
UC Irvine
ICS Technical Reports

Title
Modeling with SpecCharts

Permalink
https://escholarship.org/uc/item/8f2533w3

Authors
Narayan, Sanjiv
Vahid, Frank

Publication Date
1990-07-25

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8f2533w3
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Modeling with SpecCharts ---- ~

Sanjiv NarayaIL - .--------·
FranKVahid

Technical Report #90-20
July 25, 1990

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-7063

narayan@ics.uci.edu
vahid@ics.uci.edu

Abstract
SpecCharts is a language intended for system level description and synthesis. It is based

on hierarchical state diagrams, posseses many constructs designed to facilitate ease of system
level descriptions, and is simulatable via a translator from SpecCharts to VHDL. To test
the feasability of using the language, several examples were modeled using SpecCharts, were
converted to VHDL, and simulated to verify correctness. The details of two of those examples
are provided in this report.

Contents

l Modeling Controlled Counter using SpecCharts
1.1 Controlled Counter Description

1.:2 The SpecChart Model .
1.3 Alternative Model ...

1..1 Simulation and Results .

2 Modeling DRACO using SpecCharts
2.1 DRACO Description and the SpecChart ~iodel

2.1.l State DRACO_TOP

2.1.2 State \.VAIT
2.1.3 State POWER_ON .

2.1.4 State RESET . .
2.1..J State ADDRESS
2.1.6 State WRITE ..

2.1. 7 State READ ..
2.2 Simulation and Results.

1
1

2
;3
3

7

8

9
9

10
10

10
11

12

3 Conclusion 13

4 Acknowledgements 13

5 References 13

A Controlled Counter Appendix 14
A. l Controlled Counter SpecChart textual code 14
A.2 Controlled Counter Test Stimulus File . . . 17

A.3 Controlled Counter Simulation Output . . . 22
A.4 Controlled Counter VHDL Code Generated by SpecChart to VHDL Translator 2.5

B DRACO Appendix : SpecChart textual code 30

List of Figures

1
2
3
4
.s

Block diagram of the Controlled Counter
SpecChart description of the Controlled Counter .

Alternative SpecChart description of state Counter
Block Diagram of the DRACO chip

SpecChart of the DRACO chip (only top-level shown)

List of Tables

1
2

Lines of code for various Controlled Counter models, including generated VHDL
Lines of code for various DRACO models, including generated VHDL

1
.5

6
7
8

4
12

1 Modeling Controlled Counter using SpecCharts

This section describes the SpecChart representation of the Controlled Counter [Arms89].
Though SpecCharts are intended to specify complex systems at an abstract level, this section
demonstrates the language's ability to model at a somewhat detailed level.

1.1 Controlled Counter Description

The Controlled Counter can count up or down on each rising clock. to a specified limit, and
can be asynchronously cleared. It can be thought of as consisting of 3 main components (see
figure 1). CONVAL stores the CON value and outputs its decoded signal indicating what
the controlled counter should do next. LIM is a register whose \·alue is used by the counter
to determine when to stop counting (when the limit has been reached). COUNTER is the
component that actually contains the current count value and performs the incrementing or
decrementing based on CONVAL. LLvf, and the clock input, and outputs this register as the
controlled counter's count output.

CLK

CON 1 CON REG l

s TRB Counter -
D 1ATA --f - CNT_ OUT

.L LIM J

Figure 1: Block diagram of the Controlled Counter

\Vhen the STRB (strobe) input is rising, CON is stored. The controlled counter will then
perform one of the folJowing actions based on the stored value of COT\:

• "00'' Clear (current count becomes 0)

• "01" Load the limit with the value on the DATA input line on the falling edge of
STRB

• "10" Count up on rising clock unless limit is reached

• ·'11" Count down on rising clock unless limit is reached

Note that any sequence and combination of count ups, count downs, limit loads. and
clears are allowed, permitting rather strange sequences such as loading a limit of 7, counting
from 0 to 3, changing the limit to 1, and then counting from :3 on up. An alternative design
might require that the limit be reached before a new limit can be loaded; this might capture

1

the true intention of usage a.nd would result in a much simpler specification. However this
design is not considered here as our purpose is to model the same design as in [:\.rms89].

Several timing details of the counter's operation are included in the SpecChart. See
[Arms89. LiGa.89] for a description of those details and for another description of the con­
trolled counter's operation.

1.2 The SpecChart Model

Figure 2 shows the SpecChart specification of the controlled counter. The description above
gave three main functions that must be performed: loading and decoding CO.\. loading LIM,
and counting. There are two other functions needed: updating the output ports to reflect
the internal count value, and generating an internal enable signal which disables counting
if the limit has been reached. This implies the controlled counter can be modeled by five
concurrent substates, one for each function. Each of the five states is now briefly discussed.

• Decode- Loads the condition register CO.\REG with CON. then generates a decoded
signal CO:\SIG. It will do this whenever STRB is rising.

• LoadJimit- Loads the limit register LI.\1 when CO.\SIG 1s '"0010 .. :\'.'JD STRB
is falling. The wait statement used is u·ait on STR B until STRB= ·a· and CON­
SIC(1)= 'J'. There is a VHDL intricacy to note here. The on STRB can not be om­
mit ted, since then by default VHDL would add on STRB.CO.\SIG, which is incorrect,
since a change on CONSIG can not trigger the loading of LI'.'vL

• Update_enable- Generates an enable signal EN which disables counting if the current
count value equals the limit. The code waits on a change of the count or the limit,
which are the only two things that could change EN. The wait statement occurs at the
end of the loop so that the EN signal is initially generated. This is how a concurrent
signal assignment is done with SpecCharts, which only permits sequential code. Note
that if there was no delay involved with the EN signal as there is now. then the EN
signal would always be equal to C NT/ = LIM and thus could be replaced by this
expression. Note that we have replaced the ENIT and Cr\T_CLR signals used in the
[Anns89, LiGa89J VHDL models, since they do not simplify the SpecChart description.

• Update_output- Ensures the controlled counter's output C~T_OCT always reflects
the internal count CNT (essentially a concurrent signal assigment).

• Counter- This is the most interesting state as it performs the actual counting.
Counter can be thought of as always being in one of two states. either performing
count operations or performing an asynchronous clear. It thus consists of two sequen­
tial substates, Count and Clear. The default initial state is Count: if at any time
CO.'.'iSIG is "0001", CNT must be immediately cleared (actually after a small delay).
This is accomplished by an Exit-immediately arc flowing to state Clear. which resets
the count value to 0. The 'after 5 ns· clause in Clear not only delays the clearing for 5
ns, but also creates a 5 ns hold time for the clear to occur (otherwise by definition of
an EI arc CNT would not get updated).

2

When the Count state is active. it can be in one of three states, either counting up,
counting down, or waiting for the next count operation. \'ote that wait..state demon­
strates one use of a state with a single null statement. This is a common occurence in
SpecCharts.

From the above description. it is clear that the signals CO~SIG, LIM. C~T, and EN
must be declared somewhere. They are declared along with the ports in the topmost state,
Controlled_counter, whose declarations are global over all substates. The declarations assume
the existence of a nibble subtype, declared as bit_vector(3 downto 0). This is included in a
package that is passed to the translator and thus added to the final VHDL code.

1.3 Alternative Model

A model was also developed which was identical to that given above except for the
Counter state. The Counter state's functionality was described with code, rather than with
sequential substates. The code was similar to that found in block CNT _UP _QR_DOWN in
[Arms89, LiGa89] (see figure :3 for Counter's code). This resulted in less SpecChart code,
but we feel using sequential substates and arcs enhances the understandability of the model.

1.4 Simulation and Results

The SpecChart description was simulated to verify correctness. Since the full graphical in­
terface for SpecCharts does not exist. we entered the design using our current graphical
interface, an X widget based system. The design is then written to a file in a completely
textual representation. ·we then invoke our SpecChart to VHDL translator, which automat­
ically generates a simulatable VHDL entity (included with this report). We create a new
vhdl file which merely instantiates the counter entity and then drive its ports, checking for
correct output. The stimulus file used was written to not just test our controlled counter
specification, but also all other CADL..:\B VHDL descriptions of the controlled counter. The
textual SpecChart code, stimulus file; simulation output, and the VHDL code generated by
the translator are all included in the appendices of this report. Note that the simulation
output shows that all of the self-checking assertions in the stimulus file were successful.
Simulation results were identical for both models introduced above.

The SpecChart to VH D L translator ran in .3 seconds on a Sun 4. Table 1 shows the
number of lines of text needed for various models, including the VHDL generated automat­
ically by the translator. The bigger size of the generated VHDL code is attributable to
a large extent to the sequential substate based SpecChart description, as opposed to the
handwritten datafiow and process descriptions. This is verified by the shorter length of the
alternative SpecChart's generated VHDL code.

SpecCharts are intended for system level specification and :;ynt hesis. The example dis­
cussed in this section is certainly not system level, and it is thus questionable whether or not
one would want to intensi\·ely use SpecCharts at this level. However, two important points
concerning SpecCharts are demonstrated by the example. First, synthesis will add much
detail to the specification, so the language should have the ability to represent this detail.

3

.'vfodd Line1 of cotl<
SpecChart model (sequentia.l substa1 "'s Counter) 67
Anru;trong's mixed block/process description 81
Lis' data.flow description 52
Lis' process description 71
SpecCha.rt textual files (created by SpecChart X application) 139
VHDL generated by SpecChart to VHDL translator 271
Alternative SpecChart model (using •:ode for Counter) 57
Alternative SpecChart textual files 105
VHDL generated by translator for alten1ative model 158

Table 1: Lines of code for vanous Controlled Counter models, including generated VHDL

Second, a SpecChart description is easier to understand than a VHDL description, so might
be useful \Vhen ease of understanding is important.

4

Controlled_counter
declamtwns:

port CLK, STR8 in bit, function rising (signal s f..1t :i r,.,turn boolean 1s
be gm port CON IO bit_ vector(1 downto O'i,

port DATA IO nibble;
port CNT _OUT , out nibble,
signal CONSIG , nibble:
signal LIM nibble:

return (s:'l' and s 1evo::-ntl:
end;

signal CNT nibble:
signal E'.'I · boolean,

Counter

Count

CO:'-:SIG\21='1' and E:-;
and risIOgr CLK)

CounLup
C='IT <= C'.'IT + 8

CONSIG(3i='l' and E:\
and nsmg(CLK I

co:-;sIG(OJ='l' not(CONSIG(O)='l l

Clear
CNT < = 8 "0000" after 5 ns;

---------------Decode
declarations,variable C01'REG b1t_vector(1 downto 0

loop
wait on STR8 until STR8='1' - nsIOg;
CONREG = CON:
case CO'.'IREG is

when "00" => CONSIG <= 8"0001" after 5 ns;
when "01" => CONSIG <= 8"0010" after 5 ns;
when '10" => CONS!G <= 8"0100" after 5 ns:
when "11" => CO:"SIG <= 8"1000" after 5 ns,

end case;

en.g_Jo~;

Load-1imit
loop

~------------update _en<1 ble
loop

EN<= C'."T/=Ll:O.I alter 10 ns; I wait on CNT,LIM:
end loop; t-------------1 Update_output
loop

I CNT_OUT <= C'."T,
wait on C:"T,

.L end loop: -----------
wait on STR8 until STR8='0' and CO'.'\SIG(1 I= 'l '; - STR8 falling
Ll:O.l <=DATA after 10 ns,

end loop:

Figure 2: SpecChart description of the Cont rolled Counter

5

Counter

loop
wait until CO>ISIG(O)='l' or CLK='l ';
if CO.\"SIG(O)='l' then

CNT <= B "0000" after 5 ns;
elsif CONSIG(2)='1' and EN then

CNT <= CNT + 8"0001'' after 12 ns;
elsif CONSIG(3)='1' and EN then

CNT <= CNT - B"OOOl~ after 12 ns;
end if:

end loop;

Figure 3: Alternative SpecChart description of state Counter

6

2 Modeling DRACO using SpecCharts

This section describes the modeling of the 1781 discrete I/O backplane custom integrated
circuit, DRACO. using the SpecCharts language. DRACO is described and the model is
explained, followed by the simulation results.

2.1 DRACO Description and the SpecChart Model

The block diagram of the DRACO chip is shown in Figure 4. The SpecChart model of the
DRACO chip is shown in Figure 5. Details of the operation of the DRACO chip can be
found in [GuDu90, Rock89]. The SpecChart consists of an two-level hierarchy of states.

POWER

CE..L
RESET..L

ALE

WR!TE..L

READ..L

ERROR_L

PARITY

ADDR..DATA...BL'S

.. CONFIGURATION I ADDRESS LATC~ l ELECTRONj .. KEY and STATUS
REGISTER .. I PARITY LATCH I • .. l MSB 10..DIRIECTION J l MSB OUTPUT BL'FFER I

REGISTER -.
..._ l LSB 10..DIRIECTION J I LSB OUTPUT BL'FFER I - REGISTER • rs.

Figure 4: Block Diagram of the DRACO chip

- 16
_L ,

MSB a nd LSB
us IO-.B

The state DRACO_TOP consists of six sequential substates - POWER_ON, RESET,
ADDRESS. READ, WRITE, and a WAIT state. Each of these states is a leaf state i.e. have
no further substates but contain sequential VHDL statements. The actions carried out in
each of these states are discussed below.

The following types have been defined and made available to the DRACO SpecChart -

type switch is (off,onn)
'

type key is (off, mid, onn);

subtype MSB is BIT_VECTDR (15 downto 8)
subtype LSB is BIT VECTOR (7 downto 0)

7

2.1. l State DRACO_ TOP

DRACO

declarations :

port PO\VER : in switch ;
port CLL : in bit ;
port RESET ..L : in bit :
port ALE : in bit ;
port WRITE..L : in bit ;
port READ-1 : in bit ;
port ERROR..L : out bit
port PARITY: inout bit
port ADDR_DATA...BUS inout LSB ;
port MSBJ.O...BUS: inout MSB;
port LSBJ.O...BUS: inout LSB ;

WAIT

RESET

POWER_ON and CHIP ..ENABLED

signal ADDR_LATCH: LSB :
signal PARITY.LATCH: bit;
signal CONFIG.STATUS_REG : LSB :
signal MSB....BL"F : ~iSB ;
signal LSB_Bl'F : LSB ;
signal MSBJ.O.J)IR_REG : MSB :
signal LSBJ.O.J)IR_REG : LSB ;
signal EKEY : key := off;

variable MSB_ff : MSB :
variable LSB_FF : LSB ;

WRITE

POWER_ON and CHIP.ENABLED
and WR_L(falling)

and RD_L(falling)

READ

and ALE(fallin,_g.._l _........._ ___ _

ADDRESS

Figure .5: SpecChart of the DRACO chip (only top-level shown)

The outermost state, DRACO_TOP, contains all the declarations of the external ports and
internal data structure like registers and latches. The following ports are defined for com­
munication externally -

POWER

CE_L
RESET_L

Port indicating power-up of the chip. \\'hile POvVER does not
exist as a pin on the DRACO chip, to keep the model simple, it
has been declared as a port to replace the VDDO, VDDL VSSl
and the 6 VSSO pins. The POWER port has type switch.
Chip Enable pin
Reset pin

8

ALE
WRITE-1
RD-1
ERROR-1
PARITY
ADDR_DATA..Bl·s
MSBJO_BCS
LSB-10_BUS

Address Latch Enable pin
Write pin
Read pin
Error pin
Parity pin (bidirectional)
8 bit bidirectional bus
High order byte of the 16 bit bidirectional IO bus
Low order byte of the 16 bit bidirectional IO bus

The DRACO_TOP state also declares certain registers and latches, internal to the DRACO
chip. These data structures are -

ADDR_LATCH

PARITY _LATCH
CONFIG-5TATUS.REG

MSB_BUF, LSB_BUF

MSB...FF, LSB...FF

MSBJO_DIR..REG,
LSB-10.J)IR.REG

EKEY

2.1.2 State WAIT

Address latch. stores the address within DRACO which will
be written to or read from.
Parity Latch, stores the parity of the address stored
ConfigurationStatus register, used to write and read
error-checking enabling operations and status information.
High and Low order byte output buffers, store data temporarily
when checksum error-checking operations are enabled.
These flip flops hold the inverted value of the output buffers
during a write operation

High and Low order byte direction registers, used to
set DRACO ports for read-only or bidirectional operation
3-stage Electronic Key, prevents unauthorized applications of
DRACO and ensures.integrity of rnnfiguration and direction
registers.

This state is the initial substate of the state DRACO_TOP. As the name implies it only
serves as a temporary state for transitions between the other substates (PO\\,.ER, RESET,
ADDRESS, WRITE and READ). On completion. each of these states transfer control to
the state WAIT.

2.1.3 State POWER_ON

This state waits for power-up and then sets the ADDR-1ATCH to FFH, and clears the IO
direction registers.

9

-------- - ------
,_ ---- ------~--

2.1.4 State RESET

The RESET state waits for a. low on the RESET _L pin of the DRACO. It then clears the
latche~ ADDR--1ATCH and PARIT'{__LATCH, the status register CONFIG-5TATUS...REG,
the output buffers MSB_BUF and LSB__BCF, and the direction registers MSBJO_DIR_REG
and LSB_IO__DIR-.REG.

Tht> ERROR__L pin is set to high. The electronic key, EKEY. is set .to the ''off' position.

2.1.5 State ADDRESS

The ADDRESS state latches the ADDR__LATCH and the PARITY __LATCH on a high to
low transition on the ALE pin of the DRACO chip.

2.1.6 State WRITE

The WRITE state waits for a low ro high transition on the \\"R_L pin. It then examines the
latched address for a parity error if the address parity checking option had previously been
enabled. Next. if the data parity checking option of the ORA.CO was enabled, the parity of
the data byte received is checked.

The vVRITE state does the following. depending upon the address being written to -

SOH If the data byte is AAH and EKEY is not already ''on", it is set to position
''mid''. If however the data byte is not A.AH. the EKEY is set to "off".

7FH If EI\.EY is "on", if the data byte is .S.SH, then the data is unlocked else
if the data byte being written is A.AH, then the configuration is unlocked.
If the EKEY was in the "mid" setting and the data byte is .S.SH, then the
EI\EY is set to "on" else it is set to the "off· position.

OFH Clears the latched interrupt, the ERROR--1 pin is set to 'l'.
04H If the EKEY is in the unlocked configuration position, the high order

byte of the IO direction register is written to. This configures the high
order IO ports as bidirectional or input only. The data on the ports

03H If the EKEY is in the unlocked configuration position. the low order
byte of the IO direction register is written to. This configures the low
order IO ports as bidirectional or input only.

02H If ther EKEY is in the unlock configuration position. a write to this address
will cause the three lower bits of the data byte to be written into the
configuration register . These bits select the error checking options.

OlH If the checksum error checking is Pnabled. the data byte will be written
to the high order byte output buffer. \ISB-BrF. else to the high order byte IO ports
will be updated. Since the IO ports are actiw· lo\\'. the value of the data in
the output buffers is inverted

OOH If the checksum error checking is enabled, the data byte will be written
to the low order byte output buffer, LSB_BCF. t>lse to the low order byte IO ports
will be updated. Since the IO ports are actin· low, the value of the data in
the output buffers is inverted

10

OEH If the checksum error checking is unabled. the inverted checksum of the
date in the output buffers is computed and compared with the checksum byte
being written. If they are equal, the IO ports are updated from the buffers.

The WRITE state will generate error in the following cases -

• - Parity error 011 a write address

• - Parity error on write data

• - \\'rite to an imzdid address

• - Write to an address locked by the EKEY

• - Invalid checksum write, with checksum mode enabled

• - \\'rite to checksum address, with checksum mode disabled

In case of an error, the ERROR-1 pin is cleared. In all the write operations, the ap­
propriate bits of the CONFIG...STATCS__REG are constantly updated. For further details,
refer to the DRACO data sheet. Even in the where the checksum error checking option is
disabled, a write to the high or low order ports will also cause the output buffers (MSB_BUF,
LSB_BUF) and the flip flops (~'fSB__FF, LSB_FF) to be updated too.

2.1. 7 State READ

A high to low transition on the RD_L pin activates the READ state. The READ state then
examines the latched address for a parity error if the addre ss parity checking option had
previously been enabled. Next, depending on the address of the read operation, the READ
state does the following -

OEH Read the inverted checksum of the high and low bytes of the output buffers
04H Read the high order byte of the output buffer
03H Read the low order byte of the output buffer
02H Read the status register, CONFIG-5TATCS_REG
OlH Read the high byte of the IO port
OOH Read the low byte of the IO port

All the data being read is routed through an internal data bus (I~TERNALDBCS)
before being output to the ADDR__DAT:.\J3t'S. In all the above read operations, the RE:\D
state also places the appropriate parity bit on the PARITY pin. If an attempt is made from
an im·alid address. DR . .\CO will output its internal data bus with an incorrect parity on the
PARITY pin. The READ state will generate error in the following cases -

• - Parity error on a read address

• - Read from an invalid address.

The complete SpecChart model of the DRACO is given in appendix B.

11 i

I
I

I

2.2 Simulation and Results

The SpecChart was entered in the same manner as the Controlled counter. The test pattern

file (approx. 23,000 lines) which was used to verify the completeness and correctness of the
SpecChart model of DRACO was supplit'd by Rockwell Corporation. The test vectors were
identical to the ones used by Rockwell to test the chip designed by them. Since the test
vectors were in the VTI format, a parsf'r was developed to translate it to VHDL process
sequential statements.

:.\ VHDL file instantiated the DRACO entity produced by the translator and used the
test vectors to drive its ports, checking the outputs for correct behavior. The results of the
simulation confirmed the completeness and the accuracy of the SpecChart model of DRACO.

Model Lines of code

SpecChart model of DRACO 226
(Gu0u90] VHDL description of DRACO 392
SpecChart textual files of DRACO 268
VHDL entity generated by SpecChart lo VHDL translator for DRACO 506

Table 2: Lines of code for various DRACO models, including generated VHDL

The SpecChart code for the DRACO is in appendix B. Table 2 shows the number

of lines needed for various DRACO models, including the automatically generated VHDL
model. The number of lines of SpecChart code needed to specify the data structures needed,
functionality of the states, and state transitions was 226. A manually generated VHDL de­
scription [GuDu90) of the DRACO had :3SJ2 lines of VHDL code. Thus unlike the handwritten
VHDL model, the SpecChart specification was more concise since control and sequencing
information did not need to be explicitly specified.

Howevever, when the DRACO SpecC'hart was translated to VHDL, the resulting code
consisted of .506 lines. Thus while a SpecChart description may be more concise than a pure
VHDL description, the code produced by the SC_toVHDL translator may be large. The
tran~lation of the SpecChart to VHDL took approximately 3 seconds. The compilation on
Zycad simulator of the DRACO entity took 3 seconds, and compilation of the 23,000 line
Rockwell test vector file required 9 mim1tes. The simulation then takes about 2 minutes.

12

3 Conclusion

This report provided two detailed examples of SpecChart models. The examples proved
that SpecCharts can be used to concisely model designs, which can then be verified via the
VHDL translator. They demonstrated that the concept of a high-level language built on top
of VHDL is beneficial for the modeler and does not decrease the efficiency of the simulation.
Neither of the models were at the system level, and thus the differences in the sizes of the
SpecChart models compared to the handwritten VHDL models were not extremely large.
However, even at the given level, the SpecChart models were somewhat more concise, and
we feel much easier to understand.

4 Acknowledgements

This work was supported by the National Science Foundation (grant #MIP-8922851) and
the Semiconductor Research Corporation (grant #89-DJ-146). We are grateful for their
support. The authors of ths report would like to thank Bob Larsen, Johnny Sitou, and Dave
Pasella of Rockwell Corporation for their help in providing us the details of the DRACO
chip and making available the DRACO test vector file. We would also like to thank Joe Lis,
Tedd Hadley, and Rajesh Gupta for their advice and suggestions.

5 References

[Arms89] Armstrong, J., "Chip Level Modeling Using VHDL", Prentice-Hall, 1989.

[GuDu90] Gupta, R., and Dutt, N., "Behavioral Modeling of DRACO: A Peripheral In­
terface ASIC", University of California, Irvine, Technical Report 90-13, June
1990.

[LiGa89] Lis, J., and Gajski, D.D., "Structured Modeling for VHDL Synthesis", Univer­
sity of California, Irvine, Technical Report 89-14, June 1989.

[Rock89] Rockwell International, "DRACO Engineering Report", April 1989.

[VaNaGa90a] Vahid, F., Narayan, S., and Gajski, D.D., "Synthesis from Specifications",
University of California, Irvine, Technical Report 90-03, January 1990.

[VaNaGa90b] Vahid, F., Narayan, S., and Gajski, D.D., "SpecCharts: A Language for Sys­
tem Level Specification and Synthesis", University of California, Irvine, Tech­
nical report 90-19, July 1990.

13

A Controlled Counter Appendix

A.1 Controlled Counter SpecChart textual code

state
{

}

naae {Clear}
code

CIT <= 8"0000" after 5 ns; }

state
{

}

name {Controlled_counter}
declarations
{

port CLI : in bit;
port STR8 : in bit;
port COi : in bit_vector(1 dovnto 0);
port DATA : in nibble;

}

port CIT_OUT : out nibble;
signal COISIG : nibble;
signal Lift nibble;
signal CIT : nibble;
signal El : boolean;
function rising_fct (signal s

begin
return (s='1' and s'event);

end;

concurrent substates
{

}

Counter : ;
Decode : ;
Load_limit :
Update_output
Update_enable :

bit) return boolean is

state
{

}

naae {Count}
sequential substates
{

}

llait_state :
(EI, COISIG(2)='1' and El and rising_fct(CLI), Count_up),
(EI, COISIG(3)='1' and El and rising_fct(CLI), Count_dovn);

Count_up : (EOC, true, vait_state);
Count_dovn : (EOC, true, llait_state);

state
{

}

}

naae {Count_dovn}
code
{ CIT <= CllT - 8"0001" after 12 ns;

state
{

naae {Count_up}
code

14

CllT <= CllT + 11"0001" alter 12 ms;}

state
{

nuie {Counter}
sequential substates
{ Count (EI, COISIG(O)a't', Clear);

Clear (EI, not(COISIG(O)='l'), Count);

}

state

}

name {Decode}
declarations
{ variable COIREG
code

bit_vector(l doGnto 0) ;}

{ loop

}

Gait on STRB until STRB='1 ';
COJ!REG : = COi ;
case COIREG is

Ghen "00" =>
COISIG <= 8"0001" after 5 ns;

'1hen "01" =>
GOISIG <= B"0010" a.fter 5 ns;

'1hen "10" =>
COISIG <= 8"0100" after 5 ns;

lilhen 11 11 11 =>
COISIG <= B"lOOO" a:fter 5 ns;

end case;

end loop;

state
{

}

name {Load_conval}
code
{ loop

}

Gait on STRB, COi until STRB='l';
COIVAL <= COi a:fter 5 ns;

end loop;

state
{

}

name {Load_limit}
code
{ loop

}

ilait on STRB until STRB='O' and COISIG(l)='l';
LIM <= DATA a:fter 10 ns;

end loop;

state
{

}

name {Update_enable}
code
{loop

El <= CIT/=LIM a:fter 10 ns;
Gait on CIT,LIM;

end loop;}

state

15

{

}

n .. • {Update_oatpat}
code
{ loop

}

CIT_OUT <• CIT;
vait on CIT;

end loop;

state
{

}

nuie {vait_state}
code
{null; }

16

A.2 Controlled Counter Test Stimulus File

fih: si111. vhd
authors: Frank Yallid, S&njiv Iara.JUI
desc: provides simple functionality verification of the Controlled counter

uses bit_vector inputs, requires bit functions package
notes: •This file uas originally vritten for aodals using integers instead

of bit vectors. It has been converted to vork for bit vectors, but
therefore looks a little funny since it tracks the integers and
converts them, &11d vic•-versa.

• uses 'dovnto' bit vector direction, the a.greed upon CADLAB standard.

-- date: 6/20/90

use vork.bit_functions.a.11;

entity E is
end;

architecture A of E is
component Controlled_counterE

port (

) .

CLK
STRB
COi
DATA
CllT _OUT

end component;

signal CLK
signal STRB
signal COi
signal DATA
signal CIT_OUT
signal COlbv
signal DATAbv
signal CIT_OUTbv

in bit;
in bit;
in bit_vector(O to 1);

in bit_vector(O to 3);

out bit_vector(O to 3)

bit;
bit;
integer range 0 to 3;
integer range 0 to 15;
integer range 0 to 15;

bit_vector(O to 1);

bit_vector(O to 3);

bit_vector(O to 3);

for all : Controlled_counterE
use entity vork.Controlled_counterE(Controlled_counterA);

begin
CC : Controlled_counterE port 111ap (CLK, STRB, COlbv, DATAbv, CIT_OUTbv);

track the integers/bit_vectors, convert to bit_vectors/integers
COlbv <= IIT_TO_Bil(COl,2);
DATAbv <= IIT_TO_Bil(DATA,4);
CIT_OUT <= Bil_TO_llT(CIT_OUTbvl;

process
begin

liait for 1 ns;
CLK <=transport '0';
vait for 49 ns;
CLK <=transport '1';

end process;

process
begin

vait for 30 ns;

17

start off 11ith siaple teat of res&t, count up, &11d count do11n, and liait

-- reset tho count•r
COii <• 0;
STIUI <2 '1' after 10 na, '0' after 20 ns;
11ait for 50 ns;
assert (CIT_OUT=O) report "ERRORl: CllT_OUT not reset to O";

t=80

load the Lil'IIT
DATA<= 2;
COii <= 1;
STRB <= '1' after 10 ns, '0' after 20 ns;
11ait for 50 ns;

t=130

-- count up
COii <= 2;
STRB <= '1' after 10 ns, '0' after 20 ns;
11ait for 50 ns;
assert (CIT_OUT=1) report "ERROR2: CllT_OUT not incremented to 1";

t=180

-- count up again
11ait for 50 ns;
assert (CIT_OUT=2) report "ERROR3: CliT_OUT not incremented to 2";

t=230

count up, should not increment since hit liait
iait for 50 ns;
assert (CIT_OUT=2) report "ERROR4: CIT_OUT should have hit limit at 2";

t=280

count do11n, should not decrement since hit limit
COi <= 3;
STRB <= '1' after 10 ns, '0' after 20 ns;
11ait for 50 ns;
assert (CIT_OUT=2) report "ERRORS: CIT _OUT at limit, shouldn't change";

t=330

load the Lil'IIT
DATA <= O;
COi <= 1;
STRB <= '1' after 10 ns, '0' after 20 ns;
wait for 50 ns;

t=380

count do11n
COi <= 3;
STRB <= '1' after 10 ns, '0' after 20 ns;
liait for 50 ns;
assert (CIT_OUT=1) report "ERROR6: CIT_OUT not decremented to 1";
-- t=430

do some extensive testing of the counter's limit handling
-- set limit to 13
DATA <= 13;
COi <= 1;
STRB <= '1' after 10 ns, '0' after 20 ns;
liai t for 50 ns ;·

t=480

-- reset the counter
COi <= O;
STRB <= '1' after 10 ns, '0' after 20 ns;
liait for 50 ns;
assert (CIT_OUT=O) report "ERROR7: CIT_OUT not reset to O";

18

-- count up to 13
COii <= 2;
STRB <s '1' after 10 ns, '0' after 20 ns;
for i in 1 to 13 loop

gait for 50 ns;
end loop;
-- t=1180
assert (CIT _OUT=13) report "ERRORS: CIT_OUT not up to 13";

-- count up, should not increment since hit limit
sait for 50 ns;
assert (CIT_OUT=13) report "ERROR9: CllT_OUT should have hit limit at 13";

t=1230

count up, should not increment since hit limit
11ait for 50 ns;
assert (CIT_OUT=13) report "ERROR10: CIT_OUT should have hit limit at 13";

t=1280

change limit to 15
DATA<= 15;
COi <= 1;
STRB <= '1' after 10 ns, '0' after 20 ns;
11ait for 50 ns;

t=1330

-- count up
COi <= 2;
STRB <= '1' after 10 ns, '0' after 20 ns;
11ait for 50 ns;
assert (CIT_OUT=14) report "ERROR11: CIT_OUT didn't increment to 14";

t=1380

-- count up
11ait for 50 ns;
assert (CIT_OUT=15) report "ERROR12: CllT_OUT didn't increment to 15";

t=1430

count up, should not increment since hit limit
vait for 50 ns;
assert (CIT_OUT=15) report "ERROR13:CIT_OUT should have hit limit at 15";

t=1480.

change limit to 7
DATA<= 7;
COi <= 1;
STRB <= '1' after 10 ns, '0' after 20 ns;
11ait for 50 ns;

t=1530

count do11n, try counting below 7
COi <= 3;
STRB <= '1' after 10 ns, '0' after 20 ns;
for i in 1 to 10 loop

11ait for 50 ns;
end loop;
assert (CIT_OUT=7) report "ERROR14: ClllT_OUT not equal to 7";

t=2030

change limit to 0
DATA <= O;
COi <= 1;
STRB <= 'l' after 10 ns, '0' after 20 ns;
wait for 50 ns;
-- t=2080

19

-- count dovn, try counting bolov 8
COii <,. 3;
ST!Ul <• '1' after 10 ns, '0' after 20 ns;

for i in l to 8 loop
vait for 50 ns;

end loop;
assert (CllT_OUT=Ol report "ERROIUS: CllT_OUT not equal to 0";

t=2480

count up, should not increment since hit limit
COi <= 2;
STRB <= '1' after 10 ns, '0' after 20 ns;

llait for 50 ns;
assert (CllT_OUT=OJ report "ERROR16: CllT_OUT should have stayed o.t O";

-- t=2530

try counting beyond the range, i.e. above 15 and belov 0

-- reset the counter
COi <= O;
STRB <= '1' after 10 ns, '0' after 20 ns;
wait for 50 ns;
assert (CllT_OUT=O) report "ERROR17: CllT_OUT not reset to 0";

t=2580

change limit to 7
DATA<= 7;
COii <= 1;
STRB <= '1' after 10 ns, '0' after 20 ns;
wait for 50 ns;

t=2630

-- count up
COi <= 2;
STRB <= '1' after 10 ns, '0' after 20 ns;
wait for 50 ns;
assert (CIT_OUT=1) report "ERROR18: CllT_OUT not incremented to 1";

t=2680

count down
COi <= 3;
STRB <= '1' after 10 ns, '0' after 20 ns;
wait for 50 ns;
assert (CIT_OUT=O) report "ERROR19:CllT_OUT not decremented to O";

t=2730

count dolln
llait for 50 ns;
assert (ClfT_OUT=15) report "ERROR20: CllT_OUT not decremented to 15";

t=2780

count dovn
llait for 50 ns;
assert (CIT _OUT= 14) report "ERROR21: CIT _OUT not decremented to 14";

t=2830

-- count up
COii <= 2;
STRB <= 'l' after 10 ns, '0' after 20 ns;
vait for 50 ns;
assert (CllT _OUT=15) report "ERROR22: CIT _OUT not incremented to 15";

t=2880

-- count up
COii <= 2;
STRB <= '1' after 10 ns, '0' after 20 ns;
llai t 'for 50 ns;

20

uHrt (CIT _DUT-0) report "Ell0l23: CIT_OUT not incre••nt•d to 0";

ta2930

11ait;
end proc•ss;

end A;

21

A.3 Controlled Counter Simulation Output

0 IS
S"013: ACTIVE /E/CIT_OUT (value• 0)

40 IS
5"01: ACTIVE /E/STlB (value• '1')

5"011: ACTIVE /E/COI (value• 0)
80 IS

S"OI:
S"011:
S"Ol2:

90 IS
S"OI:

130 IS
S"OI:

S"Oll:
162 IS

S"013:
212 IS

5"013:
280 IS

S"OI:
S"Oll:

330 IS
SllOI:

511011:
Sll012:

340 IS
SllOI:

380 IS
51101:

SllOll:
412 IS

511013:
430 IS

SllOI:
511011:
S"012:

440 IS

ACTIVE /E/STlB (value• '1')
ACTIVE /E/COI (value ~ 1)
ACTIVE /E/DATA (value • 2)

ACTIVE /E/STlB (value= '0')

ACTIVE /E/5TRB (value• '1')
ACTIVE /E/COI (value = 2)

ACTIVE /E/CIT_OUT (value = 1)

ACTIVE /E/CIT_OUT (value = 2)

ACTIVE /E/5TRB (value= '1')
ACTIVE /£/COi (value = 3)

ACTIVE /E/5TRB (value= '1')
ACTIVE /E/COI (value = 1)
ACTIVE /E/DATA (value = 0)

ACTIVE /E/5TRB (value = '0')

ACTIVE /E/STRB (value= '1')
ACTIVE /£/COi (value = 3)

ACTIVE /E/CIT_OUT (value = 1)

ACTIVE /E/STRB (value= '1')
ACTIVE /£/COi (value = 1)
ACTIVE /£/DATA (value = 13)

SllOI: ACTIVE /E/STRB (value= '0')
490 IS

SllOI:
SllOll:

500 IS
511013:

530 IS
51101:

511011:
562 IS

511013:
612 IS

511013:
662 IS

SllOl3:
712 IS

511013:
762 IS

511013:
812 IS

SllOl3:
862 IS

511013:
912 IS

511013:
962 IS

SllOl3:
1012 IS

ACTIVE /E/STRB (value= '1')
ACTIVE /£/COi (value = 0)

ACTIVE /E/CIT_OUT (value = 0)

ACTIVE /E/STRB (value= 11')
ACTIVE /£/COi (value = 2)

ACTIVE /E/CIT_OUT (value = 1)

ACTIVE /E/CIT_OUT (value = 2)

ACTIVE /E/CIT_OUT (value = 3)

ACTIVE /E/CIT_OUT (value = 4)

ACTIVE /E/CIT_OUT (value = 5)

ACTIVE /EJCIT_OUT (value = 6)

ACTIVE /E/CIT_OUT (value = 7)

ACTIVE /E/CIT_OUT (value = 8)

ACTIVE /E/CIT_OUT (value = 9)

22

SllOl3:
1062 IS
' SllOl3:

1112 IS
SllOl3:

1162 IS
SllOl3:

1280 IS
SllOI:

Sll011:
SllOl2:

1290 IS
SllOI:

1330 IS
SllOI:

SllOl1:
1362 IS

511013:
1380 IS

SllOI:
1412 IS

SllOl3:
1480 IS

SllOI:
SllOl1:
SllOl2:

1490 IS
Sl'IOI:

1530 IS
SllOI:

Sl'IOl1;
1562 IS

51'1013:
1612 IS

SllOl3:
1662 IS

511013:
1712 IS

SllOl3:
1762 IS

Sl'IOl3:
1812 IS

Sll013:
1862 IS

Sl!Ol3:
1912 IS

Sl!Ol3:
2030 IS

SllOI:
SllOl1:
SllOl2:

2040 IS
SllOI:

2080 IS
SllOI:

SllOl1:
2112 IS

SllOl3:
2162 IS

51'1013:
2212 IS

Sl'IOl3:
2262 IS

511013:
2312 IS

Sl!Ol3:
2362 IS

SllOl3:

ACTIVE /E/CIT_DUT (v&la• • 10)

ACTIVE /E/CIT_DUT (valae • 11)

ACTIVE /E/CIT_OUT (value • 12)

ACTIVE /E/CIT_OUT (value • 13)

ACTIVE /E/STlB (value• '1')
ACTIVE /E/COI (value • 1)
ACTIVE /E/DATA (value • 15)

ACTIVE /E/5T1B (value • '0')

ACTIVE /E/5T1B (value• '1')
ACTIVE /E/COI (value = 2)

ACTIVE /E/CIT_OUT (value • 14)

ACTIVE /E/STllB (value= '0')

ACTIVE /E/CIT_OUT (value = 15)

ACTIVE /E/STlB (value• '1')
ACTIVE /E/COI (value = 1)
ACTIVE /E/DATA (value = 7)

ACTIVE /E/STllB (value = 'O')

ACTIVE /E/5TllB (value= '1')
ACTIVE /E/COI (value = 3)

ACTIVE /E/CIT_OUT (value = 14)

ACTIVE /E/CIT_OUT 1(value = 13)

ACTIVE /E/CIT_OUT (value = 12)

ACTIVE /E/CIT_OUT (value • 11)

ACTIVE /E/CIT_OUT (value = 10)

ACTIVE /E/CIT_OUT (value • 9)

ACTIVE /E/CIT_OUT (value • 8)

ACTIVE /E/CIT_OUT (value = 7)

ACTIVE /E/5TllB (value= '1')
ACTIVE /E/COI (value = 1)
ACTIVE /E/DATA (value • 0)

ACTIVE /E/STllB (value• '0')

ACTIVE /E/STlB (value• '1')
ACTIVE /E/COI (value = 3)

ACTIVE /E/CIT_OUT (value = 6)

ACTIVE /E/CIT_OUT (value = S)

ACTIVE /E/CIT_OUT (value = 4)

ACTIVE /E/CIT_OUT (value • 3)

ACTIVE /E/CIT_DUT (value • 2)

ACTIVE /E/CIT_OUT (value = 1)

23

2412 IS
SllOl3:

2480 IS
SllOI:

SllOl1:
2540 IS

SIOI:
SllOll:

2580 IS
51101:

SllOl1:
SllOl2:

2590 IS
SllOI:

2630 IS
SllOI:

SllOl1:
2662 IS

SllOl3:
2680 IS

SllOI:
SllOl1:

2712 IS
SllOl3:

2730 IS
SllOI:

SllOl1:
2762 IS

Sll013:
2780 IS

SllOI:
SP!Oll:

2812 IS
Sll013:

2830 IS
SllOI:

511011:
2862 IS

SllOl3:
2880 IS

51101:
SllOll:

2912 IS
SllOl3:

2962 IS
SllOl3:

3012 IS
SllOl3:

3062 IS
SllOl3:

3112 IS
SllOl3:

3162 IS
SPIOl3:

3212 IS
Sl!Ol3:

3262 IS
SllOl3:

10000 IS

ACTIVE /E/CIT_OOT (yalae • 0)

ACTIVE IE/St.a (Yalu•• '1')
ACTIVE /E/COI (yalue • 2)

ACTIVE /E/StaB (Yalue = '1')
ACTIVE /E/COI (Yalu• • 0)

ACTIVE /E/STRB (value= '1 ')
ACTIVE /E/COI (value = 1)
ACTIVE /E/DATA (value = 7)

ACTIVE /E/STRB (value = '0')

ACTIVE /E/STRB (value= '1')
ACTIVE /E/COI (value = 2)

ACTIVE /E/CIT_OUT (value = 1)

ACTIVE /E/STRB (value= '1')
ACTIVE /E/COI (value = 3)

ACTIVE /E/CJT_OUT (value = 0)

ACTIVE /E/STRB (value= '1')
ACTIVE /E/COI (value = 3)

ACTIVE /E/CIT_OUT (value = 15)

ACTIVE /E/STB.B (value= '1')
ACTIVE /E/COI (value = 3)

ACTIVE /E/CIT_OUT (value = 14)

ACTIVE /E/STB.B (value= '1')
ACTIVE /E/COJ (value = 2)

ACTIVE /E/CIT_OUT (value = 15)

ACTIVE /E/STRB "(value = '1 ')
ACTIVE /E/COI (value = 2)

ACTIVE /E/CIT_OUT (value = 0)

ACTIVE /E/CJT_OUT (value = 1)

ACTIVE /E/CIT_OUT (value = 2)

ACTIVE /E/CIT_OUT (value = 3)

ACTIVE /E/CIT_OUT (value = 4)

ACTIVE /E/CIT_OUT (value = 5)

ACTIVE /E/CIT_OUT (value = 6)

ACTIVE /E/CIT_OUT (value = 7)

24

A.4 Controlled Counter VHDL Code Generated by SpecChart
to VHDL Translator

entity Controlled_counterE is
port(CU : in bit STJ.B : in bit ; COi : in bit_vector (1 doento 0) ; DATA

in nibble ; CIT_OUT : out nibble) ;
&nd;

Architecture Controlled_counterA of Controlled_counterE is
signal inControlled_counter boolean ·= false;
-- IOTE: Controlled_counter's declarations (except variables) have been pulle

d up to here.
type Controlled_counter_nibble_RES is array (natural range<>) of nibble;
function Controlled_counter_nibble_RES_fct (IIPUT : Controlled_counter_nibb

le_RES) return nibble is
begin

assert (IIPUT 'length = 1) report "overdriven signal, type: Controlled_coun
t er _nibble_RES" severity urning;

return IJIPUT(O);
end;
signal COISIG : Controlled_counter_nibble_RES_fct nibble register;
signal LIM : Controlled_counter_nibble_RES_fct nibble register;
signal CIT : Controlled_counter_nibble_RES_fct nibble register;
type Controlled_counter_boolean_RES is array (natural range<>) of boolean;
function Controlled_counter_boolean_RES_fct (IIPUT : Controlled_counter_boo

lean_RES) return boolean is
begin

assert (IJPUT'length = 1) report "overdriven signal, type: Controlled_coun
ter _boolean_RES" severity ilarning;

return IIPUT(O);
end;
signal El : Controlled_counter_boolean_RES_fct boolean register;
function rising_fct (signal s bit) return boolean is
begin

return (s = '1' and s'event);
end;
signal CIT_OUT_sig : Controlled_counter_nibble_RES_fct nibble register;
signal inCounter : boolean :=false;
signal inDecode : boolean :=false;
sign.al inLoad_limit : boolean :=false;
signal inUpdate_output : boolean :=false;
signal inUpdate_enable : boolean :=false;
function MAX_fct (a : time ; b : time) return time is
begin

if (a > b) then
return a·
else
return b;
end if;

end;
begin

Controlled_counter: block
begin

Counter: block
signal inCount boolean
signal inClear boolean

begin
Count: block

false;
·= false;

signal inuait_state : boolean :=false;
signal inCount_up : boolean :=false;
signal doneCount_up : boolean := false;
signal inCount_dolltl : boolean :=false;
signal doneCount_dovn : boolean :=false;

begin
uait_state: block (inuait_state and not(inilait_state'stable))

25

begia
code: process
begin
if guard then
vait_atate_Loop : loop
null;
exit vait_state_Loop;
end loop vait_state_Loop;
end if;
wait on guard;
end process code;

end block vait_state;
Count_up: block (inCount_up and not(inCount_up'stable))
begin

code: process
variable llEftAil_TiftE: ti••;
variable GL08AL_TiftE: ti•e;

begin
if guard then
Count_up_Loop : loop
REftAil_TiftE := 0 fs;
CIT <= CIT;
REftAil_TiftE := ftAX_fct(REMAil_TiftE,12 ns);
CIT <= CIT+ 8"0001" after 12 ns;
vait until not (inCount_up) for REftAil_TiftE;
if (not inCount_up) then
exit Count_up_Loop;
end if;
doneCount_up <=transport true;
vait until not (inCount_up) ;
doneCount_up <=transport false;
exit Count_up_Loop;
end loop Count_up_Loop;
end if;
CIT <=transport null;
vait on guard;
end process code;

end block Count_up;
Count_dovn: block (inCount_dovn and not(inCount_dovn'stable))
begin

code: process
variable REftAil_TiftE: tiae;
variable GL08AL_TiftE: time;

begin
if guJ1.rd then
Count_dovn_Loop : loop
REftAil_TiftE := 0 fs;
CIT <= CIT;
REftAil_TiftE := ftAX_fct(REMAil_TiftE,12 ns);
CIT <= CIT - 8"0001" after 12 ns;
vait until not (inCount_dovn) for REftAil_TiftE;
if (not inCount_dovn) then
exit Count_dovn_Loop;
end if;
doneCount_dovn <=transport true;
vait until not (inCount_dovn) ;
doneCount_dovn <=transport false;
exit Count_dovn_Loop;
end loop Count_dovn_Loop;
end if;
CIT <=transport null;
vait on guard;
end process code;

end block Count_dovn;
control: process begin

if (inCount and not(inCount'stable)) then
invait_state <= transport true;

elsif (inCount=false and not(inCount'stable)) then

26

ct(CLI)) then

ct (CLlD) then

inwait_stat• <•transport false;
inCount_ap <•transport fal••;
inCount_dowa <• transport false;

elsif (inwait_•tate and COISIQ(J) • '1' and El and ri•ing_f

inaait_atate <• tranaport false;
inCount_dovn <a transport true;

elsif (invait_state and COISIG(2) a '1' and El and rising_f

invait_state <s transport false;
inCount_up <=transport true;

elsif (doneCount_up and true) then
inCount_up <= transport false;
invait_state <= transport true;

elsif (doneCount_dovn and true) then
inCount_dovn <= transport false;
invait_state <= transport true;

end if;
vait until (not inCount'stable) or (invait_state and COISIG(3)

'1' and El and rising_fct(CLI)) or (invait_state and COISIG(2) = '1' and El a
nd rising_fct(Cut)) or (doneCount_up and true) or (doneCount_dovn and true);

end process control;
end block Count;
Clear: block (inClear and not(inClear'stable))
begin

code: process
begin
if guard then
Clear_Loop : loop
CIT <= CIT;
CIT <= B"OOOO" after 5 ns;
vait until not (inClear)
if (not inClear) then
exit Clear_Loop;
end if;
exit Clear_Loop;
end loop Clear_Loop;
end if;
CIT <= transport null;
vait on guard;
end process code;

end block Clear;
control: process begin

if (inCounter and not(inCounter'stable)) then
inCount <= transport true;

elsif (inCount and COISIG(O) = '1') then
inCount <= transport false;
inClear <= transport true;

elsif (inClear and not (COISIG(O)
inClear <= transport false;
inCount <=transport true;

end if;

'1')) then

vait until (not inCounter'stable) or (inCount and COISIG(O) '1')
or (inClear and not (COISIG(O) = '1'));

end process control;
end block Counter;
Decode: block (inDecode and not(inDecode'stable))
begin

code: process
variable COIREG: bit_vector (1 dovnto 0);

begin
if guard then
COISIG <= COISIG;
loop
vait on STRB until STllB '1';
COIREG := COi;
case COIREG is
vhen 11 00" =>

27

ctliSIG <• 11"0001"
when "01" ,.,,
COIS!G (m 8"0010"
when "10" =>
COISIG <= 8"0100"
"hen "11" =>
COISIG <= 8"1000"
end case;

end loop
vai t
end if;
COISIG <= transport
ifait on guard;
end process code;

end block Decode;

o.fter s ns;

after s IUI;

.. ft er 5 na;

after 5 ns;

null;

Load_limit: block (inLoad_limit and not(inLoad_limit'stable))
begin

code: process
begin
if guard then
Liii <= Lil'I;
loop
11ait on STRB until STR8 = '0' and COISIG(l) '1';
LIM<= DATA after 10 ns;
end loop
11ait ;
end if;
LIM<= transport null;
11ait on guard;
end process code;

end block Load_limit;
Update_output: block (inUpdate_output and not(inUpdate_output'stable))
begin

code: process
begin
if guard then
CIT_OUT_sig <= CIT_OUT_sig;
loop
CIT_OUT_sig <= CIT;
11ait on CIT;
end loop
11ait ;
end if;
CIT_OUT_sig <=transport null;
11ait on guard;
end process code;

end block Update_output;
Update_enable: block (inUpdate_enable and not(inUpdate_enable'stable))
begin

code: process
begin
if guard then
loop
El<= CIT/= Lil'I after 10 ns;
11ait on LIM.CIT;
end loop
11ait ;
end if;
El<= transport null;
•ait on guard;
end process, code;

end block Update_enable;

control: process begin
if (inControlled_counter and not(inControlled_counter'stable)) then

inCounter <= transport true;
inDecode <=transport true;
inLoad_limit <= transport true;

28

inUpdate.oatpat <• tra.naport true;
inUpdate.enable <• tranaport true;

end if;
vait antil (not inControlled_counter'•table);

end process control;
end block Controlled.counter;

CIT.OUT <= transport CIT_OUT.sig;
start: process begin

inControlled_counter <=transport true;
vait;

end process start;

end Controlled_counterA;

29

B DRACO Appendix : SpecChart textual code

state
{

name

DRACO

declarations
{

}

port POI/ER
port CE_L :
port 11.ESET_L
port ALE :

in svi tch ;
in bit ;

in bit ;
in bit;

port llRITE_L :
port 11.E.AD_L :
port ERROR_L :

in bit;
in bit;
out bit;

port P.ARITY_II in bit;
port PARITY_OUT: out bit;
port AD_II: in LSB ;
port AD_OUT: out LSB
port "SB_IO_BUS_II : in "SB ;
port "SB_ IO_BUS_OUT : out MSB : = X"FF";
port LSB_IO_BUS_ll : in LSB ;
port LSB_IO_BUS_OUT out LSB := X"FF";

signal ADDR_L.ATCH : LSB ;
signal PARITY_L.ATCH bit;
signal COIFIG_STATUS_REG LSB
signal MSB_BUF : MSB
signal LSB_BUF : LSB
signal MSB_IO_DIR_REG MSB
signal LSB_IO_DIR_REG LSB
signal EKEY : key := off;

connections
{ }
estimates
{ }
constraints
{ }
sequential substates
{

llAIT :

State DRACO

(EI, POWER= onn and not (POWER'stable), POWER_OI),

}
}

(EI, RESET_L='O' and not (RESET_L'stable) and POllER=onn, RESET),
(EI, (ALE= '0') and not (ALE'stable)

and (POWER= onn) and (CE_L = '0'), ADDRESS),
(EI, (READ_L = '0') and not (READ_L'stable)

and (POWER= onn) and (CE_L = '0'), READ),
(EI, (llRITE_L = '0') and not (WRITE_L•stable)

and (POWER= onn) and (CE_L = '0'), WRITE)

POllER_OI CEOC, true, 11.lIT);
RESET (EOC, true, 11.lIT);
ADDRESS CEOC, true, WAIT);
READ : (EOC, true, WAIT);
WRITE : (EOC, true, WUT);

30

•tat•
{

nu•
{

llAIT
}

declarations
{ }
connections
{ }
estiaates
{ }

constraints
{ }
code
{

}
}

null

State WAIT

State POWER_ON

state
{

RUie

{

POllER_OI
}

declarations
{ }

connections
{ }
estiaates
{ }
constraints
{ }

code
{

}
}

ADDR_LATCH <= transport I"FF";
llSB_IO_DIR_REG <= transport X"OO";
LSB_IO_DIR_REG <= transport 1"00";

31

state
{

naJ11e
{

RESET
}

declarations
{ }
connections
{ }
est imatas
{ }
constraints
{ }
coda
{

}
}

ADDR_LATCH <= transport X"OO";
PARITY_LATCH <= transport '0';
COIFIG_STATUS_REG <= transport X"OO";
MSB_BUF <= transport l"OO";
LSB_BUF <= transport X"OO";
MSB_IO_DIR_REG <= transport 1"00";
LSB_IO_DIR_REG <= transport X"OO";
ERROR_L <=transport '1';
EltEY <= off;

state
{
name
{

ADDRESS
}

declarations
{ }
connections
{ }
estimates
{ }
constraints
{ }
code
{

}
}

ADDR_LATCH <= transport AD_II;
PARITY_LATCH <= transport PARITY_II;

State RESET

State ADDRESS

32

State WRITE

state
{

nuae
{

WRITE
}

declarations

variable T : time := 120 fs;
variable T'i : time := 60 fs;
variable llSB_FF l'ISB X"OO";
variable LSB_FF : LSB ·"' X"OO";

connections
{ }
estimates
{ }
constraints
{ }
code
{

COIFIG_STATUS_REG(4) <= transport '0';

if (COIFIG_STATUS_REG(2) = '1') and
(ODD_PARITT(ADDR_LATCH) /= PARITY_LATCHJ then
assert (false)

-- Clear write_ack

-- Check address parity

report "ERROR : Parity error in received address, Write aborted"
severity note;
ERROR_L <=transport '0';
COIFIG_STATUS_REG(3) <= transport '1';

elsif ((COIFIG_STATUS_REG(1) = '1') and
(ODD_PARITY(AD_II) /= PARITY_II)) then

assert (false)

-- Check data parity

report "ERROR : Parity error in received data, Write aborted"
severity note;
ERROR_L <=transport 'O';
COIFIG_STATUS_REG(3) <=transport '1';

elsif (ADDR_LATCH = X"80") then
if ((AD_II = X"AA") and (EKEY /= onn)) then

EIEY <=mid;
elsif (AD_II /= X"AA") then

EKEY <= off;
COIFIG_STATUS_REG(5) <= '0';

end if;

elsif (ADDR_LATCH = X"7F") then
if (EIEY = onn) then

if (AD_II = X"55") then

-- Write first key address

-- Write second key address

COIFIG_STATUS_REG(7 downto 6) <=transport "01";
elsif (AD_II = X"AA") then

COIFIG_STATUS_REG(7 down to 6) <= transport "10";
end if;

elsif (EIEY = mid) then
if (AD_II = X"55") then

EKEY <= onn;
COIFIG_STATUS_REG(5) <= '1';

else
EIEY <= off;

end if;

33

end if

elaif (ADDll_LATCH • X"OF"l then
ER.JlOll_L <•transport '1';
COIFIG_STATUS_llEG(J) <s transport '0';

-- le•et Error

Write High Byte Diection llegister
elsif (ADDR_LATCH = X"04") then

if (COIFIG_STATUS_l.EG(7) = '1') then
MSB_IO_Dlll_REG <= transport AD_II
MSB_IO_BUS_OUT <= transport MSB_FF or AD_ll after T;

else assert false
report "ERROR : Attempt to set MSB IO_DIR vith config locked"
severity note;
ERROR_L <= transport '0';
COIFIG_STATUS_REG(J) <=transport '1';

end if;

Write Lov Byte Diection Register
elsif (ADDR_LATCH = X"03") then

if (COIFIG_STATUS_REG(7) = '1') then
LSB_IO_DIR_REG <=transport AD_II;
LSB_IO_BUS_OUT <= transport LSB_FF or AD_ll after T;

else assert false
report "ERROR : Attempt to set LSB IO_DIR vith config locked"
severity note;
ERRDR_L <=transport '0';
CDIFIG_STATUS_REG(3) <=transport '1';

end if;

-- Write Configuration Register
elsif (ADDR_LATCH = X"02") then

if (COIFIG_STATUS_REG(7) = '1') then
COIFIG_STATUS_REG (2 dovnto 0) <=transport AD_ll (2 dovnto 0);

else assert false
report "ERROR : Attempt to reconfigure DRACO vith config locked"
severity note;
ERROR_L <= transport '0';
COIFIG_STATUS_REG(3) <=transport '1';

end if;

-- the address is 01, 00, OE
els if ((ADDR_UTCH = X"OO") or

(ADDR_UTCH = X"Ol") or
(ADDR_UTCH = X"OE")) then

if (COIFIG_STATUS_REG(6) = '1') then
case ADDR_LATCH is

vhen "00000001" =>
if (CDIFIG_STATUS_REG(O) = '1') then

MSB_BUF <=transport AD_II;
else

MSB_BUF <=transport AD_II;
MSB_FF := OIES_COMP(AD_II);
MSB_IO_BUS_OUT <= transport

-- Write to High IO Byte

MSB_FF or MSB_IO_DIR_REG after T·
COIFIG_STATUS_REG(4) <=transport '1';

end if;
EKEY <= off;
COIFIG_STATUS_REG(S) <=transport '0';

vhen "00000000" =>
if (COIFIG_STATUS_REG(O) = '1') then

LSB_BUF <= transport AD_II;
else

LSB_BUF <= transport AD_ll;
LSB_FF := OIES_COKP(AD_II);

34

Write to Lov IO Byte

}
}

LSB_Io_aus_OUT <• tr&i1sport
LSB_FF or l.SB_IO_DlR_lEG after T;
COIFIG_STATUS_iiG(4) <• tr&i1aport '1';

end it;
ElEY <• ott;
COIFIG_STATUS_llEG(S) <a transport '0';

Write to Checksum IO Byte
11hen "00001110" s)

if (COIF!G_STATUS_REG(O) = 'l ') then
if (OIES_COMP(LSB_BUF + MSB_BUF) AD_II) then

MSB_FF :• OIES_COMP(MSB_BUF);
MSB_IO_BUS_OUT <= transport
MSB_FF or MSB_IO_DIR_llEG after T;
LSB_FF := OIES_COMP(LSB_BUF);
LSB_IO_BUS_OUT <= transport
LSB_FF or LSB_IO_OIR_llEG after T;
COIFIG_STATUS_llEG(4) <=transport '1';

else assert false
report " ERROR : ChecltsWD check failed"
severity note;
ERROR_L <=transport '0';
COIFIG_STATUS_REG(3) <=transport '1';

end if;
EKEY <= off;
COIFIG_STATUS_llEG(5) <=transport '0';

else assert false
report "ERROR : Checksum Write vith checltswo option disabled"

severity note;
ERROR_L <= transport '0';

COIFIG_STATUS_REG(3) <=transport '1';
end if;

vhen others =>
null;

end case;
Data is locked

else assert false
report "ERROR : Attempt ot llrite data or checksum with data locked"
severity note;
ERROR_L <= transport '0';
COIFIG_STATUS_REG(3) <=transport '1';

end if;

-- if control reaches here, invalid address
else assert false

report "ERROR : Write to an invalid address, Write aborted"
severity note;
ERROR_L <=transport '0';
COIFIG_STATIJS_REG(3) <=transport '1';

end if;

llait until ((WRITE_L = '1') and not (VRITE_L'stable)
and (POWER = onn) and (CE_L

35

'0,));

State READ

stato
{

n&..11e
{

READ
}

declarations
{

variable TRLDV time := 100 fs;
variable IITERIAL_DBUS : LSB

connections
{ }
estimates
{ }
constraints
{ }
code
{

if (COIFIG_STATUS_REG(2) = '1') and
(ODD_PARITY(ADDR_LATCH) /= PARITY_LATCH) then
assert (false)

-- Check Address parity

report " ERROR : Parity error in received address, Read aborted"
severity note;
ERROR_L <= transport '0';
COIFIG_STATUS_REG(3) <=transport '1';
AD_OUT <= transport IITERIAL_DBUS after TRLDV;
PARITY_OUT <= transport EVEl_PARITY(IITERIAL_DBUS) after TRLDV;

elsif (ADDR_LATCH = X"OE") then
IITERIAL_DBUS := OIES_COMP(MSB_BUF + LSB_BUF);
AD_OUT <=transport IITERIAL_DBUS after TRLDV;

-- Read inverted checksum

PARITY_OUT <=transport ODD_PARITY(IITERIAL_DBUS) after TRLDV;

-- Read MSB IO direction register
elsif (ADDR_LATCH = X"04") then

IITERIAL_DBUS := MSB_IO_DIR_REG;
AD_OUT <=transport IITERIAL_DBUS after TRLDV;
PARITY_OUT <= transport ODD_PARITY(IITERIAL_DBUS) after TRLDV;

-- Read LSB IO direction register
els if (ADDR_LATCH = X"03") then

IITERIAL_DBUS := LSB_IO_DIR_REG;
AD_OUT <= transport IITERIAL_DBUS after TRLDV;
PARITY_OUT <= transport ODD_PARITY(IITERIAL_DBUS) after TRLDV;

elsif (ADDR_LATCH = X"02") then
IITERIAL_DBUS := COIFIG_STATUS_REG;
AD_OUT <= transport IITERIAL_DBUS after TRLDV;

-- Read STATUS register

PARITY_OUT <= transport ODD_PARITY(IITERIAL_DBUS) after TRLDV;

elsif (ADDR_LATCH = X"Ol") then
INTERIAL_DBUS :: OIES_COMP(KSB_ID_BUS_II);
AD_OUT <=transport IITERIAL_DBUS after TRLDV;

-- Read KSB IO bus

PARITY_OUT <= transport ODD_PARITY(IITERIAL_DBUS) after TRLDV;

elsif (ADDR_LATCH = X"OO") then
IITERIAL_DBUS := OIES_COMP(LSB_IO_BUS_II);
AD_OUT <=transport IITERIAL_DBUS after TRLDV;

-- Read LSB IO bus

PARITY_OUT <= transport ODD_PARITY(IJTERIAL_DBUS) after TRLDV;

36

}
}

else assert false
report "ElllOl : lead attempt fro• an invalid address, lead aborted"
1eYerit7 note;
ElllOl_L <• transport '0';
COIFIG_STATUS_IEG(3) <=transport '1';

AD_OUT <=transport IITERIAL_DBUS after TRLOV;
PARITY_OUT <=:transport EVEl_PARITY(IITERIAL_OBUSJ

end if;

vait until ((REAO_L = '1') and not (READ_L'stable)
and (POWER= onn) and (CE_L = 'O'l);

37

junk (undefined)
after TRLDV;

	20150126102650416_0002
	20150126102650416_0003
	20150126102650416_0004
	20150126102650416_0005
	20150126102650416_0006
	20150126102650416_0007
	20150126102650416_0008
	20150126102650416_0009
	20150126102650416_0010
	20150126102650416_0011
	20150126102650416_0012
	20150126102650416_0013
	20150126102650416_0014
	20150126102650416_0015
	20150126102650416_0016
	20150126102650416_0017
	20150126102650416_0018
	20150126102650416_0019
	20150126102650416_0020
	20150126102650416_0021
	20150126102650416_0022
	20150126102650416_0023
	20150126102650416_0024
	20150126102650416_0025
	20150126102650416_0026
	20150126102650416_0027
	20150126102650416_0028
	20150126102650416_0029
	20150126102650416_0030
	20150126102650416_0031
	20150126102650416_0032
	20150126102650416_0033
	20150126102650416_0034
	20150126102650416_0035
	20150126102650416_0036
	20150126102650416_0037
	20150126102650416_0038
	20150126102650416_0039
	20150126102650416_0040
	20150126102650416_0041
	20150126102650416_0042
	20150126102650416_0043
	20150126102650416_0044

