Valley lost 20.3 km3 of groundwater - primarily due to extensive groundwater 

pumping to support agriculture [Famiglietti et al., 2011]. Dire drought conditions that began in 

2011 have caused additional water losses of approximately 10 km3 of freshwater between 2012 

and 2013 [Famiglietti, 2014]. From 2012 to present, land subsidence within the Central Valley, 

which is the result of water loss and compacting sediments within an aquifer, reached up to 

280mm in some places [Faunt and Sneed, 2015]. Another estimate shows that peak rates of 

subsidence – 500mm/year – occurred during 2014 [Farr et al., 2015; Faunt and Sneed, 2015].  
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Figure 2.1 Map of California groundwater basins [CA DWR, 2016]. The study region – the San 
Joaquin Valley – is highlighted in yellow. 

	
Despite these dramatic physical impacts to Central Valley aquifers, a comprehensive 

assessment of California groundwater basins has not been performed since 1980 [RMC, 2014]. 

The California Department of Water Resources (DWR) cites the lack of information to properly 

quantify groundwater overdraft as the main reason for this gap in analysis [RMC, 2014]. This is 

not unique to California. Calls by scientists, engineers and water managers for more extensive 

monitoring networks that provide better information for water management have been 

commonplace throughout the 20th century and still continue to be so today [Taylor and Alley, 

2001]. 

Ongoing drought conditions, continued groundwater losses and dramatic rates of land 

subsidence all point to the need for effective management and heightened monitoring of 

California's groundwater resources [Howitt et al., 2015]. GRACE observations provide 
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comprehensive information on drought impacts, climate change and groundwater and have 

proven to be a powerful tool for understanding regional water resources behavior [Famiglietti 

and Rodell, 2015]. Results from GRACE-based studies have already been used to inform 

decision-making processes in California’s Central Valley, Texas, and the American Southeast 

[Lo and Famiglietti, 2013]. Refining GRACE to higher resolution estimates of groundwater 

changes would provide a significant value-added to groundwater management efforts and 

upcoming implementation of California's Sustainable Groundwater and Management Act 

(SGMA) [CA DWR, 2015]. 

2.3 The neural network approach and input data 

The GRACE downscaling model employs an artificial neural network (ANN) to combine 

low-resolution GRACE data with higher resolution hydrologic variables in order to predict 

changes in local groundwater storage and to, in effect, vertically isolate the groundwater 

component of the GRACE signal. ANNs are particularly useful for this task as they are often 

employed in spatial data analysis and offer the ability to efficiently and comprehensively handle 

large, diverse and noisy spatial datasets [Turban et al., 2008]. Because they are not yet widely 

used in numerical downscaling of remote sensing data, this research also represents a novel 

application of ANNs.  

In essence, the ANN derives non-linear, empirical relationships between GRACE, the 

input hydrologic datasets to the downscaling model and the output variable – groundwater 

storage change. These relationships are represented numerically by a network of empirical 

equations that are fit during the network learning, or calibration, process. Our downscaling 

model employs a two-layer feedforward neural network, which was calibrated with a Bayesian 

regularization backpropagation learning algorithm [MathWorks, 2016; Turban et al., 2008]. A 
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more complete discussion on the training algorithm and neural network architecture can be found 

in MacKay [1992] and Turban et al. [2008], respectively, as well as in Appendix A.  

Because neural networks are data-driven models, the quality and nature of the data used 

as inputs are of critical importance. Previous studies that employed neural networks to predict 

groundwater levels utilized both environmental and hydrologic variables and included distinct 

combinations of: precipitation, temperature, surface discharge (in riparian groundwater systems), 

tidal levels (in coastal aquifers), and potential evapotranspiration [Lallahem et al., 2005; Krishna 

et al., 2008; Yoon et al., 2011; Taormina et al., 2012]. This study extends this work to focus on 

storage change rather than groundwater levels. To do so, we use precipitation and temperature 

data along with GRACE and other key local hydrogeologic datasets (soil type and slope) that are 

shown in the literature to be significant predictors of terrestrial water storage change [Reager and 

Famiglietti, 2013]. Together, these variables – GRACE observations of terrestrial water storage, 

slope, soil type, precipitation and temperature – serve as the hydrologic input data to the neural 

network model, which is calibrated to changes in in situ groundwater storage. Once calibrated, 

the downscaling model utilizes the fit empirical relationships between these datasets to generate 

new estimates of changes in aquifer storage from an alternate set of hydrologic input data from 

either a new region or from a different point in time. Because the model is calibrated to changes 

in storage from groundwater alone, the downscaling model also vertically isolates the 

groundwater component of the GRACE input data. 

Hydrologic datasets used as model inputs were obtained from the 2002-2010 period over 

California’s Central Valley. They include: 2.5min (~4km) resolution precipitation and mean 

temperature data from PRISM [PRISM Climate Group, 2014]; 10-meter DEM [USGS, 2009], 

processed in ArcGIS for slope; 10-meter NRCS soil maps from the Gridded Soil Survey 
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Geographic (gSSURGO) Database [NRCS, 2014]. All input data were discretized to the 4km by 

4km target spatial resolution. 

GRACE Release 5 (R05) data compiled and processed by the Center for Space Research 

(CSR) for the period 2002-2010 were used as model inputs and can be found at 

http://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/. These data consist of monthly 

measurements across the land surface at a 1-degree by 1-degree resolution. Each grid was 

multiplied by its scale factor, as provided by GRCTellus, in order to adjust for attenuation of the 

signal during smoothing and destriping. This procedure is outlined in Landerer and Swenson 

[2012]. Next, each GRACE grid cell in the study region was discretized and spatially 

interpolated to the target 4km resolution. To do this, the original GRACE grid cell value was 

treated as the centroid of the new 4km discretized grid cell and was interpolated to the centroid 

of each of the neighboring GRACE grid cell values. A linear interpolation was performed to fill 

in the rest of the discretized grid between the centroid GRACE value and the values at the corner 

points. In this way, GRACE data were treated as a surface, taking into account not only a single 

grid cell but also its neighbors. This allowed the model to incorporate more information about 

the spatial distribution of groundwater change, rather than just considering a single magnitude. 

To annualize the GRACE data and make it comparable to the in situ groundwater data, the 

storage change for twelve months of each year, starting in February, were summed to obtain an 

annual storage change value. 

The groundwater data that serves as the calibration and validation datasets for the neural 

network model were taken from 2,189 wells across San Joaquin County [California Water Data 

Library, 2015]. This dataset can be accessed at http://www.water.ca.gov/waterdatalibrary/. It is 

important to note that region covered by the model domain, as shown in Figure 2.1, includes the 
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eleven groundwater subbasins of the San Joaquin Valley Groundwater Basin and encompasses 

an area of 15,100 km2 [CA DWR, 2003]. In general, the basin’s hydrogeology is characterized by 

unconsolidated alluvium and consolidated rocks and includes both confined and unconfined 

aquifers [CA DWR, 2003]. The presence of a Corcoran Clay confining layer in most of the 

Central Valley indicates the transition from unconfined to confined aquifers [Faunt, 2009]. 

Across the study region, hydrogeological studies have shown that most confined aquifers begin 

at a depth of over 60 meters [Burow et al., 2004; Provost and Pritchard Consulting Group, 

2014]. The depth of most of the wells in the dataset ranged between 10 and 25 meters, with very 

few wells at a depth of over 45 meters and less than 4% over 60 meters. Because nearly all wells 

tapped unconfined aquifers, groundwater storage change for each well was calculated using a 

specific yield of 10%, which was reported as the average value for the San Joaquin Valley by the 

USGS [Bertoldi et al., 1991]. The specific yield was multiplied by annual groundwater level 

change, calculated as the difference in well levels in the winter (December - February) months 

from one year to the next. This assured the capture of the full irrigation season in a given year. A 

more specific description on the complex hydrogeology of the individual subbasins can be found 

in California’s Department of Water Resources Bulletin 118 basin descriptions: 

http://www.water.ca.gov/groundwater/bulletin118/.  

The neural network downscaling approach, reduces some of the hydrogeological 

complexity found in the natural system, as we do not directly include any hydrogeological data 

on these multiple aquifer systems. The model, instead, relies on empirical relationships derived 

between groundwater change behavior and the input datasets (GRACE, precipitation, 

temperature, slope and soil type). While these empirical relationships, which vary across space 
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and time, reflect not only temporal and spatial trend in extraction, they also represent the 

physical characteristics of the multiple aquifer systems.  

The calibration and validation data were formatted in two ways for the neural network – 

distributed point data and spatially interpolated maps of the study region, as shown Figure 2.2. 

The distributed point dataset was obtained by directly applying the groundwater storage change 

estimates to a 4 km grid of the region based on each wells latitude and longitude. If more than 

one well fell within a given grid cell, the average of all wells was used. The spatially interpolated 

groundwater storage change maps were created by kriging the individual groundwater storage 

change estimates, as this approach has been found to best approximate groundwater spatially 

[Zimmerman et al., 1999; Sun et al., 2009]. A more complete discussion on the kriging 

methodology can be found in Delhomme [1978], and its applicability to represent characteristics 

of multiple aquifer systems can be found in Martin and Frind [1998]. More specifically, ordinary 

kriging was applied to groundwater well data points using an empirically fit spherical 

semivariogram with a 300-meter nugget, a similar value to regional kriging approaches 

employed in the San Joaquin basin [Faunt, 2009]. Spherical semivariograms are commonly used 

with ordinary kriging, and the choice of semivariogram is often determined empirically. In this 

case, a spherical semivariogram resulted in the lowest mean error, average standard error and 

root mean square error when compared to pentaspherical and exponential semivariograms. We 

followed the procedures outlined in Arétouyap et al. [2016] and Nikroo et al. [2009] for 

semivariogram selection. One kriged map was created for each year. The annual change in 

groundwater storage, rather than the water levels themselves, was used to create a comparable 

dataset to the GRACE data, which reflects variations in water storage. In this way, both GRACE 

and the groundwater data both represented a monthly height difference in water storage.  
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2.4 Results and analysis 

The results and analysis are divided according to the calibration data type and validation 

approach used. Calibration and validation of the neural network model were performed with two 

data types – distributed point data and spatially interpolated maps of the study region. The model 

was then validated either on a subset of the data within a given year (50% of the original dataset, 

randomly selected and kriged separately) or on the entire dataset in a series of different years 

(2007-2010). More specifically, the first calibration method uses annual groundwater storage 

changes from individual wells in each year (2002-2010) for calibration and validates the model 

over a subset of groundwater storage changes in each year. The second method uses spatially 

interpolated groundwater storage changes, e.g. groundwater maps, in each year (2002-2010) for 

calibration and validates the model over a subset of the map within each year. This subset is 

kriged separately following the same procedures to insure data independence. The final method 

uses spatially interpolated groundwater maps for calibration for 2002-2006 and validates the 

model over the years 2008-2010. By analyzing these approaches we are able to determine what 
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Figure 2.2 Left: Map of annual change in groundwater storage (m) from available 
in situ well levels for 2010. Right: Map of annual change in groundwater storage 

(m) from kriged in situ well levels for 2010. 
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type of calibration and validation data best informs the network and improves its performance. 

The performance of each approach was assessed through the use of various model evaluation 

statistics (Nash-Sutcliffe model efficiency coefficient, root mean squared error, correlation 

coefficient) and measures of the spatial distribution of model error (relative error, absolute error).  

In order to quantify the relative contribution of each input dataset onto the neural network 

model output, we applied a method proposed by Garson [1991]. Garson’s method is based on the 

weights of the calibrated neural network and has been widely cited and is widely used in neural 

network studies [Song et al., 2013; Brosse et al., 1999; Gevrey et al., 2003; Olden and Jackson, 

2002]. This method identifies the percentages of influence, !!" % , of each of the input 

variables on the model’s prediction of the output variable [Song et al., 2013; Garson, 1991]. It is 

defined by the following equation: 

 

!!" % =  
!!"
!!"!

!!!
!!"!

!!!

!!"
!!"!

!!!
!!"!

!!!
!
!!!

×100                            (2.1)  

 

Where  !!" represents the weights between the input variables (neurons), ! = 1,2,…!, 

and each of the two hidden layers, ! = 1,2…!; !!" represents the weights between the hidden 

layers and the output variable (neuron), ! = 1,2,… !; and the number of input neurons, hidden 

layers and output neurons were ! = 5, ! = 2, ! = 1, respectively. The results of this method are 

shown in Figure 2.5 and discussed below in Section 2.4.4. 
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2.4.1 Approach 1: In situ point data for calibration 

The first approach calibrates the model with annual groundwater storage changes from 

each available grid cell in each year (2002-2010). In this approach, 50 percent of the available 

well information in a given year was selected randomly from the dataset and used for calibration, 

and the remaining 50 percent was set aside for validation of the model. Results are shown below 

in Table 2.1. From Table 2.1, we can see that NSE validation values mostly fall within the 

acceptable range (0-1), but the correlation between simulated and observed values is fairly low. 

Visual inspection of the spatial distribution of simulated groundwater data also performed 

poorly, as little to no heterogeneity in the spatial pattern was visible. For these reasons, this 

approach does not fully capture groundwater behavior across space and during the time period of 

study.  

Table 2.1 Uninterpolated points (50% calibration, 50% validation) 

                            Calibration Results Validation results 
Year NSE Corr. Coeff. RMSE (m) NSE Corr. Coeff. RMSE (m) 
2002 0.5185 0.1665 0.0512 0.1435 0.1222 0.0586 
2003 0.8731 0.2543 0.1210 0.4831 0.3098 0.1061 
2004 0.3555 0.3578 0.1036 0.1569 0.3397 0.0845 
2005 0.3603 0.2745 0.0814 0.0967 0.2397 0.0941 
2006 0.2683 0.1566 0.0861 0.0683 0.1770 0.1200 
2007 0.1580 0.4180 0.5608 0.5851 0.2489 0.1044 
2008 0.8732 0.2189 0.1215 0.2977 0.2211 0.1263 
2009 0.8152 0.2340 0.1159 0.0773 0.1426 0.1466 
2010 0.0448 0.1749 0.0853 0.1676 0.0818 0.1099 

	

2.4.2 Approach 2: Kriged groundwater surface for calibration 

The second approach to the neural network validation and calibration used a spatially 

interpolated (kriged) groundwater dataset. Similar to the first approach, 50 percent of the kriged 

groundwater data was used for calibration, and the remaining portion of the dataset (50 percent) 

was used to validate the model. By calibrating the model to a best guess of the groundwater 



	 21 

surface in the region as opposed to sparse point data, we provided more information to the neural 

network during the calibration process. Table 2.2 shows error indicators of model results. This 

approach produced acceptable NSE values (ranging from 0.2445 to 0.9577) for calibration and 

validation (ranging from 0.0391 to 0.7511), indicating that the model’s simulated values are 

better predictors than observed values alone [Moriasi et al., 2007]. From Table 2.2, it is also 

evident that the model results have a high degree of correlation to the calibration and validation 

datasets. 

Table 2.2 Kriged groundwater surface (50% calibration, 50% validation) 

                            Calibration Results Validation results 
Year NSE Corr. Coeff. RMSE (m) NSE Corr. Coeff. RMSE (m) 
2002 0.8364 0.9146 0.0266 0.3981 0.6359 0.0610 
2003 0.9431 0.9717 0.0800 0.7511 0.8907 0.2390 
2004 0.5624 0.7502 0.0754 0.0692 0.5227 0.3698 
2005 0.6976 0.8393 0.0414 0.3185 0.5798 0.1326 
2006 0.5799 0.7604 0.0511 0.0453 0.1602 0.0818 
2007 0.6111 0.7826 0.3772 0.2096 0.3102 0.6236 
2008 0.9577 0.9787 0.0690 0.3285 0.7219 0.2114 
2009 0.8721 0.9365 0.1236 0.0391 0.7560 0.1924 
2010 0.2445 0.4966 0.0541 0.2547 0.4843 0.0519 
 

Figure 2.3 illustrates the modeled spatial distribution of groundwater change in 2010 

along with the absolute and relative errors between groundwater calibration data and model 

outputs. The error maps show the majority of the absolute and relative error is close to zero 

(shown in green). In addition, there is little spatial bias in model error; however, most of the error 

does correspond to areas of more extreme values, indicating that the model’s ability to predict 

extrema (peak and troughs) may be limited.  
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Figure 2.3 Left: Simulated groundwater storage change for 2010 (m); Center: Absolute errors 

for 2010 (m); Right: Relative errors for 2010 (%). 

	

2.4.3 Approach 3: Kriged groundwater surface for calibration (2002-2006) with 

validation over entire surface (2007-2010) 

The final approach for calibration and validation of the neural network model utilized the 

same spatially interpolated (kriged) dataset from the second approach but validated the model 

over four annual time periods (2007-2010) rather than on a portion of the data within each year. 

In this case, calibration of the neural network model was performed over the first set of years 

(2002-2006). Table 2.3 shows the overall performance and error indicators of model output. We 

can see that again NSE values fall in the acceptable range for calibration but are outside of this 

range for the validation time periods. Further visual inspection of the spatial distribution of both 

absolute error and relative error for this modeling approach shows significantly more error than 

in the second approach.  
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Table 2.3 Kriged groundwater surface 

Calibration (2002-2006), Validation (2007-2010) 
Year NSE Corr. Coeff. RMSE (m) 
2002 0.5509 0.7429 0.0240 
2003 0.8752 0.9355 0.0673 
2004 0.6887 0.8302 0.0582 
2005 0.8360 0.9143 0.0471 
2006 0.6839 0.8270 0.0479 
2007 -0.1029 0.1772 0.5246 
2008 -3.7980 0.1965 0.6708 
2009 -0.3598 0.2301 0.1605 
2010 -0.0029 0.3048 0.0642 

	

2.4.4 Finalized neural network model results 

The output data of the neural network model contained the least error and highest 

correlations when using the second approach. Because the model was unsuccessful in simulating 

groundwater change in new time periods, it is clear that the model requires some groundwater 

information as an input. This also highlights one of the limitations of an empirically-based 

downscaling model – once calibrated to a particular period of time or location in space, the 

model may not accurately represent the groundwater changes in a new region or time period. 

However, following the second approach, which calibrates each year to a widely available 

interpolated set of groundwater storage change, the proposed model can acceptably simulate the 

groundwater surface and downscale GRACE data to the 4km resolution. The maps shown below 

in Figure 2.4 are the final output of the model. Error data for these maps can be found in Table 

2.2.  
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Figure 2.4 Neural network model downscaled groundwater storage change (m) maps from 2002-
2010 of San Joaquin, Central Valley, CA. 

	
From Figure 2.4, we can see that the large majority of the groundwater declines (shown 

in red) during the 2002-2010-time period in California’s Central Valley occurred in the eastern 

and southern portions of the southern Central Valley. These hotspots of groundwater depletion 

show up to 1 meter of storage loss per unit area in some locations of the southern and eastern 

portions of the study region. Merced, for example, is located at 37.3022° N, 120.4830° W (in the 

center of the eastern half of the map) and shows between 0.25 and 1 m of groundwater storage 

loss in all years except 2007. Other areas, shown in greens and blues, experienced relative 

increases in groundwater storage. These locations varied from year to year. The central portions 
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of the southern end of the map had recurring increases in the groundwater table (see years 2003, 

2005 and 2009). Further study of these blue and red regions could help elucidate why and how 

certain regions may be losing or gaining groundwater.   

Overall, the model output maps point to a high degree of heterogeneity in groundwater 

behavior compared to GRACE data. As such, it is critical to keep in mind the increase in 

resolution these maps provide. Figure 2.5 below shows the resolution of the GRACE estimates of 

total water storage and currently available groundwater well data for this region in 2010. 

Looking at the GRACE data in Figure 2.5 we can see a slight average regional increase in 

groundwater storage. However, the model output from this study shows that at a more local level 

groundwater may be exhibiting more dramatic increases and decreases. These extrema are more 

or less averaged out at such a low spatial resolution seen in GRACE data. The in situ 

groundwater data shown in Figure 2.5 does capture some of these highs and lows but fails to 

provide adequate spatial coverage.  

	

 

Figure 2.5 Spatial resolution of available remote sensing and in situ water storage change data 
over study region for 2010 (m). 

	
Figure 2.6 shows the percent by which each input variable influences the model output, 

as calculated from Equation 2.1, in our final neural network model. GRACE has the highest 
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percent influence (PI) on model output, 38.76%, followed by precipitation, 21.99%, temperature, 

15.54%, slope, 12.41%, and soil type, 11.30%. These values illustrate that GRACE is able to 

explain a significant portion of groundwater storage change in the San Joaquin portion of the 

Central Valley. Because GRACE only provides low spatial resolution information, the PI values 

also show that the remaining input variables are necessary to achieve model output at our target, 

higher spatial resolution.  

 

Figure 2.6 Percent influence of input variables on neural network model output. 

	
A time series of cumulative groundwater storage change over the 2002-2010 study period 

is shown in Figure 2.7 as estimated from the three model approaches, from in situ data and from 

GRACE estimates of changes in total water storage. The comparison of the two time series show 

that in some years GRACE appears to be overestimating annual storage loss (2002-2004) and 

gain (2006) in this region. This may be due to gaps in the spatial coverage of well data, where 

significant groundwater pumping may be occuring. It could also be the result of surface water 
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storage dynamics, as GRACE also detects changes in surface water. In addition, the model 

output may be understimating the groundwater change due to errors in the spatial interpolation 

methodology. The actual annual change is most likely somewhere between the two lines. 

Overall, the model output demonstrates that when remote sensing and monitoring data 

are used together, as in our neural network model, they are able to provide a clearer picture of 

local and regional groundwater patterns than the use of each data type in isolation (shown in 

Figure 2.5). The comparison of the high-resolution maps generated in this study to regional 

groundwater models could further confirm or improve the effectiveness of this method. In 

addition, a deeper analysis of the implications of the findings in this study to local groundwater 

management would be highly beneficial for groundwater managers. 
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Figure 2.7 Cumulative annual groundwater storage change (km3) for the San Joaquin 

groundwater basin, as estimated by GRACE water storage changes (blue), by ground-based in 
situ groundwater data (red) and by the three downscaling models (yellow, purple, green). 

	

2.5 Conclusions 

Sustainable planning and management of groundwater resources requires accurate 

information about trends in groundwater availability. GRACE has already proven to be a 

powerful data source for regional groundwater assessments in many areas around the world, yet 

its applicability to more localized studies and its utility to water management authorities has been 

constrained by its limited spatial resolution (~200,000 km2) [Famiglietti and Rodell, 2013; 

Rowlands et al., 2005]. We developed a robust, artificial neural network model that downscales 

GRACE gridded land datasets (~1 degree) to higher-resolution (~4km) groundwater storage 

change estimates. The model utilized GRACE estimates of variations in total water storage and a 
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series of widely available hydrologic variables (PRISM precipitation and temperature data, 

DEM-derived slope and NRCS soil type) to derive spatial patterns in groundwater behavior. The 

neural network downscaling model was able to effectively simulate groundwater storage change 

over the central and southern portions of the Central Valley with NSE values ranging from 

0.0391 to 0.7511. This study also showed that the model required richer estimations of 

groundwater data (kriged datasets) for improved calibration and validation performance. The 

results of the downscaling model – high-resolution maps of groundwater storage change – 

illustrated the high heterogeneity in groundwater behavior and the tendency for more dramatic 

declines in the groundwater table to occur in the southern and western portions of the San 

Joaquin Valley and Tulare Groundwater Basins.  

Overall, the extension of GRACE data by means of numerical downscaling represents a 

unique contribution to the scientific remote sensing community and advances the state of current 

remote sensing-based hydrologic science. This approach departs from data assimilation methods 

in that it is model-independent and thus offers more flexibility in data scarce environments and 

with changing input data products (i.e. new data releases or alternate remote sensing products). 

This has implications for world-wide applicability in developing regions, where models and 

dense monitoring networks may not be freely available. This neural network model also 

constitutes an alternative, numerical approach to improving the resolution of remote sensing 

products and offers a hybrid solution between low-resolution GRACE data and sparse 

groundwater monitoring networks. 
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3. A hydrologically-based framework for calculating sustainable yield under California’s 

Sustainable Groundwater Management Act (SGMA) 

3.1 Introduction 

Over the past 100 years of agricultural development in California, the state has lacked an 

established framework for groundwater management [Grantham and Viers, 2014]. This lack of 

oversight has led to dramatic rates of groundwater depletion throughout California’s Central 

Valley, a region with high agricultural demand for water but variable climatology [Faunt, 2009]. 

The Central Valley is semi-arid and drought-prone, with highly variable wet and dry years 

[Faunt et al., 2016]. In dry years, when surface water supplies diminish, farmers depend heavily 

on groundwater resources to meet their water needs [Faunt, 2009]. Since the 1960’s, recharge 

during wet periods has failed to replenish the high rates of depletion during dry periods, and the 

Central Valley has lost nearly 100 million acre-feet of groundwater from storage [Faunt et al., 

2016]. On average, this amount of water would be enough to supply the state’s urban areas for 

12 years [Pacific Institute, 2014].  

Beyond reduction in groundwater storage, the region has seen significant impacts to both 

groundwater quality and the land surface. As groundwater has been removed from the system, 

the geology of the Central Valley’s subsurface has caused significant land subsidence, or 

compaction of the land surface, at rates of nearly 20 inches per year in some locations [Faunt et 

al., 2016; Farr et al., 2017]. Increasing nitrate concentrations in groundwater due to extensive 

agriculture, particularly in the eastern portion of the Central Valley, has also jeopardized 

groundwater availability [Burow et al., 2013; Dzurella et al., 2015]. This is problematic for both 

agricultural and urban users, as migration of nitrate contaminant plumes has been identified 

between subbasins [Burow et al., 2013]. Agricultural sustainability in the Central Valley is also 
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threatened by soil salinization and saline intrusion into groundwater basins, which are secondary 

and tertiary effects to increased removal of groundwater from storage [Schoups et al., 2005]. 

Over time, the accumulation of these physical impacts and the growing recognition of the 

importance of groundwater as a source of water for both agricultural and urban regions led to the 

creation and passage of the 2014 Sustainable Groundwater Management Act (SGMA). SGMA is 

a complete overhaul for groundwater management across the state. It requires the formation of 

Groundwater Sustainability Agencies (GSAs), who must define their boundaries and develop and 

implement Groundwater Sustainability Plans (GSPs) [Sustainable Groundwater Management 

Act, 2014]. This is no easy task. Not only are most of these agencies brand new to direct 

groundwater management, but much of the Central Valley also lacks adequate monitoring and 

information for management [Croyle, 2014].  

GSAs must complete their GSPs by 2020 - for critically-overdrafted groundwater basins - 

and by 2022 for all other non-adjudicated basins [CA DWR, 2016]. GSAs will then have an 

additional 20 years to fully implement these plans and achieve sustainability [CA DWR, 2016]. 

While GSAs retain local authority over much of SGMA implementation, the state maintains a 

regulatory “backstop” in their ability to review GSPs and intervene if they are deemed 

ineffective [State Water Resources Control Board, 2016]. A more lengthy description of the 

requirements, timelines and best management practices for SGMA implementation can be found 

by accessing California’s Department of Water Resources (DWR) SGMA Toolbox [CA DWR, 

2017].  

This chapter will focus on clarifying and strengthening one component of GSPs – the 

concept of sustainable yield – a key prerequisite to introducing measurements to curb depletion 

rates, subsidence and water quality degradation. SGMA mandates that GSAs manage annual 
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groundwater pumping (also termed extractions) according to the sustainable yield of their basin. 

The language of SGMA defines sustainable yield as the “maximum quantity of water… that can 

be withdrawn annually from a groundwater supply without causing an undesirable result” 

[Sustainable Groundwater Management Act, 2014]. Undesirable results include 1) “depletion of 

supply from chronic lowering of groundwater levels”; 2) “reduction of groundwater storage”; 3) 

“seawater intrusion”; 4) “water quality degradation”; 5) “land subsidence”; and 6) “adverse 

impacts from the depletion of interconnected surface waters” [Sustainable Groundwater 

Management Act, 2014]. The concept of sustainable yield is based on the notion that by limiting 

extractions to the sustainable yield of the system, basin managers will not only be preventing the 

undesirable results listed above, but they will also be prolonging the useful life of the aquifer. 

Because an important focus of SGMA is its strong emphasis on local management, how to 

approach the calculation of sustainable yield is therefore left to the discretion of each newly 

formed GSA [Joseph, 2016].  

Lessons from California’s own history of implementing sustainable yield, and its 

precursor safe yield, in adjudicated basins point to the need for a consistent approach. Langridge 

et al. [2016] cite the use of six different definitions of safe yield statewide, each with highly 

variable methods for calculation. Rudestam and Langridge [2014] also detail California water 

agency representatives’ lack of clear understanding of and confidence in the concept of 

sustainable yield. It is also important to note that the majority of the State’s experiences with the 

concept of sustainable yield come from adjudicated basins - those in which parties have 

previously filed suit for and were granted groundwater rights. These basins, most of them located 

outside of the Central Valley in urban and semi-urban areas throughout Southern California, are 
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essentially exempt from SGMA implementation [Langridge et al., 2016; State of California, 

2017].  

We contend that SGMA’s current definition for sustainable yield is not only ambiguous 

but also lacks grounding in physics. Instead, we believe that integrating hydrologically-sound 

methods into the concept of sustainable yield offers a more robust framework for groundwater 

resource management. This paper suggests one approach to calculating sustainable yield that is 

based on a synthesis of scientific inquiry and analysis. Rather than focusing on providing yet 

another definition for sustainable yield, we introduce a flexible framework that basin managers 

can rely on to quantify sustainable yield values and analyze their impacts of over the 

management horizon. We apply this three-step framework in the context of a case study of the 

South San Joaquin Irrigation District (SSJID) in California’s Central Valley. In doing so, we 

assess the long-term applicability of the sustainable yield framework by performing a 

groundwater balance through the planning horizon of SGMA, to 2040. 

3.2 The challenge of defining sustainability for groundwater management  

The idea of sustainable yield or its predecessor, safe yield, is not new. In the 1970s, the 

“modern” approach for a hydrologist to determine safe yield consisted of creating a complete and 

detailed model of the groundwater system that could characterize the response of both 

groundwater and surface water to various stresses [Lohman, 1972]. With this model, the 

hydrologist and the groundwater manager would then work together to determine the most 

equitable distribution of water [Lohman, 1972].  However, even with this, ambiguity remained 

on the actual definition. Lohman [1972] states, “the term ‘safe yield’ has about as many 

definitions as the number of people who have defined it”. Thomas [1951] writes that safe yield is 

an “Alice-in-Wonderland term which means whatever its user chooses”.  
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While debate continues, a general consensus in the community has emerged. Many 

hydrologists that have written extensively on the concept of safe and sustainable yield have 

highlighted the importance of physically based, numerical modeling approaches [Bredehoeft et 

al., 1982; Zhou, 2009]. In one such debate, researchers have shown that sustainable yield values 

can be calculated based on mass balance approaches [Sophocleous, 2000; Kalf and Woolley, 

2005; Zhou, 2009] as long as the sustainable yield values (i.e. pumping) are significantly less 

than recharge [Sophocleous, 2000]. If, instead, the sustainable yield is allowed to equal the 

natural recharge rate, undesired “capture” of natural outflow to surface water bodies can occur 

[Lohman, 1972; Balleau and Mayer, 1988; Bredehoeft, 2002; Devlin and Sophocleous, 2006]. In 

this case, groundwater abstractions are supplied by both surface and groundwater and may cause 

reductions in surface water availability, complicating surface water right allocations [Theis, 

1940; Alley et al., 1999; Seward et al., 2006].  Ultimately, without proper accounting or accurate 

numerical models, groundwater managers cannot ensure the sustainability of local groundwater 

and interconnected surface water systems. 

However, groundwater sustainability is relevant to more than just the physical system. In 

the end, “groundwater has value only by virtue of its use”, and sustainable yield is the volume of 

groundwater that will supply an overlaying socio-economic system [Freeze and Cherry, 1979]. 

Hydrologists have discussed the interconnection of physical and human system in the context of 

groundwater management, highlighting importance of social, economic and environmental 

constraints on groundwater resources [Alley et al., 1999; Alley and Leake, 2004; Maimone, 2004; 

Devlin and Sophocleous, 2006; Zhou, 2009]. The quantification of these non-physical 

constraints, though, depends largely on the local socio-economic environment surrounding 

groundwater use [Rudestam and Langridge, 2014]. From this perspective, sustainability is 
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therefore best defined locally based on an analysis of the “social acceptability of impacts” 

[Herczeg and Leaney, 2002; Rudestam and Langridge, 2014]. 

Under SGMA, GSAs must determine what impacts to both the local physical 

groundwater system and the overlaying socio-economic system are bearable. This is written into 

SGMA through the prevention of undesirable results. Recall SGMA’s definition of sustainable 

yield: “maximum quantity of water… that can be withdrawn annually from a groundwater 

supply without causing an undesirable result”, in which undesirable results can be viewed as six 

indicator variables that help GSAs determine and maintain sustainability [Sustainable 

Groundwater Management Act, 2014]. GSAs must quantify acceptable thresholds for 

groundwater depletion, quality degradation, land subsidence and streamflow reduction and not 

surpass them – underscoring the importance of correctly identifying the “social acceptability of 

impacts” when assessing long-term sustainability [Herczeg and Leaney, 2002]. For example, in 

the context of groundwater quantity, a GSA may decide to pursue no net groundwater depletion 

in their basin or may restrict pumping altogether (see Figure 3.1). These decisions would in turn 

govern how much water is extracted and recharged annually and how groundwater levels recover 

over time. 
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Figure 3.1 Sustainable yield management scenarios, adapted from U.S. Department of Interior 

[2005]. 

	
3.3 Case study – the South San Joaquin Irrigation District  
 

The South San Joaquin Irrigation District (SSJID) covers 72,000 acres of the Eastern San 

Joaquin Groundwater Basin in the northeastern San Joaquin Valley [Nakagawa, 2004]. The 

district was formed in 1909 and holds pre-1914 water rights to 600,000 acre-feet of the 

Stanislaus River, which it shares equally with a neighboring district – the Oakdale Irrigation 

District [Nakagawa, 2004; Davids Engineering, 2015]. Most of the water available in the SSJID 

is used to irrigate approximately 54,000 acres of cultivated land [Davids Engineering, 2015]. 

However, agricultural water demands are not fully met by available surface water, and 

groundwater serves as an important resource, especially during dry periods [Davids Engineering, 

2015]. As a result, the SSJID has experienced significant groundwater declines of 30-40 feet 

over the past several decades, an average of 1.7 feet per year [Nakagawa, 2004; CA DWR, 2006].  

The estimated safe yield for the district is 72,000 acre-feet per year [Nakagawa, 2004]. 

During the irrigation season, average recharge is estimated at 97,000 acre-feet and average 
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pumping at 40,000 acre-feet. During dry years, average pumped volumes surpass 65,000 acre-

feet. Within the boundaries of the SSJID are also three urban areas whose potable water supply is 

fully dependent on groundwater – the cities of Escalon, Ripon and Manteca [Nakagawa, 2004; 

Black Water Consulting Engineers, 2016]. Nitrate contamination and declining groundwater 

levels are impacting the availability of groundwater for domestic use [Nakagawa, 2004; Black 

Water Consulting Engineers, 2016]. 

The district manages 28 groundwater wells, from which groundwater is pumped into 

open channels for distribution; well depths range from 80 to 800 feet (350 feet on average) 

[Davids Engineering, 2015]. Wells penetrate into the top two layers of four permeable water-

bearing formations that are comprised of sands, gravels, silts and clays [Davids Engineering, 

2015]. The presence of finer sediments has contributed to land subsidence in the region [CA 

DWR, 2006]. More details on the geology of the subsurface, specific yield values and 

groundwater storage capacity can be found in Basin 5-22.01 of California’s Bulletin 118 [CA 

DWR, 2006].  

The California Department of Water Resources has identified the Eastern San Joaquin 

Groundwater Basin as one of the state’s critically-overdrafted basins [CA DWR, 2016]. This 

means that GSPs must be developed by 2020 and fully implemented to “sustainability” by 2040 

[CA DWR, 2016]. SSJID has applied to be a GSA, along with 17 other existing water 

management agencies in the Eastern San Joaquin subbasin [CA DWR, 2017]. If all of the current 

GSA proposals are accepted, the SSJID will have to coordinate with seven neighboring GSAs 

that either fully or partially overlap with the SSJID’s boundaries [CA DWR, 2017].  
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3.4 A novel framework to calculate sustainable yield 

Under SGMA, the process of quantifying sustainable yield can be divided into three steps 

– 1) Quantification of a baseline sustainable yield value; 2) Identification of potential constraints 

(from undesirable results) to the baseline sustainable yield from Step 1 and determination of a 

constraint-adjusted sustainable yield; and 3) Projection of basin response to use of sustainable 

yield-based strategies over the management horizon.  

3.4.1 Step 1: Quantifying a baseline sustainable yield 

We take a graphical approach to calculating sustainable yield that is based on a basin’s 

response to pumping levels under both wet and dry hydrologic conditions. This approach, often 

termed Hill’s Method, is a widely used empirical method that relates basin-wide change in 

groundwater levels to groundwater extraction (pumping) [Conklin, 1946; Butler et al., 2016; 

Loáiciga, 2016; Whittemore et al., 2016]. According to this method, which is shown graphically 

in Figure 3.2, the baseline sustainable yield corresponds to the average level of extraction 

(measured along the x-axis) that causes zero average groundwater level change (measured along 

the y-axis). In practice, a best-fit line is used to calculate the sustainable yield value from a plot 

of average annual groundwater levels, calculated from Equation 3.1, and annual groundwater 

extraction, as reported or estimated by local basin managers [Loáiciga, 2016].   

 
∆GWL = 1

Area
  ∆GWLk*Areak K

 k=1               (3.1) 
 
 

Where,  ∆GWLk is the average annual change in groundwater level for a given well, k, in 

a groundwater basin (ft); Areak is the representative spatial extent of well k in the basin (ft2). 
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Figure 3.2 Hill’s method - Estimating sustainable yield from changes in groundwater levels 

	
Hill’s method offers a number of advantages, including simplicity [Hill, 2006; Butler et 

al., 2016], flexibility to varying types and amounts of data [Loáiciga, 2016] and ability to 

represent a variety of spatial scales, or potential management units. Notably, it is appropriate for 

areas where monitoring data may be limited and where only basin-wide extraction values and 

groundwater hydrographs from a few sample wells are available [Loáiciga, 2016]. This is the 

case in much of the Central Valley, particularly if we consider the narrow spatial scale of 

management proposed by many potential GSAs. In many locations groundwater fluxes (lateral 

flows, etc.) are also often poorly understood, and those estimates that do exist often do not vary 

with time. Thus, at this stage, little data is available to complete a full groundwater balance. 

Groundwater models are good tools to substitute direct readings of groundwater levels from 

wells, and are encouraged by DWR as a best management practice for SGMA [CA DWR, 2016]. 

As these are developed, model output for groundwater level change can be incorporated into this 

framework. Improvements to monitoring networks and availability of groundwater models, both 

of which may be an outgrowth of SGMA implementation, will provide greater spatial coverage, 

enhancing the accuracy of Hill’s method. 
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Hill’s method does, however, have a few limitations. First, it represents the groundwater 

level response to pumping and therefore cannot fully capture the dynamics of confined aquifers. 

Second, the method assumes constant recharge to the basin and is thus limited in its ability to 

accurately estimate sustainable yield under highly variable climatology. As a result of these 

constraints, the method is most applicable to basins that are both predominantly unconfined and 

receive relatively consistent inter-annual rainfall. For basins that do not fall in that category, we 

propose two modifications to this approach so that it remains applicable in the context of GSPs.  

The first modification is relevant to the case of a confined system. Annual change in 

groundwater storage – calculated from known storativity values – can be used in place of 

groundwater levels on the y-axis (see Figure 3.2).  

The second modification to Hill’s method mirrors existing water management 

frameworks and will allow basin managers to account for the impact of higher or lower recharge 

amounts. This modification consists of determining a separate sustainable yield for dry and wet 

years. Each year, beginning in February and based on river flow in the Sacramento and San 

Joaquin regions, the California’s State Water Resources Control Board determines whether the 

incoming hydrologic year will be a wet or a dry year [CA DWR, 2013]. Groundwater basin 

managers can use this information to predict both regional surface water allocations and potential 

recharge amounts, as well as to calculate a separate sustainable yield for each hydrologic year 

type. Figure 3.3 illustrates this modification. Average groundwater level change (from Equation 

3.1) and the corresponding extraction volume are plotted for each year but are divided by 

hydrologic year type. A best-fit line is then used to calculate a separate sustainable yield value 

for each hydrologic year type. As expected, the sustainable yield is lower in a dry year than in a 

wet year.  



	 50 

  

	
Figure 3.3 Modified Hill's Method to capture Central Valley's wet and dry year climatology 

 
 We apply the second modification to Hill’s method and calculate a baseline wet 

and dry year sustainable yield for the SSJID. We use six sample wells equally distributed across 

the district with temporally continuous and error-free well logs. We use this data to calculate the 

average annual groundwater change from Equation 3.1. Annual extraction volumes were 

available from the SSJID Agricultural Management Plan from 1994-2014 [Davids Engineering, 

2015]. From Figure 3.4, the wet year sustainable yield is estimated at 73,608 acre-feet, and the 

dry year sustainable yield at 20,686 acre-feet. These yields correspond to the baseline sustainable 

yields that will be used as inputs for Step 2 of our framework. 
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Figure 3.4 Sustainable yield calculation for SSJID (1994-2014) 

 

3.4.2 Step 2: Determining constraints to the baseline sustainable yield 

Step 2 characterizes the relationship between pumping, groundwater depletion and the 

different undesirable results to determine if a constraint exists to the baseline sustainable yield. 

This step is based on the premise that a certain level of groundwater depletion or pumping may 

trigger the occurrence of an undesirable result. If this depletion level or pumping volume is 

known, the sustainable yield value may need to be reduced to ensure avoidance of the 

undesirable result. 

SGMA mandates consideration of six undesirable results but does not specifically 

quantify what constitutes an “undesirable” level, or threshold, for each. Instead, quantification of 

these thresholds is left to each GSA. Some standards already exist to guide GSAs in establishing 

threshold values for each undesirable result [Sustainable Groundwater Management Act, 2014]. 

Table 3.1 contains potential threshold values that GSAs can refer to, based on established 

maximum values from federal or state regulations. Where definitive numerical thresholds do not 
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exist in the literature, documents that offer relevant guidance are included as a reference. The 

thresholds shown in Table 3.1 are only guidelines values. Each threshold should be extensively 

studied and quantified based on the local properties of each management basin, including its 

subsurface, land use and stream networks, as well as reflective of local socio-economic 

preferences. Christian-Smith and Abhold [2015] also offers recommendations for quantifying 

thresholds. 

Table 3.1 Undesirable Results thresholds and/or recommended references for GSAs 

Undesirable Result Thresholds - Reference texts 
Depletion of supply 

• Chronic lowering of 
groundwater levels 

• Reduction in 
groundwater storage 

Sustainable yield management, including: 
• Aquifer sustainability [Custodio, 2002; van der 

Gun and Lipponen, 2010; Richey et al., 2015] 
• Socio-economic dimensions [Foster and Loucks, 

2006; MacEwan et al., 2017] 
Saline intrusion Total dissolved solids (TDS): 500 mg/L 

• SWRCB recommendation for drinking water 
[SWRCB, 2016] 

• Negative impacts on crops [SWRCB, 2016] 
Water quality degradation Nitrate concentrations: 3 mg/L (recommended); 10 mg/L 

(maximum) 
• Concentrations over 10 mg/L are unsafe for 

human consumption [US EPA, 2016] 
• 20-40 mg/L impact livestock [Crowley et al., 

1974] 
Land subsidence Rates over 1 foot/year 

• 0.5 - 1 feet/year are historically high rates [Faunt 
et al., 2016] 

• Billions in estimated costly impacts to 
infrastructure [Borchers and Carpenter, 2014] 

Surface water depletion Avoidance of baseflow reduction  
• Surface water rights fully allocated [Grantham 

and Viers, 2014] 
• Groundwater tables depend on recharge from 

surface water [Scanlon et al., 2012] 
• Numerical modeling of groundwater-surface 

water interaction is critical [Sophocleous, 2002; 
Alley and Leake, 2004; Faunt, 2009] 

 
 
In the previous section, we introduced a method that derives linear relationships between 

groundwater levels (or storage) and groundwater extraction to calculate baseline sustainable 
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yield values for wet and dry years. Similarly, we can form linear relationships between each 

undesirable result in Table 3.1 and groundwater levels. Because the quantification of sustainable 

yield in Step 1 is based on a threshold for groundwater level change, Step 2 is focused on the 

groundwater quality, land subsidence and surface water undesirable results. In addition, the wet 

year-dry year distinction becomes less discernible in the relationship between groundwater level 

and nitrate concentration, for example, so the aggregate data is used.  

To apply this step to the SSJID, we gathered data on each of the undesirable results. Land 

subsidence was obtained data from the nearest GPS monitoring station outside Salida, CA, which 

began recording in 2008 [UNAVCO, 2017]. Groundwater quality and salinity indicators – 

dissolved nitrogen and TDS – were obtained from four available monitoring wells from the 

California Water Data Library [CA DWR, 2017]. Streamflow data was obtained from U.S. 

Geological Survey (USGS) stream gauge #11303000 located on the Stanislaus River near Ripon, 

CA [USGS, 2017]. Figures 3.5a-3.5d show the derived relationships between groundwater levels 

and each of the four undesirable results variables.  
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Figure 3.5 Undesirable results variables and relationship to groundwater level  

 
Using the best-fit lines from the relationships derived in Figure 3.5, groundwater level 

thresholds for each undesirable result can be calculated as shown in Table 3.2.  

 
Table 3.2 Best-fit lines between groundwater level and each undesirable result 

Variable Equation R2 Threshold GWL Threshold* 
Subsidence Subsidence = 0.14*ΔGWL + 0.58 0.014 -1 ft/year -11.27 feet/year** 
Salinity TDS = 4.56*GWL + 38.66 0.522 500 mg/L 101.2 feet 
Nitrate Nitrate = 1.46*GWL - 14.35 1 40 mg/L 37.19 feet 
Streamflow Streamflow = -24.59*GWL + 1346.5 0.231 200 cfs 46.63 feet 

Note: *GWL Thresholds indicate the depth to water surface at which undesirable results thresholds would be 
surpassed. **Subsidence was not found to have a strong linear relationship with groundwater levels, and as a 
result annual change in groundwater level with a two-year lag was used.  

 
To connect Step 1 to Step 2, we need to relate the groundwater level thresholds in Table 

3.2 to the baseline sustainable yield values. To do so, we start with the known depth to the water 

surface in a given year. If, for example, the current average annual groundwater level was 

measured at a depth to water of 50 feet, and using streamflow as the constraint variable, Table 
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3.2 would indicate that groundwater levels would need to be raised by 3.37 feet to either reverse 

or prevent reduction in streamflow. In this case, the sustainable yield during a wet year would be 

calculated from Hill’s Method, shown in Figure 3.6, using 3.37 feet as the y-intercept rather than 

a 0 feet change in groundwater level. This is a hypothetical example. In the case of the SSJID, 

the current sustainable yield values are constrained by groundwater level and storage change and 

the baseline sustainable yield values calculated in Step 1 hold. If groundwater levels drop in the 

future, a surface water constraint to sustainable yield, similar to the hypothetical example, may 

need to be implemented. 

 

 
Figure 3.6 Recalculating sustainable yield under a streamflow constraint 

	
The relationships in Figure 3.5 and Table 3.2 assume a causal and linear relationship 

between each variable and groundwater levels, but in reality this may not be the case for all 

variables. Depending on the land use or geology in a given GSA, not every undesirable result in 

SGMA will be tied to groundwater extraction. In Figure 3.5c, for example, a linear relationship 

is evident, but research shows increasing nitrate concentrations are likely driven by agricultural 
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practices, not necessarily groundwater [Burow et al., 2013]. In addition, the lack of data for 

nitrate concentrations in this region leaves any empirical relationship unconvincing. Here, 

sustainable yield should not be constrained because of increasing nitrate concentrations. Instead, 

GSAs will need to approach groundwater management in a holistic way and incorporate other 

dimensions of water management to curb undesirable results like nitrate contamination.  

3.4.3 Step 3: Projecting basin response over the GSP management horizon 

Under SGMA, GSPs must show how the basin will reach sustainability over the planning 

horizon using sustainable yield-based strategies. Managers will need to project a basin’s 

response to either 2040 or 2042, depending on the basin classification, and assess whether this 

response is sustainable. There are a number of methods currently available to managers to 

achieve this, including applying future climate data to a groundwater balance approach or to a 

numerical groundwater model [Scibek and Allen, 2006; Maxwell and Kollet, 2008]. Our 

framework follows an empirical groundwater balance approach that is similar in concept to 

Whittemore et al. [2016] and Butler et al. [2016]. They demonstrate the utility of using simple, 

linear regression equations to relate pumping to groundwater level change [Whittemore et al., 

2016]. We modify their approach slightly to include recharge as a separate term, rather than as a 

part of the Net inflow term in Equation 3.2. The Net Inflow term is intended to capture all fluxes 

in and out of the groundwater system, including all lateral and vertical inflows and outflows. In 

this approach, this term is derived empirically and is part of the b variable in Equation 3.4.  

We perform a water balance based on the following system of equations, modified from 

Butler et al. [2016]. 
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∆Storage = ∆GWL × Area × Ss = (Net inflow + Recharge) - Pumping       (3.2) 
∆GWL= Net inflow

Area×Ss
 + Recharge - Pumping

Area×Ss
             (3.3) 

∆GWL= b + a*(Recharge - Pumping)             (3.4) 
 

	
Where, for a specific time period and groundwater basin, ∆Storage is the change in 

storage (acre feet); ∆GWL is the change in groundwater level (feet); Area is the spatial extent of 

the basin (feet squared); Ss is the specific yield (for an unconfined aquifer) or storativity 

(confined); Net inflow is the net inflow to the system, accounting for lateral inflow and outflow 

(acre-feet); Recharge is recharge from interconnected surface water and percolation from the 

land surface (acre-feet); and Pumping  is the groundwater extraction volume (acre-feet). 

Coefficients b and a are constants that are fit using linear least squares regression [Whittemore et 

al., 2016]. Simplification from Equation 3.2 to Equation 3.4 is possible under the assumption 

that Ss and Net inflow, largely made up of lateral flows across the aquifer, do not vary in time 

[Butler et al. 2016]. 

To fit the parameters a and b in Equation 3.4 for the SSJID, we use data on annual 

groundwater level change (as described in Step 1) and on recharge and pumping values available 

in the SSJID Agricultural Management Plan for 1994-2014 [Davids Engineering, 2015]. The fit 

empirical model is shown in Equation 3.5, and has an R² = 0.49. 

 
∆GWL= -6.23 + 0.00006*(Recharge - Pumping)               (3.5) 
 
	

Equation 3.5 is used to project the impact of sustainable yield management strategies on 

groundwater levels in the future. To do so, we obtain data on precipitation and recharge from a 

downscaled climate change model – the California Basin Characterization Model – and apply a 

mask to the boundaries of the SSJID [Flint et al., 2013]. The California Basin Characterization 
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Model includes 18 future precipitation and recharge projections from five CMIP-3 and nine 

CMIP-5 General Circulation Models under three emission scenarios and four different 

representative concentration pathways (RCPs) [Flint et al., 2013]. With the precipitation data, we 

classify a given future year as wet or dry based on annual precipitation, where a wet year 

receives greater than 13 inches of rainfall [Davids Engineering, 2015]. The Recharge term is 

broken down into three components – 1) percolation from precipitation, estimated from the 

downscaled GCM data; 2) return flows from applied water, based on historical averages for wet 

years and dry years; 3) seepage from surface water, also based on historical averages for wet 

years and dry years [Davids Engineering, 2015].  

The Pumping term in Equation 3.5, the annual volume of water extracted from a 

groundwater basin, will vary depending on the hydrological year type and the corresponding 

sustainable yield value. In wet years, Pumping is defined as the basin’s wet year sustainable 

yield and in dry years, the dry year sustainable yield. At this point in the framework, basin 

managers can elect to vary the Pumping term and assess the impacts of various definitions of 

sustainable yield on future groundwater levels. This may be a common approach for confined 

aquifers, where only managed depletion is possible. In unconfined systems, a GSA may elect to 

allow depletion due to socio-economic reasons. In such situations, a management goal may not 

be zero groundwater level change in a given year. These situations can also be easily 

incorporated into our framework. 

We illustrate this point by applying three different sustainable yield-based scenarios to 

the Pumping term in Equation 3.5. In Scenario 1, each wet year and dry year sustainable yield 

are calculated according to the SSJID case study shown in Step 1 and Step 2. In this scenario, the 

baseline sustainable yield is determined under an annual groundwater level change of 0 feet and 



	 59 

is not constrained by any undesirable results, as was shown in Step 2 for the SSJID. Figure 3.3 

illustrates the sustainable yield calculation for Scenario 1. In Scenario 2, we present a case in 

which there is some gradation in how a GSA defines their threshold for groundwater level 

change. In this scenario, a GSA opts to allow depletion in dry years and recovers the basin 

groundwater level in wet years. Figure 3.7 further illustrates this idea – the appropriate pumping 

level for a two-foot drop in groundwater levels can be calculated during dry years from our 

modified Hill’s Method. We can then calculate the corresponding pumping level to allow for a 

two-foot increase in groundwater levels during a wet year. These wet year and dry year 

sustainable yield values may be more socio-economically appropriate for the region. Finally, we 

compare these two scenarios to a third, in which the basin elects to make no changes to 

groundwater management and continues “business-as-usual” pumping during wet and dry years. 

The three scenarios wet year and dry year sustainable yield values for our case study of the 

SSJID are shown in Table 3.3.  

 
Table 3.3 Sustainable yield values for management scenarios in SSJID 

 Scenario 1 
Baseline 

Scenario 2 
Recovery-Depletion 

Scenario 3  
 Business-as-usual 

Wet year 73,608 acre-feet 33,608 acre-feet 48,606 acre-feet 
Dry year 20,686 acre-feet 60,686 acre-feet 58,712 acre-feet 
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Figure 3.7 Sustainable yield calculation for Scenario 2 – managed depletion, recovery 

 
We then run our empirical model (Equation 3.5) with these three sustainable yield 

pumping scenarios under the 18 different climate model datasets. The results are shown in 

Figures 3.8a-c. In all three figures, the groundwater levels calculated from the 18 climate 

simulations are designated by the grey lines, and the mean of the simulations by the bolded black 

line. In Figure 3.8a, the baseline sustainable yield scenario, groundwater levels are shown to 

stabilize over time. A similar trend is also evident for the mean of the climate change projections 

in Scenario 2, Figure 3.8b. Both Scenario 1 and 2 avoid the dramatic depletion of the business-

as-usual Scenario 3. However, there is more uncertainty in the depletion-recovery Scenario 2; the 

spread of the possible groundwater levels due to future climate is much wider than those in 

Scenario 1. A management regime like Scenario 2, which may be more practical for many GSAs, 

must be undertaken with more care. The occurrence of possible undesirable results, such as 

streamflow depletion, is more likely under this scenario. For the SSJID, the groundwater level 

threshold calculated in Step 2 at which surface water baseflow depletion may occur is 46.63 feet. 
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Future year sustainable yield values in Scenario 2 may be constrained by the streamflow 

undesirable result if recovery periods do not make up for managed depletion years.  

	
Figure 3.8 Projected average annual groundwater levels for SSJID from 2017 to 2040, under 18 

climate change models (grey lines) and three management scenarios. Mean of all climate 
projections shown in black. Historical data shown from 1964 to 2016 [CA DWR, 2017]. 
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3.5 Conclusions  

The implementation of SGMA gives California a new opportunity to incorporate science-

based approaches into continually evolving groundwater management schemes. To do so, water 

managers must bridge the gap between hydrologic science and policy and employ the necessary 

tools to craft and administer institutionally appropriate and physically relevant groundwater 

management plans. This study examines the concept of sustainable yield, in the context of 

SGMA. We do not offer a new definition for groundwater sustainability but rather provide a 

framework that GSAs can use to assess the long-term impacts of sustainable yield-based 

management scenarios that take into account both future groundwater availability and potential 

undesirable effects.  

We present a three-step framework to quantify sustainable yield and illustrate this 

approach through a case study of the SSJID. In Step 1, we introduce a modified Hill’s method 

that is more appropriate for California’s highly variable hydrology. Basin managers can use this 

method to derive sustainable yield values – where sustainability can take the classic definition of 

zero annual average groundwater level change or represent any other groundwater level change 

(depletion) that basin managers consider tolerable. In Step 2, we present an approach to 

integrating the groundwater quality, land subsidence and surface water undesirable results into 

the quantification of sustainable yield. This method is flexible to varying types input data and 

can incorporate more complex relationships between the undesirable results and groundwater 

levels, such as models, as they are developed. In Step 3, the overall sustainability of three 

different definitions for sustainable yield is assessed through an empirical groundwater balance 

that is projected to 2040. The results of the three scenarios show that there are tradeoffs between 
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groundwater availability, future uncertainty and socio-economic preferences that must be 

carefully weighed. This step will allow basin managers to do that.  

There are a number of limitations to both the present study as well as local groundwater 

management that will be addressed as models are developed for the region and more monitoring 

data becomes available. This study employs available datasets of groundwater use, groundwater 

level change, local streamflow, etc., but there is a significant lack of information on other key 

variables, particularly for water quality and land subsidence. The development of more spatially 

distributed and temporally consistent monitoring data should be a priority for GSAs. Information 

is a prerequisite to effective management. The incorporation of results from new groundwater 

models into the proposed framework will also allow groundwater managers to better account for 

the effects of pumping on interconnected surface water bodies. Numerical aquifer and 

streamflow models that are run over the long term are one of the best management practices 

necessary to achieve a comprehensive understanding groundwater behavior, and should therefore 

be a requirement for determining streamflow thresholds under SGMA [Alley and Leake, 2004].  

Finally, the concept of sustainable yield cannot be static, and water managers will need to 

adapt and change – recalculating annual sustainable yield values – as environmental and socio-

economic conditions shift in time [Meyer, 1993; Sophocleous, 2000; Alley and Leake, 2004]. 

While SGMA mandate five year reporting periods, sustainable yield values should be determined 

annually, incorporating all new monitoring data as it becomes available.  

Practical, day-to-day groundwater management, while based on hydrologic and scientific 

principles, cannot ignore the realities of each local economy and its inhabitants. In some parts of 

the Central Valley, groundwater sustainability will likely mean full depletion over time. We hope 
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that this framework will allow GSAs to define sustainability as they see fit while at the same 

time help them identify and quantify any potential physical consequences that come with it. 
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4. Diagnosing the health of the commercial remote sensing market - How developing value-

added solutions can foster industry growth 

4.1 Introduction 

Remote sensing refers to the collection of any information about the observable Earth 

from a distance, such as from a satellite. The uses of remote sensing data are many and varied, 

with notable applications in the government sector, including land use mapping, ocean 

temperature measurement and monitoring, and tracking floods and natural disasters; and in the 

private sector, including crop yield optimization, insurance assessments, and spatial 

measurement tools and investment data [NOAA, 2015; Kearns, 2015; Thenkabail et al., 2004]. In 

this paper, we focus on satellite-based remote sensing at a global scale, which includes various 

forms of imagery, measurements of temperature, wind, chemical and biological properties and 

altimetry, among others [Pohl and Van Ganderen, 1998]. Satellite-based remote sensing data 

offer a relatively unbiased data source and provides an almost endless supply of spatially 

referenced information on anything that varies by space and in time.  

The commercial, or private, remote sensing industry has grown rapidly over the last 

decade [BBC Research, 2016, Lal et al., 2015]. Venture capital firms have invested an 

unprecedented amount in new start-up companies – nearly $1.8 billion in the first half of 2015 

alone – and government agencies, such as the National Oceanic and Atmospheric Administration 

(NOAA), are considering shifting to the private sector for their satellite-based remote sensing 

needs [Gissot et al., 2015; Shepherd, 2016]. However, little work has been done to verify 

whether the speculation within this industry is justifiable, that is, whether the industry has the 

diverse revenue streams and robustness needed to sustain this growth over time.  
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While previous studies have focused on remote sensing suppliers, an understanding of the 

health of the remote sensing market requires equal attention to existing and potential demand 

[BBC Research, 2016]. In particular, a more detailed investigation of the business-to-business 

(B2B) market is needed. A healthy B2B market signals that the industry is large enough to 

support growth, and that potential customers can depend on the capabilities they need to be 

available into the future. Current and potential customers for remote sensors include government 

entities looking to privatize space-based earth observation, investment firms, insurance 

companies, natural resource agencies, and commercial firms [GeoConnections, 2016; Hope, 

2016]. A complete understanding of future growth paths for commercial remote sensing requires 

an analysis of potential new customers and their data needs as well as a means of quantifying the 

value-added of remote sensing data to meet those needs. 

In this chapter we take a holistic look at current and potential markets for the commercial 

remote sensing industry and identify opportunities where remote sensing data could uniquely 

benefit firms’ operations or increase profits. The specific objectives of this chapter are to: (1) 

provide an overview of the current B2B market for remote sensing; (2) identify strategies to 

make commercial remote sensing firms more responsive and robust to the needs of the market, 

especially new sectors; (3) use a case study to examine potential demand for commercial remote 

sensing in supply chain and business operations; (4) develop a model to quantify the value-added 

of remote sensing information.  

4.2 Overview of the business to business market for commercial remote sensing 

We conducted a literature review to examine trends in supply and demand in the remote 

sensing market. On the supply side, the commercial remote sensing industry has changed 

dramatically during the last decade [BBC Research, 2016]. From the 1990s to early 2010s, the 
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industry grew by only a few firms and satellites annually [Navulur et al., 2013]. Since 2010, 

however, the race for dominance in commercial remote sensing has accelerated, and many more 

companies are now entering the industry, with at least a few dozen satellites going up annually 

[Foust, 2013]. Global revenues from the remote sensing satellite industry have grown by about 

16% annually since 2010 and reached nearly $1.8 billion USD in 2015 [The Tauri Group, 2016].  

The rapid industry shift that has occurred since 2010 has been the result of technological 

advancements, novel business models, and decreased costs. In the past, conventional remote 

sensing firms, such as DigitalGlobe, spent millions of dollars designing, building, launching, and 

supporting a single satellite [Dalby, 2015]. Over time, the industry matured by improving spatial 

and spectral resolution, power and robustness, which, in turn, led to larger and larger satellites 

[Dalby, 2015]. In comparison, recent upstart entrants like Planet Labs and Terra Bella have 

developed and proliferated small satellites (“smallsats”), many of which are no larger than a loaf 

of bread [Lal et al., 2015; Dillow, 2015]. These newer satellite firms have reversed the traditional 

model of providing increasingly higher resolution, power, and operational lifetime by instead 

providing “decent” resolution for short missions at increasingly cheaper costs. While payloads 

like DigitalGlobe’s WorldView-3 are over 2,800kg [Dalby, 2015; Kramer, 2016], smallsats 

typically weigh between 5kg to 500kg [Lal et al., 2015; Dillow, 2015].  

A comparison of the cost of Planet Labs’ Flock 1 to that of DigitalGlobe’s upcoming 

WorldView-4 provides another clear example of the shift towards cheaper, nimbler satellites. 

Planet Labs’ Flock 1, which cost an estimated $2.8 million for 28 satellites [Dalby, 2015], has a 

much lower price tag than WorldView-4, with a cost of $750 million. Planet Labs’ lower costs 

have been made possible thanks to the use of commercial off-the-shelf (COTS) sensors rather 

than conventional, custom-built optical sensors [Lal et al., 2015]. Smallsat owners and operators 
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like Planet Labs have been able to maintain their cost advantage while staying on the forefront of 

new technology in part due to the rapid technological advancements in COTS sensors themselves 

[Lal et al., 2015]. 

While remote sensing suppliers may differ in the number of payloads and the structure of 

their business model, the key differentiators in their product offerings are the spatial resolution 

and spectral bands or sensor type. Further, Table 4.1 illustrates that many of the newer market 

entrants – such as UrtheCaste, Planet Labs and BlackSky – provide information at a medium 

spatial (1-5 m) and temporal (daily or sub-daily) resolution. 

Table 4.1 Types of remote sensing data available 

Company Spectral bands/sensor type Spatial 
resolution 

Revisit rate Number of 
satellites 

Terra Bella Panchromatic, R, G, B, NIR 0.9 – 2 m 3x daily 3, 18* 
UrtheCast Panchromatic, R, G, B, NIR, 

X-band and L-band SAR* 
1 – 4 m <Daily 24* 

Planet Labs R, G, B, NIR** 2.7 – 4.9 m <Daily 127, >150* 
DigitalGlobe Panchromatic, multispectral, 

SWIR 
0.31 – 30 m <Daily 4, 1* 

BlackSky* Multispectral 1 m <Daily 60* 
Aquila Space* R, G, B, NIR, Red edge 2.5 – 22 m >Daily 30* 

NorStar* Hyperspectral, IR n/a n/a 40* 
*Only planned satellites; **Experimental use only                                                                                                 
Sources: Krebs, 2016; eoPortal, 2016. 
	

In contrast to the dynamism of the supply side, the demand side of the remote sensor 

industry is much more static and driven by a few, mostly long-time, customers. The primary 

sectors buying and using remote sensing data are defense (59% of global demand), natural 

resources (10%), energy (9%) and infrastructure (8%) [Keith, 2015]. The government—at 

multiple levels (state, federal, local)—remains the dominant user [de Selding, 2016]. A few 

private industry verticals - insurance, agriculture, and mining - are also notable customer 

segments [de Leeuw et al., 2014; Hope, 2016; Darrow, 2015; Gissot, 2015]. 
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The rapid growth of commercial remote sensing capacity has created significant 

opportunities for firms to develop novel remote sensing data services and market themselves to a 

wider variety of potential clients. Some companies, such as Spaceknow, Orbital Insight, RS 

Metrics, Descartes Labs, and Ursa Space Systems, are responding to a growing demand for 

geospatial data-based analytics, numerical methods that refine geospatial data to provide more 

targeted information [Lal et al., 2015]. Most offer a suite of data products that are tailor-made 

according to their client base and internal expertise. Examples of such data products include 

parking lot counts, oil storage tank measurements, commodity crop forecasts, and estimates of 

surface water availability [RS Metrics, 2016; Ursa Space Systems, 2016; Spaceknow, 2016; 

Orbital Insight, 2016]. However, even though significant opportunities have emerged for firms 

to create these novel remote sensing data services, commercial firms are still not fully 

capitalizing on available prospects. The majority of remote sensing data continues to be sold to 

traditional users – state and local governments and the agriculture and insurance industries 

[Private Conversation, 2016]. Investment firms, which are traditionally adept at utilizing diverse 

data sets, are a notable emerging consumer [Hope, 2016].  

Our research suggests that a key reason for the lag in the growth and diversification of the 

consumer base for remote sensing data is the disconnect between the business intelligence needs 

of potential clients and the services that remote sensing companies are providing. We illustrate 

this point through Figure 4.1, which shows a U.S. Department of Defense (DoD) view of the way 

in which data are collected through remote sensing and distilled into intelligence that fulfills a 

mission or business need. Collection, processing, and analysis are identified as the three 

processes by which data refinement occurs, but there are barriers than can impede a firm’s 

movement from one phase to the next.   
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Commercial remote sensing providers – large and small, old and new – have solved or 

are solving the data collection problem, as shown by the smallsat leaping over the first barrier in 

Figure 4.1. However, would-be business consumers require more than the data alone: they need 

data to be translated into useful information and ultimately into products that solve business 

intelligence problems. Successfully overcoming the barriers to progress and transforming remote 

sensing data into effective business solutions requires insight into business-specific operating 

challenges. It is likely that the development of tailored solutions for one client cannot typically 

be leveraged for other customers. 

	
Figure 4.1 Relationship between data, information and intelligence, adapted from Joint Chiefs of 

Staff, 2013 

	
Although a growing number of companies are likely interested in incorporating remote 

sensing data into their decision processes, many do not have the capacity or organizational 

structure to process data into actionable intelligence on their own, and they have been largely 
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unwilling to invest internally in the expertise required [Private Conversation, 2016]. Thus, a gap 

exists between the continued emphasis among commercial remote sensing suppliers on providing 

data as their key product, and business users’ need to have that data transformed into actionable 

intelligence. We contend that this gap has contributed to the inability of the commercial remote 

sensing industry to cultivate new users on a large scale—a situation that has led some studies to 

posit whether the recent rapid growth in commercial space is sustainable. If the key product 

offered by remote sensing providers is data alone, how can a private company with an 

inexpensive, lightweight imager compete with free U.S. government-provided Landsat data of 

comparable quality? [Gissot et al., 2015; Private Conversation, 2016].  

4.3 Strategies to promote growth in the commercial remote sensing industry  

As with any emerging market, the way in which customers and companies will adapt to 

changing market conditions is difficult to predict [Burgel and Murray, 2000; Private 

Conversation, 2016]. However, our research has identified three strategies to assist commercial 

remote sensing companies in monetizing the value of their data and services in a way that will 

sustain and grow the industry. First, gaining a better understanding of would-be customers’ data 

needs, especially in the area of business intelligence, is critical to identifying opportunities for 

generating value-added products to meet those customers’ needs. In particular, remote sensing 

firms might focus on identifying key entry points within potential clients’ business processes 

where commercial remote sensing offerings could provide a decision advantage for them.  

Second, our research suggests that products based upon medium spatial and temporal resolution 

offer opportunities for providing value-added products. Higher spatial resolution leads to larger 

(and more expensive) spacecraft, and higher temporal resolution is generally unavailable in the 

free data sets. Third, we believe that data refinement services (often loosely termed “analytics”) 
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offer another key avenue for growth, by providing tailored business intelligence to would-be 

customers. We discuss each of these ideas in more detail below.  

Understanding the customer is crucial for generating a value-added product that can be 

used to break into new sectors. A survey of over 3,000 executives and decision-makers at 30 

prominent international companies showed that businesses are actively seeking ways to integrate 

data-driven decision-making into their current operational frameworks [LaValle et al., 2011]. 

However, many of these professionals do not have experience with analytics and cite a lack of 

understanding of data-driven decision-making as a main impediment to adoption [LaValle et al., 

2011]. One critical step remote sensing firms might take towards moving companies forward in 

this task is to reduce the time to value [LaValle et al., 2011], that is, help customers understand 

upfront the specific ways in which remote data can be used to inform their decision processes. 

To do so, remote sensing companies might “start with the question, not the data,” and outline the 

insights that need to be generated first [LaValle et al., 2011] in order for a potential customer to 

achieve value. While there is customer pull for data to drive decision-making, the burden of 

proof is on commercial remote sensing providers to demonstrate value for particular 

applications. Demonstrating tangible business value for potential new customers will require 

some level of investment in business know-how, creativity, and product development; however, 

this knowledge will provide the basis for developing new products and services likely to expand 

the current customer base.   

Potential customers interested in remote sensing data have a wide array of data sources to 

choose from – internet of things data, consumer sales information, traffic patterns, weather 

predictions, etc. Remote sensing data are unique in that they provide both complete spatial 

coverage (as opposed to discrete data points) as well as temporal patterns (as opposed to static-



	 80 

like map data). We believe that a focus on curated medium spatial and temporal resolution data 

(data that are collected daily with a spatial resolution between 1 and 5 meters) offers commercial 

remote sensing firms a unique space within the industry and with their potential consumer base. 

This “space” is shown in grey in Figure 4.2. As seen in the figure, emerging remote sensing 

companies are competing with two main sources – free U.S. government-provided Landsat data 

and DigitalGlobe’s low-cost imagery. Among the current data offerings of these competitors, 

there is a gap or niche with respect to the spatiotemporal nature of the data. Remote sensing 

companies can harness this spatiotemporal uniqueness of their product and provide information 

solutions that change in both space and time. Building intelligence offerings that capitalize on 

spatiotemporal resolution, instead of just spatial resolution, could enable new commercial 

remote sensing entrants to carve out a competitive position. In addition to filling the gap in 

current data offerings shown in grey in Figure 4.2, medium spatiotemporal resolution remote 

sensing data have few to no replacement products and measure different phenomena than 

internet of things sources.  
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Figure 4.2 The spatial and temporal resolution of existing remote sensing data sources and 

opportunities for new private sector entrants (shown in grey). 

	
Data analytics built on commercial remote sensing data may directly address client needs 

and allow companies to be more sustainable to market fluctuations. So called “big data 

analytics” are already proving to be crucial sources of advantage that help companies better 

measure and understand their business environment [McAfee and Brynjolfsson, 2012]. Recent 

studies have indicated that data-driven decision-making has made companies more productive, 

more profitable and increased their output by about 3-6% [McAfee and Brynjolfsson, 2012]. A 

2007 study that examined cost-revenue tradeoffs at the Indian Space Research Organization 

(ISRO) found that ISRO’s revenue would have increased from $40 million to $223.5 million if it 

had provided and directly charged for thematic information and mapping rather than just raw 

data access [Geospatial World, 2013; Sankar, 2007]. The study also notes that an additional 

$204 million in cost savings was achieved by data purchasers who opted to use and develop 
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remote sensing-derived maps instead of traditional surveying [Geospatial World, 2013; Sankar, 

2007].  

Within the commercial remote sensing industry, delivering analytics-based products 

could generate additional revenue and facilitate diversification of offerings. Analytics will draw 

upon expertise interpreting raw remote sensing data, a skill that very few would-be customers 

possess. Moreover, regardless of whether another remote sensing satellite is ever launched, 

analytics are already required to process and utilize the large volume of data that currently exists 

[Private Conversation, 2016]. And in the unlikely event of a market failure in the satellite side of 

the industry, remote sensing companies could still apply analytics to free data sources (i.e., 

Landsat).   

4.4 A case study of Walmart’s operations and supply chain management  

To understand how these strategies could be implemented and to quantify the potential 

value-added of remote sensing data in new sectors and assess future demand, we have performed 

a case study of Wal-Mart Stores, Inc. (“Walmart”). Walmart’s geographically extensive and 

well-oiled supply chain, its pioneering use of information technology, and its financial strength 

are all qualities that make Walmart an ideal company to study the applications and value-added 

of remote sensing data.  

In terms of its earnings, Walmart grossed over $14 billion USD in profit and generated 

more than $482 billion USD in the 2015 fiscal year, making it the world’s largest company by 

revenue [Fortune, 2016]. Studies on Walmart have shown they have achieved their competitive 

advantage through two main mechanisms – adopting new technologies and securing low prices 

from suppliers [Brea-Solis et al., 2012]. In pursuing these strategies, Walmart has come to be 

considered as an industry leader in supply chain operations and technology adoption [Traub, 
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2012; Wang et al., 2016]. It was one of the first companies to promote electronic data 

interchange (EDI), to require suppliers to participate in an innovation-driven data sharing 

platform, and to utilize cutting-edge operational methods to maintain a “superbly efficient” 

supply chain [University Alliance, 2016]. Moreover, Walmart has already enhanced many areas 

of their operations through the use of novel data analyses, shipping and inventory management 

techniques, for example, tracking temperature changes, weather events and consumer shopping 

preferences [Ozment, 2014; Helman, 2014]. Energy use and energy costs have also been 

relatively optimized through in-store instrumentation, use of alternative energy sources, efficient 

truck routing, and experimentation with demand reduction technologies [Helman, 2014]. 

Our study focuses on Walmart’s supply chain, its principal supply chain management 

strategies, and finally where additional efficiencies could be gained through the use of remote 

sensing data. Table 4.2 details the main components of Walmart’s supply chain – production and 

product delivery, distribution center storage, transit to Walmart stores and in-store stocking and 

sales – and the strategies Walmart employs to decrease costs and move goods more efficiently. 

From the upstream end of Walmart’s supply chain, products move from manufacturing facilities 

at various supplier locations around the world and are then transported to Walmart-owned 

distribution centers [Wulfraat, 2016]. The supplier manages this first step of the supply chain. 

Walmart does not directly control the movement of goods into its distribution centers but 

manages the location and operation of the distribution centers themselves [Greenspan, 2015]. 

From distribution centers, Walmart trucks take goods to the store where they are sold [Wulfraat, 

2016]. The flow of information within the supply chain moves in the opposite direction to the 

flow of goods. Information on each good from Walmart’s point-of-sale (POS) systems is shared 

with suppliers via “Retail Link,” an electronic data interchange (EDI) platform that is controlled 
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in Walmart’s headquarters in Bentonville, Arkansas [Wailgum, 2007]. Retail Link has been 

innovative since its inception, and has propelled Walmart to its place as a market leader in B2B 

communications and data processing [Wailgum, 2007]. Retail Link implementation also caused 

secondary benefits, such as encouraging Walmart’s suppliers to apply analytics to their product 

sales to justify product placement. Suppliers have “relatively small sets of products and 

significant vested interest in seeing those products’ performances optimized” [Waller and 

Boccasam, 2013]. The main supply-chain strategies that Walmart employs are shown in Table . 

Italicized entries will be discussed in Section 4.5 below. While each of these has led to 

operational improvements, operational challenges still persist. Principal among these are risk 

across all levels of the supply chain, costs associated with movement and storage of product, and 

uncertainty in demand predictions.  
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Table 4.2 Walmart’s supply chain key strategies and challenges 

Supply chain stages Key strategies and benefits Existing challenges 
Manufacturing, 
production and 
product delivery 

Bulk purchasing power 
• Constant competition for Walmart’s 

business and their drive for low 
prices requires continuous 
innovation and cost-cutting by the 
vendor 

• Lack of knowledge of 
supplier’s suppliers (upstream 
suppliers) and the risks they 
face  

• Natural disasters and other 
supply chain disruptors (strikes, 
etc.) 

Distribution centers Vendor-managed inventory (VMI) 
• Vendor is responsible for moving 

products from its production 
facilities to Walmart Distribution 
Centers 

• Pushes vendors to streamline their 
inventory management and delivery 
services 

• Transportation costs 
• Inventory size and turnover 
• Sales forecasting errors 

Transit to stores Cross-docking 
• Decreases inventory in distribution 

centers 
• Quickens time to consumer (and 

time to sale) of goods 

• Transportation costs 
• Store site selection 

In-store stocking RetailLink 
• Seamless data exchange between 

vendors and Walmart 
• Saves time any money by 

automating the order of new 
inventory, based on in-store sales 
trends 

• Vendors compete for shelf and store 
placement via data analyses on 
sales and store data 

• Stock shortages 
• Demand (sales forecasting) 

uncertainty 
• Back room stockpiles and 

slowdowns 
 

Sources: Wailgum, 2007; Soni, 2015; Waller and Boccasam, 2013; Wulfraat, 2016. 

4.5 Remote sensing applications for Walmart 

Of the potential areas for use of remote sensing data within Walmart’s supply chain and 

operational structure, four main options were identified and are shown in Table . The first row of 

Table  explains potential applications of various forms of geospatial information to optimize the 

supply chain downstream from the distribution centers. Geospatial data from the communities 

around Walmart stores – such as information on outdoor parties, sporting events, car washing, 

gardening, public park utilization, when and where people are shopping, etc. – could enhance 
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sales forecasts by developing a better understanding of the spatio-temporal patterns of the 

individuals and their shopping habits within a community. Walmart could use this information to 

predict purchase of specific goods or buying trends in time. A second application of remote 

sensing data that would aid in demand forecasting is relevant to the days following a natural or 

an environmental event or disaster, such as a large storm or tornado, localized flooding, or sewer 

backups. Knowledge of the type and quantity of different types of damage – to roofs, driveways, 

porches, patios, etc. – would aid Walmart in expediting and streamlining the movement of the 

necessary goods (such as tents, fans, home appliances, etc.) to the correct locations. In general, a 

more accurate understanding and prediction of demand has the ability to minimize stock 

shortages in stores and improve e-commerce through targeted online campaigns. Moving goods 

only when they are truly needed cuts down on transportation costs and last minute order filling 

from stock shortages. Similar types of location- and temporally-specific information near a 

potential new store would make the site-selection process more efficient through a more 

complete picture of local demand. The second row of Table  focuses on everything upstream of 

the distribution centers in Walmart’s supply chain. Appropriately processed remote sensing data 

could help suppliers anticipate potential disruptions, transit blockages, port delays and other 

relevant geospatial information (such as information on raw materials). A few examples of 

possible actions related to remote sensing information are: (a) rerouting shipments following 

information on strikes, the spatial extent and type of road closures/blockages or knowledge of 

outbound shipment delays due to port traffic; (b) quicker exchanging of upstream suppliers if a 

hurricane or natural disaster hits or if remote sensing information shows a production slowdown. 

This could help optimize sub-tier suppliers’ delivery of products on time and could cut costs 

overall. Lower production and transportation costs translate to lower costs for Walmart. 



	 87 

Importantly, Table 4.3 provides examples of remote sensing data that would be relevant for 

Walmart at multiple levels of its supply chain and also identifies data needs that could uniquely 

be met by the spatial and temporal resolution of remote sensing data. 

	
Table 4.3 Applications of remote sensing data to Walmart’s supply chain 
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Potential uses within supply chain Examples of relevant remote sensing data 
Sales or demand forecasting 
• Location-specific and temporally-

relevant information incorporated into 
existing sales forecasting models 

• Predictive disaster relief 
Store site selection 
• Business intelligence on and 

consumer activity at potential 
competitors 

• Secondary source checks on location-
specific information 

Consumer activity in region 
• Local events (soccer games, swim meets, park 

utilization, outdoor parties) 
• Prevalence and timing of consumer shopping 

at competitors’ stores 
Post disaster and storm relief information 
• Outdoor damage classification and location 

information (damage to roofs, gardens, patios, 
driveways) 

• Flood depths and extents  
• Location of sewer backups  

Supply chain streamlining, risk 
mitigation 
• Embedded as additional data 

available to vendors in RetailLink 
EDI platform 

Upstream suppliers 
• Monitoring of upstream suppliers by 

vendors and/or Walmart mitigates 
risk of shocks to supply chain 
originating before suppliers 

Potential supply chain disruptions 
• Monitoring of activity at production facilities 

of upstream suppliers 
• Strikes/road blockages (duration and spatial 

extent) 
• Port traffic 
• Natural disaster impacts 

   Sources: Smithson, 2015; University Alliance, 2016; Greenspan, 2015. 
 

4.6 Valuing geospatial data within Walmart’s sales forecasting capacity 

To better understand the impact that remote sensing data may have on Walmart’s supply 

chain, this section estimates the value of applying remote sensing data to Walmart’s sales 

forecasting capacity. As discussed above, sales forecasting improvements would have a number 

of cost-saving and revenue-generating impacts on Walmart’s supply chain. Instead of measuring 

the internal cost-saving dynamics directly, we will value the reduction in uncertainty in sales 

forecasting that results from the addition of proxy geospatial information.  
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Classic valuation methods for geospatial data determine socioeconomic impacts or direct 

economic benefits of data use by either (a) assessing one specific application of geospatial data 

at one static point in time or by (b) relying on surveys and interviews of stakeholders to quantify 

value [NASA Applied Sciences Program, 2012; Hertzfeld et al., 2003; Loomis et al., 2015; 

Forney et al., 2012; Bernknopf and Shapiro, 2015]. Value of information (VOI) methods, for 

example, estimate by how much geospatial information changes an individual’s beliefs about 

uncertainties and then quantify how this impacts decision-making [NASA Applied Sciences 

Program, 2012]. VOI approaches are typically applied to a single decision and can be subjective 

in nature. Other methods, such as revealed preferences valuation, employ more robust numerical 

approaches (i.e. hedonic pricing) to monetize the effect geospatial data has on user behavior 

[NASA Applied Sciences Program, 2012]. These methodologies typically require assumptions 

about the direct and indirect impacts of new information on a decision [NASA Applied Sciences 

Program, 2012]. Cost-benefit and cost-effectiveness analyses quantify the tradeoffs between the 

costs associated with use of geospatial data and their known or projected impacts [NASA Applied 

Sciences Program, 2012]. Of these, cost-effectiveness analysis is helpful in cases when the 

benefits of a particular dataset or geospatial-based intervention cannot be fully monetized [NASA 

Applied Sciences Program, 2012]. Multivariate regression has also been employed to value 

geospatial data [NASA Applied Sciences Program, 2012]. Overall, most studies seek to estimate 

the benefits or impacts with and without geospatial information and then compare the two in 

order to quantify the value-added of the use of the information [NASA Applied Sciences 

Program, 2012; Bernknopf and Shapiro, 2015]. 

This study builds on these methods by employing an alternate approach based on a 

statistical analysis of four years of Walmart store-level data. We apply multivariate regression, a 
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common approach to sales forecasting, and examine its predictive capacity with and without the 

addition of proxy geospatial data [Stergiou et al., 1997]. Our empirical approach quantifies the 

impact of proxy geospatial data on uncertainty in sales forecasts using real store-level data. 

Generally, the idea is to compare two models – one that contains proxy geospatial information 

and a second baseline model without this data [NASA Applied Sciences Program, 2012]. In this 

study, we follow this approach and use four years of weekly store-level sales data from 45 stores 

randomly distributed across the United States that Walmart made publicly available on 

Kaggle.com [Kaggle, 2014]. This data does not contain geolocation information but includes 

predictor variables of interest for each store for each week of sales. These are shown in Table 

4.4.  

Table 4.4 Time series of independent variables, weekly (2/2010-7/2013) 
Independent variables Symbol 
In-store indicators  
   Holidays HOL 
   Type of store (superstore, etc.) STOR 
   Size of store (ft2) SQFT 
   Mark downs offered ($) MKDN 
   Season (winter, summer, etc.) SEAS 
Economic variables  
   Unemployment rate (%) UNP 
   Fuel price ($/gallon) FPR 
   Consumer Price Index, CPI CPI 
Environmental variables  
   Outside temperature (°F) TEMP 

 

A linear multivariate regression model of these variables takes the following form: 

!!" = ! + !!!!" + !!!!!" + !!!!!" …+ !!!!!" + !!"                     (4.1) 

!"# ! = 1: 45 !"#$%! !"# ! = 1:! !""#$       
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Where Y, is the value of the dependent variable – store sales – at time t and for store i, x1 

to x8 are the independent variables and e is an error term that is assumed to be sampled 

independently from a normal distribution [Stergiou et al., 1997]. 

Our modeling approach is based on the idea that incorporating key environmental and 

geospatial variables into sales forecasting models would improve Walmart’s ability to predict its 

sales. Table 4.3 outlined a host of possible examples of this. In this study, we utilize available 

data on temperature provided by Walmart in the Kaggle dataset as a proxy for remote sensing 

data. This is appropriate for two main reasons – it has the same spatial and temporal qualities of 

remote sensing data for Walmart and, while temperature data is widely available from many 

information sources, it is something that can be (and often is) remotely sensed and could be 

provided by remote sensing companies. The spatial and temporal nature of the temperature data 

also matches with our second strategic recommendation in the first part of this study – that 

remote sensing companies should focus on the provision of medium spatial and temporal 

resolution data. Temperature variations day to day and within the region surrounding a store may 

and do impact purchasing behavior of Walmart customers. 

To quantify the specific impact of temperature on sales forecasting, we created three 

nested linear, multivariate regression models that are conceptually defined by Equations 4.2-4.4 

and follow the form of Equation 4.1. The first of these models (Model 1) includes all 

independent variables in Table 4.4, with the exception of temperature. Model 1 serves as our 

base model (Equation 4.2). We then developed two additional models to study different 

approaches in quantifying temperature in the context of sales. Model 2 (Equation 4.3) treats 

temperature as a continuous variable that is defined in units of degrees (°F). This is intended to 

quantify the impact that including temperature change has on sales forecasting accuracy. Model 
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3 (Equation 4.4), incorporates temperature in two binary variables that indicate if the temperature 

that day was below freezing (less than 32°F) or particularly warm (greater than 90°F). The 

assumption in this model is that extreme temperature may have a larger effect on sales volumes 

that intermediate temperatures. It also allows us to examine whether highly tailored (curated) 

information is better for business decision making.  

 

!"#$!!" = !(!"#$%$"#$"& !"#$"%&'(!")                        (4.2) 

!"#$!!" = !(!"#$%$"#$"& !"#$"%&'(!" ,!"#$"%&'(%"!")                    (4.3) 

!"#$!!" = !(!"#$!"#$"#% !"#$"%&'(!" ,!"#$"%&'(%!!"#!" ,!"#$"%&'(%!!"#$!")     (4.4) 

!"# ! = 1: 45 !"#$%! !"# ! = 1:! !""#$   

 

All three multivariate regression models were fit in R using ordinary least squares and are 

presented below in Table  [R Core Team, 2016]. We employed a Likelihood Ratio Test to 

compare the relative goodness of fit between Model 1 and Model 2 and between Model 1 and 

Model 3. More information on the concept of likelihood and likelihood ratio tests can be found 

in Cox and Hinkley [1974]. The likelihood ratio test results, via the Chi-squared test statistic, for 

each model comparison are presented below in column five of Table 4.5. In both cases, the 

models with temperature were significantly more predictive than the base model. We also tested 

the relative contribution of temperature to the explanatory power of the sales forecasting models 

using the relaimpo package in R [Grömping, 2006]. This package employs the Lindeman, 

Merenda and Gold [1980)] approach to assessing the relative importance of each independent 

variable [Grömping, 2006]. Column four of Table 4.5 shows that temperature explains 0.828% 

of weekly store sales, while a temperature less than 32°F would explain 0.751% of weekly store 
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sales (the impact of a temperature greater than 90°F was not significant). Both of these variables 

are significant within each respective regression model according to a t-test (Table 4.5 column 

3).  

Table 4.5 Statistical test results for multivariate regression of Models 1-3 

Model adj. R2 !!"#$ [Pr(>|t|)] Percent variance 
explained, TEMP 

Likelihood ratio test 
Pr(>Chi) vs. base 

Mean absolute 
error 

1. Base 0.5736 n/a n/a n/a $276,240.70 
2. Base + 
TEMP 

0.5879 $6,876 
[7.17e-12***] 

0.828% 4.708e-12*** $269,842.80 

3. Base + 
TEMP_C + 
TEMP_H 

0.5793 -$160,338¹ 
[3.1e-05***] 

0.751% 8.34e-05*** $274,553.00 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; ¹Only the variable TEMP_C was significant 
	
	

Using the empirical results in Table 4.5, we can draw inferences about the impact that 

geospatial information could have on sales forecasting. Incorporating our proxy geospatial 

datum, temperature, provided a solid prediction of about $6,400 more in sales per week per store. 

Walmart operates over 4,600 stores across the United States [Walmart, 2016]. If temperature 

information had a similar impact on each store, Walmart could predict upwards of $500,000,000 

more in sales each year. This reduction in uncertainty of sales estimates could translate into cost 

savings and revenue generation, as Walmart would more efficiently store and move its goods to 

keep them in stock to meet demand. In addition, the results from Model 3 show us that value 

may be gained by further processing geospatial data based upon knowledge of consumer 

behavior. Retailers know that cold weather affects sales volume. Bringing in knowledge of a 

client’s business along with advanced analytical methods could better curate information for the 

business intelligence needs of a potential client.  
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4.7 Conclusions 

The market for satellite-based remote sensing data and services has undergone 

considerable change over the past decade. Although the U.S. government has traditionally driven 

this sector, recent changes within the industry and growth in the availability of COTS technology 

have made cheaper and smaller satellites possible, and led to rapid growth in the commercial 

remote sensing industry. However, despite investor speculation and growth in revenue, the use of 

today’s less-expensive remote sensing imagery has not yet spread into new sectors.  To 

understand these issues better, we examined the health of the commercial remote sensing market, 

finding that a key reason for the lag in the growth and diversification of the consumer base for 

remote sensing data is the disconnect between the business intelligence needs of potential clients 

and the data services that remote sensing companies are providing. 

Given our belief that a healthy market should have diverse revenue streams and be robust 

to internal and external market fluctuations, we recommend three strategies for remote sensing 

firms to consider in order to create a healthier B2B market for their products. First, it is critical 

for remote sensing suppliers to develop a deeper understanding of the business needs of new 

customers outside traditional insurance, agriculture, resources, and government communities; 

this understanding can help identify key entry points within potential clients’ decision processes 

where remote sensing data could add value. Second, our research suggests that products based on 

medium spatial and temporal resolution data and data products offer opportunities to address 

currently unmet business needs, and provide differentiation for commercial suppliers relative to 

free remote sensing data and existing market competitors. Third, we recommend a focus on data 

analytics to support business intelligence; companies have an urgent need for better data 

refinement capabilities even at today’s level of commercial remote sensing capacity. 
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We also showed that remote sensing companies could generate a value-added proposition 

for their products in new sectors. We performed a case study of Walmart’s supply chain, which 

included a statistical analysis of sales forecasting. Because Walmart has a significant breadth of 

product offerings and is considered a global corporate leader, the lessons learned from case study 

of Walmart are applicable to many other companies and sectors. We found that sales forecast 

uncertainty could be significantly reduced from using a single proxy remote sensing data 

product, and we speculated that it could be reduced even more through the provision of relevant 

business intelligence derived from remote sensing data.  

Overall, a large potential for remote sensing industry growth exists in new market 

verticals. To date, penetration into new verticals has been limited by both lack of capability 

within potential clients to utilize remote sensing data, and the inability of remote sensing 

companies to supply business intelligence. Our analysis shows a path for new remote sensing 

entrants to create value for these clients and monetize their offerings.  
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5. Conclusions 

	
This dissertation is motivated by the principle that data availability and scientific analysis 

are fundamental for effective natural resources management. The research in this thesis presents 

approaches that can enhance water management institutions’ ability to measure groundwater 

resources and to manage groundwater extractions. This is achieved through the development of a 

downscaling model and a hydrologically-based framework, both of which are applied to 

California’s Central Valley. This research draws from a diverse scientific body of work in 

numerical modeling, remote sensing science, hydrology and public policy. Further, groundwater 

management in California can be seen as a case study of a region that requires management 

under resource scarcity. The lessons and takeaways presented can be applied worldwide to 

similar natural resource management issues subject to scarcity and changing climate dynamics. 

In Chapter 2, research was presented that developed a robust, artificial neural network 

model that downscales GRACE gridded land datasets (~1 degree) to higher-resolution (~4km) 

groundwater storage change estimates. The model utilized GRACE estimates of variations in 

total water storage and a series of widely available hydrologic variables (PRISM precipitation 

and temperature data, DEM-derived slope and NRCS soil type) to derive spatial patterns in 

groundwater behavior. The model was able to effectively simulate groundwater storage change 

over the central and southern portions of the Central Valley with Nash-Sutcliffe model efficiency 

coefficient (NSE) values ranging from 0.0391 to 0.7511. This study also showed that the model 

required richer estimations of groundwater data (kriged datasets) for improved calibration and 

validation performance. The output of the downscaling model – high-resolution maps of 

groundwater storage change – illustrates the high heterogeneity in groundwater behavior and the 
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tendency for more dramatic declines in the groundwater table to occur in the southern and 

western portions of the San Joaquin Valley and Tulare Groundwater Basins.  

Overall, the extension of GRACE data by means of numerical downscaling represents a 

unique contribution to the scientific remote sensing community and advances the state of current 

remote sensing-based hydrologic science. This approach departs from data assimilation methods 

in that it is model-independent and thus offers more flexibility in data scarce environments and 

with changing input data products (i.e. new data releases or alternate remote sensing products). 

This has implications for worldwide applicability in developing regions, where models and dense 

monitoring networks may not be available. This neural network model also constitutes an 

alternative, numerical approach to improving the resolution of remote sensing products and 

offers a hybrid solution between low-resolution GRACE data and sparse groundwater 

monitoring networks. 

In Chapter 3, a three-step framework is introduced that quantifies sustainable yield. First, 

we present a modified Hill’s method that is more appropriate for California’s highly variable 

hydrology. Basin managers can use this method to derive sustainable yield values – where 

sustainability can take the classic definition of zero annual average groundwater level change or 

represent any other groundwater level change (depletion) that basin managers consider tolerable. 

Second, we present an approach to integrating groundwater quality, land subsidence and surface 

water undesirable results into the quantification of sustainable yield. This method is flexible to 

varying types of input data and can incorporate complex relationships between the undesirable 

results and groundwater levels. Finally, the long-term implications of three different definitions 

for sustainable yield are assessed through an empirical groundwater balance that is projected to 

2040. The results of these three scenarios show that there are tradeoffs to be had between 
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groundwater availability, future climate uncertainty and socio-economic preferences that must be 

carefully weighed. This work contributes a framework that groundwater agencies can use to 

assess the long-term impacts of sustainable yield-based management scenarios that take into 

account both future groundwater availability and potential undesirable effects.  

Chapter 4 examined the health of the commercial remote sensing market, finding that a 

key reason for the lag in the growth and diversification of the consumer base for remote sensing 

data is the disconnect between the business intelligence needs of potential clients and the data 

services that remote sensing companies are providing. The future of commercial remote sensing 

has important implications for natural resource management, among many other sectors, and its 

long-term success as a private industry will depend on its ability to diversify. Overall, a large 

potential for remote sensing industry growth exists in new market verticals. To date, penetration 

into new verticals has been limited by both lack of capability of potential clients to utilize remote 

sensing data, and the inability of remote sensing companies to supply business intelligence. Our 

analysis shows a path for new remote sensing entrants to create value for these clients and 

monetize their offerings. 

5.1 Contributions 

The following summarizes the main contributions from each chapter: 

Chapter 2: 

• Advances the state of current remote sensing-based hydrologic science by numerically 

downscaling GRACE data products. 

• Develops a robust, artificial neural network model that downscales GRACE gridded land 

datasets (~1 degree) to higher-resolution (~4km) groundwater storage change estimates. 
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• Produces a series of annual high-resolution groundwater maps that offer a hybrid solution 

between low-resolution GRACE data and sparse groundwater monitoring over the 

GRACE time period (2002-present). 

Chapter 3: 

• Enhances the scientific integrity of groundwater management in California. 

• Develops a methodology to calculate sustainable yield under SGMA that is flexible to 

varying input data, threshold values for undesirable results and tolerable levels of 

groundwater depletion. 

• Assesses the sustainability of sustainable yield approaches to groundwater management. 

• Offers a timely and easily implementable methodology for GSAs to calculate sustainable 

yield, manage extraction volumes and consider the tradeoffs of various management 

strategies. 

Chapter 4: 

• Develops a novel approach to quantify the value of geospatial data for decision makers. 

• Provides an unbiased assessment of a rapidly developing branch of remote sensing – 

privately-owned and funded small satellites.  

• Recommends three principle strategies for private satellite firms to grow their business, 

these strategies are also applicable to and highly useful for larger organizations like 

NASA and firms in related industries that provide geospatial data offerings. 

5.2 Future Work 

The following areas for future work are suggested extensions of the current research in 

this dissertation. 
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The downscaling model presented in Chapter 2 could be adjusted to include InSAR and 

GPS data as inputs, under the hypothesis that these geodetic measurements will improve the 

horizontal resolution and vertical accuracy of the model. InSAR and GPS data are already being 

used to enhance the horizontal resolution and vertical accuracy of GRACE data [Sasgen et al., 

2013; Matthews, 2014]. Researchers have also shown that GPS observations of land surface 

deformation can reveal patterns of snow load variations over time [Ouellette et al., 2013]. Argus 

et al. [2014] utilized inverted GPS observations of vertical motion to estimate surface water 

thickness at a quarter of the resolution of GRACE. In a similar way, inverted GPS data could be 

applied as an input to the neural network, offering finer resolution estimates of water storage 

variations. InSAR data has been used to look at patterns of subsidence and land deformation that 

have resulted from intensive groundwater withdrawals in California’s San Joaquin Valley [Sneed 

et al., 2013]. Specifically, this type of data would provide information on groundwater response 

to pumping and help to better refine the downscaling process.  

A second extension of the downscaling approach could be to combine it with a 

physically-based model. The results of Chapter 2 showed that an empirically-based downscaling 

approach was improved through the addition of kriging, which provided a spatially continuous 

estimate of groundwater behavior. Instead of kriging, the downscaling model could be calibrated 

to the output of a high-resolution physical model, such as the Central Valley Hydrologic Model 

(CVHM) [Faunt, 2009]. This would also allow investigation of the model’s ability to forecast in 

time and predict future groundwater storage changes over the model’s spatial domain [French et 

al., 1992; Luk et al., 2000; Ramírez et al., 2005; Sun, 2013]. It would also extend the maps 

produced to the entire Central Valley, rather than just the San Joaquin.  
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A third extension of the downscaling model would link the research in Chapters 2 and 3. 

Understanding how and where groundwater levels are changing in time is just one piece of the 

puzzle when it comes to better managing groundwater resources in a region. A second key 

component is insight into the causes behind these changes. Both climate change (via 

precipitation and potential evapotranspiration) and water management (via extraction, irrigation 

and land use) alter terrestrial water storage. In light of the newly mandated Groundwater 

Sustainability Plans (GSPs) for California, knowledge of the spatial distribution of these causal 

factors constitutes an important mechanism by which management plans can be adapted to the 

specific drivers within a groundwater basin. To achieve this, the high-resolution maps generated 

in Chapter 2 could be used to parse out the spatial distribution of the climatic and human impacts 

on groundwater change (conceptually following the methodology from Ferguson and Maxwell, 

2012). This would produce a map showing the distribution in space and the magnitude of the 

impact of these factors. Using the framework presented in Chapter 3 and knowledge of the key 

drivers of groundwater depletion for a specific GSA, more appropriate management 

interventions (such as artificial recharge, pumping restrictions, etc.) could be determined.   

The framework presented in Chapter 3 should be assessed in comparison to other 

sustainable yield approaches. Chapter 3 recommends a modification of Hill’s method, but a 

variety of other approaches exist [Loáiciga, 2016]. These could each be incorporated into the 

framework to calculate a baseline sustainable yield value and used to assess long-term 

groundwater trends. In addition to incorporating these supplementary sustainable yield 

calculations, as more data and more models become available for groundwater management in 

the region, the robustness of the framework over the long-term should also be investigated.  



	 106 

Chapter 3 is an important contribution to the literature on sustainable yield for California 

and also serves as a template for newly formed GSAs to quantify groundwater extraction 

volumes (i.e. sustainable yield) year to year. Currently, neither California’s State Water 

Resources Control Board nor Department of Water Resources (the two oversight bodies for 

SGMA) have released recommendations for sustainable yield as specific or comprehensive as 

those in Chapter 3. This utility of this chapter for widespread use requires clear communication 

and outreach to both of these agencies as well as to GSAs. With this outreach, the framework 

could be implemented or modified to meet the needs of individuals GSAs or be used a basis for a 

DWR Best Management Practice for sustainable yield calculation. 

The research shown in Chapter 4 could be extended in two main ways. The first would be 

to size the current market for publicly provided data (NASA, NOAA) and assess the primary 

users of existing data products. A similar three-part strategy to what was proposed in Chapter 4 

may be applicable to these government organizations, but a deeper dive into the main customers 

of publicly provided remote sensing data would offer more insight. The second main extension 

of Chapter 4 is related to the geospatial valuation component of the paper. Here there is a 

growing, but small, body of literature [Forney et al., 2012; NASA Applied Sciences Program, 

2012; Loomis et al., 2015]. While Chapter 4 was not able to directly use satellite-provided data 

for the valuation model, an extension of this work could. This can be achieved through a case 

study of a company or industry with more granularity of sales data. 

Overall, there is a clear and growing trend in multi-disciplinary approaches, based on 

publicly available data (either remotely sensed or in situ) and scientific models, that enhance and 

support decision making. Limitations in the utility of this research for end users and management 

agencies still exist. These limitations lay in the ability of decision makers to properly distill the 
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breadth and complexity of scientific information to something that is convincing and actionable. 

Instead of solely providing model output, data products or academic research, scientists and 

researchers have the responsibility to continue engaging in work that is able to provide the form 

of information that is suitable for decision makers without reducing the scientific integrity of the 

solution or data offered. This requires outreach to decision makers, integrated, multi-disciplinary 

approaches, timely research and strong communication. Many researchers have been successful 

at this. The body of work presented in this dissertation could be further enhanced and more 

widely applied by following these lessons as well as the examples set by scientists who continue 

to make lasting impacts in their field. 
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6. Appendix A – Basics of Neural Networks 

Techniques for spatial data analysis are complex and highly vulnerable to poor data 

quality and analysis. In addition, most of these techniques were developed in the 1960s and 

1970s when computational power was significantly limited [Turban et al., 2008]. Artificial 

neural networks (ANN), in contrast, offer the ability to efficiently and comprehensively handle 

large, diverse and noisy spatial datasets by drawing on the rapidly growing fields of computer 

science and systems analysis. ANNs were originally modeled after the neurons in the human 

brain and are now applied to a multitude of fields, showing strength in pattern classification, 

clustering and categorization, function approximation, forecasting and optimization. Their 

architecture offers four main advantages - machine learning, computational speed, high level of 

flexibility (not based on rigid assumptions), and robustness (in the face of noisy input data) 

[Turban et al., 2008]. In essence, ANNs function by deriving non-linear, empirical relationships 

between a set of input and output variables. ANNs can then utilize these relationships to generate 

new estimates of the output variable from an alternate set of input data. More specifically, ANNs 

are a distributed information structure that consists of a network of weighted connections 

between input and output data. These connections are governed by numerical equations (termed 

processing elements) that are fit to best simulate the output data using the inputs provided. The 

number of input and output parameters is not restricted. The design of a neural network is based 

up the specific properties of these processing elements, the pattern of connections between them, 

and the algorithm used to determine the weights between connected processing elements. A 

variety of designs, or structures, of ANNs have been developed for different numerical purposes. 

The study presented in Chapter 2 utilized a two-layer feedforward neural network 

structure, which has proven to be successful at solving multi-dimensional mapping problems 
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[Turban et al., 2008]. Feedforward neural networks consist of a series processing elements (also 

called neurons) and the connections between them. These are arranged into a series of layers – an 

input layer, an output layer and a number of hidden layers in between. The number of processing 

elements in the input and output layer is dependent upon the number of variables in the input and 

output datasets, while the number of processing elements in the hidden layers can be adjusted 

depending on the complexity of the problem. This, along with the number of hidden layers, is 

problem-specific and is typically selected on a trial and error basis [Zhu, 2000]. Figure A1 shows 

the general structure of a two-layer feedforward network, as well as the various components of 

the processing elements and connections. 

 

 
 
Inputs to a neural network generally correspond to a set of attributes, while outputs 

indicate the solutions of the particular problem being addressed. In the case of an environmental 

Figure A1 General structure of a two-layer feedforward neural network, with n input 
nodes, one layer of six hidden neurons and one layer of two output neurons. 
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problem, the inputs could come in the form of environmental variables such as precipitation, 

slope or canopy coverage, with the output or variable of interest being soil moisture, for 

example. Inputs and outputs are connected by a series of processing elements. The overall 

behavior of the neural network model is characterized by the weights (wi,j), or connection 

parameters, that represent the strength of the connection between two processing elements. Each 

processing element is composed of a summation function and a transfer function. The summation 

function is represented mathematically as: 

 
!! =  !!!!"!

!!!               (A1) 
 

 

Where yj represents the output from neuron j; xi is the input to neuron j and wij is the 

weight between them. The transfer function allows the neural network to activate or deactivate 

neurons based on the value of the summation function. Transfer functions are typically sigmoidal 

functions in which the outputs range from 0 to 1. In this way, the neural network numerically 

represents the activation level of each neuron without output values growing increasingly large 

[Turban et al. 2008]. A typical sigmoidal transfer function is: 

 
!! =  1/(1 + !!!!)               (A2) 
 
 
Where yT is the transformed output and yi is the output from neuron i. 
	

Training, or network learning, is the process by which the neuron’s interconnection 

weights are determined. The learning process involves the following steps: 1) Selection of initial 

weight vector; 2) Computation of outputs; 3) Comparison of generated outputs to training targets 

(error); 4) Adjustment of weights and repeat [Turban et al., 2008]. The mechanism by which the 
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network learns and systematically updates new weights is dependent upon its learning algorithm. 

This study employed a backpropagation algorithm for feedforward networks. Backpropagation, 

in general, is a method of non-linear optimization that seeks to minimize the sum of the error, i.e. 

the difference between the training data and the output of the network, by finding an optimal set 

of weights. Weights are adjusted using gradient descent, so that as the network learns, the sum of 

the error gradually decreases to a minimum value.  
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