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ARTICLE

Robust and accurate estimation of paralog-specific
copy number for duplicated genes using
whole-genome sequencing
Timofey Prodanov 1 & Vikas Bansal 2✉

The human genome contains hundreds of low-copy repeats (LCRs) that are challenging to

analyze using short-read sequencing technologies due to extensive copy number variation

and ambiguity in read mapping. Copy number and sequence variants in more than 150

duplicated genes that overlap LCRs have been implicated in monogenic and complex human

diseases. We describe a computational tool, Parascopy, for estimating the aggregate and

paralog-specific copy number of duplicated genes using whole-genome sequencing (WGS).

Parascopy is an efficient method that jointly analyzes reads mapped to different repeat copies

without the need for global realignment. It leverages multiple samples to mitigate sequencing

bias and to identify reliable paralogous sequence variants (PSVs) that differentiate repeat

copies. Analysis of WGS data for 2504 individuals from diverse populations showed that

Parascopy is robust to sequencing bias, has higher accuracy compared to existing methods

and enables prioritization of pathogenic copy number changes in duplicated genes.
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Whole-genome sequencing (WGS) has the potential to
profile all genetic variants simultaneously in a genome,
however, the presence of repetitive sequences in the

human genome hinders the ability to achieve this potential.
Segmental duplications or low-copy repeats (LCRs) are long
segments of repetitive DNA that constitute 5–8% of the human
genome1,2. More than 900 genes are known to overlap these
segmental duplications and mutations in several such genes are
associated with rare and complex human diseases3. Genes that
overlap segmental duplication or have high sequence homology
to other loci in the genome are problematic for short-read
sequencing technologies since the reads derived from such
genes have ambiguity in their alignment and are difficult to
correctly position in the genome3–5. As a result, variants such as
SNVs and short indels are difficult to identify in these genes using
short reads6.

Low-copy repeats are also highly susceptible to copy number
changes including deletions and duplications as well as reciprocal
crossover (gene conversion) events that can change paralog-
specific copy number. Many of these copy number changes are
known to be disease associated7–11. For example, copy number of
the SMN1/2 gene can modify phenotype for spinal muscular
atrophy (SMA) and copy number changes at the STRC locus are
known to cause hearing loss9. In spite of their relevance for
human disease, most duplicated genes are excluded from stan-
dard WGS analysis pipelines since the presence of paralogous
sequences with high sequence identity and extensive copy num-
ber variation makes it difficult to analyze these loci accurately.

To enable the detection of clinically relevant copy number
variants in disease-associated duplicated genes, specialized diag-
nostic assays have been developed that utilize Quantitative real-
time PCR (qPCR), paralog ratio tests12,13 (PRT) and multiplex
ligation-dependent probe amplification14 (MLPA). Both qPCR
and PRT utilize PCR product specificity to distinguish paralogous
copies of a gene. However, these methods are labor-intensive and
require the design and testing of multiple primers for each locus.
Therefore, these methods cannot scale easily for copy number
analysis of the hundreds of duplicated genes in the human gen-
ome. Array-based methods such as CGH can scale for multiple
genes but cannot provide paralog-specific copy number which
can be important for disease mapping. For example, at the SMN1
locus (the two genes SMN1 and SMN2 only differ by 5 nucleo-
tides), individuals with two copies of SMN1 and one copy of
SMN2 are healthy while individuals with one copy of SMN1 can
be affected15.

Analysis of read depth using WGS data mapped to a reference
genome is a widely used approach for identifying copy number
changes in the human genome. Over the last decade, a number
of statistical methods have been developed for identifying
CNVs from WGS and targeted sequencing experiments16–21. The
vast majority of these methods calculate read-depth in non-
overlapping windows of a fixed length across the genome and
detect changes in the depth of coverage along chromosomes to
identify CNVs. CNV detection from WGS has been shown to be
more sensitive than array-CGH based CNV detection22. How-
ever, CNV detection methods for WGS data are designed to
analyze genomic regions independently and either exclude
genomic regions with low mappability from consideration or
randomly place reads with low mapping quality17 to avoid false
positives. Therefore, such methods tend to have low accuracy for
detecting copy number variation in LCRs. One exception is the
GenomeSTRiP method that can detect CNVs in both unique and
duplicated sequences20.

Alkan et al.23 developed a short read mapping algorithm,
mrsFAST, that can identify multiple mapping locations for reads
and used it to predict copy number in duplicated regions of the

human genome. Building on this approach, Sudmant et al.24

leveraged SUNs—paralogous sequence variants that uniquely tag
a repeat copy—to estimate total copy number as well as paralog-
specific copy number for all duplicated genes in the human
genmome. Analysis of WGS data from the initial phases of the
1000 Genomes project showed that almost half (49%) of dupli-
cated genes are copy number invariable while the remaining set of
duplicated genes show extensive copy number variation with
many copies not represented in the reference human genome24.
Recently, Shen et al.25 have developed a computational tool
QuicK-mer2 that leverages a similar approach to estimate
paralog-specific copy number.

Since WGS is now widely used in the clinical setting for disease
diagnostics, there is strong interest in developing computational
tools that can detect both copy number and sequence variation in
disease-relevant duplicated genes with high accuracy3. Several
methods—designed specifically for individual genes such as
SMN1, STRC, PMS2—have been developed for this purpose4,26,27.
For example, the SMNCopyNumberCaller tool26 is designed to
estimate the copy number of SMN1, SMN2 and a partially deleted
version of SMN2 from WGS data. Similarly, a workflow for
detecting variants in the duplicated region of PMS2 has also been
developed28. Although these tools are valuable for analyzing
duplicated genes, they leverage prior knowledge about individual
genes and are not directly applicable to other duplicated genes.

Copy number analysis for duplicated genes requires joint ana-
lysis of reads that are mapped to homologous repeat copies20,26. In
this paper, we describe a probabilistic method, Parascopy, for
estimating total (and paralog-specific) copy number of low copy
repeats (LCRs) in the human genome. Our method leverages a
homology database that stores positional information about similar
sequences in the human genome as well as the positions at which
the paralogous sequences differ (PSVs or paralogous sequence
variants). It uses the homology database to extract relevant reads
from existing alignments of WGS data. To avoid pitfalls associated
with using polymorphic PSVs for differentiating repeat copies,
Parascopy jointly estimates paralog-specific copy number and
reference allele frequencies for each PSV using WGS data for
multiple samples. This also identifies common profiles of copy
number variation that can be used to analyze individual WGS
datasets. We benchmark Parascopy’s accuracy using experimental
copy number datasets, Mendelian trio consistency analysis and
concordance analysis on replicate WGS datasets.

Results
Overview of method. Our method, Parascopy, is designed to
estimate the aggregate copy number (AggregateCN) and paralog-
specific copy number (ParalogCN) of low-copy repeats or LCRs
in the human genome (Fig. 1a). Even though a large fraction of
short reads cannot be mapped unambiguously due to the repe-
titive nature of such loci, it is feasible to analyze read depth jointly
across the different copies of a low-copy repeat and estimate the
aggregate number of copies. For a LCR R, Parascopy uses a
homology table to quickly identify all other regions in the genome
that share high sequence similarity or homology with R. The
homology table—similar to a segmental duplication database—
stores all pairs of sequences in the genome (with a minimum
length and minimum similarity score) and is precomputed using
standard alignment tools (see Methods).

Subsequently, reads from regions homologous to R are re-
mapped to R and the aggregated reads are used to tabulate read
depth in non-overlapping windows. A Hidden Markov Model
(HMM) is used to segment R into regions of fixed copy number
based on the read depth profiles and background read depth
distributions. To account for variation in read depth across
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different genomic regions, the background read depth distribu-
tions are estimated for each sample and GC-content value using
non-duplicated genomic regions (see Methods). The initial state
distribution and transition probabilities of the HMM are
estimated jointly across multiple samples enabling high sensitivity
for the detection of copy number variants that are present in
multiple samples (Fig. 1b).

Once the aggregrate copy number profile has been estimated
for each sample, Parascopy estimates the number of copies of
each paralog present in the genome (ParalogCN) by analyzing
allelic read depth at positions that differ between the homologous
sequences, i.e., paralogous sequence variants or PSVs. Since some
PSVs are not fixed in the population and correspond to variants,
Parascopy jointly models frequency of the reference allele at each
homologous position for each PSV and the ParalogCN for
samples with AggregateCN equal to the reference. It considers all
possible combinations of ParalogCN for each individual sample
and uses an EM algorithm to infer maximum likelihood estimates
for both sets of variables (Fig. 1c).

Parascopy estimates copy number accurately and identifies
reliable PSVs at the SMN1/2 locus. The SMN1/2 locus on
chromosome 5 harbors the SMN1 gene and its paralog SMN2 in a
tandem duplication of length ≈ 100 kilobases and very high
sequence identity (99.9%). Mutations—point mutations and copy
number changes—in the SMN1 and SMN2 genes cause a rare
childhood disorder called spinal muscular atrophy (SMA) and
SMN1 is one of the most-studied duplicated genes in the genome.
We estimated copy number for all 2504 samples with WGS data

from phase 3 of the 1000 Genomes Project (1kGP)29 using
Parascopy (samples for each continental group were analyzed
separately). Analysis of the Parascopy copy number profiles
across the 1kGP samples identified a known deletion event that
spans exon 7–8 (Fig. 2a) and confirmed the extensive variation in
AggregateCN (2–6) across human populations26.

Vijzelaar et al.30 used MLPA to estimate AggregateCN of each exon
of the SMN1/2 gene for 1109 1kGP samples. For the exon 7–8 region,
the copy number values for 79 of the 1109 samples were consistent
with the presence of the common deletion. The AggregateCN
estimates from Parascopy were perfectly concordant with MLPA
values30 for both exons 1–6 and 7–8 (Fig. 2b). We also compared
Parascopy’s accuracy for copy number estimation with three other
existing methods: SMNCopyNumberCaller26—a method designed
specifically to estimate copy number for SMN1/2; QuicK-mer225—an
alignment-free approach to estimate ParalogCN using k-mers unique
to paralogous sequences; and CNVnator17—a CNV detection
algorithm that statistically analyzes read depth from WGS data.
Both SMNCopyNumberCaller and QuicK-mer2 had high accuracy
for AggregateCN of exons 1–6 but CNVnator had a much lower
accuracy equal to 68.5% (Table 1). For the exon 7–8 region, only
SMNCopyNumberCaller showed high accuracy (sensitivity= 1.00
and specificity= 0.999). while both CNVnator (sensitivity= 0.823
and specificity= 0.849) and QuicK-mer2 (sensitivity= 0.709 and
specificity= 0.382) had significantly lower accuracy (Supplementary
Table 1). We also compared ParalogCN estimates from Parascopy
with those from SMNCopyNumberCaller, QuicK-mer2 and CNVna-
tor. While SMNCopyNumberCaller’s estimates on 855 non-African
samples were identical to Parascopy, QuicK-mer2 and CNVnator
showed higher mean absolute difference of 0.53 and 0.23 respectively.

Fig. 1 Estimation of aggregate and paralog-specific copy number for low-copy repeats using Parascopy. a Workflow of the method using aligned WGS
reads for multiple samples as input to infer aggregate and paralog-specific copy number profiles across a genomic region. b Illustration of the iterative
Hidden Markov Model (HMM) approach for estimating aggregate copy number (AggregateCN) profiles using normalized read depth for multiple samples.
Read depth values are shown for six samples (A–F) at the SMN1/2 locus (aggregated across SMN1 and SMN2). The HMM identifies a partial deletion in
samples D and E in the first iteration. Joint update of the HMM parameters results in detection of a common deletion event in the 3 of the 6 samples.
c Illustration of the Expectation-Maximization (EM) algorithm for estimating paralog-specific copy number (ParalogCN) and paralogous sequence variant
(PSV) reliability. PSV reliability is measured using f values that correspond to the population frequency of the reference allele for each PSV at each
paralogous position.
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Unlike previous methods, Parascopy estimates the population
frequency of the reference allele for each PSV (f values), and only
uses reliable PSVs —PSVs with f ≥ 0.95 for all homologous
positions—to estimate ParalogCN. Estimates of PSV f values
across the different populations showed that 10–19 of the 43
PSVs within and in the vicinity of SMN1 were reliable for 4 of the
5 continental populations in the 1kGP while none of the PSVs
were reliable in the African population samples (Fig. 2c and
Supplementary Data 1). This was consistent with the observations
of Chen et al.26 about the lower concordance between ParalogCN

values at individual PSV sites. Notably, the set of PSVs identified
as reliable by Parascopy included all 8 PSVs used for estimating
ParalogCN by SMNCopyNumberCaller26.

Parascopy outperforms existing methods for copy number
estimation. Next, we benchmarked the accuracy of Parascopy on
additional duplicated genes with experimentally determined copy
number data. For this, we compiled previously published datasets
with experimental copy number data for more than 1100 samples
(from the 1kGP) across nine different genes apart from SMN1/2

Fig. 2 Estimation of aggregate and paralog-specific copy number for the SMN1/2 locus using Parascopy. a Output from the Hidden Markov Model
estimation of aggregate copy number (AggregateCN) profiles for 503 European ancestry samples from 1kGP. The common deletion event at the 3' end of
the SMN1/2 gene is shown using blue and red arrows. b Comparison of the Parascopy AggregateCN estimates with MLPA based estimates for exons 1–6
and exons 7–8 (with deletion). Labels represent the number of samples with the corresponding copy number estimates. c Distribution of the frequencies of
the reference alleles (f values) for 43 paralogous sequence variants (PSVs; 23 within SMN1/2) across four different 1kGP continental populations. The eight
PSVs used for estimating paralog-specific copy number by SMNCopyNumberCaller are highlighted in red.

Table 1 Accuracy of aggregate copy number estimation for three different methods across ten duplicated genes in the human
genome.

Duplicated gene Sample size Copy number mean ± SD CNVnator QuicK-mer2 Parascopy

SMN1/2 1109 3.7 ± 0.6 68.5 (99.9) 99.5 100.0a

C4A/B 45 3.8 ± 0.6 86.7 75.6 100.0a

FCGR3A/B 51 4.1 ± 0.5 94.1a 94.1a 94.1a

PMS2/CL 140 4.0 ± 0.0 67.7 (92.9) 97.9 100.0a

HYDIN/2 5 4.4 ± 0.9 100.0a 100.0a 100.0a

APOBEC3A/B 179 3.6 ± 0.6 94.4 96.1 96.9a (90.5)
RHD/RHCE 40 3.6 ± 0.8 97.5a 97.5a 97.5a

NPY4R/2 18 4.8 ± 0.8 66.7 77.8a 77.8a

SRGAP2 40 7.8 ± 0.7 82.5 62.5 100.0a

AMY1A/B/C (δ) 225 7.3 ± 2.6 0.887 (99.1) 1.119 0.723a (96.0)

For eachmethod, accuracy is the percentage of samples with identicalWGS-based and experimental copy number values (see Supplementary Data 2). Percentage of copy number estimates with high quality is
shown in parentheses when it is below 100%. The third column in the table shows the mean and standard deviation (SD) of the experimental values. The reference copy number is 4 for all loci except for
SRGAP2 (8) and AMY1 (6). For the AMY1 locus, accuracy is estimated by computing mean absolute error (δ) due to high variance in copy number.
Source data are provided as a Source Data file.
aHighest accuracy for each gene.
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(listed in Supplementary Data 2). First, we compared the accur-
acy of AggregateCN estimates obtained from Parascopy with
CNVnator and QuicK-mer2 (Table 1). Across the 9 genes, Aggre-
gateCN estimates from Parascopy were either more accurate than
both methods (SRGAP2, C4A/B, PMS2, AMY1) or equally accurate
(FCGR3A/B, HYDIN, APOBEC3A/B, RHD/RHCE, NPY4R/2). For
the AMY1 locus, which has a high variation in total copy number
(2–18) in human populations, Parascopy’s mean absolute error was
0.72 compared to 0.89 and 1.12 for CNVnator and QuicK-mer2
respectively (Supplementary Fig. 1). For the APOBEC3A/B locus,
Parascopy’s assigned low quality (<20) to copy number values for
9.5% of samples due to the small length of the gene. The lowest
accuracy (77.8% on 18 samples) for Parascopy was observed for the
NPY4R/2 locus. Visual inspection of read depth profiles at this
locus for the 18 samples indicated that Parascopy’s estimates are
likely to be correct for all samples and were perfectly concordant
with QuicK-mer2 estimates (Supplementary Fig. 2).

Next, we assessed the accuracy of paralog-specific copy number
estimation for the three methods across 4 of the 9 genes that had
experimental paralog-specific copy number data (Table 2).
Parascopy’s average accuracy (87.58%) was greater than both
CNVnator (76.97%) and QuicK-mer2 (66.06%). Estimation of
ParalogCN depends on PSVs that can differentiate the repeat
copies and all methods had low accuracy for the C4/B locus
which had a low number of reliable PSVs (7/50).

Finally, we compared the performance of the different
methods for identifying the boundaries of copy number changes
within a gene. For this, we analyzed the PMS2/PMS2CL locus
where 4 of 150 1kGP samples were reported to harbor a partial
deletion covering two exons (exons 13 and 14) using LR-PCR
sequencing and MLPA28. Analysis of the AggregateCN profiles
estimated by Parascopy’s HMM showed that a partial deletion
was correctly identified in 4/4 samples albeit with low quality
(<20) in 2 of the 4 samples (Supplementary Fig. 3). Parascopy
did not identify the deletion event in any of the remaining
samples (sensitivity= 1.0 and specificity= 1.0). In contrast,
QuicK-mer’s copy number profiles showed no evidence of the
deletion (sensitivity= 0.0 and specificity= 1.0) while CNVnator
detected a copy number change in 3/4 samples (sensitivity=
0.75 and specificity= 0.691).

Accuracy of Parascopy copy number estimates across a set of
genome-wide low-copy repeats. Next, we evaluated Parascopy’s
accuracy and robustness for estimating copy number across a
larger set of duplicated coding loci in the human genome. For this
purpose, we compiled a catalog of 167 low-copy repeat loci—
overlapping over 220 protein-coding genes (380 including
homologous regions)—using previous analysis of sequence
homology of coding regions in the human genome3 and copy
number estimates for genes overlapping segmental duplications24

(see Methods). These 167 low-copy repeat loci span 12.6 Mb

of DNA sequence (including homologous regions) and 65.0
(14.7)% of these loci correspond to two (three) copy duplications
(see Supplementary Data 3 for a complete list).

First, to assess the robustness of the copy number estimates to
variation in sequencing bias, we analyzed each of the 167 repeat loci
in a set of 90 individuals of Han Chinese ancestry for which WGS
data was generated independently by Lan et al.31 using a PCR-based
library preparation protocol. 83 of these 90 individuals also had
WGS data available from the 1kGP generated using a PCR-free
library preparation protocol. In comparison with the PCR-free data,
the PCR-based WGS data exhibited significant greater biases in the
distribution of read depth as a function of GC-content (Supple-
mentary Figs. 4 and 5). We ran Parascopy, CNVnator and QuicK-
mer2 on the two datasets independently and compared the
concordance between pairs of replicate samples (across the 167
repeat loci) for each method. Parascopy reported AggregateCN
estimates (with quality ≥20) for 94.5% of the pairs and 98.7% of the
AggregateCN pairs were concordant. In comparison, QuicK-mer2
provided AggregateCN values for 100% of the pairs with a
concordance rate of 74.9% (Table 3). CNVnator’s concordance
(86.9% with a completeness of 97.0%) was also significantly lower
than Parascopy. Notably, Parascopy’s concordance without any
quality value filter (96.4%) was still 11.4 perecentage points greater
than that for CNVnator. These results also showed that Parascopy
AggregateCN values with quality <20 are less reliable.

Parascopy does not estimate ParalogCN values for loci that have
high reference copy number or a low fraction of reliable PSVs (see
Methods). As a result, the concordance analysis was limited to the
122 loci that had ParalogCN for one or more samples across both
replicates. Across these loci, Parascopy’s ParalogCN had a
concordance rate of 99.8% (99.5%) for a quality threshold of 20
(0). Notably, the mean absolute difference between replicates was
0.003. In comparison, QuicK-mer2 and CNVnator ParalogCN
estimates were available for all loci and had a concordance rate of
81.1% and 85.5% respectively (Table 3). For the smaller set of 122
duplicated loci with ParalogCN estimates from Parascopy, QuicK-
mer2 and CNVnator average concordance values were 85.4% and
93.3% respectively, higher than those for all loci. At the SMN1 locus,
the PSV f values, estimated by Parascopy, were highly concordant
between the two datasets (r2 > 0.92) and the same set of 20 PSVs
were identified as reliable in both datasets (Supplementary Fig. 6).

Next, we used trio analysis to assess if the ParalogCN values
estimated by Parascopy are consistent with Mendelian rules of
inheritance. For this, we utilized 602 trios with WGS data from the
expanded 1kGP dataset32. To account the uncertainty in the locus-
specific ParalogCN values for a trio, we used a probabilistic method
to calculate a probability that the trio ParalogCN values are
concordant with Mendelian inheritance (see Methods). We analyzed
trio concordance for 137 of the 167 loci, for which Parascopy could
estimate high quality ParalogCN values. On average, 99.5% trios were
concordant per loci, with 126 loci having at least 99% concordant
trios (Supplementary Data 4). The concordance rate for the subset of

Table 2 Accuracy of paralog-specific copy number estimates for three different methods using experimental copy number
observations for four duplicated genes in the human genome.

Duplicated gene Sample size CNVnator QuicK-mer2 Parascopy Reliable PSVs

SRGAP2 40 67.5 72.5 97.2ab 1461/940
C4A/B 45 51.1 48.9 66.7a 7/50
FCGR3A/B 40 97.5a 47.5 97.5a 120/179
RHCE/RHD 40 95.0 97.5a 92.5 897/1027

The last column shows the number of reliable paralogous sequence variants (PSVs; 1kGP European samples) and the total number of PSVs within the duplicated gene or locus.
Source data are provided as a Source Data file.
aHighest accuracy for each gene.
bParalog-specific copy number estimates have low qualities in four samples.
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locus-trio pairs for which the predicted ParalogCN for the child was
>2, was 95.5% (4776/5093).

Parascopy can estimate copy number values for individual
samples by utilizing the model parameters (HMM parameters and
PSV f values) inferred from an independent set of samples (see
Methods). To assess the accuracy of Parascopy for individual
samples, we analyzed 210 samples from two populations in the
1kGP (IBS and CHB) and compared the AggregateCN values for
each sample obtained by individual estimation (using the model
parameters from the other population) with multi-sample estima-
tion (all samples from each population analyzed jointly). Parascopy
AggregateCN estimates were perfectly concordant (Supplementary
Table 2) for 165 of the 167 loci. The two remaining loci (PRAMEF1
and RHPN2) had a mean AggregateCN > 7 and did not have high
quality estimates available for comparison. Similarly, ParalogCN
estimates showed very high concordance equal to 98.9%.

The accuracy of copy number estimation is expected to
improve with increasing read depth. The mean read depth for the
1kGP samples was 33× . To assess the accuracy of Parascopy at
lower values of sequence coverage, we sub-sampled WGS data for
107 samples from the IBS population in the 1kGP to one-third
and two-thirds of the original read depth, analyzed them using
model parameters from a different continental population and
compared copy number estimates with those obtained using the
full coverage (see Methods). As expected, the percentage of high-
quality AggregateCN estimates reduced with decreasing read
depth: 94% at two-thirds and 88.3% at one-third coverage
(Supplementary Table 2). Nevertheless, the high-quality Aggre-
gateCN and ParalogCN estimates had high concordance equal to
99.9% and 98.4% respectively at one-third coverage.

Parascopy is multi-threaded and can process multiple loci in
parallel. Analyzing 503 European genomes from the 1kGP took
17 h using 16 cores and required <12 Gb of memory. For a single
genome with 30 ×WGS, Parascopy took 16min to analyze 167
duplicated gene loci using 16 threads and required <5 Gb of
memory. In comparison, CNVnator (QuicK-mer2) took 28
(36) min to analyze a single genome using 16 threads and required
12 (40) Gb of memory. We note that a direct comparison of run-
time between Parascopy, CNVnator and QuicK-mer2 is difficult
since CNVnator and QuicK-mer2 are genome-wide methods while
Parascopy is a targeted copy number estimation method. Never-
theless, the low memory requirements and run-time for Parascopy
allow it to scale up for analyzing thousands of samples efficienctly.

Analysis of copy number changes and PSVs across 2504 indi-
viduals. To explore the diversity of copy number at low copy

repeat loci across populations and genes, we estimated copy
number at the 167 repeat loci for all 2504 individuals from five
continental populations sequenced in the 1kGP. For 151 of the
167 loci, AggregateCN values could be estimated with high con-
fidence (quality ≥ 20) for at least 95% of the samples. High
average copy number was the main reason for the low quality of
the AggregateCN estimates at some loci. The mean AggregateCN
was 4.39 (6.42) for the 151 (16) loci with ≥95% (<95%) of the
samples with high confidence AggregateCN values (Supplemen-
tary Data 5). Similarly, for 26 of the 167 loci, ParalogCN estimates
were not estimated either due to a low number of reliable PSVs
(e.g., CFC1) or due to the lack of a sufficient number of indivi-
duals with reference copy number (see Methods).

Not surprisingly, the most frequent copy number value for the
vast majority (88.4%) of loci was equal to the reference copy
number. Several disease-associated genes had a low variance in
aggregate copy number (e.g., HYDIN) while other genes such as
SMN1/2 and NEB had a large variance in the copy number.
Among 164 loci, 84 loci had 99% or greater of samples with
AggregateCN equal to the reference (Fig. 3b). For 15 loci, the
AggregateCN for more than half of the samples was greater than
the reference—likely due to a missing copy in the reference
genome (hg38) used for analysis. Notably, the most frequent copy
number for the OTOA gene locus (OTOA+OTOAP1) with a
reference copy number of 4 was 6 (Fig. 4a). To investigate this
further, we leveraged the recent highly complete human genome
assembly from the T2T consortium for the CHM13 cell line33.
Alignment of the OTOA duplicated sequence to this assembly
revealed the presence an additional copy that is not present in the
current human reference genome and has sequence similarity
≥99.5% to the two other copies. We added this additional copy to
the reference genome and re-analyzed the 1kGP samples using
Parascopy. The AggregateCN estimates were not affected by the
presence of the additional copy (concordance= 100%) demon-
strating the robustness of Parascopy’s AggregateCN estimates in
the presence of missing repeat copies. In addition, we were able to
estimate ParalogCN values and identify reliable PSVs using the
sequence information from the additional copy. Analysis of the
ParalogCN values across the 1kGP data showed that OTOAP1
locus is the most polymorphic in terms of copy number. For
example, out of 540 samples with AggregateCN= 5, more than
93% samples were missing one copy of OTOAP1.

Next, we analyzed the frequency and distribution of copy
number changes in individual disease-associated genes and their
relationship with known pathogenic variants. For the STRC gene,
~1.5% of individuals across all continental populations were

Table 3 Concordance of aggregate (AggregateCN) and paralog-specific (ParalogCN) copy number estimates across 167
duplicated loci between two replicate WGS datasets for 83 Han Chinese samples.

Data type Metric CNVnator QuicK-mer2 Parascopy

Q ≥0 Q ≥20 Q ≥0 Q ≥20
AggregateCN Available estimates (%) 100.0 97.0 100.0 100.0 94.5
(167 loci) Concordance (%) 85.0 86.9 74.9 96.4 98.7

Mean absolute difference 0.185 0.157 0.292 0.041 0.014
ParalogCN Available estimates (%) 100.0 97.0 100.0 72.8 70.1
(167 loci) Concordance (%) 83.4 85.5 81.1 99.5 99.8

Mean absolute difference 0.282 0.240 0.299 0.007 0.003
ParalogCN Available estimates (%) 100.0 97.8 100.0 99.7 96.0
(122 loci) Concordance (%) 91.4 93.3 85.4 99.5 99.8

Mean absolute difference 0.129 0.101 0.186 0.007 0.003

Q≥ 0—use all copy number estimates; Q≥ 20—use only high quality copy number estimates. QuicK-mer2 does not have a quality measures, therefore all copy number estimates were used. 122 loci—a
subset of loci where Parascopy estimates ParalogCN for at least one sample in both datasets.
Source data are provided as a Source Data file.
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carriers of a heterozygous deletion of STRC while no individual
had a bi-allelic deletion (Fig. 4b). Bi-allelic deletions in this gene
are known to cause hearing loss4,34. At the GBA locus—variants
in GBA are associated with Gaucher disease35—we observed that
9.4% of individuals from African populations had an Aggrega-
teCN of 6 or more while only 2 individuals (0.1%) from non-
African populations had such high copy number (Fig. 4d). GBA
and GBAP1 (pseudo-gene) are located in homologous repeats
separated by 10 kb on chromosome 1. Further analysis of copy
number revealed that the increased copy number is a result of a
duplication that includes the last two exons of GBA, part of
GBAP1 and the entire region between the two repeats
(Supplementary Fig. 7). For the NEB gene locus that harbors an
intragenic repeat with three copies, the aggregate copy number
varied from a minimum of 2 (one sample) to a maximum of 8
(population allele frequency of 0.12%, Fig. 4c). Previous analysis
of NEB copy number in 60 controls using a custom CGH
microarray36 had indicated that copy number gains of 2–4 copies
could be pathogenic for nemaline myopathy. Our results on a
much larger number of population samples indicate that copy
number gains of 2 copies are observed at a low frequency and are
unlikely to be pathogenic. Furthermore, the observed frequency
of 1-copy gains and losses (3.1% and 5.4%) were consistent with
those observed using CGH data (3.9% and 5.4%).

The fraction of reliable PSVs varied significantly across genes
with some well-studied disease genes such as C4A and PMS2

having a very low fraction of reliable PSVs while >90% of the
PSVs were reliable for genes such as VWF and ABCC6 (Fig. 3a
and Supplementary Data 6). The fraction of reliable PSVs was
highly correlated across populations (r2= 90%, on average sets of
reliable PSVs overlap by more than 95%) except for a few genes
such as SMN1 for which no reliable PSVs were identified for the
African population. A high fraction of unreliable PSVs (f < 0.95)
makes it challenging to estimate ParalogCN. Comparison of
Parascopy’s ParalogCN estimates with those estimated by QuicK-
mer2 for several disease-associated genes (Supplementary Fig. 8)
showed that while the AggregateCN estimates were highly
concordant between the two methods, the concordance of the
ParalogCN estimates was low for genes with a high frequency of
unreliable PSVs. For example, the correlation coefficient r2

between the ParalogCN values for Parascopy and QuicK-mer2
(using 503 European samples) was 0.70 for the FCGR3A gene
(67% reliable PSVs) but it was only 0.29 for the SMN1 gene (15%
reliable PSVs). In addition, Supplementary Fig. 8 shows that
when the fraction of reliable PSVs is low, QuicK-mer2 tends to
generate ambiguous ParalogCN values: 49% of SMN1 ParalogCN
values from QuicK-mer2 are closer to a half-integer than to any
integer.

A high frequency of unreliable PSVs is expected to adversely
impact not only ParalogCN estimation but also short read mapping
and variant calling since short-read mapping tools rely on PSVs to
distinguish between different repeat copies. We used simulations to

Fig. 3 Distribution of the percentage of reliable paralogous sequence variants (PSVs) and aggregate copy number (AggregateCN) profiles across
duplicated genes. a Percentage of reliable PSVs (f ≥ 0.95) across 83 disease-associated genes and four continental populations from 1kGP. b Distribution
of AggregateCN for 167 duplicated loci across all populations. Dark/white dots show reference copy number for each locus. Rare events (<1% samples) are
not shown.
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assess the impact of the frequency of reliable PSVs on variant
calling accuracy at the SMN1/2 locus. When all PSVs were reliable,
state-of-the-art variant calling tools—GATK HaplotypeCaller37

and Freebayes38—achieved a recall of 0.52 and 0.55 respectively
with a high precision (>0.96) for variant calling. However, when we
incorporated unreliable PSVs (identified from the analysis of 1kGP
data, see Methods) in the simulated reads, the precision reduced
significantly to 0.56 and 0.59 and the recall decreased to 0.25 and
0.29 for the two methods.

Discussion
In this paper, we described a new computational method (and soft-
ware tool), Parascopy, specifically designed for estimation of copy
number for LCRs in the human genome using WGS data. Parascopy
leverages WGS data from multiple individuals to automatically
account for sequencing biases and estimate aggregate and paralog-
specific copy number profiles across specified region(s). Unlike some
existing methods that require re-mapping or k-mer analysis of the
entireWGS data, Parascopy uses a targeted approach that extracts and
analyzes only reads relevant for each repeat loci from existing align-
ments. This allows it to efficiently estimate copy number for individual
repeat loci across thousands of samples. We benchmarked Parascopy’s
accuracy using experimental copy number data for a number of genes
and concordance analysis on replicate samples and it proved to be
significantly more accurate than two existing methods—one designed
for estimation of paralog-specific copy number (QuicK-mer2) and the
second for genome-wide copy number variant analysis (CNVnator).
Parascopy’s estimates of aggregate and paralog-specific copy number

are robust to variation in sequencing biases and read depth as well as
missing repeat copies in the reference genome.

A number of computational methods have been developed for
detecting copy number variants from WGS data by modeling
read depth16,17,20,39. Most of these methods are designed for
analysis of unique regions of the genome and do not focus on
repetitive regions of the genome. Parascopy has been developed
to fill this gap and uses a two-step approach where it first esti-
mates aggregate copy number (by aggregating reads mapped to
homologous regions) and then estimates paralog-specific copy
number by careful modeling of PSVs. A similar approach has
been used by the SMNCopyNumberCaller method26—a method
designed for analysis of a single duplicated gene. However,
Parascopy’s general framework works for any low-copy repeat in
the human genome and does not make assumptions about which
PSVs can be used to distinguish the paralogous repeat copies.
Instead, Parascopy explicitly models and estimates population
allele frequencies for each PSV using WGS data for multiple
samples and is the first method to do so. Analysis of WGS data at
the SMN1/2 locus demonstrated the ability of Parascopy to cor-
rectly identify reliable PSVs and also showed that using a fixed set
of PSVs for estimating ParalogCN can potentially result in
incorrect estimates.

Analysis of PSV allele frequencies using 1000 Genomes data
showed that reliable PSVs were highly consistent across popula-
tions, however, the frequency of reliable PSVs varied significantly
across genes. Information about reliable PSVs is not only useful
for estimating paralog-specific copy number but is also relevant
for read mapping and variant calling in LCRs. We have

Fig. 4 Distribution of aggregate (AggregateCN) and paralog-specific (ParalogCN) copy number values across 2504 samples from 1kGP for four
disease-associated genes. The reference copy number is shown in red and marked with an asterisk. For the OTOA and STRC loci (a and b), the ParalogCN
distribution for each AggregateCN bin is also shown. a For the OTOA gene, the most frequent AggregateCN is 6 while the reference copy number is 4,
indicating the presence of a missing repeat copy in the reference genome. b 1.5% samples exhibit heterozygous deletion of the STRC gene while no samples
have a homozygous deletion. c For the NEB gene, AggregateCN varies between 2 and 8 across 1kGP samples while previously reported pathogenic alleles at
this locus had copy number ≥9. d A duplication event that includes both GBA and GBAP1 is frequent in African populations (9.4% of individuals have
AggregateCN of 6–10) and almost absent in non-African populations. For completeness, the panel includes samples with AggregateCN quality <20.
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previously shown that post-processing of long read alignments
using a probabilistic model that models genotypes for PSVs
improves read mapping in LCRs40. It is well documented that
short-read variant calling in LCR regions exhibits a higher rate of
false negatives (due to low mappability) and false positives
compared to unique regions of the genome41. Knowledge about
reliable PSVs has the potential to improve short-read mapping
and variant calling accuracy in such regions.

Parascopy has several limitations and avenues for further
improvement. Parascopy’s accuracy is lower for short regions
and for regions with very high copy number (>7). Nevertheless,
Parascopy was able to estimate aggregate copy number with
greater accuracy for the AMY1 locus than existing methods. In
addition, it cannot estimate ParalogCN for loci with high refer-
ence copy number (difficult to model large number of possible
paralog-specific copy number values) or loci with a very low
fraction of reliable PSVs. Parascopy currently works for only
WGS data, however, information about allele-specific read depth
at PSVs can potentially be used to infer copy number from tar-
geted sequencing assays. Parascopy can estimate copy number
for individual genomes using pre-computed model parameters,
however, sample-specific sequencing biases may reduce the
accuracy of copy number estimation. Parascopy assumes that the
paralog-specific copy number for each sample is constant across
the analyzed region. However, gene conversion events and
hybrid alleles resulting from non-allelic homologous recombi-
nation are commonly observed at LCR loci42,43 and can result in
non-uniform paralog-specific copy number. An HMM based
approach can be used to model and detect such events and we
plan to explore this in future work.

Unlike variants in unique regions of the genome, small
sequence and copy number variants in duplicated genes are rarely
analyzed in large-scale human genetic studies. Over the last few
years, a number of large-scale WGS datasets for rare and com-
mon human diseases have become available44,45 and several
others are expected to be available soon46. We expect Parascopy
to be a valuable tool for analyzing such large-scale WGS datasets
to identify novel genotype-phenotype associations. In addition,
copy number profiles from such datasets will be useful for
prioritizing pathogenic copy number changes in duplicated genes
in the human genome. Finally, Parascopy can be useful for
assessing the completeness and correctness of de novo assemblies
at LCRs which can be challenging to assemble correctly even
using long reads.

Methods
Given short sequence reads from WGS aligned to a reference genome for one or
more samples, Parascopy jointly analyzes reads aligned to a genomic region R and
its homologous sequences to estimate aggregate copy number (AggregateCN)—
number of copies of R and its paralogs—as well as paralog-specific copy number
(ParalogCN)—number of copies of each paralog. The estimation is performed
jointly across all samples in two steps: (i) AggregateCN profiles are estimated first
using read depth in fixed length windows and (ii) ParalogCN values are estimated
using allele-specific read counts at PSVs and AggregateCN profiles. The workflow
of the method is presented in Fig. 1a. Before copy number estimation, background
read depth distributions are estimated for each sample using reads mapped to
unique regions of the genome.

Construction of homology table. Parascopy uses a precomputed table of homo-
logous regions in the genome (homology table) to identify the paralogous regions
for a given genomic region. This homology table stores pairwise duplications in a
BED format that allows for indexing and fast retrieval of all duplications over-
lapping a given genomic region. For each duplication, we store a sequence align-
ment, length, sequence similarity and other characteristics, which allow for
convenient filtering of duplications. Duplications with more than two copies are
identified from overlapping pairwise duplications, and PSVs are extracted from the
sequence alignments. The homology table is constructed by self-alignment of the
reference human genome to itself using BWA47 (see Supplementary Methods). The
table is designed to store primarily LCRs; therefore, sequences with too many (>10)

pairwise alignments—that typically correspond to interspersed repeats—are dis-
carded and the regions appropriately flagged in the table.

Normalization of read depth. To infer copy number from read depth, we use
information from the observed read depth in a large number of non-repetitive
regions of the genome (assumed to have a copy number of 2) for each sample.
Briefly, read depth is calculated for windows of fixed length (default 100 bp)
selected from unique regions of the genome by assigning mapped reads to the
window that contains the center of the first read in each read-pair. Windows that
have a high fraction (≥10%) of (i) low mapping quality reads (<10), (ii) reads not
mapped in proper pairs, or (iii) soft-clipped reads—are marked as irregular and not
used for normalization. We considered several distributions to model the read
depth distribution and found that the Negative Binomial (NB) distribution pro-
vided a better fit for the read depth distribution for PCR-based WGS data com-
pared to the Poisson distribution (see Supplementary Fig. 4 for an example).
Therefore, we use the NB distribution to model the variation in read depth across
windows in unique regions of the genome. To account for variation in read depth
due to GC-content, we use separate NB parameters for each GC-content value
(see Supplementary Methods). This procedure is performed independently for each
sample and only needs to be done once for each sample independent of the number
of repeat loci.

We utilize a set of genomic windows used by the SMNCopyNumberCaller
tool26 for estimating background read depth. We split the set of regions into short
windows of length 100 bp. To increase the number of windows with extreme GC-
content (≤35% or ≥55%), we select such windows in a 5 kb neighborhood of the
original set of genomic regions. Finally, we discard all windows with a distance
<500 bp to any duplication in the homology table. This procedure yields ~90,000
windows for both hg19 and hg38 versions of the human genome.

Identifying homologous regions and calculating aggregate read depth. For a
given region R, we find all pairwise homologies overlapping R from the homology
table. To reduce complexity, we skip short duplications (<500 bp). The homologous
segments are used to split R into subregions or segments of constant reference copy
number. Note that the reference copy number of a two-copy duplication is equal to
4 as the human genome is diploid. Next, for each sample, we extract reads aligned
to the homologous regions and re-map these reads to the region R. This re-
mapping is efficiently done using the precomputed alignments between R and its
homologous sequences that are stored in the homology table. Each subregion of
constant reference copy number is divided into non-overlapping windows of fixed
length and aggregate read depth is computed for each window using the reads from
the region R and the reads re-mapped to R. The read assigning procedure is same
as for the background read depth analysis. For each window we calculate the
fraction of reads with soft-clipping and the fraction of reads not mapped in a
proper pair and filter out windows (and one flanking window on either side) if they
are irregular in more than 10% of the samples.

For some loci, two subregions with the same reference copy number are
interrupted by a short region with a different reference copy number (for example
by an interspersed repeat). We group such subregions (if they are separated by
<2000 bp) into region groups and all subsequent analysis is performed
independently for each region group.

Estimating aggregate copy number profiles jointly for multiple samples. To
estimate the aggregate copy number (AggregateCN) profiles, we construct a
HMM48 for each region group. For a single sample s, the aggregate read depth
values in the windows across the region represent the observed values and the
AggregateCN value for each window forms a set of hidden states. For each window,
we consider K possible AggregateCN values where K is selected based on the
reference copy number for the region and observed aggregate read depth for all
samples (see Supplementary Methods).

To reduce the number of parameters, we define all transition probabilities based
on two parameters for each consecutive pair of windows: ~a%w; ~a&w 2 0; 1

10

� �
. We

define a jump from AggregateCN i to a larger AggregateCN j as aijw ¼ ~aj�i
%w and to a

smaller AggregateCN k as aikw ¼ ~ai�k
&w . The transition probability aiiw therefore

equals 1�∑j≠iaijw . By default, both ~a%w and ~a&w are set to 10−5 on the first
iteration, and the initial state distribution is set to π:ref ¼ 1

jSj for all non-reference
copy number states and πref ¼ 1� K

jSj for the reference copy number.

Let oðsÞw be the aggregate read depth for sample s in window w and let nðsÞw and
pðsÞw be the parameters of the NB distribution corresponding to the GC-content of
window w (estimated separately for each sample). The emission probability for
copy number c (hidden state) and window w is defined as:
bðsÞw ðcÞ ¼ PNB oðsÞw ; nðsÞw � c=2; pðsÞw

� �
:

For each sample, we use the Forward-Backward algorithm49 to obtain γðsÞc;w—the
probability that sample s has copy number c in window w. Next, HMM parameters
—emission and transition probabilities as well as the initial state distribution—are
updated iteratively using γðsÞc;w. The emission probabilities are updated using a scale
parameter mw for each window w that models window-specific biases in
sequencing read depth that are not captured by GC-content based modeling19. In
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the first iteration, mw is initialized to 1 for all windows. This parameter scales the
expected read depth for each window (equally for all samples) to be higher or lower
than the default value and is estimated using a maximum likelihood procedure and
the γðsÞc;w estimates (see Supplementary Methods and Supplementary Fig. 5).

To update initial and transition probabilities, we use a procedure similar to
Baum–Welch algorithm48 (see Supplementary Methods). The intuition underlying
these updates is that the initial state probabilities correspond to population
frequencies of the aggregate copy number values at the start of the region, while
shared deletion or duplication events result in increased transition probabilities
between the states of adjacent windows where the events happen. This iterative
procedure—Forward-Backward algorithm for each sample followed by joint update
of the HMM parameters—is run until the log-likelihood of the data (summed over
all samples) converges (See Supplementary Methods). Finally, we run the Viterbi
algorithm50 to find most probable AggregateCN profile for each sample.

Estimating paralog-specific copy number using PSVs. Once the AggregateCN
profiles are estimated for each sample, we estimate paralog-specific copy number
(ParalogCN) values using the allele-specific read counts at PSV sites across the
region R. For a region with reference copy number cr and a sample s with
AggregateCN cs, the paralog-specific copy number is defined as an integer tuple of
length cr/2 that sums up to cs. Each tuple element represents the copy number of a
specific copy of the duplication and order of the copies is the same for all samples.
Note that there are ð3=2 �cr�1

cr
Þ possible paralog-specific copy number tuples for each

sample. We assume that the ParalogCN does not change in a region with constant
AggregateCN.

PSVs are defined based on the reference genome assembly and only those PSVs
for which the allele on a specific paralog of a duplication is invariant in the
population are useful for estimating ParalogCN. Since some PSVs are known to
correspond to polymorphisms, we model the frequency of the reference allele at a
PSV site v and paralog k as fvk where fvk2 ½0; 1�. We call a PSV v reliable if all its f

values are close to 1: mincr=2k¼1 f vk ≥ 0:95 Such PSVs can be used as markers of each
paralog and are useful for estimating ParalogCN.

Given sequence data from multiple samples, we want to estimate two sets of
variables: (i) ParalogCN for each sample, and (ii) PSV frequency matrix f where fvk
is the frequency of the reference allele for PSV v on the k-th copy. We use an
Expectation-Maximization (EM) algorithm to solve this problem where sample
ParalogCN values are hidden variables and the matrix f is an unknown parameter
(see Supplementary Methods for details). In order to reduce computational
complexity, we apply the EM algorithm only to those samples for which
AggregateCN is equal to the reference copy number cr (minimum of 50 samples).
Once the PSV f values are determined, we calculate the ParalogCN for all samples
individually. For this, we run the E-step of the EM algorithm using only reliable
PSVs. Parascopy does not estimate ParalogCN for loci with very high AggregateCN
or reference copy number (>8) and for loci with very high number of possible
ParalogCN tuples (>500) to limit run-time.

Estimating copy number values for a single individual. Parascopy is designed to
estimate AggregateCN and ParalogCN profiles using data for multiple samples,
therefore, analyzing a single sample or a small number of samples may not produce
very accurate results, particularly for ParalogCN. To enable the analysis of indi-
vidual samples, we can use model parameters estimated from a population of
samples, e.g., 1000 Genomes Project. Model parameters include initial and tran-
sition probabilities of the aggregate copy number HMM, as well as a set of window-
specific scale parameters {mw} and PSV frequency matrix f. This allows us to
quickly analyze individual samples using precomputed model parameters for
multiple duplicated loci.

Genome-wide set of duplicated gene loci. To obtain a set of duplicated gene loci,
we started with a set of 1168 duplicated genes that were reported previously3 as
having at least one exon that is difficult to map using short reads due to high
sequence similarity to one or more other loci. From these, we removed 124 genes
that are known to vary extensively in copy number24 and 88 genes that are missing
from the GENCODE annotation v3751. In addition, we discarded 257 genes that
did not overlap any duplication longer than 2 kilobases in the homology table. The
remaining genes were merged into 564 loci, which were then manually filtered in
order to remove high copy number regions and regions with complex duplication
structures. For some loci, we included additional flanking sequence to provide
more useful information for copy number detection. The final set of duplicated
gene loci set contained 167 regions, with all homologous regions covering 12.6 Mb.

Analysis of 1000 Genomes samples at 167 repeat loci using Parascopy. We
used high-coverage (30×) whole-genome sequence data for 2504 samples from the
1000 Genomes Project (1kGP) generated by the New York Genome Center29.
All samples were sequenced using a PCR-free library preparation protocol and
cram files aligned to the reference human genome hg38 were used for analysis. The
2504 samples were divided into 5 groups based according to their continental
population and each group of samples was analyzed together in a single run of
Parascopy. To assess copy number concordance in trios, we analyzed WGS

data from an additional set of 698 related samples from the 1kGP resource.
The 698 samples were analyzed independently of the 2504 samples in a single run
of Parascopy.

Copy number benchmarking using experimental data. For a given duplicated
locus, Parascopy outputs integer AggregateCN and ParalogCN estimates for various
subregions of the locus. In contrast, QuicK-mer2 and CNVnator output fractional
ParalogCN values for various subregions throughout the whole genome and do not
output AggregateCN directly. In order to facilitate a direct comparison, we extract
Parascopy, QuicK-mer2 and CNVnator copy number estimates that overlap single
positions within multiple copies of 167 duplicated loci (Supplementary Data 7). As
CNVnator does not output ParalogCN estimates in the absence of deletions and
duplications, we treat missing CNVnator values as ParalogCN= 2. Next, for each
locus, we sum fractional ParalogCN values and round the sum to the nearest
integer to obtain AggregateCN estimate; In addition, we round every fractional
ParalogCN value to obtain integer ParalogCN estimates.

Throughout the paper, we consider Parascopy copy number values to have high
quality if their Phred-score is at least 20. Likewise, we convert CNVnator E values into
Phred-scores and say that theAggregateCN and ParalogCN estimates have high quality
if the scores are ≥20 across all copies. We assume that all QuicK-mer2 copy number
estimates have high quality, as the method does not output any quality measures.

To measure copy number estimation accuracy, we compare Parascopy, QuicK-
mer2 and CNVnator AggregateCN and ParalogCN values derived from WGS data
against corresponding copy number estimates based on experimental observations
(Tables 1 and 2, Supplementary Table 1 and Supplementary Data 2) for the same
locus and the same individuals. If the experimental copy number observation is a
fractional number, we round it to the nearest integer. Copy number estimate is
correct if it matches completely with the experimental observation for the same
sample. In Tables 1 and 2, QuicK-mer2 AggregateCN and ParalogCN values were
aggregated across the duplicated genes, and median copy number value was
selected. This procedure improved QuicK-mer2 accuracy; however, we did not
perform it for all 167 duplicated loci, as it requires a careful case-by-case approach,
especially in complex duplications.

SMNCopyNumberCaller26 v1.1.1, QuicK-mer225 build 2021 and
CNVnator17 v0.4.1 were run on the WGS datasets using default parameters.
In addition, QuicK-mer2 copy number estimates for 2457 1kGP samples were
downloaded from https://github.com/KiddLab/kmer_1KG.

Assessing consistency of copy number estimates. To evaluate Parascopy,
QuicK-mer2 and CNVnator robustness, we compare AggregateCN and ParalogCN
estimates obtained for the same individuals based on two independent WGS datasets
for 83 Han Chinese samples: PCR-free IGSR32 dataset and PCR-based BGI31 dataset.
Copy number estimates were selected based on a set of positions within 167 dupli-
cated loci in both datasets; in this way each sample is associated with 167 pairs of
AggregateCN and ParalogCN values. A pair of copy number estimates is considered
available, if the corresponding copy number estimates have high quality in both
datasets. Accordingly, a pair of copy number estimates is concordant, if it is available
and the corresponding copy number estimates match completely.

To assess robustness of Parascopy copy number estimates to variation in read
depth and model parameters, we create two sets of Parascopy model parameters
using 503 and 504 samples from the European and East-Asian continental
populations, respectively. We analyze the same set of samples (103 Han Chinese
samples and 107 Iberian samples) using both sets of model parameters and evaluate
the concordance of resulting AggregateCN and ParalogCN values. In addition, we
subsample the 107 Iberian samples to one-third and two-third coverage, analyze
subsampled datasets using East-Asian model parameters, and compare resulting
copy number estimates against those obtained using full-coverage dataset and
European model parameters.

Paralog-specific copy number validation using trios. In order to assess the
accuracy of paralog-specific copy number estimates using Parascopy, we analyzed
602 trios with WGS data from the extended 1kGP32. The child in each trio was
analyzed independently from the two parents to avoid any bias (except for 9 trios
that consisted entirely of IGSR relatives). To assess consistency of ParalogCN
values in trios, we modeled the population frequencies of paralog-specific copy
number for a single chromosome using the observed diploid observations
(see Supplementary Methods). For each trio with high quality (≥20) ParalogCN
estimates, we calculated the probability of observing the child’s ParalogCN given
the ParalogCN estimates of both parents. A trio was considered discordant if this
probability was <0.01.

Measuring the effect of unreliable PSVs on variant calling. In order to evaluate
the consequences of unreliable PSVs (f < 0.95) on variant calling, we used the
NEAT short-read simulation tool52 v3.0 to generate a baseline set of single
nucleotide variants (SNVs, ≈ 1 SNV per 1 kb) and high-coverage (30×) WGS data
with and without unreliable PSVs. To introduce unreliable PSVs we randomly
replaced PSV reference alleles with alleles from another copy of the duplication
according to the frequencies of PSV reference alleles (f values) in SMN1/2 locus in 503
European samples from the 1kGP. This procedure yielded 31 homozygous and 33
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heterozygous SNVs corresponding to unreliable PSVs. Next, we called variants in
both copies of the duplication (total length 111 kb) using GATK HaplotypeCaller37

v4.2.2 and Freebayes38 v1.3.5 and compared results with baseline sets of SNVs
using RTG tools53 v3.12.1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The analyses presented in this paper are based on the high-coverage whole genome
sequencing data of 1000 Genomes Project samples that was generated at the New York
Genome Center with funds provided by NHGRI Grant 3UM1HG008901-03S1. This
sequencing data is available via ENA Study PRJEB31736 and PRJEB36890. The whole-
genome sequence data for 90 Han Chinese samples is available from ENA Study
PRJEB11005. For this dataset, we used aligned reads downloaded from https://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/data_collections/han_chinese_high_coverage for
analysis. Source data are provided with this paper.

Code availability
Parascopy is implemented in the Python programming language and is freely available
for download at https://github.com/tprodanov/parascopy54. It is also available via conda
(conda install -c bioconda parascopy). Parascopy requires BAM/CRAM files
for one or more samples, a reference genome sequence and a homology table (provided
for human reference genomes hg19 and hg38) as input.
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