
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Distributed, scalable routing based on link-state vectors

Permalink
https://escholarship.org/uc/item/8f17n5q1

Authors
Behrens, J.
Garcia-Luna-Aceves, J.J.

Publication Date
1994-10-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8f17n5q1
https://escholarship.org
http://www.cdlib.org/

Distributed, Scalable RoutingBased on Link-State VectorsJochen Behrens J.J. Garcia-Luna-AcevesUniversity of CaliforniaSanta Cruz, California 95064jochen, jj@cse.ucsc.eduAbstractA new family of routing algorithms for the distributedmaintenance of routing information in large networks andinternets is introduced. This family is called link vectoralgorithms (LVA), and is based on the selective di�usionof link-state information based on the distributed compu-tation of preferred paths, rather than on the ooding ofcomplete link-state information to all routers. Accordingto LVA, each router maintains a subset of the topology thatcorresponds to the links used by its neighbor routers in theirpreferred paths to known destinations. Based on that sub-set of topology information, the router derives its own pre-ferred paths and communicates the corresponding link-stateinformation to its neighbors. An update message contains avector of updates; each such update speci�es a link and itsparameters. LVAs can be used for di�erent types of rout-ing. The correctness of LVA is veri�ed for arbitrary types ofrouting when correct and deterministic algorithms are usedto select preferred paths at each router. LVA is shown tohave smaller complexity than link-state and distance-vectoralgorithms, and to have better average performance thanthe ideal topology-broadcast algorithm and the distributedBellman-Ford algorithm.1. IntroductionAn internetwork consists of a collection of interconnecteddomains, where each domain is a collection of such resourcesas networks, routers, and hosts, under the control of a sin-gle administration. All the work in inter-domain and intra-domain routing has proceeded in two main directions: pro-tocols based on distance-vector algorithms (DVA), which wecall distance-vector protocols, characterized by BGP [26],IDRP [22], RIP [18], Cisco's IGRP [4], and EIGRP [1]; andprotocols based on link-state algorithms (LSA), which wecall link-state protocols, characterized by the inter-domainpolicy routing (IDPR) architecture [33], ISO IS-IS [21] andOSPF [28].The key advantage of distance-vector protocols is thatthey scale well for a given combination of services taken intoThis work was supported in part by the O�ce of Naval Research(ONR) under Contract No. N-00014-92-J-1807 and by the AdvancedResearch Projects Agency (ARPA) under contract F19628-93-C-0175.

account in a cost metric. Because route computation is donedistributedly, distance-vector protocols are ideal to supportthe aggregation of destinations to reduce communication,processing, or storage overhead. However, although DVAshave been proposed that eliminate the looping problems ofold distance-vector protocols like EGP and RIP [13], an in-herent limitation of using distance vectors is that routers ex-change information regarding path characteristics, not linkor node characteristics. Because of this, the storage andcommunication requirements of any distance-vector protocol(e.g., BGP and IDRP) grows proportionally to the number ofcombinations of service types or policies [23]; therefore, sup-porting many types of service together with di�erent typesof policies using any distance-vector protocol is inherentlycomplex.Because LSAs replicate topology information at routers,they avoid the long-term looping problems of old distance-vector protocols. More importantly, an LSA exchanges in-formation regarding link characteristics, which means thatthe complexity of providing multiple types of services andpolicies grows linearly with the service types and policies,not their combinations. However, a key disadvantage oftoday's link-state protocols is that they require routers tobroadcast complete topology information by ooding. Aspointed out by Estrin and others [7], [8], this approach doesnot scale well.The main scaling problems of today's link-state protocolsare three: ooding consumes excessive communication re-sources, requiring each router to compute routes using thesame topology database at every router consumes excessiveprocessing resources (e.g., see the results shown in [37]), andcommunicating complete topology information is unneces-sary if a subset of links in the network is not used in theroutes favored by routers. Today's link-state protocols (e.g.,OSPF) cope with the scaling problems inherent in any LSAby organizing the network or internet into areas connectedby a backbone; however, this imposes additional networkcon�guration problems and, as the results in [16] indicate, atleast one DVA (DUAL [13]) using areas outperforms OSPFeven in relatively small networks.In summary, the routing algorithms used in today's rout-ing protocols have inherent scaling problems. DVAs need tocommunicate routing information among routers on a perpath basis, which leads to a combinatorial explosion of ser-vice types and policies. LSAs require the same topologyinformation to be replicated at all routers, which consumesexcessive communication and processing resources in verylarge internets, or leads to additional network managementproblems. Surprisingly, although the inherent limitations ofLSAs and DVAs are well known, all of the existing rout-

ing protocols or proposals for routing in large internets arebased on these two types of algorithms [6], [8], [9].This paper presents a new method for distributed, scal-able routing in computer networks called link vector algo-rithms, or LVA. The basic idea of LVA consists of asking eachrouter to report to its neighbors the characteristics of each ofthe links it uses to reach a destination through one or morepreferred paths, and to report to its neighbors which links ithas erased from its preferred paths. Using this information,each router constructs a source graph consisting of all thelinks it uses in the preferred paths to each destination. LVAensures that the link-state information maintained at eachrouter corresponds to the link constituency of the preferredpaths used by routers in the network or internet. Each routerruns a local algorithm or multiple algorithms on its topol-ogy table to compute its source graph with the preferredpaths to each destination. Such algorithm can be any typeof algorithm (e.g., shortest path, maximum-capacity path,policy path) and the only requirements for correct operationare for all routers to use the same algorithm to compute thesame type of preferred paths, and that routers report all thelinks used in all preferred paths obtained.Because LVAs propagate link-state information by di�us-ing link states selectively based on the distributed compu-tation of preferred paths, LVAs reduce the communicationoverhead incurred in traditional LSAs, which rely on ood-ing of link states. Because LVAs exchange routing informa-tion that is related to link (and even node) characteristics,rather than path characteristics, this approach reduces thecombinatorial explosion incurred with any type of DVA forrouting under multiple constraints [23]. Aggregation of in-formation can take place in an LVA by adapting the area-based routing techniques proposed for DVAs in the past [12],[25], [27], [35]. In contrast, aggregation of information intraditional LSAs is di�cult, because routers need to de�nedi�erent levels of topologies in order to use topology broad-cast methods.The following sections introduce the network model as-sumed throughout the rest of the paper; describe LVA; showthat LVA converges to correct paths a �nite time after theoccurrence of an arbitrary sequence of link-cost or topo-logical changes under the assumption that all routers runthe same local algorithm(s) for the computation of pre-ferred paths; compare its performance with that of LSAsand DVAs in terms of its complexity under the assumptionthat a shortest-path routing algorithm is used at every routerto compute preferred paths; and compare the average per-formance of LVA against the performance of the ideal LSAand the Distributed Bellman Ford (DBF) algorithm.2. Network ModelTo describe LVA, an internet is modeled as an undirectedconnected graph G = (V; E), where V is the set of nodesand E the set of edges. Routers are the nodes of the graphand networks or direct links between routers are the edges ofthe graph. Each point-to-point link in such a graph has twolengths or costs associated with it|one for each direction.Any point-to-point link of the graph exists in both directionsat any one time. For a multipoint link, the cost of the linkis assumed to be the same in all directions, and exists in alldirections at any one time. An underlying protocol assuresthat

� Every node knows who its neighbors are, which impliesthat a node detects within a �nite time the existenceof a new neighbor or the loss of connectivity with aneighbor.� All messages transmitted over an operational link arereceived correctly and in the proper sequence within a�nite time.� All messages, changes in the cost of a link, link failures,and new-neighbor noti�cations are processed one at atime within a �nite time and in the order in which theyare detected.Each router has a unique identi�er, and link costs canvary in time but are always positive. Furthermore, routersare assumed to operate correctly, and information is assumedto be stored without errors. The same model can be appliedto a computer network, and is the model used in the DVAsand LSAs reported in the past.3. Basic MethodThe basic idea of LVA's design consists of asking eachrouter to report to its neighbors the characteristics of everylink it uses to reach a destination through a preferred path.The set of links used by a router in its preferred paths iscalled the source graph of the router. The topology known toa router consists of its adjacent links and the source graphsreported by its neighbors. The router uses this topology in-formation to generate its own source graph using one or morelocal algorithms, which we call path selection algorithms. Inthe case of shortest-path routing, Dijkstra's algorithm or theBellman-Ford algorithm could be used as a path-selection al-gorithm [3]. A router derives a routing table specifying thesuccessor, successors, or paths to each destination by run-ning a local algorithm on its source graph; of course, this cansimply be a sub-algorithm of the path-selection algorithmsused.In addition to the parameters of a link, the record of eachlink entry in the topology table must contain the set of neigh-bors that reported the link. This can be implemented bymeans of a bit vector. Since a router's neighbors can besorted, a single bit per neighbor su�ces to indicate whetherit is member of the set for a given link or not. The struc-ture of the vector is modi�ed when neighbors are added ordeleted.The basic update unit in LVA is a link-state update re-porting the characteristics of a link; an update message con-tains one or more updates. For a link between router x androuter or destination y, router x is called the head node ofthe link in the x to y direction. For a multipoint link, asingle head node is de�ned. The head node of a link is theonly router that can report changes in the parameters ofthat link.The main complexity in designing LVA stems from thefact that routers with di�erent topology databases can gen-erate long-term or even permanent routing loops if the in-formation in those databases is inconsistent on a long-termor permanent basis.Sending updates specifying only those links that a routercurrently uses in its preferred paths is not su�cient in LVA,because a given router sends incremental updates and maystop forwarding state information regarding one or morelinks that are not changing the values of their parameters.When this happens, it is not possible to ascertain if the

router is still using those links in preferred paths if routers'updates specify only those links currently used in preferredpaths. Simply aging link-state information would lead tounnecessary additional control tra�c and routing loops, spe-cially in very large internets. Therefore, to eliminate long-term or permanent routing loops, routers must not only tellits neighbor routers which links they use in their preferredpaths, but also which links they no longer use. Accordingly,routers using LVA send update messages with two types ofupdate entries: add updates and delete updates. An add up-date reports a link that should be added to the source graphof the sending router or whose information should be up-dated; a delete update speci�es a link that should be deletedfrom the source graph of the sending router.A router reports its source graph to its neighbors incre-mentally; therefore, a typical update message in LVA con-tains only a few add and delete updates. Of course, when arouter establishes a new link, it has to send its entire sourcegraph to the new neighbor; this is equivalent to the LSAcase in which a router sends its entire topology table to anew neighbor, or the DVA case in which a router sends itsentire routing table to a newly found neighbor.An update speci�es all the parameters of the link (just likein an LSA) and a router sends an update in a message onlywhen a link is modi�ed, added, or deleted in its source graph,not when the same unmodi�ed link is used for a modi�edset of preferred paths. Therefore, the number of updatemessages and the size of update messages do not necessarilyincrease with the number of paths that a router uses.Because of delays in the routers and links of the inter-net, the add or delete updates sent by a router may prop-agate at di�erent speeds along di�erent paths. Therefore,a given router may receive an update from a neighbor withstale link-state information. The consistency of link-stateinformation can be controlled on a link-by-link basis takingadvantage of the fact that the only router that can changethe information about a given link is its head node. Morespeci�cally, a distributed termination-detection mechanismis necessary for a router to ascertain when a given update isvalid. Termination-detection mechanisms based on sequencenumbers similar to those used in a number of LSAs and theassociated protocols [3], [28], [29] or di�using computations[14] can be used. Section 5. presents an instance of an LVAusing sequence numbers.The importance of termination-detection mechanisms forLVA is illustrated in Figure 1. In the �gure, link (x, y) isassumed to change cost from 10 to 1 and then fail. Becauseof latencies in the network, router a receives updates from bregarding link (x, y) before it receives similar update fromc. Because of that delay, unless there is a way for routersto determine when an update is stale, a link value of 10 andin�nity may circulate among routers a, b, and c forever. Thesame problem occurs in any LSA, of course [3].4. Di�erences With Previous MethodsBefore proceeding with a detailed description of a speci�cLVA, it is worth showing how LVA's basic design di�ers fromprior algorithms based on link-state information. There arethree types of prior algorithms that have been or can be usedto compute preferred paths based on link-state information:� Link-state algorithms (LSA): This type of algorithmsare also called topology broadcast algorithms. In an

c

a b

x y

zFig. 1. Possibility of nontermination in LVALSA, information about the state of each link in thenetwork is sent to every router by means of a reliablebroadcast mechanism, and each router uses a local al-gorithm to compute preferred paths.� Path-�nding algorithms (PFA): These are DVAs thatexchange distance vectors containing the length andsecond-to-last hop (predecessor) of the shortest pathto a destination.� Path-vector algorithms (PVA): These are DVAs inwhich routers exchange distance vectors whose entriesspecify complete path information for any destinationthey need to reach.4.1 Di�erences with LSAsThe key di�erence between LSAs and LVA is that a link-state update propagates to all routers in an LSA, while inLVA the update propagates to only those routers that usethe corresponding link in a path to a destination. Therefore,the reliable broadcast mechanism used in LSAs to ensurethat all routers with a physical path to a source of link-stateupdates receives the most recent updates within a �nite time(e.g., see [2], [14], [10], [19], [24], [29]) is not applicable toan LVA. Furthermore, as argued before, a router using LVAmust explicitly state which links it stops using.Figure 2 illustrates how LVA reduces storage and commu-nication overhead compared to LSAs, even for the case ofa fairly compact topology. Figure 2(a) shows the completetopology. For simplicity, it is represented as an undirectedgraph and it is assumed that both directions of each linkhave the same cost. An LSA would require each router tomaintain a copy of the entire topology, with an entry foreach link in each direction.Figures 2 (b) through (e) show the partial topology knownat various routers (the black node is the router holding theinformation). Solid lines represent the links that are partof the source graph of the respective router, dashed linksrepresent links that are part of the router's topology tablebut not of its source graph. Arrowheads on links indicatethe direction of the link stored in the router's topology table.A link with two arrowheads corresponds to two links in thetopology table.Router x's source graph shown in Figure 2(b) is formed bythe source graphs reported by its neighbors y and z (theseare formed by the links in solid lines shown in Figures 2(c)and (d)) and the links for which router x is the head node(namely links (x, y) and (x, z)).It is clear from this example that LVA reduces the amountof topology information each router needs to know to provide

r

1 1

1

1

1 1

10

3

1

1

v zq

p u y

w
x

(c)

1 1

1

1

1 1

10

3

1
10

1

v zq

r

p u y

w
x

(d)

1 1

1

1

1 1

(b)

110

10

1

v zq

r

p u y

w
x

(e)

10

1 1

1

1

1 1

10

10

5

3

1
10

10

10

10

1

v zq

r

p u y

w
x

(a)

1 1

1

1

1 1

3

1

1

v zq

r
w

x

p u y

Fig. 2. Example topologyshortest paths to all destinations. For example, router rknows about its links to routers w and q, but routers x, y,and z do not have such links in their topology databases.A router's topology table may contain a link in only onedirection (e.g., link (y, u) in Figure 2(b)). This is because arouter's source graph contains links only in the directions ofits preferred paths. While this detail is not important in thepresent example, in an internet, the \links" between routersmay be paths through networks that need not have the samecost in both directions.Given that LVA reduces the amount of topology informa-tion stored at each router, an obvious question is whetherthis results in fewer routes being available to the router. Be-cause a router's source graph contains the links in all its pre-ferred paths, a router using LVA for a given type of routing(e.g., shortest path) has the same number of paths availablethan with an LSA for the same type of routing. In our ex-ample, each router obtains the same shortest-path spanningtree than it would obtain with any LSA.Obviously, in the worst case, each router's source graphcontains all the links in the network and LVA requires thesame communication and storage overhead as an LSA. Thenumber of updates and size of updates in LVA are boundedby a number proportional to the number and size of updatesin an LSA, because in that case update messages containadd updates reporting changes to the parameters of networklinks, just as in an LSA. The average size of updates is dif-�cult to characterize analytically; however, the simulationresults presented in Section 8. indicate that updates in LVAare small.4.2 Di�erences with PFAsRecently, several PFAs algorithms have been proposed(e.g., see [5], [11], [17], [20], [30]). The basic idea in a PFA isfor each router to maintain the shortest-path spanning treereported by its neighbors (i.e., those routers connected to itthrough a direct link or a network), and to use this informa-tion, together with information regarding the cost of adja-cent links, to generate its own shortest-path spanning tree.An update message exchanged among neighbors consist ofa vector of entries that reports incremental or full updatesto the sender's spanning tree; each update entry contains a

destination identi�er, a distance to the destination, and thesecond-to-last hop in the shortest path to the destination.Another PFA by Riddle [32] is similar to the ones justmentioned in that a router communicates information re-garding the second-to-last hop in the shortest path to eachknown destination. However, it uses exclusionary trees,rather than shortest-path spanning trees, and the cost ofthe link between the second-to-last hop and the destination,rather than the distance to the destination. An exclusion-ary tree sent from router x to router y consists of router x'sentire shortest-path tree, with the exception of the subtreeportion that has node y as its root. Riddle's algorithm doesnot use incremental updates.Of course, just as it is done in Riddle's algorithm, anypath-�nding algorithm can use the cost of the link betweenthe second-to-last hop and the destination, rather than thedistance to the destination. However, there are two key dif-ferences between LVA and PFAs, namely:� The set of preferred paths used by a node to reach othernodes need not constitute a tree in LVA and it is alwaysa tree in a path-�nding algorithm.� In the path-�nding algorithms proposed to date, there isno notion of how recent the path information reportedby a neighbor is.There are many reasons why routers may want to commu-nicate link-state information of preferred paths that do notcorrespond to a tree. For example, if multiple shortest pathsare desired, a router will communicate links along multiplepreferred paths to each destination. Another example is thecase in which a router communicates links along multiplepreferred paths to each destination because di�erent criteriaare used to derive each path (e.g., delay, reliability, admin-istrative constraints).Because there can be multiple links leading to the samenode in the subgraph of preferred paths communicated bya router, a router that receives an incremental update froma neighbor cannot simply assume that the link from nodea to node b communicated by its neighbor can substituteany previously reported link from another node c to nodeb by the same neighbor, as it is done in all path-�ndingalgorithms but Riddle's. On the other hand, transmittingentire subgraphs of preferred paths, as it is done in Riddle's

algorithm, becomes unacceptable in large networks and in-ternets. Therefore, the update mechanisms used in path-�nding algorithms to update the subset of link states main-tained at each router are not applicable to LVA.4.3 Di�erences with PVAsThe existing internet routing protocols based on PVAs(BGP [26] and IDRP [31]) do not exchange link-state infor-mation per se. However, such information can be exchangedin a PVA by including it as part of the information for eachhop of the reported path in an update or update entry. This,however, would become very ine�cient when the size of thenetwork and the number of link-state parameters are large,or when multiple preferred paths to each destination are de-sired. Some savings can be obtained by specifying a pathbit vector, instead of specifying the path hops explicitly. Touse the path bit vector, the links of the network have to beordered and a maximum number of links has to be de�ned,such that the presence or absence of the link in the preferredpath can be indicated by a 1 or a 0 in a vector containing asmany bits as links there are in the network. Unfortunately,this approach forces the routers to agree on the number andorder of links; therefore, adding and deleting links requiresall the routers to coordinate their update activity, whichlimits the bene�ts of a PVA over an LSA.A more subtle di�erence between LVA and any PVA usinglink-state information is that routers using LVA determinewhether or not an update to a link state is valid based onthe timeliness of that update alone, just as in an LSA. Incontrast, a router using a PVA that communicates link-stateinformation still has to operate on a path-oriented basis, i.e.,the timeliness of an update refers to an entire path, not itsconstituent links; therefore, even if a router is able to ascer-tain that a given update is more recent than another, thatupdate may still use link-state information that is outdated(e.g., regarding links that are far away in the path). To elim-inate the possibility of using stale link-state information inan adopted path, each link of the path could be validated(with a sequence number, for example), but this becomesine�cient in a large internet.Even if the above limitations of PVAs are overlooked andPVAs are used to report path information only, the fact isthat LVA provides routers with the same path informationthat a PVA provides, but with far less overhead. This isthe case because a router that uses a given link in one ormore preferred paths reports that link only once in LVA,while it has to include the link in each preferred path itreports using a PVA. LVA makes reporting complete pathinformation unnecessary for supporting either source routingor hop-by-hop routing.As the number of paths that a router can use per destina-tion grows, the number of updates communicated and storedin PVAs grows. Furthermore, if multiple types of service areprovided, the complexity of PVAs grows proportional to thenumber of combinations of service parameters. In contrast,the complexity of LVA grows with the number of service pa-rameters, because each update simply adds more parametersto describe a link.Figure 2(b) helps to illustrate the above points for the caseof shortest-path routing. Using LVA, router x requires eightupdate entries of one link state each to inform its neighborsabout its preferred paths. In contrast, a PVA requires the

same number of update entries, but many of those entriescontain redundant information (e.g., the update entry for thepath from x to p is redundant with the entry for the pathfrom x to r). Although some paths that are fully containedin other paths can be simply implied by the paths that con-tain them, paths may overlap in many di�erent ways in alarge internet.The same type of savings become apparent for the caseof multipath routing. In LVA, if router x decides to use theadditional path containing link (u;w) to reach router w, itsimply has to send an add update with the parameters of thelink. In contrast, a PVA requires the router to send an up-date with the entire new path, which contains a substantialamount of redundant information.5. An LVA Based on Sequence NumbersThis section describes a concrete example of an LVA de-signed for shortest-path routing that validates updates bymeans of sequence numbers. We denote this embodiment ofLVA by LVA-SEN. The information regarding each link in arouter's topology table is augmented to include the sequencenumber of the most recent update generated by the link'shead node for that link.A sequence number is associated with each link; it consistsof a counter that can be incremented only by the head nodeof the link. For convenience, a router need to keep only onecounter for all the links for which it is the head node, whichsimply means that the sequence number a router gives toa link for which it is the head node can be incremented bymore than one each time the link parameters change values.The concrete algorithm, LVA-SEN, is shown in Figure 3.For simplicity, the speci�cation assumes that unboundedcounters are used to keep track of sequence numbers andthat each router remembers the sequence number of linksdeleted from its topology table long enough for the algorithmto work correctly. The use of �nite counters for sequencenumbers is addressed in [15]. The speci�cation assumes thefollowing data structures at node i:� a topology table TTi with entries (i; j; l; ts; r), for thelink (i; j), where l represents the cost of the link, ts itssequence number, and r represents the set of reportingnodes;� a spanning tree STi containing the edges of the treethat is used for routing and their sequence numbers;� the sequence number t;� the set of neighbors Ni, and� the latest sequence numbers reported by the neighbors.The update messages sent between nodes are vectors oftuples (i; j; l; ts; type), representing link (i; j), its cost l, itssequence number ts, and the label type.Procedure init in Figure 3 is used to initialize the network.The sequence number counter is set to zero, and the setof neighbors of a router is determined through informationfrom an underlying protocol. The link to each neighbor,with the appropriate information on the router's operationalparameters, is stored in the topology table. At this point,the shortest path tree is essentially the same as the topologytable. The information about all its outgoing links is sent toall neighbors. This procedure can only be used to initializethe network, when no information about topology is knownat any node. The same mechanism used by a node to recoverfrom a crash must be used to add a new node subsequently.

procedure init (i);begint = 0Ni = fxj9(i; x); lix � 1gSTi = ;message = ;u message = ;for all x 2 Ni dotx = 0message = message [(i; x; lix; t; add)end forupdate (i, i, message)end initprocedure update (i; n, message)beginu message = ;updated = update topology table (i, message, u message)if u message 6= ;send (n, u message)end ifu message = ;if updated thenbuild shortest path tree (i; TTi;NewSTi)build routing tablecompare trees (i; STi;NewSTi , u message)remove marked links from TTiif u message 6= ; thenfor all x 2 Ni dosend (x, u message)end forend ifSTi = NewSTit = t + 1end ifend updateprocedure link down(i; j)beginmessage = ;Ni = Ni � fig (but keep sequence number)for all (k;m) 2 TTi doTTi(k;m):r = TTi(k;m):r � fjgif TTi(k;m):r = ; or TTi(k;m):r = fig thenmessage = message [f(TTi(k;m); delete)gend ifend formessage = message [f(i; j;1; t;delete)g)update (i, i, message)end link downprocedure link up(i; j)beginNi = Ni [fjgupdate (i; i;f(i; j; lij ; t; add)g)u message = ;for all (k;m) 2 STi dou message = u message [(TTi(k;m), add)end forsend(j, u message)end link upprocedure link change(i)beginupdate(i;i; f(i; j; lij ; t; add)g)end link changeprocedure node up (i);begint = 0message = ;Ni = fxj9(i; x); lix < 1gfor all x 2 Ni doTTi = TTi [(i; x; lix; t; fig)STi = STi [(i; x; t)end forbuild new routing tablefor all x 2 Ni dosend (x, query)end foranswers received = 0while answers received < jNij doreceive (answer)t = maxft;answer:tgupdate topology table (i, answer, u message)end whilet = t+ 1for all x 2 Ni doTTi(i; x):t = tend forbuild shortest path tree(i; TTi;NewSTi)build new routing table

STi = ;u message = ;compare trees (STi;NewSTi, u message)for all x 2 Ni dosend (x, u message)end forSTi = NewSTit = t + 1end node upprocedure answer query(i; j)beginif (i; j) =2 STi thenSTi = STi [(i; j)build routing tableend iffor all (k;m) 2 STiu message = u message [TTi(k;m)end foru message.t = tjsend (j, u message)end answer queryprocedure update topology table (i, message, u message)beginupdated = falsefor all m = (j; k; l; ts; type) doif type = add thenif (j; k) 2 TTi thenif TTi(j; k):t < m:ts thenTTi(j; k) = mTTi(j; k):r = fmessage.source gupdated = trueelse if TTi(j; k):t = m:ts and i 6= message.source thenTTi(j; k):r = TTi(j; k):r [f message.source gupdated = trueend ifelse if (i 6= j or message.source = i) and (TTi(j; k):t <= m:ts) thenTTi = TTi [mupdated = trueend ifif TTi(j; k):t > m:ts thenif (j; k) 2 STi thenu message = u message [(TTi(j; k); add)elseu message = u message [(TTi(j; k); delete)end ifend ifelse if type = deleteif TTi(j; k):t < m:ts thenif (j; k) 2 TTi thenmark (j; k) as deletedupdated = trueelseTTi(j; k):t = m:tsend ifelse if TTi(j; k):t = m:ts thenif (j; k) 2 TTi thenTTi(j; k):r = TTi(j; k):r�fmessage.sourcegif (TTi(j; k):r = ; or TTi(j; k):r = fig) and i 6= message.source thenmark (j;k) as deletedupdated = trueend ifend ifelse if TTi(j; k):t > m:ts thenif (j; k) 2 STi thenu message = u message [(TTi(j; k); add)elseu message = u message [(TTi(j; k); delete)end ifend ifif TTi(j; k):l = 1 and TTi(j; k):t < m:ts thenTTi(j; k):t = m:tsend ifend ifif j = message.source and j 2 Ni thenstore sequence number of neighborend ifend forreturn updatedend update topology tableprocedure compare trees (i; STi;NewSTi , u message)beginfor all (j;k) 2 NewSTi; ((j; k) =2 STi or NewSTi(j; k):ts > STi(j; k):ts) dou message = u message [(j; k; TTi(j; k):ts;TTi(j; k):l, add)end forfor all (j;k) 2 STi; (j; k) =2 NewSTi doif i = j thenu message = u message [(j; k; t; TTi(j; k):l; delete)elseu message = u message [(j; k;TTi(j;k):ts;TTi(j; k):l; delete)ifend forend compare treesFig. 3. LVA-SEN Speci�cation

Procedures update and update topology table are the corepart of LVA-SEN. Each time a router receives a message fromone of its neighbors, or if there is some change in the costof an outgoing link reported by a lower-level protocol, theseprocedures are performed to update all the data structuresheld at the router.For all link-state updates in the received message, theirsequence numbers must be checked. If the sequence num-ber is older or of the same age as the current content of thetopology table, then the information is discarded. Other-wise, there are two possible cases:1. The label of the information is `add'. Then this linkstate is added to the topology table (which can meanthat it replaces an old entry), or the reporting node isadded to the set of nodes that reported that link.2. The label is `delete'. If there is an entry concerningthis link in the topology table, then the reporting nodeis removed from the set of reporting nodes, and the linkis deleted from the topology table if that set becomesempty and the link is not an outgoing link of �nitelength. Otherwise, if there is no entry, the message isdiscarded.A shortest-path algorithm (e.g. Dijkstra's algorithm [3])is run on this updated topology table to construct a newshortest-path tree. This tree is used to compute the newrouting table, using for example a depth-�rst search in theshortest-path tree. Then the new tree is compared to theold tree (procedure compare trees), and the update messagethat will be send to the neighbors is constructed from thedi�erences of the two trees. Note that a link in the tree isconsidered di�erent if its sequence number is changed. Ifthe di�erent link is in the new tree, then an add updateabout this link is added to the update message. If the linkis in the old tree but is not in the new one, then a deleteupdate is added. In addition, the link is removed from thetopology table, unless it is an adjacent link and its length isnot in�nity. If any of the link informations refer to the stateof an outgoing link of the node itself, then it gets a currentsequence number.Finally, the update message is sent to all the neigh-bors, the sequence number counter is incremented, the oldshortest-path tree is discarded and the new one becomes thecurrent tree.If a link cost changes, then the node at which this linkorigins will be noti�ed by the link level protocol. It thenruns update with the appropriate message as input. Thisholds for simple changes in link cost as well as link failure.In the latter case, the link cost is set to in�nity. The samething is done for a new link or a link that comes up againafter a failure.In the case of a failing node, all its neighbors are noti�edabout the failure of their links to the failed node. They thenremove the failed node from the list of reporting nodes forall a�ected links, and therefore obtain an accurate pictureof the topology after running the update procedure.We assume that the upcoming node does not `remember'any information that it previously had, in particular it doesnot know the last sequence number it used. It is not su�-cient to simply run procedure init because other nodes woulddiscard all update messages with a zero sequence number.In addition, the neighbors of the node would not send su�-cient topology information for the node to regain its needed

knowledge. After initializing its data structures, the upcom-ing node sends a query to all its neighbors. In response, theysend back their complete shortest-path trees, plus the latestsequence number they received from the node (nodes storesequence numbers of neighboring nodes, which are updatedwhen a link of some neighbor is changed). The node collectsall this information, updates its topology table and sequencenumber, and then performs the same steps as in the proce-dure update.To illustrate the exchange of updates in LVA-SEN, con-sider the topology in Figure 2. Assume that link (p;w) fails.Both endpoints of the link note this failure and call pro-cedure link down. The update message sent from w to itsneighbors contains delete updates for links (w;p) and (p; r)and add updates for links (w; r) and (r; p). Link (w;p) isdeleted from w's topology table because it failed, while (p; r)is only removed from the source graph, because w cannot usethis link on the path to r anymore. Instead, the route to ris now link (w;r). This link was not previously used; there-fore, it is included in the message in an add update, as is(r; p), which lies on the new route to p. Similarly, node pwill send a message to its neighbors containing delete up-dates for links (p;w) and (w; v), and add updates for links(p; u) and (p; q).6. Correctness of LVAThis section shows that LVA is correct for multiple typesof routing. The proof of correctness makes use of the as-sumptions introduced in Section 2. and the additional as-sumptions that there is a �nite number of link cost changesup to time t0, that no more changes occur after that time,and that routers can correctly determine which updates aremore recent than others. The correctness of the particularmechanism used to determine which updates are valid inLVA-SEN is addressed in [15].Correctness for LVA means that, within a �nite time aftert0, all routers obtain link-state information that allow themto compute loop-free paths that adhere to the constraintsimposed by the local algorithms they use to compute pre-ferred paths, and to forward packets incrementally.Because our proof of correctness is intended for many dif-ferent types of routing, not only shortest-path routing, wemust specify what we mean by the correct operation of apath-selection algorithm.To de�ne what a correct path-selection algorithm is, con-sider �rst the case in which each router in the network hascomplete and most recent topology information in its topol-ogy table and runs the same path-selection algorithm onit. In this case, it is evident that, for permanent loops tobe avoided, the way in which the path-selection algorithmchooses routes must be deterministic.Assuming that the same deterministic path-selection al-gorithm is executed at each router using a complete andmost recent copy of the topology, the preferred paths atany router for each destination constitute a directed acyclicgraph (DAG). Furthermore, the union of the DAGs of anyset of routers for the same destination in the network is alsoa DAG. Therefore, there are no permanent loops in the rout-ing tables computed in this case.De�nition 1: A correct path-selection algorithm is a onethat produces the same loop-free paths when it is providedwith the same complete and correct topology information.

As we have stated in the description of LVA, all routersuse the same path-selection algorithm to compute the sametype of preferred paths (e.g., shortest path, maximum ca-pacity), and report all the links used in all the preferredpaths obtained through all the path-selection algorithms.Therefore, the rest of this section can assume that a singlepath-selection algorithm is executed at every router.Because the topology tables of di�erent routers runningLVA need not have the same information, we cannot usethe notion of having all topology tables containing the sameinformation to ensure correct paths. The following de�ni-tion speci�es what a topology table should have for loop-freepaths to be produced in LVA.De�nition 2: A router is said to have consistent link-stateinformation in its topology table if it has the most recentlink-state information regarding all the links for whom it isthe head node, and the most recent link-state informationcorresponding to each of its neighbor's most recent sourcegraph.Theorem 1: A �nite time after t0, all routers have consis-tent link-state information in their topology tables and thepreferred paths computed from those tables are correct.Proof: Because the deterministic path-selection algorithmused at each router is assumed to be correct, all the proofneeds to show is that1. All routers eventually stop updating their topology androuting tables, and stop sending update messages totheir neighbors.2. All routers obtain consistent link-state informationneeded to compute correct preferred paths within a �-nite time after t0.These two properties are proven in the following two lem-mas.Lemma 1: LVA terminates within a �nite amount of timeafter t0.Proof: First note that there is a �nite number of links inthe network and that, by assumption, a �nite number oflink-state changes occur up to time t0, after which no morechanges occur.By assumption, for each direction of a link whose param-eters change, there is one router (the head node of the direc-tion of the link) that must detect the change within a �nitetime; such a router updates its topology table and must thenupdate its source graph. As a result of updating its sourcegraph, the router can send at most one add update report-ing the change in the state of the adjacent link, and at mostone add or delete update for each of the links that have beenadded to or deleted from preferred paths as a result of thechange in the adjacent link. Therefore, for any link li in thenetwork, its head node can generate at most one update forthat link after time t0.A given router x1 that never terminates LVA must gen-erate an in�nite number of add or delete updates after timet0. It follows from the previous paragraph that this is pos-sible only if x1 sends such updates as a result of processingupdate messages from its neighbors; furthermore, becausethe network is �nite, x1 must generate an in�nite numberof updates for at least one link l1. Because the network is�nite, at least one of those neighbors (call it x2) must sendto x1 an in�nite number of update messages containing anupdate for either link l1 or some other link l2 that makesx1 generate an update for link l1. It follows from the pre-

vious paragraph and the fact that the network is �nite thatx2 can send an in�nite number of updates regarding link l1or l2 to x1 only if at least one of its neighbors (call it x3)generates an in�nite number of updates for either link l2 orsome other link l3 that makes x2 generate updates regardinglink l1 or l2. Because the network is �nite, it is impossibleto continue with the same line of argument, given that thehead node of any link can generate at most one update forthat link after time t0. Therefore, LVA can produce only a�nite number of updates and update messages for a �nitenumber of link-state changes and must stop within a �nitetime after t0. q.e.d.Lemma 2: All routers must have consistent link-state in-formation in their topology databases within a �nite timeafter t0.Proof: The de�nition of consistent link-state information ata router implies that the router knows all the links it needsto compute correct preferred path, and that the router hasthe most recent link-state information regarding all the linksin its topology table.Proving that the router receives all the link-state infor-mation required to compute correct preferred paths can bedone by induction on the number of hops h of a preferredpath. What needs to be shown is that the router knows allthe links on that path within a �nite time after t0.Consider some arbitrary preferred path from a router i tosome destination. For h = 1, the preferred path consists ofone of router i's outgoing links. Because of the basic assump-tion that some underlying protocol provides a router withcorrect information about its adjacent links within a �nitetime after the link-state information for such links changes,the lemma is true for this case. For h > 1, assume that theclaim is true for any preferred path with fewer than h hops.Consider an arbitrary preferred path of length h > 1 fromsome router i to a destination j. Let k be router i's succes-sor on this path (i.e., the �rst intermediate router). Then,the subpath from k to j must have length h � 1, and itmust be one of router k's preferred paths to j. Denote thispath by Pkj. By the inductive hypothesis, router k knowsall the links on Pkj. Because router i also knows (as in thebase case) the most recent information about link lik withina �nite time after t0, it su�ces to show that router k in-deed sends the link information in path Pkj to its neighborrouter i.Assume that Pkj is a new path for router k, then routerk must update its source graph. Because Pkj is a new pathfor router k, the information in the updated source graphconcerning Pkj is di�erent than the information in the oldsource graph. Therefore, router k must include this infor-mation as add updates in the update message that it sendsto its neighbors. Because router i is one of those neighbors,it must receive from k all the information on Pkj within a�nite time after t0.By assumption router k can determine which link-stateinformation is valid (i.e., up to date). Accordingly, if Pkj isalready one of router k's preferred paths, but experiences achange in the information of some of its constituent links,then those links with updated link-state information will beconsidered di�erent in the new source graph as comparedto the old source graph. Therefore, router k must send theupdated link-state information in Pkj to its neighbor i inadd updates.

The same inductive argument holds for link-state changesresulting in links being deleted from a preferred path. In thiscase, an intermediate router that decides that a link shouldno longer be used in any of its preferred paths sends a deleteupdate, which is propagated just like an add update. Thiscompletes the �rst part of the proof.Having shown that a router receives the most recent in-formation about the links used in its source graph within a�nite time after t0, it remains to be shown that it also re-ceives the most recent information about all the links thatare in its topology table, but not part of the source graphof preferred paths. There are two possible cases to considerof links in a router's topology table that are not used in itssource graph:� An adjacent link to the router.� A non-adjacent link is in the source graph reported bysome of the router's neighbor.In the �rst case, it is obvious that the lemma is true be-cause of the basic assumption of some underlying protocolproviding the node with correct information about adjacentlinks within a �nite time. The second case follows almostimmediately from the �rst part of this proof. Because everyneighbor of the router sends the appropriate add or deleteupdates about links added to or deleted from its source owngraph, it must be shown that each such neighbor obtainsconsistent information about changes in its source graph,which was shown to be the case in the �rst part of thisproof. q.e.d.Once Theorem 1 has been shown to be true it is easy toshow that these routing tables do not contain any permanentloops.Corollary 1: The routing tables created by LVA do notcontain any permanent loop.Proof: Lemma 2 shows that the topology information atall routers is consistent within a �nite amount of time afterany change in link information. The topology informationheld at any router is a subset of the complete topology, andthis subset contains all the information needed at this routerto compute the correct preferred paths. Therefore, the pre-ferred paths computed from any router's subset of the topol-ogy information must be a subset of the DAG computed inthe case of each router having complete topology informa-tion. Any subset of a DAG is still a DAG; and the union ofany such DAGs also forms a DAG, because that union is alsoa subset of the DAG obtained with complete topology infor-mation. Hence, the routing tables computed by LVA with acorrect path-selection algorithm do not contain permanentloops. q.e.d.7. Complexity of LVAThis section quanti�es the communication complexity(i.e., number of messages needed in the worst case), timecomplexity (number of steps), computation complexity, andstorage complexity [13] of LVA for shortest-path routing af-ter a single link change.7.1 Communication ComplexityThe number of messages per link cost change is boundedby twice the number of links in the network. To prove thatthis is the case, it su�ces to show that any update can traveleach link at most twice.

Assume that an update concerning link l arrives at somearbitrary node n for the �rst time; there are two possibilitiesto consider:1. The link is used in the source graph of n. If this is thecase, the corresponding link-state information is sentto some neighbor n1 over some link l1. There are twopossibilities at this router:(a) n1 uses l: If the information was already known andused at n1, then no further update will be sent over l1(or any other link adjacent to n1). If it was not pre-viously known at n1, then an update will be sent toall neighbors of n1, including one over l1 to n. Fromn, no further update with information concerning lwill be sent over l1, until newer information becomesavailable.(b) n1 does not use l: n1 will not sent any update withinformation concerning l, in particular none over l1.2. The link is not used at n, in which case no furtherupdate will be sent.From the above, it follows that the number of messages isat most in the order of the number of links in the network(O(jEj)).7.2 Time ComplexityIf the cost of links is not directly related to the delaysincurred over such links, the number of steps required forany link change is O(x), where x is the number of nodesa�ected by the change. This can be shown by the follow-ing argument: the information about a changed link travelsalong all the shortest paths that contained the link beforethe change, and also along all shortest paths that will con-tain the link after the change. No other router than thosealong the paths and their neighbors will be noti�ed aboutthe change.In the worst case, all the a�ected routers lie along one longpath, thus causing O(x) communication steps. In general,the paths on which the information is forwarded togetherwith the a�ected routers form a directed, acyclic graph, andthe upper bound for the steps required is given by the lengthof the longest simple path in that graph.Because link failures and recoveries are handled as specialcases of link cost changes, and router failures are perceivedby the network as link failures for all their links, it is clearthat O(x) communication steps are also incurred in thesecases. The case of a recovering node involves the nodes get-ting the complete source graphs from its neighbors, whichtakes no more steps than the number of neighbors, beforethe links of the routers again are handled as changing theircost to some �nite value. Hence, the same upper bound ofO(x) applies.This worst case is the same as the complexity of any DVA.On the other hand, if the link costs reect the delay of thelinks, the complexity for LVA reduces to O(d), where d isthe (delay) diameter of the network. The reasons for this arethat the information travels along the shortest paths and arouter receiving new information can trust the neighbor thatreports the most recent link-state for the associated link;most importantly, the node will discard older informationfrom other neighbors. Therefore, a router does not have towait for link state updates to reach it through the slowerpaths, as is in the case in DVAs. The ooding techniqueused in LSAs also takes O(d).

7.3 Complexity of Computations at RoutersThe most important routines to analyze are update andupdate topology table. Most other procedures just call up-date with the appropriate input message. One part ofthis procedure is the shortest path �nding algorithm (Di-jkstra). Therefore, the overall complexity is at leastO(jV j2). The complexity of the main loop of procedureupdate topology table is determined by the size of the up-date message. In the worst case, this message could con-tain information about every link, resulting in running timeO(jEj) � O(jV j2). This case seems highly unlikely, though.In \normal" cases, we would expect an update message tocontain information about some path plus possibly a secondpath that has to be deleted. A path can have at most lengthjV j � 1, leading to an expected complexity of O(jV j). Theamount of work in the other loops is bounded by the numberof nodes in the network.Note that there also is the hidden complexity of accessingthe topology table. This problem can be solved using a(dynamic) hash table, which has an expected constant accesstime.7.4 Storage ComplexityIn the worst case, the topology table of each router main-tains the whole topology, making the storage requirementO(jV j2). In addition, both the shortest path tree and therouting table require O(jV j) storage, which is also the casefor link state algorithms.On the average, we expect the storage for the topology ta-ble to be by far smaller than O(jV j2). Because the goal is tokeep as sparse a subset of the whole topology as possible, wehope that the required storage space is closer to O(jV j). Thisseems realistic, even the small topology shown as examplein Figure 2 revealed a signi�cant saving of required spacewhen compared to an algorithm that stores the completetopology at all routers. In contrast, the LSAs used todayhave to store the complete topology. Though the storagerequired for DVA is linear in the number of routers, routershave to store the routing tables of their neighbors. There-fore, DVAs' storage requirement really become O(jV jjNkj)at router k.8. SimulationIn this section we compare LVA-SEN, DBF, and a genericLSA in terms of time and communication complexity. Com-munication complexity is measured as the number of updatesthat are required for the algorithm to converge and the sizeof these updates. The time complexity is given in steps:when a node receives an update message, it compares itslocal step counter with the sender's counter, takes the max-imum and increments the count. In all three algorithms,update messages are processed one at a time, in the order inwhich they arrive. Both LVA-SEN and LSA use Dijkstra'salgorithm to compute the local shortest-path tree.The results presented are based on simulations for theDOE-ESNET topology [36]. The graphs show the resultsfor every single link changing cost from 1.0 to 2.0 (Fig. 4,5),every link failing (Fig. 6, 7) and recovering (Fig. 8, 9), aswell as every node failing (Fig. 10, 11) and recovering again(Fig. 12, 13). All changes were performed one at a time, andthe algorithms had time to converge before the next change

occurred. The ordinate of Figures 4 to 9 and Figures 10 to 13represent identi�ers of the links and the nodes, respectively,that are altered in the simulation. In Figures 4, 6, 8, 10, and12, the data points show the number of updates and the sizeof the updates, while in Figures 5, 7, 9, 11, and 13, theyshow the number of steps needed for convergence.As expected, LSA shows almost constant behavior for allsingle link cost changes (Figures 4,5). Similar to DBF, thee�ort changes considerably from case to case with LVA-SEN,but is always less than in LSA. With LSA, each of the updatepackets contains exactly one link state, the size of packetsremains small with LVA-SEN, too, at an average of 1.36 linksper packet.Figures 6 and 7 show almost the same general behaviorfor link failures, the exception being DBF su�ering from`counting to in�nity' in some cases. In almost all cases, LVA-SEN needs fewer update messages and fewer steps than LSA;the size of the messages is bigger than for link changes, witha mean of 2.61.When a failed link recovers, DBF shows its strengths andis superior to both LVA-SEN and LSA. Again, LSA behavesvery uniform for all the simulated link recoveries. The per-formance of LVA-SEN varies considerably from case to case,but remains always better than LSA (Figures 8,9). Themean packet size is less than three links per packet; sincethe packet size of LSA is no longer one in this case (due tothe packets containing complete topology information sentover the recovering link), LVA-SEN almost always requiresless overall information to be sent.For failing nodes, LSA usually has the best performanceof the three algorithms. DBF always su�ers from `countingto in�nity'. In almost all cases, LSA converges faster thanLVA-SEN, it needs fewer steps and updates (Figures 10,11).Although the mean packet size for LVA-SEN is very moder-ate (1.5 links per packet), less information is sent throughthe network with LSA.Similar to the recovery of a single link, DBF is superior toLSA when a node comes up, and LVA-SEN performs evenbetter than DBF. It needs fewer steps and updates thanthe other algorithms (Figures 12,13). Although the meanpacket size for LVA-SEN has its highest value here (3.12),this is true for the other algorithms, too, such that LVA-SENrequires the least amount of information to be sent throughthe network.Overall, the results of our simulations are quite encourag-ing. In terms of its overhead, LVA-SEN behaves much likeDBF when link costs change or resources are added to thenetwork, and behaves much like the ideal LSA when links orrouters fail. This is precisely the desired result, and thereare a number of simple ways to improve LVA-SEN's behav-ior after a link or router failure, which involve establishing a\hold down" on the updating of a router's source graph [15].9. ConclusionsWe have presented a new method for truly distributedrouting in computer networks and internets using link-stateinformation. LVAs enjoy nice scaling properties: like DVAs,LVAs scale well with the number of destinations by aggregat-ing information; like LSAs, LVAs scale well with the numberof service types because routers communicate link proper-ties, not path properties in their updates.An important contribution of this paper is to show that

0

20

40

60

80

100

120

140

U
pd

at
es

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Link ChangesFig. 4. Updates for link changes, DOE-ESNET 2

4

6

8

10

12

14

St
ep

s

1 4 7 10 13 16 19 22 25 28 31
Link ChangesFig. 5. Steps for link changes, DOE-ESNET

1

10

100

1000

10000

Up
da

te
s

1 4 7 10 13 16 19 22 25 28 31
Link FailuresFig. 6. Updates for link failures, DOE-ESNET 1

10

100

1000

St
ep

s

1 4 7 10 13 16 19 22 25 28 31
Link FailuresFig. 7. Steps for link failures, DOE-ESNET

0

20

40

60

80

100

120

140

U
pd

at
es

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Link RecoveriesFig. 8. Updates for link recoveries, DOE-ESNET 2

4

6

8

10

12

14

St
ep

s

1 4 7 10 13 16 19 22 25 28 31
Link RecoveriesFig. 9. Steps for link recoveries, DOE-ESNET

1

10

100

1000

10000

Up
da

te
s

1 3 5 7 9 11 13 15 17 19 21 23 25
Node FailuresFig. 10. Updates for node failures, DOE-ESNET 1

10

100

1000

St
ep

s

1 3 5 7 9 11 13 15 17 19 21 23 25
Node FailuresFig. 11. Steps for node failures, DOE-ESNET

0

100

200

300

400

500

U
p
d
a
te

s

1 3 5 7 9 11 13 15 17 19 21 23 25
Node Recoveries

Updates LVA-SEN Links per Update LVA-SEN
Updates DBF Distances per Update DBF
Updates LSA Links per Update LSAFig. 12. Updates for node recoveries, DOE-ESNET 5

10

15

20

25

30

35

40

S
te

p
s

1 3 5 7 9 11 13 15 17 19 21 23 25
Node Recoveries

LVA-SEN DBF LSAFig. 13. Steps for node recoveries, DOE-ESNET

LVA is correct under di�erent types of routing, assumingthat a correct mechanism is used for routers to ascertainwhich updates are recent or outdated.LVAs open up a large number of interesting possibilitiesfor internet routing protocols. To name a few, LVAs can bethe basis for the �rst routing protocols for packet radio net-works based on link-state information. Equally important,LVA can be used to develop intra-domain routing proto-cols that are based on link-state information but require nobackbones and can take advantage of aggregation schemesdeveloped for DVAs. Finally, LVAs make PVAs obsolete.Work is continuing to improve the average-case performanceof LVAs, and to apply LVAs to policy-based routing, routingwith multiple constraints, and hierarchical routing based onlink vectors.References[1] R. Albrightson, J.J. Garcia-Luna-Aceves, and J. Boyle,\EIGRP{A Fast Routing Protocol Based on Distance Vec-tors" Proc. Networld/Interop 94, Las Vegas, Nevada, May1994.[2] B. Awerbuch, I. Cidon, and S. Kutten, \Communi-cation-Optimal Maintenance of Replicated Information,"Proc. IEEE FOCS '90, pp. 492-502, August 1990.[3] D. Bertsekas and R. Gallager,Data Networks, SecondEdition,Prentice-Hall, Inc., 1992.[4] L. Bosack, \Method and Apparatus for Routing Communi-cations among Computer Networks," U.S. Patent assigned toCisco Systems, Inc., Menlo Park, California, February 1992.[5] C. Cheng, R. Riley, S. Kumar, and J.J. Garcia-Luna-Aceves, \A Loop-Free Extended Bellman-Ford Routing Pro-tocol without Bouncing E�ect," ACM Computer Comm. Re-view, Vol. 19, No. 4, pp. 224-236, September 1989.[6] J.N. Chiappa, \A New IP Routing and Addressing Architec-ture," Unpublished Draft, 1991.[7] D. Estrin and K. Obraczka, \ConnectivityDatabaseOverheadfor Inter-Domain Policy Routing," Proc. of IEEE INFOCOM'91, Miami, Florida, pp. 265-278, April 1991.[8] D. Estrin, Y. Rekhter, and S. Hotz, \Scalable Inter-DomainRouting Architecture," Computer Comm. Review, Vol. 22,No. 4, 1992.[9] D. Estrin, M. Steenstrup, and G. Tsudik, \A Protocol forRoute Establishment and Packet Forwarding across Multido-main Internets," IEEE/ACM Trans. on Networking, Vol. 1,No. 1, February 1993, pp. 56-70.[10] E. Gafni, \Generalized Scheme for Topology-Update inDynamic Networks," Lecture Notes in Computer Science(G. Goos and J. Hartmanis, Eds.), No. 312, pp. 187-196, 1987.[11] J.J. Garcia-Luna-Aceves, \A Fail-Safe Routing Algorithmfor Multihop Packet-Radio Networks," Proc. of IEEE INFO-COM '86, Miami, Florida, April 1986.[12] |, \Routing Management in Very Large-Scale Networks,"Future Generation Computing Systems (FGCS), North-Holland, Vol. 4, No. 2, pp. 81-93, 1988.[13] |, \Loop-Free Routing Using Di�using Computations,"IEEE/ACM Trans. Networking, Vol. 1, No. 1, 1993.[14] |, \ Reliable Broadcast of Routing Information Using Dif-fusing Computations," Proc. IEEE Globecome 92, Orlando,Florida, December 1992.[15] J.J. Garcia-Luna-Aceves and J. Behrens, \ Distributed, Scal-able Routing Based on Vectors of Link States," UnpublishedReport, Baskin Center for CE & CIS, University of California,Santa Cruz, CA, 1994.[16] J.J. Garcia-Luna-Aceves and W.T. Zaumen, \Area-Based,Loop-Free Internet Routing," Proc. IEEE INFOCOM 94,Toronto, Canada, June 1994.[17] J. Hagouel, \Issues in Routing for Large and Dynamic Net-works," IBM Research Report RC 9942 (No. 44055) Commu-nications, IBM Thomas J. Watson ResearchCenter, YorktownHeights, New York, April 1983.

[18] C. Hedrick, \Routing Information Protocol," RFC 1058,Network Information Center, SRI International, Menlo Park,CA, June 1988.[19] P.A. Humblet and S.R. Soloway, \Topology Broadcast Al-gorithms," Computer Networks and ISDN Systems, Vol. 16,pp. 179-186, 1989.[20] P. Humblet, \Another Adaptive Distributed Shortest PathAlgorithm," IEEE Trans. Comm., Vol. 39, No. 6, pp. 995-1003, June 1991.[21] International Standards Organization, 1989: \Intra-DomainIS-IS Routing Protocol," ISO/IEC JTC1/SC6 WG2 N323,September 1989.[22] International Standards Organization, \Protocol for Ex-change of Inter-domain Routing Information among Interme-diate Systems to Support Forwarding of ISO 8473 PDUs,"ISO/IEC/JTC1/SC6 CD10747.[23] J.M. Ja�e, \Algorithms for Finding Paths with MultipleConstraints," Networks, Vol. 14, pp. 95-116, 1984.[24] J.M. Ja�e, A.E. Baratz, and A. Segall, \Subtle Design Issuesin the Implementation of Distributed, Dynamic Routing Al-gorithms," Computer Networks and ISDN Systems, Vol. 12,pp. 147-158, 1986.[25] L. Kleinrock and F. Kamoun, \Hierarchical Routing forLarge Networks: PerformanceEvaluation and Optimization,"Computer Networks, Vol. 1, pp. 155-174.[26] K. Lougheed and Y. Rekhter, \ Border Gateway Protocol3 (BGP-3)," RFC 1267, SRI International, Menlo Park, CA,October 1991.[27] J. McQuillan, \Adaptive RoutingAlgorithms for DistributedComputer Networks," BBN Rep. 2831, Bolt Beranek andNewman Inc., Cambridge MA, May 1974.[28] J. Moy, \OSPF Version 2," NetworkWorkingGroup InternetDraft, November 1992.[29] R. Perlman, \Fault-Tolerant Broadcast of Routing Informa-tion," in Computer Networks, North-Holland, Vol. 7, pp. 395-405, 1983.[30] B. Rajagopalan and M. Faiman, \A Responsive DistributedShortest-Path Routing Algorithm within Autonomous Sys-tems," Internetworking: Research and Experience, Vol. 2,No. 1, pp. 51-69, March 1991.[31] Y. Rekhter, \Inter-Domain Routing Protocol (IDRP)," In-ternetworking: Research and Experience, Wiley, Vol. 4, No.2, June 1993, pp. 61-80.[32] G.G. Riddle, \Message Routing in a Computer Network,"U.S. Patent assigned to AT&T Bell Telephone Laboratories,Inc., Patent Number 4,466,060, August 1984.[33] M. Steenstrup, \Inter-DomainPolicyRoutingProtocol Spec-i�cation: Version 1," Internet Draft, May 1992.[34] J. Spinelli and R. Gallager, \Event Driven Topology Broad-cast without Sequence Numbers," IEEE Trans. Commun.,Vol. 37, pp. 468-474, May 1989.[35] P. Tsuchiya, \The Landmark Hierarchy: A New Hierarchyfor Routing in Very Large Networks," Computer Comm. Re-view, Vol. 18, No. 4, 1988, pp. 43-54.[36] W. Zaumen and J.J. Garcia-Luna-Aceves, \Dynamics ofDistributed Shortest-Path Routing Algorithms," ComputerComm. Review, Vol. 21, No. 4, pp. 31-42, September 1991.[37] |, \Dynamics of Link-State and Loop-Free Distance-VectorRouting Algorithms," Journal of Internetworking: Researchand Experience, Vol. 3, No. 4, pp. 161-188 December 1992.

