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MATHEMATICAL AND COMPUTATIONAL MODELING OF POROELASTIC
CELL SCAFFOLDS USED IN THE DESIGN OF AN IMPLANTABLE
BIOARTIFICIAL PANCREAS.

YIFAN WANG*, SUNCICA CANIC', MARTINA BUKAC!, CHARLES BLAHAS, AND SHUVO ROYY

Abstract. We present a multi-scale mathematical model and a novel numerical solver to study blood plasma
flow and oxygen concentration in a prototype model of an implantable Bioartificial Pancreas (iBAP) that operates
under arteriovenous pressure differential without the need for immunosuppressive therapy. The iBAP design
consists of a poroelastic cell scaffold containing the healthy transplanted cells, encapsulated between two semi-
permeable nano-pore size membranes to prevent the patient’s own immune cells from attacking the transplant.
The device is connected to the patient’s vascular system via an anastomosis graft bringing oxygen and nutrients
to the transplanted cells of which oxygen is the limiting factor for long-term viability. Mathematically, we propose
a (nolinear) fluid-poroelastic structure interaction model to describe the flow of blood plasma through the scaffold
containing the cells, and a set of (nonlinear) advection-reaction-diffusion equations defined on moving domains
to study oxygen supply to the cells. These macro-scale models are solved using finite element method based
solvers. One of the novelties of this work is the design of a novel second-order accurate fluid-poroelastic structure
interaction solver, for which we prove that it is unconditionally stable. At the micro/nano-scale, Smoothed Particle
Hydrodynamics (SPH) simulations are used to capture the micro/nano-structure (architecture) of cell scaffolds
and obtain macro-scale parameters, such as hydraulic conductivity /permeability, from the micro-scale scaffold-
specific architecture. To avoid expensive micro-scale simulations based on SPH simulations for every new scaffold
architecture, we use Encoder-Decoder Convolution Neural Networks. Based on our numerical simulations, we
propose improvements in the current prototype design. For example, we show that highly elastic scaffolds have
a higher capacity for oxygen transfer, which is an important finding considering that scaffold elasticity can be
controlled during their fabrication, and that elastic scaffolds improve cell viability.

The mathematical and computational approaches developed in this work provide a benchmark tool for com-
putational analysis of not only iBAP, but also, more generally, of cell encapsulation strategies used in the design
of devices for cell therapy and bio-artificial organs.

1. Introduction. We present a mathematical model and a numerical solver to study a
design of an implantable bioartificial pancreas (iBAP) that operates without the need for im-
munosuppressive drugs. The main purpose of a bioartificial pancreas is to treat Type 1 Diabetes
(T1D), which is an autoimmune disease that affects over 1.6 million people in the United States.
The current standard of care is glucose monitoring coupled with exogenous insulin administration
via injections or pump. Less common interventions, such as transplantation of islets (spheroid-
like cell aggregates that contain endocrine cells of the pancreas) or pancreas transplantation, are
reserved for those patients for whom insulin therapy does not allow adequate metabolic control
and who experience severe hypoglycemic events. The main obstacles for islet transplantation
are poor graft function within a few years post transplantation, negative side effects of lifelong
immunosuppression, and pancreas donor shortage. A bioartificial pancreas promises to expand
islet cell therapy to substantially more T1D patients because of its immunoprotective cell en-
capsulation design, and because the types of cells that can be used in its design include not
only the pancreatic islets but also those derived from human pluripotent stem cells. The human
pluripotent stem cells can be used to create mature [-cells found in pancreatic islets, which are
responsible for insulin production [37]. This promises solution to the shortage of donor organs as
a source of pancreatic islets, while cell encapsulation eliminates the need for immunosuppressants.

A prototype of the bioartificial pancreas, under development in Dr. Roy’s Lab [27, 22, 38, 28],
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2 NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE
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Fic. 1. Left: An illustration of an islet encapsulation device [18]; Middle: Semi-permeable silicon membrane;
Right: A scanning electron microscope (SEM) image of the membrane surface illustrating slits 2um in length
and Tnm is width (courtesy of Dr. Roy).

consists of a biocompatible hydrogel scaffold containing the transplanted cells, encapsulated
between two semi-permeable nanopore silicon membranes. See Fig. 1. The silicon membranes
are specifically designed for immunoprotection of the encapsulated islets, while enabling high
oxygen delivery and high mass transfer rates of glucose and insulin. They protect the transplant
from being attacked by the patients immune system (antibodies and cytokines), while allowing
passage of oxygen and nutrients necessary for long-term viability of the organ. The membranes
are surface-modified with polyethylene glycol (PEG) to inhibit protein adsorption, fouling, and
thrombosis [22].

The encapsulated cell chamber is connected to anastomosis grafts, which connect the device
to the patient’s vascular system. See Fig. 2. One anastomosis graft brings oxygen and nutrients
rich blood to the cell chamber, while the other transports away the insulin produced by the cells.
The anastomosis grafts are connected to an artery on one side, and a vein on the other, thereby
generating sufficient pressure gradient for significant flow within the anastomosis graft. See the
sketch in Fig. 2, which shows the device implanted in a patient’s arm and connected to the radial
artery on one end, and a vein on the other.

One of the key challenges in bioartificial pancreas design is sufficient oxygen supply to the
transplanted cells within the hydrogel scaffold. To increase oxygen concentration in the cell

Device Vein
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Fia. 2. Left: An illustration of the implantable intravascular bioartificial pancreas device in the arm of a
T1D patient (from [38]). Right: A sketch showing the graft and the encapsulation chamber consisting of two
poroelastic membranes and the islet chamber in the middle. The figure also includes our suggestion for the
placement of a time-periodic compression device downstream from the chamber, to increase convective flow into
the chamber and flush out albumin deposits near the membrane observed in steady flow.

chamber (poroelastic hydrogel), ultrafiltrate channels are drilled within the hydrogel for advection
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NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE 3

enhanced oxygen supply. See Fig. 3.

Ultrafiltrate
Channels

Fic. 3. Ultrafiltrate channels in agarose gel.

In this manuscript we study the design and performance of a second generation implantable
Bioartificial Pancreas prototype. A sketch of the prototype device is shown in Fig. 4. This figure
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F1G. 4. A prototype of a implantable Bioartificial Pancreas Device. The red bozes on the bottom right figure
show the location where the four islet chambers are located. Only one of the four chambers is fully depicted in
Fig. 4 bottom right. A more detailed, magnified sketch of two such chambers is shown on the top figure on the
right. The top chamber in the red rectangle shows the computational domain.

shows the device with the inflow-outflow channel, and four islet chambers, two on either side of
the channel. The inlet to the channel is connected via an anastomosis graft to an artery, and the
outlet to a vein. See Fig. 5, which shows a prototype implantable Bioartificial Pancreas (iBAP)
implanted into a porcine model. A pressure drop between an artery and a vein drives the blood
flow through the channel. Each of the four islet chambers is connected to the blood-supplying
channel through a number of semipermeable silicon membranes. The nutrients rich blood flow
gets filtered through the membranes and the filtered blood plasma further flows through a gasket
and into a hydrogel containing the transplanted cells. As the nutrients rich blood plasma passes
through the hydrogel, it feeds the pancreatic islets, and it picks up the produced insulin, which
is then carried away from the hydrogel through a gasket with an attached outlet (ultrafiltrate
outlet; see Fig. 4). The four ultrafiltrate outlets (each associated with one islet chamber) are
connected via a catheter to a vein, which receives insulin rich blood plasma.

Islet chamber details as used in the design of the computational domain, are presented in the
sketch shown in Fig. 6. The blood channel supplying oxygen and nutrients rich blood to the islet

This manuscript is for review purposes only.
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4 NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE
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F1G. 5. A prototype of an implantable Bioartificial Pancreas (iBAP) implanted into a porcine model.

chamber is not shown in Fig. 6. The four membranes are shown in Fig. 6 at the bottom of the
sketch with the “inlet” arrows pointing in the flow direction. Two (rectangular) membranes are
in the front, and two in the back. The thin gasket region containing the oxygen and nutrients rich
blood plasma is adjacent to the islet chamber (poroelastic medium containing the cells), shown
in orange color. Fig. 6 also shows ultrafiltrate channels in orange color, distributed throughout
the islet chamber. The ultrafiltrate flow that passes through the cell chamber enters the top
gasket region which collects the insulin rich blood plasma. The insulin rich blood plasma exits
the gasket through an ultrafiltrate outlet and enters the “returning” part of the anastomosis graft
(not shown in this sketch) connected to the patient’s vein.

OUTLET OWLET
/G QA% \ B GASKET
|
PO PP i POROELASTIC
CELLS H S ETRTRC /ET HYDROGEL
= —

\ GASKET

INLET INLET NIE NLE
(POROUS MEMBRANES)

Fic. 6. Left: A 8D sketch of the prototype device (computational domain) showing the inlet through four
semi-permeable membranes (four blue squares at the bottom), the hydrogel chamber (in orange); ultrafiltrate
channels in hydrogel chamber (orange cylinders), and two gaskets — one at the bottom and one at the top of the
hydrogel chamber. The anatomosis graft connected to the inlet and outlet is not shown. Right: A 2D slice through
the 38D device shown on the left.

The main goal of this manuscript is to design a multi-scale mathematical model and a
computational software to study fluid flow (blood plasma) and oxygen concentration within the
bioartificial pancreas, which can be used to study the performance of the current design and
suggest improvements in terms of increased oxygen supply to the transplanted cells. The key
mathematical goals are: (1) To capture the interaction between blood plasma (a Newtonian
viscous, incompressible fluid) and a poroelastic medium (cell scaffold), which is a hydrogel in
which the permeability properties depend on the fluid content [19], thereby giving rise to a
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NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE 5

nonlinear mathematical model, (2) To capture oxygen concentration in the cell chamber and
the gasket. In both of these goals it is important to capture the micro-structure of the hydrogel,
which calls for multi-scale modeling.

As we shall see below, elasticity of cell scaffolds is important in studying filtrate flow and
oxygen concentration in cell scaffolds. This is especially important since elasticity can be con-
trolled in the fabrication of agarose hydrogel scaffolds, fabricated using the approaches presented
in [37]. Mathematically, devising a higher-order accurate fluid-structure interaction computa-
tional solver capturing poroelasticity of the scaffolds in which permeability depends on the fluid
content is highly nontrivial. In this manuscript we design such a solver and prove, using rigorous
stability estimates, that the resulting numerical solver for a corresponding linearized problem is
unconditionally stable. This is one of the mathematical novelties of this work.

More specifically, in this manuscript we present a multi-scale model consisting of the fol-
lowing. At the macro scale, we consider the following partial differential equations (PDE)
models:

1. A fluid-structure interaction (FSI) model describing the interaction between the blood
plasma modeled by the Navier-Stokes or time-dependent Stokes equations for an incom-
pressible, viscous fluid, and a poroelastic hydrogel containing the cells, modeled by the
nonlinear Biot equations (see Sec. 2.1). The nonlinearity in the Biot equations comes
from the dependence of the hydrogel’s permeability on fluid content/porosity [19];

2. Two advection-reaction-diffusion models describing oxygen concentration within the
poroelastic hydrogel containing the cells, and oxygen concentration within the gasket
containing blood plasma (see Sec. 2.2). The two models are coupled to the FSI model
above through the fluid advection velocity, and through the information about the do-
main motion. Additionally, the two advection-reaction-diffusion models are coupled
among themselves across the interface I'(t) separating the gasket region from the poroe-
lastic hydrogel scaffold. The coupling conditions describe oxygen transfer from the gasket
region to the poroelastic scaffold.

The FSI model and the advection-reaction-diffusion models are solved using Finite-Element
Method based numerical solvers. Of particular interest is a second-order accurate fluid-poroelastic
structure interaction solver that we introduce in this manuscript, and for which we prove that it is
unconditionally stable for the FSI problem with linearized interface motion (fixed fluid domain).
This is presented in Sec. 3.1.

At the micro scale, a particle-based Smoothed Particle Hydrodynamics (SPH) model is
used to simulate the micro-scale 3D poroelastic structures of hydrogels and calculate the local
hydraulic conductivity for every “control” sub-volume of the 3D poroelastic hydrogel. This
information is then used to couple the micro and macro-scale simulations by obtaining the
3D macro-scale permeability tensor k from the local fluid content obtained from the micro-scale
SPH simulations. See Sec. 2.1.

To avoid the time-consuming and computationally expensive SPH simulations for every new
hydrogel structure, we use Encoder-Decoder Convolution Neural Networks, trained on a set of
our synthetic data (calculated off-line), to obtain & for new hydrogel structures which are either
generated synthetically, or for the actual hydrogel structures that can be imaged using high
precision laser scanning confocal microscopy.

Micro- and macro-scale coupling is also used at the inlet, where we impose macro-scale inlet
flow data, see (2.16) below, obtained from the pressure data in the anastomosis graft coupled
with the micro-scale membrane parameters such as the membrane thickness, pore size, etc.
using a Darcy-type relationship (2.15) derived from experiments with the actual silicon nanopore
size membranes considered in this study [22].

Finally, we use our mathematical models and numerical solvers to simulate filtration flow
and oxygen concentration for a prototype Bioartificial Pancreas, shown in Figs. 4 and 6. The
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6 NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE

results of our numerical simulation are presented in Sec. 4. Based on the simulations we propose
improvements in the design of the implantable Bioartificial Pancreas, which are discussed in
Sections 4 and 5.

Conclusions are presented in Sec. 5.

To the best of our knowledge, this is the first multi-scale, 3D mathematical and computational
model of a bioartificial pancreas, which captures plasma flow interacting with a cell-seeded scaffold
and oxygen concentration within the pancreas. Previous models usually address “subsets” of
the bioartificial pancreas design, such as, e.g., oxygen concentration and insulin secretion by
pancreatic islets. In particular, we mention here an excellent study by Buchwald [7] that informed
our own work in terms of advection-reaction-diffusion models for oxygen concentration, where
an advection-reaction-diffusion model and the parameters were provided. These parameters and
a simplified oxygen concentration and consumption computational model was recently utilized
in a study of a simplified bioartificial pancreas without membrane encapsulation, consisting of
an acellular tubular graft “lined” with pancreatic islets coated on the outer surface using a
hydrogel carrier [23]. In a similar set-up, the work in [21] investigated an in vitro cylindrical
perfusion system to study oxygen effects on islet-like clusters immobilized in alginate hydrogel.
No computational model for the set up was presented in this work.

The next step of the model development for bioartifical pancreas is modeling glucose-stimulated
insulin secretion by the 3-cells of pancreatic islets. In [9, 10] Buchwald et al. developed a math-
ematical model and a Finite Element Method solver to study insulin secretion in avascular pan-
creatic islets that can be used to calculate insulin secretion for arbitrary geometries of cultured,
perifused, transplanted, or encapsulated islets in response to various glucose profiles. The model
was further used in [11] to study dynamic perifusion with isolated human islets.

However, none of the previous models considered the complexity of an artificial pancreas
design such as the one presented in this paper. One of the main novelties of this paper is the
fluid-structure interaction model that simulates blood plasma filtration through a poroelastic
cell scaffold, which is then coupled to an oxygen concentration model, and in a further study,
to an insulin secretion model. This has not been done before in the context of a bioartificial
pancreas design. Including poroelasticity, as we do in this work, is crucial for manufacturing cell
scaffolds with “optimal” elasticity properties for long term cell viability. More information about
fluid-poroelastic structure interaction can be found in [3, 40, 36, 2, 35, 6, 45, 15, 44]. None of
those models, however, were studied in the context of a bioartificial pancreas design.

We remark that the mathematical and computational approaches presented in this work can
be used not only for the design of a bioartificial pancreas presented here, but also, more generally,
for the analysis of encapsulation strategies used in the design of devices for cell therapy and bio-
artificial organs [39)].

2. The maco-scale mathematical models. We present two sets of models: one describ-
ing the flow of blood plasma in the gasket and in the poroelastic scaffold, presented in Sec. 2.1,
and the other describing concentration of oxygen in the gasket and in the poroelastic scaffold,
presented in Sec. 2.2 below. The equations for oxygen concentration are coupled to the fluid flow
model via advection velocity and the fluid domain motion, namely, the equations for oxygen con-
centration in the gasket and in the hydrogel are solved on moving domains. As we show below,
including hydrogel elasticity and simulations on moving domains is significant for the analysis of
oxygen concentration in highly elastic hydrogels.

We start by presenting details of the fluid-structure interaction (FSI) model describing the
blood plasma flow through the gasket and poroelastic hydrogel.

2.1. A fluid-structure interaction model for blood plasma and poroelastic scaf-
fold. As mentioned earlier, blood plasma enters the islet chamber through four nano-pore size
membranes. See Fig. 6. The membranes are located at the inlet of the gasket region containing

This manuscript is for review purposes only.



214

215
216
217
218
219
220
221

223
224
225
226
227
228
229
230
231
232
233
234
235

NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE 7

the blood plasma. We will use Q(t) to denote the fluid filled gasket region, and T';,, to denote
the part of the boundary of Q¢(¢) corresponding to the inlet. The dependence on t of Q(t)
denotes the fact that the fluid domain changes as a function of time due to the interaction be-
tween the fluid flow and the poroelastic scaffold sitting on top of Q¢(t). The reference (fixed)
configuration of the fluid domain will be denoted by Q ¢. The poroelastic scaffold region/domain,
which is adjacent to Q(t) will be denoted by Q,(t), and its reference configuration by €2,. Even
though the poroelastic scaffold region is moving, the equations are typically written on a fixed,
reference domain Qp. We denote by I'(¢) the moving interface separating the gasket region from
the poroelastic scaffold region, with its reference configuration denoted by I'.

In the case when poroelastic scaffold contains ultrafiltrate channels, the fluid domain is
extended to the channels as well. In this case the boundary between the channels and the
poroelastic scaffold is also assumed elastic, and is a part of the fluid domain boundary I'(t). See
Fig. 7 below.

The fluid model. To model the flow of blood plasma in the gaskets (and in the ultrafiltrate
channels) as shown in Fig. 6, we use the Navier-Stokes equations for an incompressible, viscous,
Newtonian fluid. Since the Reynolds number in the gasket flow is relatively small, the time-
dependent Stokes equations are also adequate. The Navier-Stokes equations defined on Q(t) are
given by:

ou
Pf <6tf + (uy - V)Uf) =V -os(us,pf) + Fy,

V-uy =0,

(2.1) in Q(t) x (0,7),

where uy is the fluid velocity, oy = —pyI + 2usD(uy) is the Cauchy stress tensor modeling
Newtonian fluid, py stands for the fluid pressure, D(uys) = (Vuf + (Vuf)T) /2 stands for the

symmetrized velocity gradient, py is the fluid viscosity, py is the fluid density, and F'; denotes
the external force term. To close the problem, initial and boundary conditions will be specified
in Section 2.1.

The poroelastic structure model (cell scaffold). To model the poroelastic cell scaffold
i.e., the poroelastic structure, we use Biot’s equations of poroelasticity, given by

9%n s
ppﬁ:vap(’rhpp)‘i}F ;
0 in
(2:2) pn (copp +aV -m) =V - (KVpy) + F), in €, > (0, 7).
U, = —KVpp,

The model is given in terms of displacement 1) of the poroelastic matrix from its reference
configuration Qp, and the fluid pore pressure p, in the Lagrangian framework, with filtration
velocity, up, given in terms of the fluid pore pressure gradient via Darcy’s law (third equation in
(2.2)). We note that u, is the relative filtration velocity with respect to the poroelastic scaffold
motion. The density of the solid material is denoted by p,, & is the hydraulic conductivity
tensor, and F° and F), are external force and source term, respectively. Coefficient ¢¢ is the
storage coefficient, « is the Biot-Willis parameter accounting for the coupling strength between
the fluid and the solid, and o, is the stress tensor of the poroelastic medium, which is given
by o, = o — ap,I, where o g denotes the elasticity stress tensor and I is the identity matrix.
To close the system, a constitutive law for o g(n) describing the elastic material properties
needs to be specified. Here, we assume the linear Saint Venant-Kichhoff material, given by
or =2usD(n)+AsV-nI, where ug and Ag are Lamé constants. The corresponding initial and
boundary conditions will be specified in Section 2.1.

This manuscript is for review purposes only.
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8 NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE

Biot equations have been used to model hydrogel scaffolds by many authors, see e.g., [46, 19,
16]. In particular, it was noted that hydrogel’s permeability depends on the fluid content, which
is defined as an increment in the volumetric fraction of the fluid component ® with respect to
its reference value ®g:

Vf(x7ya Zat)

2.3 =o - h b = .
23) ¢ o where & =

Here Vy(z,y,2,t) is the fluid volume and V(x,y, 2,t) is the representative elementary volume
centered at (z,y,z) at time ¢. The quantity ® is also referred to as porosity, and ®q is the
equilibrium porosity.

One can show that ¢ defined above can be expressed in terms of the fluid pressure and the
volumetric change of pores’ volume as

¢ =copp +aV -m,

which is the quantity appearing under the time derivative in the second equation in (2.2). The
dependence of hydrogel’s permeability on ¢ was noted in e.g., [19, 24], and it is associated with
swelling of hydrogels. To describe the dependence of k on (, it is common to use the Kozeny-
Carman equation:

1- 3\
(2.4) Kk(z,y, 2, ®) = ko(x,y, 2) ( > .

1-9
Here the exponent 8 was calculated for hydrogels to be § = 2/3 using geometric considera-
tions, see [19]. The factor ko is the reference, equilibrium permeability. In our simulations,
Ko = Ko(z,y,z) will be estimated from the micro-scale simulations using Smoothed Particle
Hydrodynamics and Encoder-Decoder Convolution Neural Networks. See Sec. 3.3. Throughout
this manuscript, we will be using either a given permeability (z,y, z,t), or a nonlinear perme-
ability k = k(z,y, 2z, ®) = k({) given by (2.4), rendering the Biot system (2.2) a nonlinear Biot
problem.

Moving domain and ALE formulation. Before we describe the coupling conditions
between the fluid and poroelastic structure, we must deal with the fact that the fluid domain
is moving, and the fluid equations are written in the Eulerian framework on Q(¢), while the
structure equations, i.e., the Biot model, is given in the Lagrangian framework on the reference
domain Qp. To deal with the motion of the fluid domain, we introduce a family of Arbitrary
Lagrangian-Eulerian (ALE) mappings that map the reference fluid domain # onto the current
domain Q(t), and rewrite the fluid equations in the so-called ALE form.

For this purpose, let 5 C R3 be a fixed reference domain. We define a family of mappings:

(2.5) Al Qp — Qp(t), Al imo

where « and x( are the coordinates in the physical domain Q¢(t) and the reference domain Q £
respectively. The fluid domain velocity wy is given by

f
(2.6) wylt, ) = 20 AL 1))

Using this notation, we calculate the ALE time derivative of the fluid velocity:

(2.7) Otsley = Ous(t, ) + wy(t, @) - Vus(t, @), for & = Al (x0), @y € Qy,

This manuscript is for review purposes only.
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NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE 9

where O;u |5, denotes the time derivative in the reference configuration Q ¢. The incompressible
Navier-Stokes equations in ALE form are given by the following:

B _ ) .
(2.8) pf( Bt |a, T~ ws) V“f) V-oy(ug,py),

&0 in Q(t) x (0,7),
V- U = O7

The ALE mapping defined in terms of the fluid domain displacement d(xg,t) is given by
Al (x0) = o + d(z0, 1),
where we calculate d(xo,t) as the harmonic extension of the boundary data:

Ad=0 in Qf, d=n onl, d=0 onaﬂf/f.

Here Q ¢ denotes the reference fluid domain, and I is the reference fluid-structure interface.
The coupling conditions for the fluid poroelastic structure interaction problem.
At the fluid-structure interface I'(t), we impose two kinematic coupling conditions, denoted by
(K1) and (K2) below, and two dynamic coupling conditions, denoted by (D1) and (D2) below
(see [12, 13]). The coupling conditions will be stated on the reference fluid-structure interface
I =00 N 8(2 The values of the fluid velocity u; below are assumed at the current interface
I'(t), but evaluated on the reference configuration I'. The notation w flr@) on I used below means

uglry = ug o Al (&,1), (2,t) € T.

The same holds for the normal stress o yn on I.
The coupling conditions are:

(K1) Continuity of normal components of fluid velocities describing fluid penetration into
the poroelastic structure in the normal direction:

on
E)

(29) Up - N = (uf|F(t - ‘n, on f X (07 T)7

(K2) The Beavers-Joseph-Saffman condition describing slip between the fluid and structure
velocities in the tangential direction, with parameter 8 denoting the slip length (the inverse of
which describes friction) [26, 25], and J the Jacobian of the transformation between the Eulerian
and Lagrangian frameworks:

) .
(2.10) 5(uf|m) - 8—;7) b=t Jom, on D x (0,T), i=1,2.

(D1) Continuity of dynamic pressure across the interface:

(2.11) n-Jom+ps ’JP';M —pp, on ' x (0,T),

(D2) The balance of contact forces:
(2.12) Joyn —o,m=0, onl x(0,7T).

The boundary and initial data. The coupled FSI problem for blood plasma consists of
the Navier-Stokes-Biot problem (2.1)-(2.2), with the coupling conditions (2.9)-(2.12), and the
following boundary and initial data:

This manuscript is for review purposes only.
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10 NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE

wp t=0, Pujou () =ps+ L lus” on TS, x(0,7)
(2.13) 2

n=0 onT] _ UTL, x(0,T), Vp,-m,=0onTl, x(0,7)
(2.14) ugli—o = u} in Qp(0), Mli—o = Inli—o = 0in OF, p,li—o = 0 in QF.

No-slip boundary condition for the fluid is assumed on the (remaining) rigid part of the fluid

f
L ut
r
r Ql(t) )
TG ]
¥, _ POROELASTIC . .
oty - HYDROGEL Q)

T r’ ol T r

TRET TR T

Fic. 7. A sketch of a 2D slice of the fluid and poroelastic structure domains together with their boundaries.

domain boundary, denoted by I' in Fig. 7. In Fig. 7 we show the entire fluid and poroelastic
structure domains (a 2D slice) together with their boundaries.

Inlet flow. To account for the presence of four nanopore-size permeable membranes at the
inlet, we use an experimentally derived relationship between flow and pressure gradient (Darcy
law) through nanoporous membranes, derived in [22]. More precisely, it was demonstrated in
Shuvo Roy’s lab, see [22], that silicon nanopore membranes with pore sizes of 7 nm generated a
hydraulic permeability of 130 ml/hr/m2/mmHg. More generally, the results in [22] postulate the
following experimentally validated nano-macro scale Darcy relationship between the nano pore
membrane parameters and the macro-scale filtration flow parameters:

(2.15) w= (12uhQ/nlAp)% ,

where w is the pore width, [ is the pore length, h is the membrane thickness, n is the number
of pores per (unit) membrane, p is the viscosity, @ is the volumetric flow rate, and Ap is
transmembrane pressure. This information was used to find the macro-scale inlet flow based
on the micro-scale parameters that are specific to membrane structure. Namely, given
the inlet pressure P;,(t), the filtration flow through the membranes at time "1+ was calculated
via

2

(216) u"ttn = J;W(Rn - pgasket> on an’

where Dgasket 15 the gasket pressure at time t”. Here we used that the total pore area for each
membrane is given by nlw.

In addition to the micro-macro scale relationship (2.15) the work published in [22] demon-
strated the feasibility of silicon nanopore membranes for immunoisolation, by measuring the
selectivity against transport of cytokines and small molecules using the pressure-driven ultrafil-
tration system.

This manuscript is for review purposes only.



NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE 11

TABLE 1
Parameters for FSI simulations.

Parameter Value
Blood inlet pressure (Average)(mmH g) 46
Blood outlet pressure (Average)(mmHg) 20
Channel height (cm) 0.3
Channel length (e¢m) 6.5
Channel width (e¢m) 0.7
Fluid density (g / em?) 1
Fluid viscosity (cm?/s) 0.04
Poroelastic structure density (g / cm?) 1.2
Pressure storage coeflicient ¢ 1x107"
Permeability 2x 1074
Young’s modulus E (d ynes / cm?) 4 x 10* ~ 0.75 x 108
Poisson’s ratio o 0.49
Biot-Willis parameter « 1x1072

Table 1 shows the parameter values used in this FSI model.

Energy estimate. To show that the coupled problem is well-defined in terms of having
a bounded energy, which is related to stability, we show below that the total energy of the
problem, and the total dissipation, are bounded by a constant that only depends on the initial
and boundary data. In the energy estimate below we assume that k = kI, where £ may be a
nonlinear bounded function of the fluid content ( = ® — ®q as in (2.4), or a bounded function of
(x,y,2z,t). More precisely, using the approaches similar to the proof of Theorem 3.1 in [42] one
can show that the following energy estimate holds.

THEOREM 2.1. The energy of the coupled Navier-Stokes-Biot problem (2.1)-(2.2), (2.9)-(2.14),
satisfies the following inequality:

d

(2.17) ZE(t)+D(t) < C(t),

where E(t) denotes the kinetic energy of fluid and the kinetic and elastic energy of the poroelastic
structure:

ps 2 p 2 co 2 2 A 2
E(t) = 7Huf”L2(Slf(t)) + gpllamllm(@,,) + §prHL2(§zp) + NPHD(W)HLZ’(QP) + 717”V : "7||L2((2p)

and D(t) denotes the total dissipation:
1
D) = s 1D(wg) B iy + 116 Vil e, + Bll (s — Oun) -t

and C(t) depends only on the initial and boundary data.

2.2. Coupled models for oxygen concentration. We present two models for oxygen
concentration, both defined on moving domains obtained from the fluid-structure interaction
problem discussed above. One is an advection-diffusion equation for the concentration C(x,t)
of oxygen in the fluid channel/gasket, defined on Q¢(t), and the other is a nonlinear advection-
reaction-diffusion equation for oxygen concentration in the scaffold, Cp(x,t), defined on Q,(t).
The two models are coupled at the interface I'(t) separating the gasket flow from the poroelastic
scaffold. The oxygen concentration models are coupled to the fluid-structure interaction problem
above via the advection velocity obtained from the FSI problem above, and via the fluid domain

This manuscript is for review purposes only.
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12 NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE

motion. This is a one-way coupling because nothing from the problem for oxygen concentration
influences the solution of the FSI problem.

The advection-diffusion for the concentration Cy of oxygen in the fluid channel/gasket
written in conservation form reads:

0Cy .
(2.18) o + V- (Ufo) -V (DfVCf) =0, in Qf(t) x (0,7T),
where the advection velocity wu ¢ is given by the solution of the Navier-Stokes equations in domain
Q(t). Here, Dy is the free oxygen diffusion coefficient (Dy = 2.41 x 10~°cm?s™!) in blood [5].
This model is coupled to the gasket fluid flow model via the fluid advection velocity u; obtained
from the Navier-Stokes equations (2.1), and via the fluid domain motion Q(t).

The nonlinear advection-reaction-diffusion equation for concentration C), of oxygen in the
hydrogel is defined on the moving domain Q,(t). Thus, the advection velocity in this case must
be given by the sum of the relative filtration velocity u,, obtained from the Biot equations (2.2),
plus the velocity of the motion of the hydrogel skeleton:

(2.19) wy, = 0.
Therefore, we introduce
(2.20) Uy = Uy +w)y

and write the equation for oxygen concentration C, in the poroelastic hydrogel on the moving
domain €2,(¢) in conservation form as follows:

oC, _
(2.21) a—t” + V- (8,Cp) = V- (D,VCp) + Rinax

Cp

mH (Cp > Cc’r)7 m Qp(t) X (O,T),

where R,,q. is the maximum oxygen consumption rate, Cyy is the Michaelis-Menten constant
corresponding to the oxygen concentration where consumption drops to 50% of its maximum
[7], C¢r is the critical oxygen concentration below which necrosis is assumed to occur after a
sufficiently long exposure, and H is the Heaviside step-down function to account for the ceasing
of consumption in those parts of the tissue where the oxygen concentration fell below a critical
concentration Cq, [7, 8]. D), is the diffusion coefficient of oxygen, whose value has been estimated
for rat pancreatic islets to be 1.3 x 10 %em?2s™ 1.

The ALE formulation of the oxygen concentration models. Before we rewrite equa-
tions (2.18) and (2.21) in ALE form, we recall that the advection in (2.21) is driven by the
plasma filtration velocity w, = u, + w,, where u,, is the relative filtration velocity obtained from
the Biot model defined on Qp. Namely, u, denotes the composite function between the relative
filtration velocity defined on Qp and the inverse of the ALE mapping A? : Qp — Q,(t) associated
with the motion of the poroelastic matrix A} : @g — xo + n (2o, t). Therefore, u, = u, + w,

where u, = A} o uplg ((Af)fl :c,t) and w, = 0.
Equation (2.18), defined on the current moving domain Q(t) x (0,7") in ALE form reads:

oC
(2.22) aitfho7V~(DfVCf)+(Uf*’lUf)~VCf:O,

where wy is the fluid domain velocity.
Equation (2.21), defined on the current moving domain €,(t) x (0,7, in ALE form reads:

ac,

7| O:D
ot '™

2.23 ___r
( ) Cp + Crrmr

—w, - VC, + V- (0,C,) — V- (DpyVC,) = Ruax 5 (Cp>Cyp).

This manuscript is for review purposes only.
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NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE 13

Notice that the time derivatives of oxygen concentration %Ho and %ho are evaluated on the
corresponding reference domains and then mapped back onto the corresponding moving domains
where the ALE equations are defined.

In conservation form, equations (2.22) and (2.23) above read as follows.

On Q;(t) x (0,T) we have:

aC
(2.24) 8—tf|m0+v-[(u,f—wf)cf—vacf]+(v-wf)cf:07

where ALE velocity wy is given by (2.6).
On Q,(t) x (0,T) we have:
o,
ot

where w,, is given by (2.19).

Coupling conditions. Two equations (2.22) and (2.23) are coupled across the moving inter-
face I'(t) via the following two coupling conditions, describing continuity of oxygen concentration
across the interface and continuity of total oxygen fluxes:

Cr= on
[(wy —wy)Cy — DyVCs] - my = [(4p —wp) Cp — DVC] - ny } L(t) x (0, 7).

Cp

2.25 ___~r
(2.25) Cp+Crum

2o + V- [(up —wy) Cp — DyVC] + (V- wp) Cp = Rinax H(Cp > Cor),

Because of the kinematic coupling condition at the interface u, - n = (“f|r(t) — ‘3—;’) -n and
the fact that w; = J;m at the interface and that u, — w, = u, is the relative filtration velocity
with respect to the motion of the poroelastic matrix, after using the continuity of concentrations
Cy = C, at the interface, one obtains the following coupling conditions:
Cr= G,
r T).

DyVCy-my= D,VC,-ny } on T(t) x (0,T)

Initial and boundary conditions. The coupled system (2.22), (2.23) and (2.26) is sup-
plemented with the following initial and boundary conditions:

(2.26)

(2.27) Cf = Cf)o, in Qf X {t = O}, Cp = 0Upo0, in Qp X {t = O}
(2.28) Ct = Cinjet, On F{n, D¢VCs-ny =0, on F({ut, D,VC, -n, =0, on Fgmﬂ

where Cyo and Cp are initial concentrations in the fluid channel and hydrogel respectively,

f

which are assumed to be zero. Here, I/ and T , denote the fluid channel inlet and outlet, and

n out
Ffwt denotes external sidewalls of the hydrogel, where we assume that oxygen cannot penetrate
the external sidewalls. All the parameters used in the simulations are obtained from [7, 8] and
reported in Table 2.

Energy Estimate. The following energy estimate shows that the coupled advection-
reaction-diffusion problem for oxygen concentration (2.24)-(2.28) is well-defined in terms of hav-
ing a bounded energy.

THEOREM 2.2. Let u, € L?(0,T; L*(Q,(t))) and V - @, € L*(0,T; L*(Q,(t))). Then, there
exist K(t) > 0, C(t) > 0, and D, > 0 such that the coupled advection-reaction-diffusion problem
(2.24)-(2.28) satisfies the following energy estimate:

t t
229 1€/ acayn + IColiaoyn +2 | 1D59CH o, +2 [ 15,9C, oo, opdr
(2.30) < K(t)e2Jo O®,

where C(t) depends on ||V - '&pHZLQ(Qp(t)), and K(t) depends on the initial data and on C(t).
The proof of this energy estimate is similar to the proof of Theorem 3.2 in [42].

This manuscript is for review purposes only.
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14 NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE

TABLE 2
Parameters for the coupled convection-reaction-diffusion problem.

Parameters Value (units)
Concentration of oxygen at fluid inlet Cjy,es 2x 1077 (mol . cm_3) [17]
Diffusion coefficient in fluid channel Dy 3.0x107° ( cm? - s7!
Diffusion coefficient in hydrogel D, 1.3 x107° ( cm? - 571
Maximum oxygen consumption rate R,q. 3.4 x 1078 (mol ~em ™3 5*1)
Critical oxygen concentration C,, 1.0 x 107 (mol - em™3)
The Michaelis-Menten constant Cpsas 1.0 x 1079 (mol . cm_3)

3. Discretized problems and numerical schemes. We use Finite Element Method-
based schemes to solve the FSI problem (2.1)-(2.13) and the coupled advection-reaction-diffusion
problem for oxygen concentration (2.22), (2.23) and (2.26) on moving domains. For the FSI
problem we introduce a new scheme based on Nitsche’s method, which improves the already
existing schemes in the following two ways: the proposed method has accuracy higher than 1st
order and it solves a nonlinearly coupled problem between the Navier-Stokes equations defined
on moving domain and the Biot equations. We also prove that this new numerical scheme is
unconditionally stable.

To couple the macro-scale simulations with the micro-scale information, we use Smoothed
Particle Hydrodynamics (SPH) simulations. In particular, we recover the information about
hydraulic permeability locally, for every small “control” volume, for a given hydrogel structure,
and use it to recover the global, macro-scale permeability tensor . To avoid time-consuming and
computationally expensive SPH simulations for every new hydrogel structure, we use Convolution
Neural Networks, trained on a set of our synthetic data (calculated off line), to obtain & for new
hydrogel structures which are either generated synthetically (using our numerical simulations
with random pore distributions), or for the actual hydrogel structures that can be imaged using
high precision laser scanning confocal microscopy.

Details are presented next.

3.1. Discretization of the fluid-structure interaction problem. We discretize and
solve the FSI problem involving poroelastic structure in a monolithic way, using the refactorized
Cauchy’s ‘0—like’ method for the time discretization (see [14]), which is equivalent to the midpoint
method when 6 = % In this case the method is conservative and second-order accurate in
time. To discretize the problem in space, we use Py, — P; elements for the fluid velocity and
pressure, and Py elements for the structure displacement and velocity, and Py — Py for the Biot
filtration velocity and pressure. Note, again, that the fluid-structure interaction problem and the
advection-reaction-diffusion problem are defined on moving domains.

To enforce the coupling conditions, we use Nitsche’s method, similar to [12]. In [12] the
Nitsche’s method was first-order accurate in time, and it was applied to solve a Stokes-Biot
coupled problem where the coupling was assumed across a fized interface, i.e., linear coupling.
In [42] this method was extended to a Navier-Stokes-Biot coupled problem with the coupling
assumed across the current, moving interface, i.e., nonlinear coupling, with first-order accuracy
in time. In the present work, we extend this method to improve the time-accuracy to second-
order, and we prove that the proposed method is unconditionally stable. Before we present the

discretized problem, we first state the continuous weak formulation.

Weak formulation. We solve the coupled FSI problem (2.1)-(2.2), with the coupling condi-
tions (2.9)-(2.12), and the initial and boundary conditions (2.14) and (2.13) in mixed formulation
(see e.g., [12, 3, 30] for the Stokes-Biot mixed formulation). The corresponding continuous weak

This manuscript is for review purposes only.
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NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE

formulation is given by the following:

T T T
—pf/ / uys -8t¢fdwdt+pf/ / (uy - V)uy - ¢fdmdt—pp/ / 7 - 0§ dxdt
0 Qp(t) 0 Qy(t) 0 Qp

+ 2,uf/ / ( )D(uf) :D(¢p;)dzdt —|—/ / 21sD(n) : D(E,) + Ap(V - 1)(V - §,)dzdl
o Jasu o Ja,

T T T
— a/ / pp(V - §,)dxdt — pp/ / n - Ovp dxdt — pp/ / 1 p,dxdt
0 J9, 0o JO, 0o J,
T T T
+ co / / PpOiPpdacdt + / / (V- up)pdacdt + a/ (V- 0im) Ypdadt
0o JO, 0o JO, 0o JQ,
Y

+/T/ lup.gz,pdmdt_/T/ pp(V.cf;p)dwdt—i—/TIlEdr (t)dt

15

// Pi(t)(¢; - m det—// Pout(t)(¢; -1 det+// (F*- &, + Fpy*) dedt

+/Qf(t)(uf'¢f)\t=0dm+/§2p(7'7'€p)|t=0d1‘+/ (n'¢p)|t=odm+/ (PpOrp)i=od

QP QP
where

B0 =55 [t (up = o)t ¢~ te-€)aS + [ Sl m)ds.

3=1,2

The vectors t;,i = 1,2 are two linearly independent tangent vectors at the interface.

The

kinematic coupling condition (2.9) must be included in the solution and test function spaces, and

is numerically enforced by Nitsche’s penalization [12].

The function spaces for the fluid velocity are denoted by V/(¢) and Vdjgv (t) below, and the
function space for the pressure is denoted by Q/(t), all defined on Q(t). The functions spaces
for the filtration velocity and fluid pore pressure are denoted by VP and QP below, both defined
on Qp, and the function spaces for the structure displacement and velocity are denoted by X7

and X?, both defined on €,. The spaces are defined as follows:

Vi) ={ve H' Q) | v-t=00nT! UT! , v=00nTI,},

out’

) 0= EVIO |V w=0n Q1) = 1(s(0)

QF = LQ(Qp)v XP = [Hl(Qp)}d7 Xr = [L2(Qp)] .
We further introduce the following Bochner spaces:
W/ = L0, T; L*(Q4(1)) N L2(0, T; VI (1)), &P = L>(0,T; XP),
XP = [(0,T; XP), QP = L>=(0,T; L*(Q,)) N L*(0, T; QF), VP = L*(0,T;VP).

The function space for the solution of the FSI problem is then defined by:

VP ={u, € H(dinQp) | up-mp =0} ={u, € [L2( )}d | V-u, €L (Qp)aup -ny, =0},

= {(wf, up, pp, 7)) € (W X VP x QP x AP x XP) | u,-n = (wflp@ —0m) -m on I},

with the corresponding test space:

T = (67, by 00€,) € CH(0,T); Vi (1) x VP x @ x XP x X7)
| ¢p n = ((rbf‘l—‘(t) - at‘Pp) *Toon f}
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16 NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE

In this case, instead of the homogeneous Dirichlet boundary condition for Darcy pressure on
I'ext, we impose the condition on Darcy velocity u, - n = 0 on I'exs. We present the discretized
problem based on this weak formulation next.

Discretization. Let the shape of Q¢(¢) and Qp be polygons/tetrahedra. Denote by h the
characteristic mesh size and suppose that T/: and T} are the uniform conforming triangulation
of Qf(t) and Qp, respectively. Based on the meshes, we define the finite element spaces V}f C
Vf,Q£ c QL VP cvr Qb c QP X) C XP,XF C XP for the spatial discretization, where the
function spaces V¥, VP, QP, X?, and X? are defined in (3.1).

Below, we will use Nitsche’s method to enforce the coupling conditions at the discrete level.
In particular, in Step 1 below, we introduce a penalty parameter vy > 0 to enforce the kinematic
coupling condition. In Step 1 below we also introduce a flag ¢ € {1,0,—1} which determines
whether a symmetric, incomplete, or skew-symmetric formulation is adopted [12] in the formu-
lation.

More precisely, let " = nAt for n = 0,..., N, where At denotes the time step, and t"1¢ =
t" + 0At, for any 0 € [%, 1], and for all n > 0. The fully discretized coupled FSI problem in ALE
form and the numerical scheme to solve it, are given by the following three steps.

STEP 1: Given u},, w", 0,0y, Py 5, compute u?‘};e,p?*fle, nZ'Hg Z'Ze,p;‘ze, such that

n+0 n
Usp —U h n n n
3:2) s /m eI~ OAL Lh gy pdm + py /Qn (s = w") - V) ufl? - ¢y pda
f f

+/Q wf’hv-u;jf’dm—/g p;jfv.gbf’hdxwuf/ﬂ D (ufi’) : D (¢y,) da
f ! f

+ B o oAU £ 7 ) 1D (€,,) d
Pp |, OAL '€p,h T+ 25 4 Ui +ny, ) (Ep,h) T

P

+ )\p/Q (V (0AtHT 0 + nZ)) (V-&,,)de— a[ pgﬁe (V-&,,)de

P P
n+460

p _pnh n-+0 n+60
+¢ / “ph__Tphy, Vhd:c+a/ vt ’(/Jﬁdﬂ)‘i’/ Vi ? ) vy nde
0 QO HAt P o ( ) p ( ) b,

P

R e [ (7 gy de = 1

p

:/Ff PO (¢, ) dS — / PIt? (¢4 - m) dS,

in Out

P

where

h

b

n+60
*n+6 _ | rbd Nitsche1?+0
[* ,n [[ ry] [Z—fl SC. e]

This manuscript is for review purposes only.



ot
ut

ot
—
~

NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE 17

with

Ibdry n+o L (n o n+6 _ _ ds

4 = ) (B =& = Gy o)

-5 / W) (6 €a) 1S
r
P n n

(3.3) +7f/f|uf|2(¢p,h-n *0)ds

itsche] ™0 — n

[1Ritsehe] 0 = —/ﬁfyfufh ! {(’ufflf’ - u”+9 - ’7h+9> n(bpn —Epn — Do) "} ds

+ /n~J0'f (spp, —y)m (u?*,;g —upt? - 172”9) -ndS.
P

From 77"+9 we calculate n”+9 using:

n+0

R M
h oAt
StEP 2: Compute w} ', in ™, mpttpit, as
1 1-6 .
u?# o%r Za - TU?,h in Q7%,
1 1-6 L
m =g =k in Q.
1, 1-6 o
=g = = in Q).
1, 1-0 o
pﬁl—g poh _Tpph in Q.

STEP 3: Update the fluid mesh by solving the following problem

An”“ 0 in Qy
n?+1 0 on ffn/out’
n?—i-l T’nJrl on f\7
n+1 o
w1l % in Q,
(3.4) Q= T+ npthQy.

We note that in Step 1, the permeability tensor k' can be a function of the fluid content
¢ = copp + aV - 1 in which case

K" = k(cop, +aV -n")I.

The approximations of the solution (u}lzl , p}lzl, ZJ{LI , p;ﬁl, At belong to Vhf X Q£ X

VP x @QF x XP x XP, with the corresponding test functions (D fs Vb Dphs Vs Ppons Epi) €
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18 NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE

Vhf X Q£ X VP x QY x X' x X . We solve the monolithic problem with a preconditioner obtained
using a loosely coupled scheme, as reported in [12].

Stability of the FSI scheme The focus of this section is on the stability analysis of
method (3.2)-(3.4). As it is often the case, the stability analysis is presented for the linearized
domain motion case (fixed fluid domain), assuming laminar flow and small interface deformation.
In this case, the coupling condition (2.11) reduces to

(3.5) n-om=—p, onl x(0,T).

We show that our proposed numerical scheme (3.2)-(3.4) written in terms of Nitsche’s method
applied to the Navier-Stokes/Biot coupled problem, based on the refactorized Cauchy’s ‘9—like’
method, is unconditionally stable provided 6 € [%, 1] and the Nitsche penalty parameter 7
satisfies a certain condition, made precise in Theorem 3.1 below.
To prove the stability estimate, we will be using the following Polarized Identity and the
following Discrete Trace-Inverse Inequality:
e Polarized identity:

(3.6) 2(a—¢,b) =a* —c* — (a—b)*+ (b—c)?, Va,b,ceR.
e The discrete trace-inverse inequality:
(3.7) ID(un)nlf < Crrh™ [ D(un)l?, ,

where Cp; is a positive constant, uniformly bounded from above with respect to the
mesh characteristic size h for a family of shape-regular and quasi-uniform meshes, such
as our domains defined in Sec. 3.1 [41].
To analyze the stability of the proposed method, it is convenient to rewrite the linear ex-
trapolations described in Step 2 as a set of forward Euler problems [14]. In particular, Step 2 is
equivalent to the following problem:

STEP 2’: Given u?ﬁe,w”,hﬁw, nZ+0,ij19, compute u?}l,hzﬂ, u;ﬁll,pz;l, such that

"?;1*“?20 0
, 5 . n ny . n+0
(38) o /Q? S ey | (=) V) up - pda

n

f

_/Q p%evﬂsf,hdw‘*‘?ﬂf/ﬂ D (u’]}ﬁe) :D (¢;,) de
f f

- n+1 - n+60
My — TN n+0y .
+ pp/Q (1—0)At ) £p,hdw + 2'u3/ D (nh ) :D (ﬁp,h) dx

P QP

—l—)\p/Q (V-nZJFe) (V'Sp,h) da:—oz/Q ijle (V~§p7h) dx

P P
n+1 n+6

Ppn~ Ppn ) L n+6
+c0/ﬂp Y ¢p,hdw+a/ﬁp (v )wp,hdwjt/ﬂp (V-upt?) ppda

TR gt = [ (5 Gy de = 1
P

I3

:/Ff Pt (¢ m) dS—/f Pyt (¢ -m)dS.

in out

The forward Euler version of Step 2, taking into account the assumptions used in stability
analysis, is used in the following result.
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THEOREM 3.1. Let Cry be the constant from the discrete trace-inverse inequality (3.7), and
s € {—1,0,1}. Furthermore, let the Nitsche’s penalty parameter vy > 0 be such that

1
> (14¢)(ef)7t, where ef < —————.
vf ( ) f) f (1+¢)Crs
Then the following stability estimate holds:
3.9 PFy. N |2 Pp n+112 n+1)(2 D 2 —pV 2
(3.9) 5 urnlla, + 5 " g, ||p I3, + ol DEDIE, + 22V -mi 13,
N—1
+ (20 - 1)At Z [ —ufull, + (20 — 1) At Dot —alg,
n=0
+ (20 — 1)At Z it —millg, + (20 = DALY [lppht =) 4l

N-1

g (U= (1 +Q)egCrr) A S [ DO,

n=0

o 1At2||u”+9u2 +ﬁAtZII (wpi! = it -t

0 0 0
T+ pgh T A (3 = (L e )Zn (! =i =) -2

C2CpC% . C3CpC%  om
R o [en I vl L

2Mf 92 P out

Proof. To obtain this stability estimate, we start by replacing the test functions in (3. 2)

q - . 0 0 9 +6
(?03) by the solutions: ¢ ) = U}Hﬁ JWpn = p?',t s Ppn = U;L)J;; s Uph = ;h » &pn = M,
obtain:

(3.10)

where

(3.11)

n+0

(|| T, It — wpal, — N al, ) + 2 D@,

29At
0 9 . .
20At (g 01, + Mg = g3, = g1 )
sokz (Iepi I3, + Iep i = mpald, — sl ) + s g 2013,

+ L (D)2, ~ 1D, + D)~ D, )

IV m 08, = IV mill, + IV - my ™ = V- milI
Ty SN
+ Bl (g — ™) - tll% +apueh (g — g =) R - T

:/f P”J“Gu}”{f ndS—/f Pc’futeu?ze ndS,

in

T = /n o u;ﬁﬁe,p?ﬁ) (u}”,ﬁbe u”+9 0y ) - ndS

+/n af(qu?'ze,—p?ze) (u?:;‘g u"+9 07 ) - ndsS.
r
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Similarly, we replace the test functions in (3.8) by ¢, ), = u?j,;e, pp = p?jl‘g, Dpn = ugf,;a, Yp.h =

ng{Lo, b = nZ‘H) We use the polarized identity (3.6) and obtain the following equality:

(312) gty (i, — i — i1, = i, ) + 201D,
o oyar (R, — g =g I, = i1,
oo gyar (BRI, = g’ = wpiflis, — Wi, ) + eI,
g D@ DI, = 1D )G, ~ 1D - Do), )
+ g2 (19w 3, = 17 w1, = I i = ), )
Bl =) R+ e h T =t = ) mll =T
:/f P”*au}‘za ndS — / teuﬁ" ndS.

in

Multiplying (3.10) by 6 and (3.12) by 1 — 6, and adding the equations together, we get:

(3. 13)
1 1 6112 6 2
L (il - st = wfall, + luf 2, — lupal,)
9
+ 20 [ D) 3,

6 ] . .
o (I, — et = a1, + i =y, — i, )

0 0 — 0
+—(Hp"+1||2 ol PR o O [ S et iyl 9

2At

(IID( IR, — 1D@ ) = D)3 + [ Dmy™) — D(ny)

13, - IID(nZ)Ilép)

>\ n n n n n n
+—(Hv MG IVt = Ve Ve - Vel V)

2At
n+6 n+6

+ Bt — ™) - tl\f+7fufh_1H(U?Tf—uph =) g =T

- / , Prut?  ndS — /F , Prituit? - ndsS.

in

Taking into account the extrapolations defined in Step 2, we have

o gl — gt ) = 20— 1) — gl
i t? — 1'72”?2 laptt — ”+9||2 = (20— Dl - 7'72||%p7
5 =i l3, — oy~ +0||Q (20 = 1)llng = nhllg, ,
[P —pp,hllg =l = ppil 13, = 20 = Dy = pp ol

Using the Cauchy-Schwarz inequality and Young’s inequality with ¢ > 0, we get:

n+6 n+6 n+60 n—+60
T <20y (1 + Q)| D(uf 3 nflpll (]}, —uph’ — a3 ™) - nlp

n4-0 n+60

< g (L4 Qephl D(uf O I1E + g (L4 ) (eph) (i’ —up
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Applying the discrete trace-inverse inequality (3.7) we obtain:
i1+ QerhlD(uii?)IR < pp(1+ QesCrr| D(uf)E, -
Therefore, the estimate of the boundary term is given by:
T <ps(L+ QerCrrllD(uii)E, + pop (14 (erh) I (wff = wpd? — ™) - nl3.

To estimate the right hand side of (3.13), we use the Cauchy-Schwarz, Young’s, Poincare’s and
Korn’s inequalities to obtain:

n+6_ n+6 n+6_ . n+0
/f PLul -ndS—l—/f Poui uy), -ndS
in out

S a7 o T vt (e 9

out

C2CpC? 9 C? CPC 9 0
< TQTfKHPﬁr H?{n + ZTJCKHPJLJE || !, +Mf||D(u?JZ )||?)f7
where Cr, Cp and Ck are positive constants. Combining the estimates above with (3.13), multi-
plying the results by At and calculating the sum from n = 0 to N — 1, we obtain estimate (3.9).0

Therefore, we have proved (for the fixed fluid domain case) that our proposed numerical
scheme (3.2)-(3.4) is unconditionally stable.

3.2. Discretization of the coupled advection-reaction-diffusion problem. As in the
case of the FSI problem above, we use a Finite Element Method-based approach to solve the
coupled advection-reaction-diffusion problem (2.22), (2.23) and (2.26). To specify the discretized
problem, we must first state the weak formulation of (2.22), (2.23) and (2.26).

Weak formulation. Let us assume that the fluid-structure interface I'(¢) is Lipschitz. Fur-
thermore, let uy € V7, and let @, € L* (0,T; L* (Q,(t))) be such that V-u, € L* (0, T; L* (Q,(1))).
Assume that the domain velocities wy and w, are such that w; € L* (O, T; Whoee (Qf(t))) with
V-wy € L*®(0,T; W (Qf(t))), and w, € L>=(0,T; L* (Q(t))) N L2 (0,T; H' (Q(t))). We
introduce the following solution space for oxygen concentrations C; in the fluid channel and C,
in the hydrogel:

c={(Cs,Cp) € L*(0,T; H' (Qf(t))) x L? (o T;H' (2,(1))) |
8,C; € L? (O,T; (H (Qf(t))) ) L0,c, e 12 (0 ( L(6))) ) ,Cy=C, on F(t)}.

DEFINITION 3.2. A function (Cy,Cp) € C is said to be a weak solution of the coupled
advection-reaction-diffusion problem (2.22), (2.23) and (2.26) if V(p,¢) € C,

T
/ /Q (){&Cflmoso—w- [(uf_wf)Cf_vacf]"‘@(v'wf)Cf}dwdt
s

T
(3.14)  + / / {atcp|m0 b — V- (@, — w,) Cp — D,VC,] + 1) (V- w,) cp} dadt
o Ja,m

T
C
- Runax ——2§(Cy > Clon)ibdad.
/o /Qp(t) Cp+Cum (C )

This weak formulation is derived by multiplying equations (2.22), (2.23) by the corresponding
test functions, integrating by parts, and using the coupling conditions (2.26) at the fluid structure
interface I'(¢).
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652 Discretization. We, again, assume that the shapes of Q(¢) and €2,,(¢) are polygons/tetrahedra,

553 and denote by T,{ and 7} the uniform conforming triangulations of Qf(t) and Q,(t), respectively.
654 We define finite element space C;, C C, and use the Backward Euler method to discretize the
655 problem in time. The corresponding fully discretized coupled problem for oxygen concentration
56 reads:

+1
657 ) )
D -
n At
f

Cn+1 _ Cn
658 + / {”h”h Yn — Vo - [(Gpn —wpp)Coht = DyVCI +n (V- wp ) CoY } dx
n X0

on — Von - [(uf ), —w})CPnt = DVCE ] + on (V-why) CFY } dx

o

At

P
659 = /
660 Q

661  where (C}L’#,ngl) € Cp, and (¢p,¥n) € C.

Clh
Rmax+5 Cn > CCT‘ d )
< Cpp+Cum (Con )> Ynde

n
P

662 3.3. Parameter estimation using Encoder-Decoder Convolution Neural Networks
663 and Smoothed Particle Hydrodynamics. Local information about hydraulic permeability of
664 the 3D islet chamber is crucial for correctly approximating oxygen supply to the pancreatic islets
665 seeded in the chamber containing a gel poroelastic matrix. While global hydraulic permeability
666 can be estimated using experiments, the local properties are difficult to obtain experimentally.
667 This is why we use our in-house Smoothed Particle Hydrodynamics (SPH) solver, developed
668 based on the works [32, 33, 31], and experimentally validated in [43], to estimate the values of
669 equilibrium permeability k¢ from (2.4) at every point (z,y, z) in the poroelastic hydrogel. To
670 achieve equilibrium permeability, constant pressure drop is prescribed at the inlet and outlet.
671 The SPH is a weighted interpolation method which represents all bulk properties of the fluid
672 at a certain location in space with a discrete interpolation over a set of surrounding particles
673 [32, 33, 31, 43]. The particles corresponding to the hydrogel matrix are fixed in a random fashion
674 over the hydrogel domain, satisfying a certain porosity volume fraction condition, while the
675 moving particles describing the fluid satisfy a system of differential equations corresponding to
676 the Navier-Stokes/Stokes equations. The ratio between the fixed particles and moving particles
677 is given a priori, and it corresponds to the porosity of the hydrogel. At the inlet and outlet of the
678 domain, the particles are leaving and entering the domain so that for every exiting particle, there
679 is a new particle assigned at the inlet, with a given inlet velocity. A result of one such simulation
680 is shown in Fig. 8: we see a 2D slice of a 3D hydrogel where the inlet is on the left, and the outlet
681 on the right. The first two panels in this figure show the magnitude of fluid/plasma filtration
682 velocity and pressure, respectively. The last two panels on this figure show the permeability
683 coefficients [ko]|11 and [kg]s3 obtained by locally applying Darcy law.

684 Since 3D SPH simulations are computationally expensive to be run for every single hydrogel
685 geometry, we resort to the Encoder-Decoder Convolution Neural Networks (CNN), see e.g. [29,
686 34, 4], to obtain the macro-scale permeability tensor, based on the micro-scale hydrogel geometry.
687  We use synthetic data from the SPH simulations to train the network and obtain a macro-scale
688 permeability tensor as a function of (x,y, z) for either synthetic/numerically generated hydrogels,
689 or for the actual hydrogels whose geometry is obtained from imaging data.

690 The main idea behind the Encoder-Decoder Neural Network applied to our problem is based
691 on treating the geometry of the gel poroelastic matrix as the input, and train the Encoder-
692 decoder based CNN over a large set of synthetic data obtained using our pre-validated steady
693 state simulations, to estimate the local hydraulic permeability tensor k¢ as an output of the
694 CNN. The main steps are as follows:

695 1. Create an ensemble of 100 poroelastic gel matrix geometries with different porosity by
696 using SPH to distribute the solid particles in the hydrogel. The hydrogel is divided into boxes
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Fic. 8. A SPH simulation of a 2D slice of a synthetically generated hydrogel showing: (a) Filtration velocity
magnitude ; (b) Pressure field; (c¢) Hydraulic conductivity coefficient in horizontal direction [kol11, and (d) in
vertical direction [Ko]33.

and treated as an image. Every box (cf. pixel) contains the information about the density of the
non-moving SPH particles in that box (cf. pixel intensity in terms of image processing).

2. Run SPH simulations for each poroelastic matrix geometry to obtain the corresponding
filtration flow and pressure, as illustrated in Fig. 8(a) and (b).

3. Post-processing: At each location in the chamber, compute the local hydraulic perme-
ability tensor using data from step 2 above, see Fig. 8(c) and (d), and use it as training data
(permeability map) for the Encoder-Decoder CNN.

4. Train the Encoder-Decoder CNN with the density data and corresponding perme-
ability map obtained from steps 2 and 3. We use TensorFlow as our platform. The encoder
contains several Convolution and Dense layers, and the decoder is just the reflection of those
layers in the encoder.

5. Feed a new density matrix to the Encoder-decoder CNN and predict the local values of
the hydraulic conductivity tensor for a new porous medium chamber.

While CNN training is an expensive part of this approach, it is performed “off-line” and
only once. Once this is completed, getting new parameter values for different poroelastic matrix
geometries is fast, and does not require the expensive SPH simulations. This approach is signif-
icantly “cheaper” computationally than generating and running new SPH simulations each time
a new islet geometry is to be tested.

3.4. Parallel implementation and convergence test. Our macro-scale solvers have
been implemented within the FEniCS platform [20]. The macro-scale solvers, and the the nano-
scale SPH solver, have both been parallelized. The nano-scale SPH solver has been running
on a GPU node on the Savio cluster at UC Berkeley. Each GPU node is equipped with two
Nvidia K80 GPU cards, where each card can run up to 2496 CUDA cores. One typical SPH
simulation uses one whole node with a total of 2496 cores. The FSI solver has been running on
the General Savio node pool. Each node is equipped with two Intel Xeon 12 core processors and
128 GB memory. We use 8 cores on each node, with 16 allocated nodes. We get nearly linear
speedup for our solver implemented in FEniCS before reaching the memory limit for each node.
FEniCS parallelization is different from the traditional approaches as it runs N identical copies
of code in parallel, where N refers to the number of cores, and the original problem is divided
into N subproblems. There is no master node to manage running the job, and each individual
core executes its own job with gathering only the information it needs.
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Convergence test of the FSI 0-scheme. We conclude this section by showing that our
proposed one legged ‘6 — like’ method for the FSI problem, presented in Sec. 3.1, has higher
order accuracy than the currently available Navier-Stokes-Biot schemes reported in [12, 42]. In
our convergence test, as stated above at the beginning of Sec. 2.1, we assume the thick poroelastic
structure to be homogeneous and isotropic, and the stress tensor to be given by the first Piola-
Kirchhoff stress tensor: X(d) = 2use(d) + As(V - d)I, where ¢(d) = %W is the strain rate
tensor, s and As are the Lamé constants, which are related to Young’s modulus E, and the
Poisson’s ratio vy via:

_ ES _ ESVS

2420 7 (L) (- 20
We solve our FSI problem using the method of manufactured solutions, which were derived
assuming that the fluid domain remains fixed during the simulation. The computational domain
consists of a unit cube, where the top part of the cube corresponds to the fluid and the bottom
part corresponds to the poroelastic structure, i.e., Qf = (0,1) x (0,1) x (0,0.5) and Qp =
(0,1) x (0,1) x (—=0.5,0). The exact solution is given by:

s

)(cos
Mpef = sin(7t)(y + 1) ,

) 4
Dp.ref = Sin (m‘ + %) sin(mx) cos(0.5my) — 3™ cos(mt),

[7 cos(mt)(cos(y) — 3x) .
Ufref = meos(mt)(y + 1) . Dfref =sin (7Tt + Z) sin(mz) cos(0.5my).

27 cos(mt)z

Forcing terms, up ey and 7,.¢, as well as the boundary conditions, are computed using the
exact solution. We note that the exact velocity is not divergence-free, in which case we also add
a forcing term to the mass conservation equation:

V"LLfZFm,

where F,, is computed using the exact solution. We impose the following boundary conditions

Up = Uf ref on BQP\(f‘Uf‘*),
op(us,pr)n =0 (Ufref:Dfref)Tt on I,
Nf=Nfref on O\T,
Pp = Pp,ref on 6Qp\f,

where I'* is the fluid external boundary corresponding to the plane x = 0. The parameter values
used in this simulation are all set to one: py = pyr =p, =ps =Ag=a=cp=p =1and K is
equal to the identity matrix. We use 0 = 0.5+ At, vy = 104, and the final time is set to 7' = 0.2.
In this case, a second-order convergence is expected.

Our convergence test was conducted on a fixed domain, where the mesh was refined together
with the time step. In particular, the following temporal and spatial parameters are used:

4.1072 0.5}2

(Atv h) = { 2i ’ ?

=0

We use P, — IP; elements for the fluid velocity and pressure, Po elements for the structure dis-
placement, and P; —P; elements for the filtration velocity and porous pressure. We compute the
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relative errors for w¢, py, up, pp, N, &, defined by

||uk o ’u'k*TefHL2 Q ||pk - pk,ref||L2 1)
€r = ( k)a ep,k?: ( k)7 k:f7p7
||uk7r8f||L2(Qk) ||pk,ref||L2(Qk)
o Hn_nrefHS Hﬁ_,’:’ref”l/z(ﬁp)
L TSR TR n = : )
Hmest ||nr€f”L2(Qp)
where || - || is the structure energy norm defined by

Inl% = 2us1 D)5 ) +AsIV -2l -

The results are reported in Tables 3 and 4. This shows that our one legged ‘#-like’ scheme is

At er rate ep, f rate ep rate
4.1072 25-100° - 1.2-1000% - 0.3127 -
21072 36-107* 278 2.8-1072 211 0.0707295 2.14
1-1072 9.1-107°% 199 14-10"2 0.96 0.0252249 1.49

TABLE 3
Temporal convergence test for variables uys,py, and up.

[\

At €p.p rate en rate ey rate
4.1072 1.0-1072 - 3.1-1073 - 2.6-107° -
2.-1072 25-107% 216 6.9-107* 216 57-107% 2.05
1-1072 59.107* 192 1.8-107* 192 1.5-107* 2.07

TABLE 4
Temporal convergence test for variables pp,n and 7.

second-order accurate for the fluid velocity, structure displacement and velocity, and filtration
pressure, and therefore has higher-order accuracy than other Navier-Stokes-Biot schemes reported
n [12, 42], which are only first-order accuracy in time.

4. Numerical results. We study numerically the current prototype of the bioartificial
pancreas, shown in Figs. 4 and 5, and propose modifications in the design that promise to lead
to increased filtration flow and increased oxygen concentration.

Tables 1 and 2 show the parameter values used in the simulations. The initial and boundary
conditions are specified in Sec. 2.

4.1. One outlet — current prototype design. We start by considering the design shown
in Fig. 4. As mentioned above, in this design one outlet is associated with the outlet gasket. A
detailed computational domain showing the outlet cylinder, the top gasket, the islet chamber with
drilled ultrafiltrate channels, the bottom gasket and the four inlet nano-pore size membranes (the
four squares at the bottom of the chamber) is shown in Fig. 9 top. Fig. 9 bottom shows filtration
flow streamlines with the colors denoting magnitude of filtration velocity. Red denotes high and
blue low filtration velocity. As expected, the filtration velocity at the inlet and near the inlet
at the bottom gasket is high. The flow then enters the islet chamber both via the ultrafiltrate
channels and also through the poroelastic hydrogel away from the channels. We see high velocity
at the bottom of the islet chamber adjacent to the gasket-hydrogel interface, showing strong
filtrate flow everywhere. As we move up further away from the bottom gasket, the filtrate flow is
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26 NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE

F1c. 9. Computational domain and streamlines corresponding to the red box in Fig. 4. The inlet is at the
bottom through four membranes, and the outlet is at the top through the vertical cylinder. The mazimal velocity
is 3.5 ecm/s (shown in red).

Oxygen concentration in islet chamber at t;

Oxygen concentration in islet chamber at t; >t;

-
- -

Ve

-

Ve

1\/m:zmbranes '\/m;mbranes

Fic. 10. Ozygen concentration at the membranes (inlet) and within the islet chamber for two different times
t1 and ta > t1 as the initial ozygen front convected with the flow enters the bioartificial pancreas. Red denotes
high concentration and white and blue low concentration. The flow is from bottom to top. We can see that the
regions on the left in both pictures, which are closest to the outlet, get more oxzygen than the regions on the right.

diminished, and most flow takes place through the ultrafiltrate channels. It is therefore expected
that oxygen concentration would be greatest near the inlet to the islet chamber and close to the
ultrafiltrate channels, rather than near the outlet of the chamber.

Indeed Fig. 10 shows oxygen concentration at two different times ¢; and t5 > t;. We see
how oxygen populates the islet chamber, with red denoting high oxygen concentration, blue low
oxygen concentration, and white intermediate oxygen concentration.

One can observe high oxygen concentration at the inlet membranes, in the gasket close to
the islet chamber, and in much of the islet chamber, with highest oxygen concentration closer to
the inlet. Furthermore, when comparing the left “half” of the chamber, which is closest to the
outlet, we see that it has higher oxygen concentration than the right “half” of the chamber. We
attribute this to the larger bulk flow closer to the outlet.

In fact, to investigate this situation further, we simulated the flow in the entire set up, as
shown in Fig. 11, with six semi-permeable nanopore membranes and flow through the ultrafiltrate
channels, as shown in Fig. 11 top. The top gasket collects all the outflow which leaves the device
through one ultrafiltrate outlet. As shown in Fig. 11 top, the bulk of the flow occurs through
the membranes/islet chambers closest to the outlet (the first three membranes closest to the
outlet). Here red denotes high flow and blue low flow, as before. We conclude that adding
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Fi1c. 11. Entire loop. Top: The colors denote the magnitude of fluid velocity with red denoting high velocity
(mazimum velocity is equal to 3.5 cm/s) and blue denoting low velocity (minimum velocity is 0 cm/s). Bottom:
The entire computational domain with mesh.

790 several additional outlets to the top gasket would improve filtration flow everywhere within the
791 islet chamber situated between the membranes and the top gasket. This is investigated next.

792 4.2. Two outlets versus one outlet. Here we investigate the influence of two outlets in
the design shown in Fig. 12 top, on filtration flow and oxygen concentration. Fig. 12 top shows

Fic. 12. Computational domain and velocily streamlines for the case with two outlets. The mazimum
velocity is between 3.4 cm/s.

793

794 the computational domain, and Fig. 12 bottom shows the filtration velocity streamlines, with
795 colors corresponding to the velocity magnitude. Two interesting observations can be made from
796 the results in Fig. 12:

797 e The presence of the second outlet improves the flow through the part of the islet chamber
798 closest to that outlet (see Fig. 12 right).

799 e The staggered distribution of islet chamber and membranes underneath the chamber,
800 increases transverse flow through the islet chamber. This is shown by the angled stream-
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lines in Fig. 12 right.

OUTLET

OUTLET

Fia. 13. Comparison of the streamlines viewed from the top for the designs with one outlet (left), c.f. Fig. 9,
and with two outlets (right), c.f. Fig. 12. The top view shows the outlets, the slow flow (blue) in the top gasket,
and the faster flow (red) in the islet chamber. The same velocity scale was used for both pictures. We see
stronger flow through the islet chamber on the right (two outlets). In particular, the transverse flow, away from
the ultrafiltrate channels, is much stronger in the case of two outlets. This can also be seen in Fig. 12(bottom,).
A combination of the presence of the second outlet and the “misalignment between the islet chamber and the two
inlet membranes in the right half of the chamber is responsible for the increase in transverse (diagonal) flow.

Increased transverse flow through the islet chamber away from the ultrafiltrate channels can also
be seen in Fig. 13. Fig. 13 shows a view from the top at two device designs: the one on the
left has one outlet, the one on the right has two outlets. We can see an increase in transverse
(diagonal) flow through the islet chamber, shown with red streamlines, in the design with two
outlets. A combination of the presence of the second outlet and the “misalignment between the
islet chamber and the two inlet membranes in the right half of the chamber is responsible for the
increase in transverse (diagonal) flow.

The presence of the second outlet also helps avoid recirculation zones in the top gasket.
Recirculation zones can be seen in Fig. 13 left where the right-half of the top gasket shows areas
of recirculation flow. This is even more pronounced in Fig. 14 where a large recirculation zone
in the top gasket away from the outlet can be seen.

Recirculation zone

Fic. 14. Large recirculation zone in device design with only one outlet.

We further investigated the influence of two outlets on oxygen concentration in the islet
chamber. Fig. 15 shows a comparison in oxygen concentration between the two designs. The
figure on the left corresponds to the design with one outlet, and the figure on the right corresponds
to the design with two outlets. One can see that the design with two outlets shown on the right
has larger regions with high oxygen concentration, as well as larger regions with dark red color
indicating higher oxygen concentration.

To obtain more detailed information about oxygen concentration in the design with two
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Fic. 15. Comparison of oxygen concentration viewed from the top for the designs with one outlet (left),
c.f. Fig. 9, and with two outlets (right), c.f. Fig. 12. The same concentration scale was used for both pictures.
High oxygen concentration is shown in red, and low in white and blue. We see larger regions of high oxygen
concentration in the figure on the right, corresponding to the design with two outlets. The purple dots are the
outlines of the ultrafiltrate channels.

outlets, we present a 2D slice through a 3D islet chamber, shown in Figs. 16 and 17. Fig. 16

Velocity Oxygen W
streamlines [ concentration

Fi1c. 16. Velocity streamlines colored by velocity magnitude (left), and ozygen concentration (right) in the
poroelastic gel. The direction of flow is from top to bottom. The red streamlines in the figure on the right indicate
where the ultrafiltrate channels are located.

left shows the islet chamber with flow streamlines, with the flow entering the chamber from the
top, and leaving at the bottom. On the right we see the corresponding oxygen concentration
distributed within the chamber. Red is high, and dark blue low oxygen concentration, with the
maximum concentration equal to 1.06 x 10~"mol/cm?. Fig. 17 shows a 2D slice through the
3D islet chamber. We see, again, that high oxygen concentration occurs near the inlet, and close
to the filtration channels (red drop-like vertical structures). The dark blue region where oxygen
concentration is low corresponds to the area just under the frame of the membranes where there
is no filtration flow entering the islet chamber. In both figures the flow comes from the top and
leaves the islet chamber at the bottom.

4.3. Hydrogel elasticity. Finally, we investigate the influence of hydrogel elasticity on
flow and oxygen concentration. This is particularly important since elasticity can be controlled
in the fabrication of agarose hydrogel scaffolds, fabricated using the approaches presented in
[37]. Hydrogel elasticity is directly related to cells viability [1]. To investigate the influence of
hydrogel elasticity on flow and oxygen concentration we performed two simulations: one assumes
poroelasticity of a hydrogel, as described by the Biot model in Sec. 2.1, and the other assumes that
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Fi1G. 17. Detailed information about oxygen concentration within the hydrogel for the case with two outlets.
Left: 3D hydrogel with a 2D slice. Right: A section of the 2D slice through hydrogel containing details of oxygen
concentration (top) and hydrogel structure (bottom). Red is high oxzygen concentration and dark blue is low ozygen
concentration. Mazimum ozygen concentration was 1.06 x 10~ "mol/cm3. The flow is from top to bottom. The
dark red colors with high concentration indicate where the ultrafiltrate channels a located.

( ) PROPAGATION OF LEVEL SURFACE FOR OXYGEN CONCENTRATION (b) PROPAGATION OF LEVEL SURFACE FOR OXYGEN CONCENTRATION
a
ELASTIC GEL (BIOT) RIGID GEL (DARCY) ELASTIC GEL (BIOT) RIGID GEL (DARCY)

PROPAGATION OF LEVEL SURFACE FOR OXYGEN CONCENTRATION PROPAGATION OF LEVEL SURFACE FOR OXYGEN CONCENTRATION

(c) ()
ELASTIC GEL (BIOT) RIGID GEL (DARCY) ELASTIC GEL (BIOT) RIGID GEL (DARCY)

Fic. 18. Ozygen front propagation: Comparison between the Biot model (assuming poroelastic hydrogel),
and Darcy model (assuming rigid porous hydrogel). The figure shows four snap-shots at increasing times from
(a)-(d) showing the propagation of a level surface of oxygen concentration. In figure (d) we see that oxzygen front
has already reached the top gasket in the case of the poroelastic Biot model (figure (d) left), while in the case
of the rigid gel modeled by Darcy law, the front is still within the islet chamber, not yet reaching the top gasket

(figure (d) right).

hydrogels are rigid, and uses Darcy equation to calculate filtration flow through the hydrogel. We
found that hydrogel elasticity improves both flitration flow and oxygen concentration within the
hydrogel. Fig. 18 shows the propagation of oxygen front (a level surface of oxygen concentration)
as a function of time. The four panels in this figure show four snap shots of oxygen front
propagation increasing in time from (a) to (d). Indeed, one can see that in the case of a poroelastic
hydrogen, shown on the left in each of the four panels, oxygen front travels faster, and reaches
the top gasket before the oxygen front in the rigid hydrogel, shown on the right in each of
the four figures. Thus, elasticity of a hydrogel seems to be conducive to increased filtration
flow, c.f. Fig, 19 below, and faster oxygenation of the islet chamber. We further investigated the

This manuscript is for review purposes only.



845
846
847
848
849
850
851
852
853
854
855
856
857
858
860
861

863

864
865
866
867
868
869
870

NUMERICAL SIMULATION OF ISLET ENCAPSULATION DEVICE 31

— 1.0e+00
0.9
— 0.8
— 0.7
l 0.6
— 0.5
— 04
03
—0.2

0]
O
c
z
g
=
(o]
>
=
Q
o
()
>

— 5.0e-02

Fi1a. 19. Difference in velocity magnitude between filtration flow through an poroelastic hydrogel, modeled by
the Biot model, and rigid hydrogel, modeled by Darcy law. Red is high and blue is low velocity difference. Biot
filtration wvelocity has a higher magnitude, indicating that hydrogel elasticity is conducive to increased filtration

flow.

filtration velocity for the two cases, Biot versus Darcy, and found that indeed, there is a significant
difference in filtration velocity between the two models. While the maximum velocity occurs for
the Biot model and is equal to 3.5 cm/s, the maximum difference in the two velocities is 1 cm/s,
which is almost one third of the maximal filtration velocity. We attribute this difference to the
fluid pressure-related swelling of the hydrogel pores, accommodating more fluid, especially near
the inlet into the hydrogel region. The difference between the filtration fluid velocity between
the two scenarios is shown in Fig. 19.

We conclude this section by comparing the overall oxygen concentration within three hydro-
gels with three different elastic moduli: alginate hydrogel with Youngs modulus £ = 4 x 10*
Pascals, alginate with £ = 0.75 x 10 Pa, and a very stiff scaffold made of Polycaprolactone
(PCL) with E = 1.3 x 10® Pa. All the other properties, such as porosity and permeability, were
assumed to be the same. Fig. 20 shows three curves of oxygen concentration over time, one for
each cell scaffold. We see that there is a significant increase in oxygen concentration within the
elastic alginate scaffolds with Youngs moduli £ = 4 x 10* Pa and E = 0.75 x 10%, in compari-
son with the stiff Polycaprolactone (PCL) scaffold with E = 1.3 x 10® Pa modeled using Darcy
model. Fig. 20 shows that oxygen concentration in the most elastic scaffold, namely alginate
gel with E = 4 x 10* P, is 30% higher than that in the stiffest scaffold considered in this study.
This is particularly interesting considering that scaffold elasticity can be controlled during their
fabrication, and that elastic scaffolds improve cell viability [1].

5. Conclusions. We developed a multi-scale mathematical and computational model to
study cell encapsulation and design of an implantable bioartificial pancreas (iBAP). The macro-
scale models include a fluid-structure interaction (FSI) model describing the flow of blood plasma
through a poroelastic hydrogel, and a set of two coupled advection-reaction-diffusion models
defined on moving domains: the hydrogel and two gaskets adjacent to the hydrogel. A novel
second-order accurate finite element numerical scheme was designed to solve the FSI model.
The scheme is based on a Cauchy’s 6-like method with Nitsche approach to impose the coupling
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F1G. 20. The curves show ozxygen concentration over time for three different hydrogels with three different
elasticity moduli: alginate hydrogel with Youngs modulus E = 4 x 10* Pascals, alginate with E = 0.75 x 108 Pa,
and a very stiff scaffold made of Polycaprolactone (PCL) with E = 1.3 x 108 Pa. We see a significant increase
in oxygen concentration for the most elastic alginate hydrogels with E = 4 x 10* Pa and E = 0.75 x 108 Pa over
the stiff PLC with E = 1.3 x 108 Pa.

conditions. We prove rigorously that the resulting scheme is unconditionally stable when Nitsche’s
parameter is larger than a certain quantity, and we show that the method is second-order accurate
in time using the method of manufactured solutions. At the micro-scale, Smoothed Particle
Hydrodynamics (SPH) simulations are used to simulate local hydraulic permeability for a given
hydrogel macro-architecture, from where hydrogel-specific macro-scale permeability tensor is
derived. To avoid expensive 3D SPH simulations for each new hydrogel structure, Endoder-
Decoder Neural Networks are used for parameter estimation of the macro-scale permeability
tensor based on the micro-scale hydrogel architecture.

Our computational results show that:

1. Oxygen concentration and filtration flow through hydrogel scaffolds are significantly
affected by the position and number of the ultrafiltrate outlets. The ultrafiltrate outlets
should be (equi)distributed to uniformly cover the entire array of cell scaffolds.

2. Hydrogel elasticity significantly affects oxygen concentration and filtration flow through
scaffolds. Highly elastic scaffolds have a higher capacity for oxygen transfer.

3. Oxygen concentration is largest near the flow inlet into the scaffold, and near the drilled
ultrafiltrate channels.

The mathematical and computational approaches developed in this work provide a bench-
mark tool for computational analysis of not only iBAP, but also, more generally, of cell encap-
sulation strategies used in the design of devices for cell therapy and bio-artificial organs.

Extensions of this work include geometric optimization of ultrafiltrate channels’ distribution
maximizing oxygen concentration within a given hydrogel, the development of different, more
efficient, numerical methods to simulate the micro-scale ultrafiltrate flow, and inclusion of an
advection-reaction-diffusion model for insulin concentration.
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