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Abstract

Background

Resistance to intravenous immunoglobulin (IVIG) occurs in 10–20% of patients with Kawa-

saki disease (KD). The risk of resistance is about two-fold higher in patients with elevated

gamma glutamyl transferase (GGT) levels. We sought to understand the biological mecha-

nisms underlying IVIG resistance in patients with elevated GGT levels.

Method

We explored the association between elevated GGT levels and IVIG-resistance with a cohort

of 686 KD patients (Cohort I). Gene expression data from 130 children with acute KD (Cohort

II) were analyzed using the R square statistic and false discovery analysis to identify genes

that were differentially represented in patients with elevated GGT levels with regard to IVIG

responsiveness. Two additional KD cohorts (Cohort III and IV) were used to test the hypothe-

sis that sialylation and GGT may be involved in IVIG resistance through neutrophil apoptosis.

Results

Thirty-six genes were identified that significantly explained the variations of both GGT

levels and IVIG responsiveness in KD patients. After Bonferroni correction, significant
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associations with IVIG resistance persisted for 12 out of 36 genes among patients with ele-

vated GGT levels and none among patients with normal GGT levels. With the discovery of

ST6GALNAC3, a sialyltransferase, as the most differentially expressed gene, we hypothe-

sized that sialylation and GGT are involved in IVIG resistance through neutrophil apoptosis.

We then confirmed that in Cohort III and IV there was significantly less reduction in neutro-

phil count in IVIG non-responders.

Conclusions

Gene expression analyses combining molecular and clinical datasets support the hypothe-

ses that: (1) neutrophil apoptosis induced by IVIG may be a mechanism of action of IVIG in

KD; (2) changes in sialylation and GGT level in KD patients may contribute synergistically to

IVIG resistance through blocking IVIG-induced neutrophil apoptosis. These findings have

implications for understanding the mechanism of action in IVIG resistance, and possibly for

development of novel therapeutics.

Introduction

Kawasaki disease (KD) is an acute systemic vasculitis of infants and children, that occurs

world-wide [1], but the biology of this condition is not well understood. Coronary artery aneu-

rysms (CAA) occur in 25% of untreated patients, making KD the leading cause of acquired

heart disease in children [2, 3]. Therapy for KD includes high-dose aspirin and intravenous

immune globulin (IVIG) [4], which reduces the incidence of CAA to 5–7% when given within

the first 10 days of illness [5, 6]. However, 10%-20% of patients are resistant to IVIG [7, 8], and

are consequently at greater risk of developing CAA, and require additional adjunctive treat-

ments [5, 9]. We [10–12] and others [13–15] have found that serum gamma-glutamyl transfer-

ase (GGT) levels are elevated in the acute phase of KD patients and that higher GGT levels are

associated with IVIG resistance.

In this study, we explored the association of GGT level and IVIG resistance in KD patients

to try to understand the biological mechanism of action underlying these two clinical findings.

With our systematic analyses of gene regulation and associated clinical findings and outcomes,

we hypothesize: (1) neutrophil apoptosis induced by IVIG plays a pivotal role in IVIG re-

sponsiveness; (2) changes in sialylation and GGT levels in acute KD patients may contribute

together to IVIG resistance by blocking IVIG-induced neutrophil apoptosis.

Methods

The normal ranges of GGT and alanine aminotransferase (ALT) are shown in Table A in S1

File and Table B in S1 File respectively, while the normal range of C-reactive protein (CRP) is

shown in the footnotes of Table E in S1 File.

Cohort I: Subjects used to analyze the relationship between the levels of

GGT and IVIG resistance

A cohort with 686 subjects with KD (Cohort I) was used to explore the associations between

GGT levels and IVIG resistance. All subjects in this cohort were enrolled at Rady Children’s

Hospital in San Diego after obtaining written parental informed consent and patient assent as

appropriate. All subjects were treated with 2 g/kg of IVIG (Gammagard1) over a 10–12 hour
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period as per the pharmacy’s standard protocol. The study protocol was conducted in accor-

dance with the Declaration of Helsinki and was approved by Institutional Review Boards

of UCSD and Stanford University. KD subjects in this study were: a) patients with fever

(�38.0˚C rectally or orally) for no more than 10 days, plus at least four of the five principal

clinical criteria, b) patients meeting fewer criteria but with coronary artery abnormalities

(CAA) (Z-score�2.5 for left anterior descending [LAD] and/or right coronary arteries

[RCA]) documented by echocardiogram, and c) patients with fewer than 4 clinical criteria but

meeting the American Heart Association (AHA) criteria for incomplete KD by laboratory cri-

teria [4]. KD subjects meeting the inclusion criteria were identified from the database main-

tained at the UCSD KD Research Center. We obtained prospectively collected demographic

and clinical data, the results of laboratory studies prior to IVIG administration, and IVIG-

responsiveness. IVIG-resistance was defined as persistent or recurrent fever (rectal or oral

temperature�38.0˚C) at least 36 hours but no longer than 7 days after completion of the initial

IVIG infusion (2g/kg) [10]. Subjects in this cohort were either treated with a second course of

IVIG or infliximab for IVIG-resistant KD.

Cohort II: Subjects used for gene expression profiling and GGT/IVIG

association analysis

We performed gene expression profiles of whole blood obtained from a sub-cohort of 146 KD

subjects (Cohort II) as previously described [16]. Of these KD subjects, 130 had complete data

on IVIG responsiveness and serum GGT levels available for subsequent analyses; clinical char-

acteristics of this cohort are summarized in Table C in S1 File. The odds ratios of gene expres-

sion stratified by IVIG response were calculated using logistic regression with glm2 in R [17].

For each of the 31,000 genes in the 130 subjects, the explained variations in GGT levels or

IVIG responsiveness were estimated using R square of linear regression or the McFadden’s

pseudo- R square [18, 19] of logistic regression [17], respectively.

Correction for multiple hypothesis testing on the explained variations was performed using

the permutation-based false discovery rate (FDR) analytical method [20]. FDRs of GGT- and

IVIG-associated variations for each gene were estimated using Monte Carlo simulation. Genes

with FDRs less than a threshold of 0.01 were considered true discoveries explaining the varia-

tions in GGT levels and IVIG responsiveness. The common genes among true discoveries of

both GGT and IVIG were used for the next analysis (Fig 1, Panel 2).

The study population was divided into two sub-cohorts, one with normal and the other

with elevated GGT levels, using age-specific reference ranges established in our clinical labora-

tory (Table A in S1 File). Logistic regression was performed for each of the 36 common genes

with FDR<1%, to evaluate its contribution to the risk for IVIG resistance in each sub-cohort.

The Bonferroni method was applied to correct for multiple hypothesis testing [21, 22].

Cohorts III and IV: Subjects used to investigate and validate the changes

of neutrophils in response to IVIG treatment

Cohort III was derived from the placebo arm of a phase 3, randomized, double-blind, placebo-

controlled trial of IVIG with or without infliximab for treatment of KD, which was conducted

from March 2009 to August 2012 in two children’s hospitals in the USA [23]. Cohort III

included 95 KD patients of the 98 KD patients from the placebo arm, and was used to investi-

gate changes of neutrophils in response to IVIG treatment. The 3 excluded placebo subjects

had missing data for IVIG response (n = 1) or absolute neutrophil count (n = 2). The study

protocol was reviewed and approved by the Institutional Review Boards at the University of

California San Diego’s and Nationwide Children’s Hospital. Written informed consent was

Significant Gene Expression Analysis of GGT-Associated IVIG Resistance

PLOS ONE | DOI:10.1371/journal.pone.0167434 December 21, 2016 3 / 15



obtained from the parents or legal guardians and assent, when appropriate, was obtained from

the patient.

To validate our observations on changes of neutrophils in response to IVIG treatment in

Cohort III, we utilized another independent cohort (Cohort IV) with 587 KD subjects.

Approved by the institutional review board of Korean University Medical Center, the medical

records of KD patients from January 2008 to December 2013 were reviewed. The diagnosis

and treatment of KD was based on AHA criteria [4]. CAA were diagnosed on the basis of the

criteria proposed by the Japanese Kawasaki Disease Research Committee in 1984 [24]. Patients

with complete differential leukocyte counts at diagnosis and 2 days after IVIG treatment, IVIG

response and CAA data were included. Detailed characteristics, clinical data and results of lab-

oratory studies of subjects were previously described [25].

Fig 1. Study outline of analyses to uncover unique gene expression patterns underlying IVIG responsiveness in subjects with elevated serum

GGT levels. (1) Analysis of GGT levels with IVIG responsive-ness; (2) Global gene expression analysis by R2 statistic and FDR anal-yses to identify genes,

explaining variations in both IVIG responsiveness and GGT elevation; (3) Targeted analysis of the step 2 discovered genes in either GGT normal or elevated

subgroups to reveal gene expression patterns specific for each sub-group of subjects; (4) Pathway and literature analysis to explore the underlying biology of

IVIG resistance in subjects with GGT elevation.

doi:10.1371/journal.pone.0167434.g001
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The absolute neutrophil count (ANC) (mature and immature (band) forms) were calcu-

lated for both the UCSD and Korean cohorts.

General data analysis

All statistical analyses and plots were performed using R 3.2.2 [26] and ggplot2 [27] if not men-

tioned explicitly. The difference in neutrophil reduction between the IVIG responders and the

IVIG non-responders after treatment was tested with the Mann-Whitney U-test. The scatter

plot curve of neutrophil reduction versus ANC was done with loess fit.

Results

Association between IVIG resistance risk and GGT levels

The 575 IVIG responders and 111 IVIG non-responders in Cohort I had similar demographic

and clinical characteristics (Table 1). Subjects were treated with IVIG just after obtaining base-

line laboratory values. In addition to elevated GGT levels, IVIG resistant subjects also had sig-

nificantly higher ALT, CRP values, band percentage, and absolute white blood cell count. This

Table 1. Clinical and laboratory characteristics values of 686 IVIG responsive and resistant KD subjects.

IVIG responders (N = 575) IVIG non-responders (N = 111) P value

Age at diagnosis, years 2.6 (1.4–4.3) 2.4 (1.4–4.2) NS

Male, N (%) 350 (60.9) 72 (64.9) NS

Illness day at sample collection days 6 (5–7) 5 (4–6) NS

Incomplete KD, N (%) 67 (11.7) 9 (8.1) NS

Coronary artery aneurysms, N (%) 12 (2.1) 5 (4.5) NS

Ethnicity, N (%)

Asian 99 (17.2) 14 (12.6) NS

African-American 23 (4.0) 4 (3.6) NS

Caucasian 135 (23.5) 30 (27.0) NS

Hispanic 186 (32.3) 37 (33.3) NS

More than race 111 (19.3) 24 (21.6) NS

Other 8 (1.3) 1 (0.9) NS

CRP, mg/dL 7.0 (4.0–14.6) 8.3 (5.2–18.6) < 0.01

ESR, mm/h 61 (42–77) 53 (36–68) < 0.05

WBC, ×103/mm3 13.2 (10.6–17.3) 13.6 (10.6–17.4) NS

ANC, cells/mm3 8,836 (6,440–11,696) 9,585 (7,301–12,328) NS

ZHgb -1.2 (-2.1–0.42) -1.2 (-2.2–0) NS

ALT, IU/L 35 (19–98) 76 (38–142) < 0.001

GGT, IU/L 37 (17–109) 76 (28–157) < 0.001

Albumin, g/dL 3.9 (3.5–4.2) 3.7 (3.4–4.0) NS

Polymorphonuclear leukocytes (%) 54 (42–64) 51.0 (40.0–62.5) NS

Platelet count, ×103/mm3 373 (291–467) 340 (282–430) NS

Bands (%) 11.0 (4.0–19.0) 18.0 (10.0–32.2) < 0.001

ABC 1,440 (554–2,634) 2,450 (1,272–4,512) < 0.001

Values are presented as median (IQR: Interquartile range). KD: Kawasaki disease, IVIG: intravenous immunoglobulin, CRP: C-reactive protein, ESR:

erythrocyte sedimentation rate, WBC: white blood count, ANC: absolute neutrophil count, ZHgb: standard deviations from the mean hemoglobin

concentration normalized for age, ALT: alanine aminotransferase, GGT: gamma-glutamyl transferase. The difference between groups were tested using

Wilcoxon rank sum test, NS: not significant.

doi:10.1371/journal.pone.0167434.t001
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is in line with previous meta-analysis [15] that serum levels of ALT and GGT in IVIG non-

responders were significantly higher than that in the IVIG responders.

IVIG resistance was examined according to GGT levels quintiles (Fig 2). IVIG resistance

risk in each quintile exhibited a progressive association with the GGT levels and the odds ratio

reached 2.6 for subjects in the highest quintile compared with the lowest quintile.

Global gene expression analyses with FDR

Of the 130 KD subjects with gene expression data in Cohort II, 100 were IVIG responders and

30 were IVIG non-responders. At the time of diagnosis, 45 subjects had normal serum GGT

levels, and 85 had elevated GGT levels (Table C in S1 File). In multiple hypothesis testing of

Fig 2. Odds ratio for IVIG resistance per quintile of GGT level. The odds ratios were calculated against the first quintile with the lowest GGT level. The

95% confidential intervals were shown as the error bars. **: P value < 0.01 using fisher exact test.

doi:10.1371/journal.pone.0167434.g002
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gene expression for GGT levels and IVIG resistance, the number of true discovered genes

decreased with increasing R square values (Fig 3). The median of false discoveries decreased

much faster than the total number of discoveries because the event, that a gene can explain the

significant variations of the randomized response, can only occur by chance. In analyses of

IVIG resistance and elevated GGT levels, the R square thresholds corresponding to a TDR of

99% resulted in discovery of 837 and 613 genes, respectively. Of these, 36 were common to

both gene sets (Fig 3 bottom panel).

Candidate gene analysis with normal and elevated GGT level sub-cohorts

In order to explore these 36 genes with regard to the GGT-level-associated IVIG responses, we

partitioned Cohort II into sub-cohorts with normal (45 subjects including 38 IVIG responders

and 7 non-responders) or elevated GGT levels (85 subjects including 62 IVIG responders

and 23 non-responders). After applying the Bonferroni correction, significant associations

(P value < 0.05) with IVIG resistance persisted for 12 out of the 36 genes among patients with

elevated GGT levels and none among patients with normal GGT levels (Table 2). The highest

Fig 3. R2 statistic and FDR analyses with respect to GGT levels and IVIG responsiveness. Top left panel: discovery of genes explaining variations in

IVIG responsiveness. Top right panel: discovery of genes explaining variations in GGT levels. Bottom panel: Venn diagram analysis uncovering genes

explaining variations in both IVIG responsiveness and GGT levels.

doi:10.1371/journal.pone.0167434.g003
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odds ratio was 114.1 for ST6GALNAC3 in the GGT-elevated subgroup, and exhibited about a

50-fold difference between the subgroups (Table 2).

Association of the reduced ANC with IVIG treatment outcomes

As shown in Fig 4A, 10 of 95 subjects in Cohort III are IVIG non-responders. Reduction of

neutrophil counts after IVIG treatment were common among both IVIG responders (92%)

and IVIG non-responders (60%). IVIG non-responders had significantly lower (P value

9.6 × 10−3) percentage reduction in neutrophil count than responders. A similar pattern was

observed in Cohort IV, which included 222 IVIG non-responders and 365 IVIG responders

(Fig 4B, P value 1.4 × 10−13). We further delineated changes in ANC by stratifying patients

into quintiles according to the ANC at presentation (S1 Fig). In comparison with non-

responders, a significantly greater decline in ANC was observed in responders in every quintile

(S1 Fig). The ANC increased in a small fraction of patients in both groups after IVIG treat-

ment: 14.4% of non-responders and 3.5% of responders. We plotted the trending curve of

either absolute or percentage of neutrophil reduction against the pretreatment ANC (Cohort

III subjects, S2A and S2B Fig; Cohort IV subjects, S2C and S2D Fig). This trending curve

showed that neutrophil reduction increased as a function of the pretreatment ANC in both the

resistant and responsive subgroups. Thus, Cohort IV analysis validated the Cohort III observa-

tions that the IVIG non-responders have less reduction in neutrophil count than the IVIG

responders. Within subgroup with elevated GGT levels (S3 Fig), the association between high

levels of GGT and neutrophil reduction revealed no clear trend.

Discussion

Our study highlights the significant association of the elevated GGT levels with IVIG treatment

outcomes in KD patients. Global gene expression analysis revealed 36 genes that could explain

Table 2. List of 12 genes significantly contributing to IVIG resistance in subgroup with elevated GGT levels identified by logistic regression from

36 genes found by R2 statistic and FDR analyses.

Gene symbol HGNC name Normal GGT Elevated GGT

Odds ratio

(95% CI)

P

value*
Odds ratio

(95% CI)

P

value*

ST6GALNAC3 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-

acetylgalactosaminide alpha-2,6-sialyltransferase 3

2.3 (0.003–

2217)

114.1 (9.2–

2540)

0.03

LAMTOR5 late endosomal/lysosomal adaptor, MAPK and MTOR activator 5 2.1 (0.3–177.7) 112.5 (10–2034) 0.02

CMTM4 CKLF-like MARVEL transmembrane domain containing 4 0.7 (0.01–23.1) 34.7 (5.5–

303.1)

0.02

LOC653907 similar to complement component (3b/4b) receptor 1 isoform F precursor

(obsolete)

1.2 (0.1–16.5) 19.4 (4.1–

119.2)

0.02

TSHZ3 teashirt zinc finger homeobox 3 1.1 (0.2–10.4) > 0.01 14.6 (3.7–72.9) 0.01

GADD45A growth arrest and DNA-damage-inducible, alpha 0.3 (0.04–1.8) 12.2 (4.0–49.4) 0.003

DACH1 dachshund family transcription factor 1 0.4 (0.04–3.4) 8.8 (2.9–35.0) 0.02

PCOLCE2 procollagen C-endopeptidase enhancer 2 1.2 (0.2–6.4) 4.4 (1.9–11.3) 0.04

MMP8 matrix metallopeptidase 8 1.2 (0.2–5.2) 2.8 (1.7–5.2) 0.01

ATP8B2 ATPase, aminophospholipid transporter, class I, type 8B, member 2 0.1 (0.005–2.5) 0.1 (0.02–0.4) 0.05

ABCF1 ATP-binding cassette, sub-family F (GCN20), member 1 0.2 (0.002–

12.0)

0.02 (0.0007–

0.2)

0.05

SSBP3 single stranded DNA binding protein 3 0.03 (0.0003–

1.6)

0.03 (0.0003–

0.1)

0.01

* P values adjusted by Bonferroni correction.

doi:10.1371/journal.pone.0167434.t002
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the variations of both IVIG treatment outcomes and GGT levels in acute KD patients. Of these

36 genes, 12 retained an association with IVIG resistance in the subgroup with elevated GGT

levels, while none remained significant in the normal GGT subgroup. In comparison, although

both ALT and GGT levels in IVIG resistant patients were significantly higher than that in the

IVIG responsive group, none of the 12 GGT-associated genes were significantly associated

with IVIG responses in either the normal or elevated ALT subgroups (Table D in S1 File).

These observations suggest that a unique gene expression pattern exists in KD subjects with

elevated GGT levels, which may account for their higher risk of resistance to IVIG treatment.

Molecular and immunological markers have been shown to segregate and predict respond-

ers and non-responders to IVIG therapy [28]. Consistent with previous observations of signifi-

cantly elevated neutrophil counts in IVIG-nonresponsive patients, the circulating levels of

inflammatory mediators including granulocyte-colony stimulating factor (G-CSF) were signif-

icantly higher in IVIG non-responders [29] and were positively correlated with higher levels of

matrix metalloproteinase-8 (MMP-8), which is 1 of the 12 GGT associated genes found in this

Fig 4. Neutrophil reduction in response to IVIG treatment in two independent cohorts. All P values

were calculated using Wilcoxon rank sum test. A) Cohort III. B) Cohort IV. The number of patients with rising

neutrophil counts after IVIG treatment were indicated by the numbers below x axis alongside each box plot.

The P values were calculated using Wilcoxon rank sum test.

doi:10.1371/journal.pone.0167434.g004
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study [29, 30]. We reasoned that the 12 GGT associated differentially expressed genes were

novel, and may provide molecular insight on the IVIG response. We focused the analyses on

ST6GALNAC3, which was found to have the highest odds ratio in the elevated GGT group and

about a 50-fold greater risk compared to the normal GGT group. ST6GALNAC3 is a sialyltrans-

ferase that exclusively utilizes α2, 3-sialylated ganglioside GM1b as a donor to synthesize ganglio-

side GD1α by adding a α2, 6-sialic acid onto β-galactoside [31]. The branching α2, 6-sialic acid,

could potentially increase the binding affinity of GD1α to siglec-9, a sialic acid-binding immuno-

globulin-type lectin which preferably binds to α 2,3- and α 2,6-sialyl residues [32] on monocytes

and neutrophils [33] (Fig 5). We observed that the ANC declined in response to IVIG in both

IVIG responders and non-responders (Fig 4B). Given that IVIG non-responders are still febrile

with ongoing inflammation, we hypothesized a direct impact of IVIG on neutrophils instead of a

secondary therapeutic effect of global inflammation reduction. This is consistent with previous

smaller cohort observations [34, 35]. Neutrophils isolated from IVIG responders exhibit acceler-

ated spontaneous apoptosis in vitro [36], suggesting that apoptosis may cause the reduction of

neutrophils during IVIG treatment. Conversely, neutrophils isolated from IVIG non-responders

were less inclined to undergo apoptosis in vitro [36]. These observations are in line with our

hypothesis that neutrophils in non-responders may be more resistant to IVIG induced apoptosis.

In addition, neutrophil count was used as one of the clinical features for IVIG resistance score

[37]. Circulating neutrophils and their over activation maybe one of the underlying progressive

indicators in IVIG resistance and the severity of the heart lesion [38, 39].

Despite the fact there have been reports of KD occurring in the presence of Autoimmune

neutropenia (AIN)[40, 41], for the majority of KD patients, the neutrophil count is elevated.

We showed that IVIG non-responders had significantly lower percentage reduction in neutro-

phil count than responders. The observation of KD symptoms[41] with neutropenia suggested

that there might be two KD subgroups with different underlying mechanisms of pathophysiol-

ogy involving neutrophils. We hypothesize that, within a small subgroup of KD, neutrophil

may not necessarily be involved in the pathogenesis and manifestation of KD but rather in the

progression and severity of coronary artery lesions (CAL). One explanation in the AIN case

with KD is that the neutrophil count sampled in peripheral blood does not always reflect the

neutrophil count in the marginated pool or in the tissues. Autopsy data clearly show that neu-

trophils are the “first responders” in the tissues. Before they can enter the arterial wall, they

must marginate. Neither the marginated pool nor the tissue infiltrating neutrophils are mea-

sured when blood is drawn. Therefore, it is possible, in the minor subgroup of AIN with KD,

neutrophils may still be central to the pathophysiology of the disease even though the numbers

measured in the flowing portion of the peripheral blood is low.

Naturally occurring antibodies (Nabs) against siglec-9 (Nabs-siglec-9) are found in IVIG

and can induce apoptosis in neutrophils [42–44]. Moreover, this apoptosis is accelerated by

proinflammatory cytokines. Granulocyte/macrophage colony-stimulating factor (GM-CSF)

and interferon-γ (IFN- γ), which are often upregulated in KD [45, 46]. Therefore, we postulate

that Nabs-siglec-9 in IVIG can induce neutrophil apoptosis in KD, explaining the association

between the neutrophil reduction and therapeutic outcomes of IVIG (Fig 5): (1) the high

expression level of ST6GALNAC3 leads to increased enzymatic activity of ST6GALNAC3, pro-

ducing more GD1α, which in turn binds to siglec-9 and prevents its recognition by Nabs-

siglec-9 in IVIG; (2) elevation of GGT levels will increase the degradation of extracellular glu-

tathione (GSH) to provide cysteine for de novo synthesis of intracellular GSH, reducing the

intracellular reactive oxygen species (ROS) in neutrophils. Reduction of ROS in neutrophils

decreases neutrophil apoptosis induced by IVIG in the presence of GM-CSF and IFN- γ [44].

However, IVIG works through a myriad of paths. Neutrophil apoptosis is probably one of

MANY mechanisms by which IVIG may reduce inflammation.
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Conclusions

To the best of our knowledge, we are the first to integrate multifaceted data sets of expression

profiles, clinical parameters and outcomes to explore KD pathophysiology. We demonstrated

that KD subjects with elevated GGT levels have a unique gene expression pattern that overlaps

with the gene expression pattern associated with IVIG resistance. Our study suggests that

reduction of circulating neutrophils is one of the hallmarks of the therapeutic effects of IVIG.

Neutrophil activation and intracellular ROS effect due to elevated GGT levels may not be

directly associated with KD susceptibility but be mechanistically critical in IVIG resistance

and heart lesion pathogenesis [38, 39, 47]. Therefore, both increased ST6GALNAC3 and ele-

vated GGT levels may lead to reduced neutrophil apoptosis, and consequently IVIG resistance

(Fig 5).

Fig 5. Hypothesis of the underlying biology of IVIG responsiveness involving neutrophils, siglec-9, ST6GALNAC3, and GGT.

doi:10.1371/journal.pone.0167434.g005
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We propose two future testable hypotheses: (1) Nabs against siglec-9 (Nabs-siglec-9) in

IVIG can induce apoptosis in neutrophils and contribute to the efficacy of IVIG in the treat-

ment of KD. (2) Increased sialylation of gangliosides block IVIG-mediated neutrophil apopto-

sis and lead to persistent inflammation and IVIG resistance.

If confirmed, our findings may account for the variable effectiveness of different IVIG lot

preparations [48, 49], potentially allowing a new quality control approach. Monoclonal anti-

bodies against Siglec-3 and Siglec-2 are in clinical trials [50]. If developed, therapies to induce

neutrophil apoptosis could be a more effective KD treatment.
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