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Minimal covariation data support future one-shot inferences about unobservable
properties of novel agents

Julian Jara-Ettinger (julian.jara-ettinger@yale.edu)1, Hyowon Gweon (hyo@stanford.edu)2,
1 Department of Psychology, Yale University, New Haven, CT 06520
2Department of Psychology, Stanford University, Stanford CA, USA

Abstract

When we reason about others’ behavior, there are often many
equally-plausible explanations. If Bob climbs a tree to get an
apple, we may be unsure if Bob found climbing difficult but
really wanted an apple; if he found climbing easy and was not
particularly excited about the apple; or if he found climbing
intrinsically fun and just got the apple because it was conve-
nient. Past research suggests that we solve this problem by
obtaining repeated observations about the agent and about the
world. Here we argue that, beyond allowing us to sharpen our
inferences about agents and the world, covariation data also
enables us to do one-shot inferences about novel agents. We
show that given minimal covariation data, people can infer ob-
jective and subjective properties of a new agent from a single
event. We show that a model that assumes that agents maxi-
mize utilities matches participant judgments with quantitative
precision.
Keywords: theory of mind; social cognition; computational
modeling

Introduction
In our everyday social interactions, we easily learn aspects of
people that are directly observable. We hear people’s names,
see what they look like, and recognize their jobs. But get-
ting to know someone means much more: what they like,
what they’re good at, and even what they think of themselves.
We invest much of our social interactions gathering observ-
able evidence about these unobservable qualities of others,
and even plan opportunities that serve specifically this pur-
pose such as interviews with applicants or dates with poten-
tial partners.

A growing set of studies suggest that when we reason about
others we assume that they act to maximize the rewards that
they obtain relative to the costs that they incur (see Lucas et
al. 2014 and Jara-Ettinger et al. 2016 for review). If, for in-
stance, we watch an agent walk straight to a coffee shop, we
can infer that getting coffee is rewarding (explaining why the
agent went there) and that walking is costly (explaining why
she took the shortest path). Despite its simplicity, this abil-
ity to reason about behavior in terms of costs and rewards,
called a Naı̈ve Utility Calculus, supports rich explanations,
enabling observers to distinguish between highly motivated
agents (high rewards) and poorly motivated agents (low re-
wards), and supporting reasoning about agents who ignore
goals because of a lack of competence (costs are too high)
and because of a lack of motivation (rewards are not high
enough).

Decomposing behavior into costs and rewards, however,
means that action-understanding is usually confounded, even
in the simplest scenarios. If, for example, an agent jumps over
an obstacle to reach an object on the other side, her behavior

can be explained equally well by appealing to different com-
binations of costs and rewards. The agent may have found
jumping very costly, but the outcome even more rewarding.
Alternatively, she may have found jumping relatively easy,
and the outcome not particularly rewarding. Or she may have
even found jumping rewarding, and not cared about the ob-
ject. To complicate matters further, agents not only incur
costs and obtain rewards, but they also have beliefs about their
own costs and rewards, and these beliefs guide their behavior.
Imagine, for instance, watching a girl pull out a sword from
a stone. While it is trivial to see that her goal was to get the
sword (and that it was therefore rewarding), it is difficult to
determine how much she wanted the sword (was the reward
high or low?), how strong she is (is the cost low for her?),
how difficult it is to pull the sword out (is the cost high in
general?), or what she thought about her own strength before
trying (what did she believe about her own costs?).

The problem of confounded explanations is most obvious
when we only have access to a single event. But in more re-
alistic situations, we often watch different people pursue the
same goal, and we watch the same person pursue different
goals (see, e.g., Figure 1). This covariation most directly al-
lows us to learn about the agent we are observing (Kelley
& Michela, 1980). However, it may also enable us to make
stronger inferences about new agents. Returning to the ex-
ample above, what if you knew that several other people had
already tried to pull the sword out and failed, and that the girl
decided to try anyway? Even though the information about
the girl is the same, you might be more confident about your
inferences in this second case: the girl probably really wanted
the sword (she probably believes that the cost is in general
high), she thought she’d be strong enough to succeed (she be-
lieves that the cost may be lower for her specifically), and she
was right (our observation of her success suggests the cost
was indeed lower for her)!

Here we propose that minimal covariation data about the
outcomes of agents’ goal-directed actions, combined with our
commonsense psychology, enable us to make richer infer-
ences about novel agents. We show that even from a brief
history of actions, people can make powerful joint inferences
about a new agent’s desire, competence, and even beliefs
about their own competence, all from a single action. Below
we briefly review research that motivates our proposal, we
present our theory instantiated as a computational model in
a Bayesian framework, and we then present two experiments
that test our model predictions.
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Agent-dependent and agent-invariant dimensions of
costs and rewards
Costs and rewards are partially objective and agent-invariant
(e.g., a high hill is more costly to climb than a low hill, and
three cookies are more rewarding than one), and partially sub-
jective and agent-dependent (e.g., some are better than oth-
ers at hill-climbing, and some like cookies more than others).
Thus, to effectively explain an event, we not only need to
infer the underlying costs and rewards, but we must also un-
cover what aspects of the costs and rewards are specific to the
agent and what aspects of the costs and rewards are properties
of the world and apply to all agents. Decomposing costs and
rewards into agent-dependent and agent-independent dimen-
sions not only helps us understand the event better. It also
helps us understand new events more easily. If we know what
costs and rewards are specific to an agent, then we can use
this knowledge to explain the agent’s behavior in new events
(e.g. if learn that someone is strong, this helps us interpret
their successes and failures in new events). If we know what
aspects of costs and rewards are properties of the environ-
ment, then we can use this knowledge to make sense of new
agents acting in this familiar situation (e.g. if we learn that a
box is heavy, this helps us interpret the success or failure of
new agents when trying to lift the box).

One-shot learning from covariation information
with a Naı̈ve Utility Calculus
Based on these intuitions, we propose that people rely on co-
variation information to break down costs and rewards into
their agent-dependent and agent-independent components,
and that, with this decomposition at hand, people rely on their
Naı̈ve Utility Calculus to make rich inferences from single
events. Returning to the example above, if we already un-
derstand that getting the sword is difficult to pull out because
many have failed, then, if we a new agent succeed, we can be
sure that it was not because the sword was easy to pull out, but
because the person was strong; an inference that would have
been impossible to make the first time we saw this. Simi-
larly, if the successful agent had already watched others try
and fail, we can assume that she also knew the sword as diffi-
cult to lift, and so she probably thought she has strong enough
to succeed; otherwise, she would not have bothered trying. If
she succeeds, then we can also be certain that she really was
strong.

Recent work suggests that even infants can use covariation
information to infer properties of the world and properties of
agents. When one agent successfully activated a toy twice
but the other failed twice (suggesting one is more competent
than the other), infants attributed their own failure with the
toy to their incompetence and sought help from others; con-
versely, when each agent succeeded twice and failed twice
on the toy, infants attributed their failure to the toy, seeking a
different one instead (Gweon & Schulz, 2011). Furthermore,
older children (4- and 6-year-olds) use covariation informa-
tion between characters and activities to generate different

causal explanations for their behaviors (Seiver, Gopnik, &
Goodman, 2012). For instance, if Sally and Anne both tried
activity A but not B, children were more likely to appeal to
the properties of the activities to explain their actions (e.g.,
A is more fun than B); but when Sally tried both A and B
but Anne tried neither, children appealed more to the char-
acters’ attributes (e.g., Sally is older). Furthermore, children
generalized these explanations to predict whether the charac-
ters would try a new activity, or what another character would
do on the same activities. These results suggest that humans,
even early in life, are sensitive to the covariation informa-
tion embedded in others’ actions: they infer both the relevant
properties of people and the physical world (e.g., toys, activ-
ities) and readily use it to explain their actions.

Similarly, children have a Naı̈ve Utility Calculus by age
five, with some form of it tracing back to infancy. Even in-
fants have some expectation that agents navigate efficiently
(Csibra, 2003) and that this expectation reflects some under-
standing of cost minimization (Liu & Spelke, 2016). Also be-
fore their second birthday, children understand that both com-
petence and rewards vary across agents (Repacholi & Gopnik,
1997; Jara-Ettinger, Tenenbaum, & Schulz, 2015). And by
age five, children can explicitly explain behavior by inferring
the unobservable costs or rewards, given partial information
(Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016).

As reviewed above, the two main accounts that our pro-
posal relies on -understanding covariation, and having a
Naı̈ve Utility Calculus- are both available early in life. Al-
though our goal here is to explore this possibility with adults,
the developmental research suggests that the abilities our ac-
count requires are likely central to social reasoning as they
can be traced to our first years of life. The next section de-
scribes our computational model that formalizes these intu-
itions. We use the model to obtain quantitative predictions
and compare them against empirical data across two experi-
ments. In Experiment 1 we test if our account explains how
we jointly infer properties about agents and the world us-
ing covariation information, and how this past information,
in turn, supports one-shot learning of objective and subjec-
tive properties of novel agents. Because participants in Ex-
periment 1 explicitly make judgments about the covariation
in formation, in Experiment 2 we test if this step is critical
for people to integrate this information when reasoning about
new agents.

Computational modeling
In order to test our predictions more formally, we imple-
mented a computational model of our account and a simple
alternative model that ignores the covariation data when in-
ferring properties of the new agent. The principles of our
model apply to any situation in which the outcome of events
depend jointly on properties of agents and properties of the
world; here, we describe it in the context of our experimental
paradigm (see Procedure section in Experiment 1 and Figure
1), where agents with different levels of strength attempt to
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lift boxes of different weighs in order to obtain rewards.

Naive Utility Calculus model
Our implementation is a simplified variation of the Naı̈ve
Utility Calculus model (Jara-Ettinger, Schulz, & Tenenbaum,
2015). Whereas the past models were designed to reason
about agents navigating in two-dimensional environments,
this model is adapted for reasoning about agents making
choices without any spatial information (along the lines of
(Lucas et al., 2014)). For a single event, the agent’s strength
and the box’s weight are inferred using Bayesian inference:

p(W,S|O) ∝ p(O|W,S)p(W )p(S) (1)

where W is the weight of the box, S is the strength of the
actor, and O is the observed outcome (success or failure). For
simplicity, we use a deterministic likelihood function where
agents can successfully lift a box only when their strength is
higher than the box’s weight. As such, we represent strength
and weight using a common scale, using real values ranging
from 0 to 1.

By providing covariation information, where agents in-
teract with different boxes, Equation 1 enables observers
to break down events into agent-dependent (strenght) and
agent-invariant (weight) components. With this information
at hand, when we watch a single event from a new agent
(henceforth the one-shot agent), we compute her preference
by relying on the assumption that she is attempting to max-
imize her subjective utilities (see Introduction). An agent’s
expected utility for any given box is given by the reward as-
sociated with the box times the probability that the agent will
be able to retrieve it. As such, an agent’s choice reflects a
trade-off between the magnitude of the reward, and the prob-
ability that the agent will be able to get it if she tried. Given
a choice C, the posterior probability of the agent’s underlying
preferences is given by

p(P|C) ∝ p(C|P)p(P) (2)

where P represents the rewards associated with each op-
tion. For simplicity, we assume that the observer has a uni-
form prior over the agent’s preferences (p(P)), and we com-
pute p(C|P) by integrating the observer’s prior belief over the
actor’s strength:

p(C|P) =
∫

S
p(C|P,S)p(S), (3)

where S is the agent’s strength, and C is the agent’s choice.
This intermediate term, p(C|P,S), integrates the assumption
that the agent is attempting to make choices that maximize
her utilities. Finally, the one-shot agent’s objective strength
is also computed using equation 1.

Alternative model
To test the role of the past covariation information in the final
(one-shot) trial, we implemented a simple alternative model.
In this baseline model we assume that participants ignore the

covariation information and make all judgments about the
one-shot agent using that event alone. As such, this model
is computationally equivalent to the main model, as it relies
on Equations 1-3 to reason about the agent, but it does not use
the covariation data to sharpen its estimates.

Experiment 1
To test our hypothesis that people can use past observations
of multiple agents to make one-shot inferences about a novel
agent, we designed a behavioral experiment where partici-
pants received covariation data about three agents, each of
whom attempted to lift four different boxes (see Figure 1).
Next, participants watched a single agent choose one of the
boxes and either succeed or fail to lift it. After this single
event, participants were asked to infer three properties of the
agent: her preference, her beliefs about her own strength, and
her true strength.

Methods
Participants 100 adults participants (mean age = 35.95;
range: 19-70) from the US (as determined by their IP address)
were recruited using Amazon’s Mechanical Turk framework.
Participants were randomly assigned to one of 10 conditions
(see Procedure).

Procedure Participants read a brief story that consisted of
two parts. In the first part (Part 1 in Fig.1), participants
learned about a game where, if players could successfully lift
a box, they were allowed to keep its contents. Next, partic-
ipants learned about three players (Circle, Rhombus, Trian-
gle) who played with different boxes. There were five boxes,
but the agents only had four coins and interacted with just
the first four (Candy, Teddy Bear, Rubber Duck, and Base-
ball boxes); no one interacted with the fifth box (Yoyo box)
and no mention was made about it other than stating that it
was an option. For each action of each agent, participants
learned whether the agent succeeded or failed; the first agent
(Circle) sequentially tried the four boxes (in fixed order as
shown in Figure 1), followed by the second (Rhombus), and
then the third (Triangle). After each attempt, the cumulative
outcomes were summarized visually as in Figure 1. After ob-
serving this covariation data, participants were asked to de-
termine how heavy each box was and how strong each agent
was. Both types of questions were answered on a numerical
scale ranging from 0 to 9. In the weight questions, 0 indicated
very light, 5 indicated average, and 9 indicated very heavy. In
the strength questions, 0 indicated very weak, 5 indicated av-
erage, and 9 indicated very strong.

In the second part of the task (Part 2), participants learned
about a fourth agent (Square) who had also watched the other
three agents. Participants learned that this final agent only
had enough money to play the game just once. Participants
were then shown which box (of the five) the agent selected,
and whether she succeeded or failed in lifting it. Crossing
agent’s choice (5 boxes) and outcome (success or failure) pro-
duced 10 conditions, to which participants were randomly as-
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Part 1

Part 2

Figure 1: Visual summary of the experiment. Participants
were introduced to four agents and five boxes. The first three
agents (the square, rhombus, and triangle) interacted with the
first four boxes (but not the fifth box). In Experiment 1, af-
ter observing these trials (and before seeing the final agent),
participants were asked to rate the relative strength of these
three agents, and the relative weight of the four boxes. In
the second part of the experiment, the final agent (the square)
chose one of the five boxes and either succeeded or failed
to lift it (producing a total of 10 conditions that we tested
across participants). Participants were then asked to deter-
mine this agent’s preference, strength, and beliefs about her
own strength when she made her choice.

signed (see Part 2 in Figure 1). Participants were then asked
three questions in the following order. First, participants were
asked to rate how much the agent wanted the object in the box
using a scale from 0 (”not at all”) to 9 (”very much”); Pref-
erence. Second, they were asked to rate the agents strength
on a scale from 0 (”very weak”) to 9 (”very strong”); True
Strength. Third, participants were asked to rate the agent’s
beliefs about their own strength on a scale using an identi-
cal scale to the one used in the second question (Perceived
Strength).

Results
Participants’ responses from the experiment were z-scored
within response type (preference inferences, weight infer-
ences, and strength inferences) and then averaged across par-
ticipants.

First, we looked at people’s use of covariation data by
looking at their inferences about agents’ strength and boxes’
weights from Part 1. The model provided very high quan-
titative fits (Figure 2). On the joint inference over strength
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Figure 2: Overall results from Experiment 1. The x-axis
shows the model predictions and the y-axis shows participant
judgments. The left plot shows inferences obtained from the
covariation data (see Figure 1). The right plot shows infer-
ences made from the one shot event.

and preference for the first set of agents (see Part 1 in Figure
1), the model showed a correlation of r=0.99 with participant
data (95% CI: 0.99-1.00).

Having verified that participants attended to the covariation
data in Part 1 and accurately inferred the boxes’ weight and
the agents’ strength, we then looked at whether participants
made used this information when interpreting the event from
the one-shot agent in Part 2.

Qualitatively, the results from the one-shot learning trial
were as expected (see Figure 3). Participants judgments about
the agents true strength varied both as a function of the box
that she chose, and the outcome. Similarly, inferences about
the agent’s beliefs about her own strength also varied as a
function of the box that she chose to lift.

On the joint inferences about the final agents preference,
true strength, and perceived strength (Part 2), participant
judgments showed a correlation of r=0.86 with participant
data (95% CI: 0.67-0.94).

By contrast, our alternative model, which used the same
computations but did not learn from the covariation data,
failed to predict the one-shot inferences participants made
about the novel agent. Because the model ignores the co-
variation data, it does not make any predictions about the first
set of agents; thus we only report the fit between the alterna-
tive model and people’s responses in Part 2, about the target
agent. The model showed a correlation of r=0.40 (95% CI:
-0.06,0.71) against participant judgments.

Experiment 2
Experiment 1 established that, when given covariation data,
people can infer a novel agent’s preference, strength, and per-
ceived strength from a single event. In this experiment par-
ticipants were explicitly asked to think about the covariation
data and judge the strength of each agent and the weight of
each box. It is possible that people do not naturally decom-
pose preferences and competence into agent-dependent and
agent-independent features, and this only happens when par-
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Figure 3: Results from Part 2 of Experiment 1. The x-axis
shows the box that the protagonist shows and the y-axis shows
participant’s ratings for the agent’s perceived strength and the
agent’s true strength. Red bars show the conditions where the
agent failed to lift the box, green bars show the conditions
where the agent successfully lifted the box, and the grey bars
show the agent’s self-perceived strength. Judgments are z-
scored within participants and averaged and the vertical bars
represent 95% confidence intervals. People inferred lower
strength when the agent failed relative to when the agent suc-
ceeded, and these inferences depended on the box that the
agent chose.

ticipant’s attention is drawn to the information they can use.
We test this possibility in Experiment 2. Experiment 2 was
identical to Experiment 1 with the exception that participants
were not asked about the covariation data and were just asked
to rate the one-shot agents preference, true strength, and per-
ceived strength.

Methods
Participants 100 adult participants (mean age = 35.51;
range: 20-70) from the US (as determined by their IP address)
were recruited using Amazons Mechanical Turk framework.

Procedure The procedure was identical to Experiment 1
with the exception that people were not asked to judge the
weight of each box or the strength of any of the agents in the
first part of the story (shown in Figure 1).

Results
As in Experiment 1, results from the experiment were z-
scored within response type (preference inferences, weight
inferences, and strength inferences) and then averaged across
participants.

Figure 4 shows the results from the experiment. As in Ex-
periment 1, the model fit participant judgments with high ac-
curacy (Figure 4a). On the joint inferences about the one-
shot agent’s preference, true strength, and perceived strength,
participant judgments showed a correlation of 0.88 with par-
ticipant data (95% CI: 0.72-0.95). Consistent with this, par-
ticipant responses in Experiment 2 resembled the responses
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Figure 4: Results from Experiment 2. (a) Model predictions
plotted against participant judgments. (b) Comparison of re-
sults from Experiment 1 and Experiment 2.

from Experiment 1. Figure 4b shows the comparison between
the results in Experiment 1 and the results in Experiment 2.
The two sets of data showed a correlation of r=0.92 (95% CI:
0.80-0.97).

General Discussion
Inferences about unobservable qualities of others from single
observations are often ambiguous. Across two experiments,
we showed that people can rely on past knowledge to make
strong inferences about new agents from a single action. Con-
sistent with previous research, Part 1 of Experiment 1 showed
that people can decompose ambiguous events into properties
of agents and properties of the world by relying on the covari-
ation structure in the data (Kelley & Michela, 1980; Gweon
& Schulz, 2011; Seiver et al., 2012). We also showed that
these representations about the agents and the physical world
support powerful one-shot inferences in future events. People
accurately inferred an agent’s preferences, their true strength
(competence), and the agent’s beliefs about her own strength,
all from a single event. In Experiment 2, we replicated these
results and showed that people spontaneously make use of
covariation data in new events. Even when people were not
asked to explicitly reason about the covariation in events, they
made the same inferences about the novel agent as the partic-
ipants in Experiment 1.

To test our proposal, we presented a computational model
that jointly infers properties of agents through Bayesian in-
ference over a model of utility maximization. This model
enabled us to generate quantitative predictions and test par-
ticipants’ relative judgments holistically. Overall, we found
that our formalization predicted participant judgments with
high accuracy. In our experiment, inferences about the final
agent were tested across participants. As such, each partici-
pant only watched a single event. Thus, the graded inferences
about the properties of the novel agent (see Figure 3) are not
judgments that are relative to each other, but rather absolute
estimates relative to past experiences.

In our experiments we clarified that the one-shot agent -
the square (see Figure 1)- had seen all other agents. This
assumption is critical for our model, as its inferences about
the agent’s mental states -her preference and her perceived
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strength- rely on the assumption that the agent herself had
some rational estimate of the weight of the boxes.

Intuitively, if the one-shot agent had not seen the covaria-
tion information (and was therefore ignorant about the possi-
ble weight of the boxes or the strength of the other agents),
then her choice would not be as revealing with respect to
the strenght of her preference or her beliefs about her own
strength. Consistent with this intuition, our model predicts
that if the agent did not see the other agents interact with the
boxes, participants should continue to infer the agent’s true
strength as a function of the selected box and the outcome,
but they should now infer the same preference independent
of the agent’s choice, and they should be unable to infer her
beliefs about her own strength. Future work may explore this.

Here we focused on cases where participants bring their
knowledge about the world (e.g., weight of boxes) to infer
properties of a new agent. As discussed in the introduction,
people may also bring knowledge about agents they know to
infer new properties of the world. Imagine in our paradigm,
for example, if people saw the covariation data in Part 1 first,
and then in Part 2, one of the agents from Part 1 interacted
with a new box. In this case, our account predicts that people
should be able to infer the agent’s belief about the weight
of the box as well as the true weight of the box from that
event. Our paradigm can be flexibly adapted to explore this
possibility, and future work might test this prediction.

In our experiment, some participants observed the one-shot
agent interact with a new box that no one had tried lifting
before (the yoyo box). Participants’ inferences suggest that
they did not have any prior expectations about the weight of
this box (see Figure 3). In our experiment, we were clear
that all the covariation agents selected the boxes in a fixed
order and they only had four coins, explaining why they never
tried to lift the yoyo box. If the agents from the covariation
stage had freely chosen which box to play with, then their
choices would suggest that the yoyo box has a low reward,
or that they thought it was too heavy. In future work we may
integrate choice reasoning into the covariation stage to test
if people can also integrate this information when reasoning
about agents.

One open question is whether the type of account that we
proposed here is specific to the social domain. Although our
model relies on the assumption that agents maximize utilities,
much of the model relies on general principles of Bayesian in-
ferences and inductive generalization. The logic behind these
inferences -finding the causes of confounded events, and then
using this knowledge to infer hidden causes of new events-
is likely to be common in non-social tasks as well (Kemp &
Tenenbaum, 2009).

In sum, our current work provides a window into the rich-
ness and the complexity of how people reason about others.
Developmental work on Theory of Mind (Wellman & Cross,
2001), and even tests of Theory of Mind used with adults
(Baron-Cohen, Wheelwright, Hill, Raste, & Plumb, 2001),
often rely on inferences about a single, isolated event. How-

ever, it is important to keep in mind that we are constantly
observing others’ actions and their outcomes in the physical
world, and reason about other people who act on the same (or
similar) physical world. Exploring the social-cognitive mech-
anisms that underlie our ability to learn from others to learn
better about others is an exciting direction for future research.
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