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ABSTRACT OF THE DISSERTATION 

 

Adaptive Rendering and Scheduling Techniques to Enable Cloud Mobile Gaming 

 

by 

 

Shaoxuan Wang 

Doctor of Philosophy in Electrical Engineering (Computer Engineering) 

University of California, San Diego, 2013 

 

Professor Sujit Dey, Chair 

 

This dissertation studies a new cloud server based approach for mobile gaming, 

termed Cloud Mobile Gaming (CMG), that enables 3D, multiplayer, Internet video games on 

mobile phones — the kinds of games that today require a powerful PC tethered to the Internet. 

We flipped the traditional client-server architecture for PC-based Internet games on its head 

and looked to cloud computing, instead of putting most of the storage and computational 

burden of the games on the mobile device. Though promising, the new CMG approach will 

impose other challenges, namely to ensure high mobile gaming user experience (as two-way 

gaming data including video will need to be transmitted through wireless networks in real 

time), and ensure scalability in terms of cloud servers and network bandwidth, so as to ensure 

economic viability of the approach. In our work, we have developed key new technologies to 

address these challenges.  



 

xvi 

We first developed and validated a Mobile Gaming User Experience model, which 

can quantitatively measure user perceived mobile gaming experience. Next, we develop an 

adaptive rendering technique which can simultaneously vary the richness and complexity of 

graphic rendering to adapt the communication and computing needs of each CMG session in 

responding to the dynamic conditions of the wireless networks and cloud server. Finally, we 

present a mobile cloud scheduling approach which can allocate resources to meet user 

experience requirements while maximizing the number of users which can be scheduled 

concurrently and minimizing cloud cost. 

The experimental results presented demonstrate that our proposed adaptive rendering 

technique and the mobile cloud scheduling approach can efficiently address the challenges 

imposed by the wireless network and cloud server, ensuring the user perceived gaming quality 

as well as the scalability for the CMG approach. We believe the techniques proposed in this 

work will not only enable rich Internet cloud gaming, but also other rich mobile multimedia 

applications using the cloud.  
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Chapter 1 

Introduction 

The emergence of new and more capable mobile devices, including smart phones, 

tablets, and netbooks, along with the steady deployment of broadband wireless networks is 

making mobile access to rich Internet sites a reality. This technological progress opens up a 

new possibility: the ability to play rich Internet games produced for PCs on wireline networks 

from mobile devices. Enabling mobile Internet gaming will significantly change the 

experience of mobile users from the thin, single player gaming possible today to a rich, multi-

player Internet gaming experience of users’ familiar games from any location with the proper 

access. It will also open up the possibility for mobile service providers and Internet game 

developers to translate the tremendous growth experienced in recent years in Internet PC 

games to the fast emerging mobile eco-system. However, due to the inherent hardware 

constraint of mobile devices such as memory and graphics processing, the goal might be 

difficult to achieve using the current client-server gaming architecture for PC-based Internet 

games, since most of the storage and computational burden of the game lies with the client 

device. 

Instead, it may be promising to investigate a cloud server based mobile gaming 

approach termed Cloud Mobile Gaming (CMG), where a gaming server is responsible for 
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executing the appropriate gaming engine and streaming the resulting gaming video to the 

client device, while the mobile devices only communicate the user’s gaming commands to the 

cloud server. In our work, we first investigate the potential major challenges for this new 

CMG approach focusing on response time, user experience, mobile network bandwidth, cloud 

computing cost, and scalability to large number of CMG users. Subsequently, we propose and 

develop several techniques to address the challenges encountered. We believe the techniques 

proposed in this work will help to successfully launch the CMG approach and lead to a 

quantum leap in the perception and use of mobile devices for Internet gaming. 

In this chapter, we first look at the early trends and advantages for this new CMG 

approach, and present an overview of the CMG approach. Next we analyze the challenges that 

need to be addressed to make the CMG approach viable. Finally, we outline the contributions 

made by this thesis, in applying the proposed techniques to the CMG approach. We conclude 

with an overview of the remaining chapters. 

1.1 Cloud Mobile Gaming: Advantages and Overview 

Over the last few years, there has been an increased number of applications which 

have “migrated to the cloud”, as well as new cloud-based applications that have become 

recently popular. Most of the early adopters of the cloud have been enterprise applications and 

IT departments. According to the recent research report from Analysis Mason [AM13], 

revenue from mobile enterprise cloud-based applications and services is expected to rise from 

nearly $18.3 billion in 2012 to $31.9 billion in 2017. Similar motivations which have driven 

mobile enterprise cloud services are also driving adoption of mobile consumer cloud services: 

the ability to access media from anywhere- any device, platform, and network. According to 

the Cisco virtual network index mobile forecast [CIS13], the cloud video applications and 
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services such as Netflix, YouTube, Pandora, and Spotify will account for 84 percent of total 

mobile data traffic in 2017, as compared to 74 percent at the end of 2012. In other words, 

mobile cloud video traffic will grow 14-fold from 2012 to 2017. And according to Juniper 

Research, revenues from consumer cloud mobility services, initially driven by cloud based 

music and video storage and download services like the ones recently launched by Amazon’s 

Cloud Drive and Apple’s iCloud, are expected to reach $6.5 billion per year by 2016 [JUN11].  

Besides such storage and download services, a big boost to mobile consumer cloud 

services will come from a major shift in the mobile applications market, primarily from native 

applications to ones based on Cloud Mobile Computing: utilizing the computing and storage 

resources available in the cloud, thereby enabling the use of cutting edge multimedia 

technologies that are much more computing and storage intensive than what mobile devices 

can offer, and thus enabling a much richer media experiences than what current native 

applications can offer.  

One promising cloud mobile computing application with the potential to significantly 

enhance the media experience of mobile users is Cloud Mobile Gaming (CMG). Despite the 

progress in the capabilities of mobile devices, there is a widening gap with the growing 

requirements of the latest 3D video games from what can be supported by today’s and the near 

future’s mobile devices, including tablets. Figure 1.1 shows this widening gap from 2008 to 

2012, in terms of the recommended GPU requirements [3DG] of the most demanding games 

in those years such as Call of Duty 4 in 2008, Call of Duty 7 in 2010, and Battlefield 3 in 2012, 

and the GPU capabilities [ANA] of the popular smartphones in those years: iPhone 3G, 

iPhone 4, and iPhone 5 respectively. CMG can bridge this gap by allowing game rendering to 

be executed in the cloud instead of on the mobile device, thereby, potentially enabling mobile 

users to play the same rich Internet games available to high-end PC users.  
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 Besides eliminating the hardware constraint of mobile devices, the CMG approach 

also provides a new capability to solve the cross-platform issue for mobile gaming, a 

fundamental problem which constrains mobile gaming from being very successful. It allows 

mobile users to play an Internet game without the installation of a game engine on his/her 

platform. With one game software installed on the cloud server, heterogeneous mobile devices 

with different operating systems and hardware capacities can play the same game via the 

CMG approach. This will significantly relieve game developers from the expensive cycle of 

developing device and platform specific mobile versions for the same game.  

Figure 1.2 shows the overall CMG approach. In the conventional Internet multiplayer 

game architecture, the game synchronization server is the key component that runs the 

fundamental game logic in a single process, and maintains the game database. Besides, it 

2008 2010 2012

3D game GPU 

requirements

Call of Duty 4 Call of Duty 7 Battlefield 3

8.8 GPixels/sec 14.16 GPixels/sec 25.9 GPixels/sec

Smartphone 

GPU capability

Iphone 3G Iphone 4 Iphone 5

0.135 pixels/sec 0.5 Gpixels/sec 4.875 Gpixels/sec

 

 
3D game GPU requirement

Mobile device GPU capacity

 

Figure 1.1. Growing gap between (recommended) GPU requirement of rendering-based 

applications and GPU capability of mobile devices. 
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maintains the connections for users, delivers the interactive messages as well as updates the 

active users’ game data simultaneously. To support mobile gaming on thin clients, in the 

CMG system we extend the conventional game synchronization server with two key 

components: game engine server and game streaming server. When a player accesses the 

game server from a mobile device, the connection will first be confirmed by the game 

synchronization server. Subsequently, it initializes a game engine server and a game streaming 

server for this mobile device/user. The game engine server then loads the client’s account 

information and game data from game synchronization server, and begins to process the game 

logic and user data to render the raw game video. The generated raw game video is encoded 

by the game streaming server, and finally sent to the mobile client via the wireless connection. 

On the other hand, the mobile user’s inputs are delivered to the CMG server and accepted by 

the game synchronization server directly. Figure 1.2 shows the control flow (green) and 

data/video flow (red) for a CMG video game session. 

 

Figure 1.2. Overview of Cloud Mobile Gaming architecture and data/control flow. 
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1.2 Challenges of Cloud Mobile Gaming 

Though the CMG approach is promising in terms of enabling mobile users to play rich 

Internet games on any mobile device without the need to download the game engines, several 

challenges exist and must be addressed in order to make the CMG approach feasible. 

1.2.1 Mobile Gaming User Experience 

The first challenge for the CMG approach is to ensure Mobile Gaming User 

Experience (MGUE). Firstly, unlike traditional gaming, the game video in the CMG approach 

must first be compressed and transmitted to mobile user devices over bandwidth constrained 

and error-prone wireless networks which may cause network packet loss. The user perceived 

gaming video quality may suffer an unexpected quality loss besides the compression loss 

introduced when gaming video is compressed. Secondly, and more importantly, unlike other 

applications such as video streaming and video download, video games are highly interactive 

applications, demanding very fast response times. As opposed to conventional server-client 

gaming architecture, where the game is executed right on the client, the new CMG approach 

introduces the possibility of a significantly higher response time, from the time a gaming 

command is issued on a mobile device, to the time the video is streamed back to the device. 

This is evidenced by the data presented in Figure 1.3, which shows the measured uplink delay, 

downlink delay, and round-trip response time. 

The experiments for Figure 1.3 are conducted in a commercial 3G network and under 

three different conditions: when the network was not loaded (data collected at midnight), 

when the network was loaded (data collected at 5 pm), and when the network was loaded and 

signal conditions were not strong (data collected at 6 pm, and inside a building). From Figure 

1.3, we can observe that when the network is not loaded and signal strength is strong, the 
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CMG application can achieve a low response time. However, when the 3G network is loaded, 

or when the user is in a noisy network condition with poor signal strength, there are significant 

increases in uplink, downlink, and round-trip response time, which will lead to a significantly 

adverse impact on the quality of gaming experience. 

Besides the video quality and network response time, the CMG server over-utilization 

encountered and characteristics of the mobile device may add to the entire gaming response 

time, and hence affect user experience. To ensure proper understanding and consideration of 

the effects of different networks, video compression parameters, as well as CMG server and 

mobile device factors on CMG application performance, we need to develop techniques to 

model, and quantitatively measure and monitor the mobile gaming user experience in real time. 

1.2.2 Fluctuating and Constrained Mobile Network Bandwidth. 

It has been well established that wireless networks are characterized by rapid 

fluctuations of the network bandwidth experienced by users. For example, in 3G and 4G 

cellular networks, while various techniques significantly reduce channel errors experienced by 

 

 

Response Time

Uplink Delay

Downlink Delay

 

Figure 1.3. Delay and response time measured in a CMG session at different time during a 

day. 
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applications, they produce rapidly changing channel rates, leading to significant spatial and 

temporal variations of the mobile network bandwidth [BLB06] [LSM08] [TLL07]. To 

understand and characterize the available network bandwidth for a mobile user, we have 

conducted experiments using a commercial 3G mobile network. During the experiment, we 

measured the maximum network downloading throughput on a mobile client while we roamed 

with this device at different locations inside a building. These locations were selected as they 

displayed different network conditions such as signal-to-noise ratio received by the mobile 

device. Figure 1.4 shows a representative sample of data. From Figure 1.4, we have mainly 

two observations: a) the maximum network downloading throughput is changing rapidly. It 

can drop more than 60% in a few seconds; b) the available downloading bandwidth for a 

mobile user may become very constrained to as low as 0.2Mbps as shown in Figure 1.4. 

This inherent characteristic (fluctuating and constrained network bandwidth) of the 

mobile network imposes a challenge for the CMG approach, as the gaming videos streamed 

from CMG servers to mobile devices can be subject to high and unpredictable congestion 

delay and packet loss, leading to an undesirable increase in response time, besides the adverse 

impact on the quality of the video streamed. 
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Figure 1.4. Maximum network downloading throughput measured in the test environment. 
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1.2.3 Cloud Service Cost and Scalability 

One of the primary advantages of using cloud services is to eliminate capital expenses, 

increase dependability on the elasticity of cloud computing, and determine the cloud utility or 

pricing model to scale to varying capacity needs. However, there will be challenges faced by 

computing intensive CMG application in terms of prohibitively high operating expenses when 

using current cloud pricing models. 

Table 1.1 shows the cloud pricing structures of the Amazon Elastic Compute Cloud 

(EC2) [EC2] including computing price, storage price, and network price. It also shows the 

cost per hour of a VGA resolution cloud mobile gaming session of the popular Multiplayer 

Online Role-Playing Game (MMORPG), World of Warcraft (WoW), assuming each session 

needs 2 Compute Units (CU), 1GB storage space, and 600kbps of network bandwidth. AWS 

mainly provides two types of cloud instances: on-demand instances and reserved instances. 

On-demand instances allow customers to pay for compute capacity by the hour with no long-

term commitments, while reserved instances give customers the option to make a low, one-

time payment for each instance customers want to reserve and in turn receive a significant 

discount on the hourly charge for each instance. From Table 1.1, we can observe the 

Table 1.1. Cloud pricing structures and cloud cost for a WoW CMG session. 

Cloud Instances 
Type 

Computing Price Storage Price  Network Price  CostCLOUD 

On-demand cluster 
compute instances 

$0.048 /EC2 CU 
per hour 

$1.39e-4 /GB 
per hour 

$0.054 /Mb $0.1285 per 
hour 

Heavy utilization 
reserved cluster 
compute instances 

$0.00887 /EC2 
CU per hour 

$1.39e-4 /GB 
per hour 

$0.054 /Mb $0.0503 per 
hour 
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CostCLOUD of using on-demand cloud instances is much higher (more than 2x) than the 

CostCLOUD of using reserved cloud instances, due to the higher computing price of on-demand 

cloud instances. Cloud providers which consume a large amount of cloud resource will 

definitely want to purchase the reserved instances to get a better price discount. This infers 

that the capacity of reserved cloud resource by the CMG provider is limited. 

Assuming an average playing time of 23 hours/week [WBD], from Table 1.1 the 

monthly operating expense for a cloud mobile gaming provider using public cloud platforms 

would be about $12/month per WoW player if using on-demand cloud instance as compared 

to $5/month if using reserved cloud instance. Considering the typical subscription prices (for 

example, current price of WoW prepaid card is $15/month), this level of operating expense 

would be too high, even to support VGA resolution. 

Moreover, considering the CMG provider must serve millions of users in a given day, 

the total cloud service cost could become extremely high. Figure 1.5 shows the estimate of 

concurrent WoW online gamers according to hours of day in China. Our estimation is based 

on a study showing daily usage patterns for WoW gamers [LCC11], and extrapolating with the 

number of WoW peak concurrent users in China, which has maintained steady at 1 million for 

several years [AT10]. The daily operating cost for the concurrent user profile shown in Figure 

0 6 12 18 24
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Figure 1.5. Daily concurrent user pattern for game WoW. 
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1.5 can be as high as $1.53M even to support VGA resolution WoW gaming, which questions 

the scalability of cloud mobile gaming, as the level of concurrency needed support may be 

much higher to support all other popular games. Clearly, techniques must be developed to 

address the cloud cost and scalability challenges faced by CMG services in using public 

clouds. 

1.3 Contributions and Overview  

The main contributions made by this thesis are threefold. First, to ensure proper 

understanding of the effects of different impact factors on user perceived gaming experience, 

we develop and validate a Mobile Gaming User Experience (MGUE) model through 

controlled subjective testing. Several impact factors have been taken into account including 

the game video settings, the server and client conditions, the wireless network conditions, and 

the game genres. We also develop a software prototype which can in-service measure impact 

factors and simultaneously  report MGUE. To the best of our knowledge, this is the first work 

to characterize and model mobile gaming user experience for a CMG approach. The MGUE 

model developed in this chapter is helpful for researchers or mobile gaming service providers 

to assess the performance of this new CMG technique. In addition, there is also a trend to 

deploy many interactive multimedia applications into the cloud server, such as virtual reality 

and augmented reality. We believe our approach to develop a MGUE model outlined in this 

chapter can be potentially used to develop Quality of Experience (QoE) models for these new 

cloud server based applications. 

Second, we wish to ensure the scalability and address the challenges imposed by 

fluctuating and constrained wireless network bandwidth rates and expensive cloud service cost, 

thus we have developed several application adaptation techniques, including a dynamic game 
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rendering adaptation and a joint rendering and encoding adaptation technique. There are two 

aspects to the novelty of this work. The proposed dynamic game rendering adaptation can vary 

the graphic rendering settings to adapt both communication and computation needs of a CMG 

session, thereby addressing both wireless network bandwidth constraint and cloud service cost 

challenges. To the best of our knowledge, the ability to adapt content source, here graphic 

rendering, is something that has not been attempted. The joint rendering and encoding 

adaptation can leverage our proposed rendering adaptation technique and any encoding 

adaptation in a proper manner as to optimally address the network and cloud cost challenges 

discussed in section 1.2, which again have not been attempted  before for a video based 

interactive application like CMG. 

Third, we have proposed a mobile cloud scheduling technique which takes into 

account the available capacity and usage probability of each heterogeneous access network 

and cloud server choice for each mobile user and the corresponding network round-trip delays, 

to minimize the average cloud service cost and maximize the number of concurrent mobile 

cloud users which can be served, while satisfying their user experience requirements, 

including response times. We furthermore, propose a joint adaptation and scheduling, where 

mobile cloud scheduling algorithm can leverage the application adaptation techniques, such 

that the capacity of the CMG system is dramatically increased. To the best of our knowledge, 

this is the first research work to solve the scheduling problem by jointly considering the 

heterogeneous access network and cloud server. We believe the scheduling technique 

developed in this thesis is potentially very useful for other new cloud server based mobile 

applications. 

In the remainder of this dissertation, we take a detailed look at the novel techniques 

previously introduced. Note that we will compare our techniques with the previously 
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published research work in each Chapter. In Chapter 2, we present the methods of how we 

develop the Mobile Gaming User Experience model. With this new proposed MGUE model, 

we characterize user achievable gaming experience in a commercial mobile cellular network. 

In Chapter 3, we elaborate the application adaptation techniques. We will also present 

experiment results to demonstrate the effectiveness of our proposed adaptation techniques to 

make the CMG approach feasible: ensuring protection against wireless network conditions, 

thereby, ensuring an acceptable mobile gaming user experience as well as ensuring scalability 

in regards to the mobile network and CMG cloud server availability. Chapter 4 will introduce 

our mobile cloud scheduling approach. We have also performed a set of simulation 

experiments to compare and characterize the performance of our proposed algorithms and the 

performance of the original CMG approaches where our scheduling techniques are not applied. 

The simulation results show that a) our proposed mobile cloud scheduling algorithm can help 

the CMG approach to maximize the number of blocked users and minimize cloud service cost 

while ensuring the user perceived gaming experience when comparing with the original CMG 

approach under the same conditions; b) the proposed joint adaptation and scheduling 

algorithm can dramatically increase the system capacity while ensuring acceptable user 

experience for each assigned user. 
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Chapter 2 

Modeling and Characterizing User 

Experience in Cloud Mobile Gaming 

Approach 

In the previous chapter, we presented an overview of the Cloud Mobile Gaming 

(CMG) approach and analyzed several important challenges we have to cope with for the 

success of the CMG approach. In this chapter, we develop a Mobile Gaming User Experience 

(MGUE) model to quantitatively measure the user experience of mobile gaming using the 

CMG approach. We validate the model using controlled subjective testing, and then use this 

model to characterize MGUE in various settings and commercially deployed wireless 

networks. Based on the characterization results, we furthermore suggested the possible 

solutions that may help improve the user experience achieved by the CMG approach, thereby 

leading to the feasibility of rich, multi-player, Internet games on mobile devices. 
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2.1 Mobile Gaming User Experience (MGUE) Model 

The ability to model and evaluate the QoE of a network service is important to 

network operators and service providers, so that they can provision for the appropriate QoE 

levels, monitor the Quality of Experience (QoE) achieved, and take steps to improve the 

service as needed. QoE standardization has been actively pursued by International 

Telecommunications Union (ITU). Its existing standards cover the video quality metrics and 

tools (ITU-T J.144) [J144], and quality assessment approaches for multimedia services like 

IPTV (ITU-T SG12) [COM12], VoIP (ITU-T G.107) [G107], and Videophone (ITU-T 

G.1070) [G1070]. Unfortunately, there is no ITU standard quality measurement tool available 

for gaming. Moreover, many other video quality metrics and measurement techniques 

[Han04][TYK04][TW07][YH06][RNR08] cannot be directly applied to measure the user 

experience of (mobile) gaming, which is a highly interactive application, and where the round-

trip response time has a significant impact on user experience, as opposed to the one-way 

nature of video. Though ITU standards of VoIP and Videophone have considered the impacts 

of network delay, they do not take into account round-trip delay, but only one-way delay. 

There has also been some work to analyze factors affecting user experience in gaming 

[BF10][CC06][DWW05][FCF+05][FRS05][YII05]. However, they focus on conventional PC 

games and do not apply to the Cloud server based Mobile Gaming (CMG) approach, which is 

the subject of this dissertation. 

Among existing QoE measurement methodologies, parametric model is the most 

commonly used way of measuring network multimedia QoE. It generally has three key 

components: model inputs, model assumptions, and quality estimation function. The inputs of 

parametric model are a group of impairment factors which affect user experience, while the 
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model assumptions restrict the model working conditions. The quality estimation function is 

the essential part of the parametric model presenting the relationship between the impairment 

factors and model output of the predicted user experience. To develop such a parametric 

model that can quantitatively measure MGUE, we start this section by analyzing the various 

factors affecting MGUE. Through giving some model assumptions and discussions, we then 

identify several important impairment factors as model inputs, which are sub-sequentially 

used to formulate quality estimation function of MGUE model. The quality estimation 

function of MGUE model will be finally derived through subjective experiments introduced in 

the next section. 

2.1.1 Impairment Factors Affecting MGUE 

User perceived MGUE would mainly depend on two subjective factors: gaming visual 

experience and gaming response experience. The gaming visual experience depends on the 

resolution, smoothness, and image quality of gaming video received by mobile client, while 

the gaming response experience refers to the total delay from the user control command 

occurring to the corresponding video frame displaying on the mobile device. User perceived 

video quality needs to be measured from the off-line comparison of the video displayed in the 

client and the reference video in the server. The exact response time can be measured from the 

video obtained from recording the entire visual progress when the user played the game. Both 

measurements of these two subjective factors are time consuming and costly. To ensure 

feasibility, we decided to formulate MGUE model based on objective factors that can be in-

service measured. 

As shown in Figure 2.1, MGUE is affected by a number of objective factors, which 

can be categorized into four groups: source video factors, cloud server factors, wireless 

network factors, and client factors. Each of these objective factors affects the gaming visual 
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experience and gaming response experience in a complex manner. For example, quality 

degradation of user received gaming video may occur during the compression process from 

the source, depending on compression codec and compression Quantization Parameter (QP). 

Besides compression loss, network packet loss due to network congestion or wireless RF 

conditions could also reduce the video quality. The smoothness of the video is decided by the 

video frame rate, network packet loss, and network delay jitter. On the other hand, the gaming 

response experience will be affected by various delays created in cloud server, wireless 

network, and mobile client. 

Among all the objective factors, server utilization and network bandwidth will only 

affect the MGUE when they are over-utilized. Moreover, the negative effects of these two 

factors could be represented by other factors. For example, server over-utilization will cause 

Figure 2.1. Impairment factors affecting mobile gaming user experience. 
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unexpected increase on rendering delay, encoding delay and service delay, while wireless 

channel over-utilization will cause network packet loss and unexpected delay. Therefore, we 

do not need to consider server utilization and network bandwidth into the MGUE model. 

Besides the factors shown in Figure 2.1, game genre is also an important factor that 

determines the contributions of all the other factors in determining the MGUE. For instance, in 

some games (e.g. racing games) fast response time is more crucial in determining the MGUE, 

while in some other games (e.g. Massively Multiplayer Online Role-Playing Game 

(MMORPG)) being able to clearly see the objects, and hence sufficient video quality, is more 

crucial in determining the MGUE. Therefore, parametric MGUE model can be formulated as: 

( ,  ,  ,  ,  ,  

           ,  ,  ,  ,  

           ,  ,  )

MGUE F Game Resolution FrameRate Codec EncodingQP

RenderingDelay EncodingDelay ServiceDelay PacketLoss

NetworkDelay DelayJitter DecodingDelay



  (2.1). 

However it is hard to integrate all the objective factors in Equation 2.1 as the model inputs to 

determine the MGUE. Thus we present the following analysis and model assumptions which 

allow us to reduce the complexity of the model by reducing the number of factors. 

First, video resolution and frame rate are video configurations, which are given when 

the video streaming starts. We group these two factors together termed as VConfig. Giving the 

VConfig, the encoding QP determines the video quality, but is conditional on the codec and 

video content. Therefore, it is hard to study and determine its impact in determining the 

MGUE. Instead, we use Peak Signal to Noise Ratio (PSNR), the most commonly used 

distortion metric, to measure the quality of compressed video at the gaming video source. 

Second, as discussed earlier, user perceived gaming response experience is hard to 

measure. Therefore, we use a derived objective factor gaming Response Time (RT) to indicate 

the gaming response experience. To study and understand RT, we consider the round trip data 
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flow in a CMG session shown in Figure 2.2. When a user command occurs on the mobile 

device, it will be sent to the gaming server with a network uplink delay DUPLINK (T1-T2). This 

command may be held in the processing queue if there are plenty of commands from other 

clients waiting to be processed by the cloud server. Only the first command in the queue will 

be processed by the server, while the other commands have to wait for a period of time called 

service delay DS. Then the game engine will process this command and then generate raw 

game video. This will take a period of time called rendering delay DR. However, the raw game 

video is not always generated just after the command is processed. There is an interval TFRAME 

between consequential video frames, which is equal to the reciprocal of Frame Rate (FR). Due 

to this TFRAME, there might be a delay DF with a range from 0 to TFRAME depending on interval 

between the time when the server processes command and the time when the next raw game 

video is generated. Since command is processed randomly, DF is uniformly distributed 

between 0 to TFRAME. Therefore the average value of DF is 1/(2 FR). Once raw game video is 

generated, it will be encoded and packetized in a period of time called encoding delay DE (T3-

T4). The video packets will be received after a network downlink delay DDOWLINK (T4-T5), and 

Figure 2.2. Round-trip flow of gaming response time. 
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displayed onto the mobile device after a client buffering and decoding delay DC (T5-T6). Let 

RDelay denotes the round-trip network delay including DUPLINK and DDOWNLINK, RT can be 

formulated to: 

     

where 1 / (2 )
S R F E C

F

RT RDelay D D D D D

D FR

     
 

   (2.2). 

Some of delays in Equation 2.2 can be directly measured by CMG server and mobile client, 

like DR, DF, DE, and DC, while for some other delays like RDelay and DS, we will measure 

them by a network probing mechanism (introduced in section 2.3.1). 

Next, we analyze another factor, delay jitter, and explain why we will not consider it 

in modeling MGUE. Delay jitter denotes the network delay variation. Given an average 

network delay, there are two kinds of delay jitter, negative jitter and positive jitter. Negative 

jitter is caused by late arriving packets, and early arriving packets lead to positive jitter. The 

client buffer can eliminate positive jitter by caching the early arriving packets, while the effect 

of negative jitter can be represented by the larger network delay, captured in RDelay. Hence, 

we do not consider explicitly the effects of delay jitter in modeling MGUE. 

Based on the above analysis and assumptions, we could reduce all the objective 

factors to five impairment factors: Game genre played, VConfig used, source video PSNR, 

network packet loss (PLoss), and gaming response time (RT). Thus MGUE can be formulated 

as: 

( , , , , )MGUE F Game VConfig RT PSNR PLoss    (2.3). 
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2.1.2 Quantitative Measurement of MGUE 

Having decided model inputs (impairment factors in Equation 2.3), next we need 

define a quantitative measurement metric for MGUE. In audio and video services, the most 

widely used subjective quality assessment methodology is opinion rating, which is defined in 

ITU-T Recommendation P.800 [P800]. In the subjective assessment tests, subjects are 

instructed to rate their perceived quality of the services according to the following opinion 

scales: 5(excellent), 4(good), 3(fair), 2(poor), and 1(bad). Subsequently, the arithmetic Mean 

of all the collected Opinion Scores, MOS [P800], is used as the measure of QoE. Similarly, we 

introduce a Game Mean Opinion Score (GMOS) as the measurement metric for MGUE, and 

later in this chapter, go on to develop a parametric MGUE model to quantitatively measure 

GMOS: 

( , , , , )GMOS F Game VConfig RT PSNR PLoss    (2.4). 

Since GMOS in Equation 2.4 is determined by 5 factors and its formulation can be a 

complex function, we attempt to derive simple individual functions of each factor, similar to 

the framework of ITU-T E-model [G107] for transmission planning. Although this E-model 

was originally proposed for the audio transmission planning, the framework of transmission 

rating factor R is helpful for any transmission planning because it makes the quality judgments 

for good or better and poor or worse in a good statistical mapping, hence can be applied in our 

study. The function of MOS formulated by R can be found in [G107]. We duplicate that 

function for our GMOS formulation: 

61 0.035 7 10 ( 60)(100 )GMOS R R R R        (2.5). 

The R-factor ranges from 0 to 100 and is related to GMOS through a non-linear 
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mapping. We first derive MGUE model with only considering the individual effect of each 

impairment factor, while the cross-effects of different impairment factors will be considered 

and added into MGUE model later in section 2.3.3. The R-factor only considering the 

individual effect of each impairment factor can be formulated as: 

100    (if 100)

0  (if 100)

i i
i i

i
i

I I

R
I

  
 




 


    (2.6). 

Ii is the impairment function for each impairment factor, which indicates the 

individual impairment on MGUE of each impairment factor. As discussed earlier, Game genre 

will determine the contributions of all the other factors in determining the MGUE. Therefore, 

Game genre will be a parameter in every impairment function for each of the other four 

impairment factors (VConfig, RT, PSNR, and PLoss). Based on above discussions, we 

formulate the R-factor with individual impairment functions: 

100 ( , ) ( , )

        ( , ) ( , )
C R

P L

R I Game VConfig I Game RT

I Game PSNR I Game PLoss

  
 

   (2.7). 

IC includes the effect of the initial streaming video VConfig (resolution, frame rate); IR 

indicates the impairment caused by Response Time; IP represents the impairment caused by 

source streaming video quality PSNR; IL covers the impairment caused by Packet Loss. The 

quality estimation Equations 2.5 and 2.7 indicate that GMOS can be evaluated by the Game 

played, initial VConfig and measurable factors: RT, PSNR, and PLoss. In this section, we 

have decided the MGUE model inputs based on some model assumptions, and introduced a 

metric GMOS as a measure for MGUE. Then we have derived the quality estimation 

equations of MGUE model and introduced its impairment functions. In the next section, we 
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will derive the impairment functions in quality estimation Equation 2.7 to complete MGUE 

model. 

2.2 Deriving Impairment Functions 

In this section, we describe the approach we use to derive the impairment functions, IC, 

IR, IP, and IL. As a first step, we set up a controlled test environment, where each of the factors, 

VConfig, RT, PSNR, and PLoss, can be varied independently without affecting the settings of 

the other factors. Next, we conduct a series of MGUE subjective tests using a study group, 

where each test constitutes playing a game under a particular setting of one of the factors. 

Each study group participant provides an assessment of his/her gaming experience for each 

subjective test using a GMOS score. Base on our experiment results and regression analysis, 

we can derive the impairment function for each impairment factor. We start by describing the 

subjective testing process. Next, we describe how we derive the impairment functions to 

complete the MGUE model. 

2.2.1 Subjective Quality Assessment Experiments 

To study the effect of each of the factors on MGUE, we conduct a group of subjective 

quality assessment experiments. Figure 2.3 shows our experiment test bed. We connect the 

mobile device, which will be used by the study group participants, to a CMG server, directly 

via a network emulator, which we can use to control the network RDelay and PLoss. The user 

perceived RT is measured by a network probing mechanism introduced later in section 2.3.1, 

and we vary the RT by changing the RDelay via network emulator. The VConfig is varied by 

changing the resolution and frame rate settings in the video encoder. Similarly, the PSNR of 

source video is varied by appropriately changing the compression QP of the video encoder 
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used by the CMG server. Table 2.1 shows the parameters of different factors that have been 

used in the subjective quality assessment experiments. 

The study group was comprised of 25 students and staff at UCSD, who have prior 

experience of playing the selected games. Each study group participant played each of the 

three games under a certain test condition using the experimental parameters in Table 2.1, and 

provided assessment of their MGUE using a GMOS score rating system shown in Table 2.2. 

Finally, the results of the study group were tabulated for further analysis and derivation of the 

impairment functions. 

2.2.2 Deriving Impairment Function IC 

To determine IC, we consider the results of the subjective tests where only the Game 

and VConfig are changed, keeping all the other three factors at their best values, such that 

there is no impairment caused by them. For a given Game type, and a VConfig, we get the 

average GMOS score of all the participants, and use it to get the value of R from (5), and 

subsequently the value of IC using (7), where the other impairment functions IR, IP and IL are 

 

Figure 2.3. Test bed of subjective quality assessment experiments. 
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all 0 (as they do not cause any impairment). Table 2.3 shows the values of IC for each of the 

VConfig used for each Game type. When adjacent two or more frame rates have close 

Table 2.1. Experimental parameters of subjective quality assessment experiments. 

Game (Type) WoW(MMORPG), NFS(Racing), PES(Sports) 

VConfig 
Resolution VGA, QVGA 

Frame Rate [25:2:17], [15:1:5] 

RDelay (ms) [0:40:800] 

PSNR (dB) [26: 0.5: 38] 

PLoss (%) 0, 0.5, 1, 2, 3, 4, 6, 8 

Table 2.2. GMOS ratings and “R” values. 

GMOS R Description 

4.5—5.0 100 Excellent game, no impairment at all 

4.0—4.5 80-100 Minor impairment, will not quit game 

3.0—4.0 60-80 Impairment noticeable, might quit the game 

2.0—3.0 40-60 Clearly impairment, usually quit the game 

1.0—2.0 0-40 Annoying environment, definitely quit. 

Table 2.3. Value of IC in VGA resolution. 

Game  25-16 15-13 12-11 10-9 8-7 6-5 

WoW VGA 3 3 8 14 25 41 

QVGA 10 10 16 23 35 54 

NFS VGA 0 0 7 15 26 51 

QVGA 3 3 10 18 28 53 

PES VGA 0 3 10 28 46 72 

QVGA 5 7 17 32 51 70 
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subjective GMOS score, we group them together (as their impacts on user experience are very 

close). For instance, for all three games, game users can hardly feel differences if we vary the 

frame rate from 25 to 16. Therefore there is only one average value of IC of frame rate 25 to 16 

for each game in different resolutions. It should also be noted that we did not study the MGUE 

where frame rate is below 5. One reason is that if frame rate is 5, user experience GMOS will 

drop below 3.0, where users cannot accept the gaming quality. Therefore, it is less necessary 

to study the user experience of frame rate below 5. Another important reason of not studying 

frame rate below 5 is related to the delay DF in Response Time (RT). As discussed earlier, 

frame rate also affects the factor RT by DF. When the frame rate is high, DF is low, and thus 

cannot be felt by user. However when frame rate is below 5, the average DF will be over 

100ms. The experiment results of RT in next sub-section will show that such kind of delay 

will affect user perceived gaming experience, which we do not want happen in the derivation 

of IC.  

The impairment function IC in Table 2.3 indicates how much the impairment of 

VConfig affects the user perceived quality. From Table 2.3, we find that all three games are 

not sensitive to changes in frame rate from 25 to 15. When frame rate is below 15, game PES 

is more sensitive to the frame rate than the other two games. For example, the impairment of 

VConfig (IC) in game PES jumps over 40 at the frame rate of 8, while it is still around 30 in 

game WoW and NFS at the same frame rate. Regarding to the resolution changes, game WoW 

demands high resolution as the value of IC increases dramatically (and hence MGUE suffers) 

while the resolution is reduced from VGA to QVGA. However, it seems that quality of the 

game NFS and PES are not affected significantly by the video resolution reduced from VGA 

to QVGA. 
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2.2.3 Deriving Impairment Function IR, IP, IL 

To determine IR, we use the results from the subjective tests, where only RT is varied 

and all the other factors are kept at their best values. As expected, the GMOS score goes down 

when the RT increases in all three games. As an example, Figure 2.4 shows the GMOS 

scoring by the study group for the game WoW. For each game genre, we define two delay 

points, T1 and T2. T1 denotes the RT when the GMOS score starts to decrease below 4.5 

(R=100), and T2 denotes the RT where GMOS hits 3.1(R=60). Then T1 and T2 divide RT into 

three segments. In the first segment (T1> RT), GMOS keeps at a constant value of 4.5, which 

implies the user experience remains unimpaired. Therefore, for this segment, the value of 

impairment function IR should be 0. In the second segment (T2> RT >T1), GMOS decreases 

from highest 4.5 to 3.1 (minimum acceptable GMOS), while R-factor decreases from 100 to 

60, which implies the value of IR increases from 0 to 40. After T2, the value of IR keeps 

increasing from 40 with a slower slope, denoted by 　. We have tried several function models 

for regression analysis to derive the function of IR. Based on the experiment results of 

RT (ms)

G
M

O
S

T1 T2

 

Figure 2.4. Subjective test results of RT versus GMOS for WoW. 
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regression analysis, the linear function as shown in Equation 2.8 is a simple and accurate 

model. 

1

1 2 1 2 1

2 2

0 ( 0)

40 [( ) / ( )] ( )
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T RT

I RT T T T T RT T

RT T RT T

 
      
    

    (2.8). 

Similarly, to derive the impairment function IP, we analyze the GMOS scores of the 

corresponding subjective tests (where only PSNR is varied, keeping other factors at their best 

values). We notice similar trends like displayed by the Delay factor, except that the GMOS 

score increases while increasing PSNR. We derive IP as: 
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   (2.9). 

From the subjective tests corresponding to PLoss, we see a different trend on how it 

affects user experience. We notice that even low packet loss rate tends to affect the quality and 

smoothness of the video received by the end device and perceived by the subject. And 

increasing PLoss will lead to a continuous drop in GMOS. Similar to the derivation of IR and 

IP, we have tried several function models for regression analysis to derive the function of IL. 

Based on the experiment results of regression analysis, the linear Equation 2.10 is an accurate 

model to estimate the effect caused by packet Loss: 

LI PLoss         (2.10). 

The values of T1, T2, P1, P2, and coefficients andshown in Table 2.4, are 

determined by applying (8) (9) (10) to the subjective test results. This completes the derivation 

of the impairment functions in Equation 2.7. 
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Equations 2.5-2.10, together with the Tables 2.3 and 2.4 provides the complete 

MGUE model, which can be used to quantitatively measure the quality of gaming experience 

over mobile wireless networks using the CMG approach. Note that the values in Tables 2.3 

and 2.4 apply to the three game genres considered in this study. However, they can be easily 

extended to other game genres by repeating the approach (subjective study, regression analysis) 

outlined in this section. 

2.3 MGUE Prototype, and Model Validation and 

Enhancement 

In this section, we first introduce a software MGUE prototype for measuring the 

factors and calculating the corresponding GMOS score during live CMG sessions. Next, we 

validate the accuracy of the MGUE model by conducting another set of subjective 

experiments. Then we go on enhancing the accuracy of MGUE model with considering cross-

effects of impairment factors. 

Table 2.4. The value of variables in MGUE model for three different games. 

Game    T2 T1 P2 P1

WoW 0.05 5 8 560 240 34 30 

NFS 0.08 6 13.5 440 200 33 29 

PES 0.12 9 20 360 200 36 33 
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2.3.1 MGUE Prototype: Measuring Impairment Factors and Calculating 

GMOS 

We have developed a client-server software MGUE prototype to automatically 

measure the objective factors (RT, PSNR, and PLoss) during a mobile gaming session, and 

calculate the corresponding GMOS score, using the MGUE model.  

We first design a network probing mechanism that can help CMG server to obtain the 

client delay DC and measure server queuing delay DS, network RDelay, and network PLoss. 

The CMG server periodically sends a UDP probe to the mobile client (5 probes a second), 

which includes the probe send out time and probe sequence number. Once mobile client 

receives a probe, it puts the information of its buffering and decoding delay DC, into the 

received probe, and sends it back to the server through the TCP connection. The difference of 

probe send out time and receive time can indicate the current network round-trip delay RDelay 

and server queuing delay DS. And the packet loss rate PLoss can be calculated by checking the 

received probe sequence number. 

Simultaneously, we let CMG server measure the source video PSNR, rendering delay 

DR, encoding delay DE, and frame interval DF. With the RDelay, DS, DC obtained from the 

network probing mechanism, and DR, DF, DE measured by CMG server, we can calculate the 

response time RT at the server side (as we have all the parameters in Equation 2.2).  

The above design allows CMG server to real-time simultaneously obtain RT, PSNR, 

and PLoss. And with the additional information of VConfig, CMG server is able to calculate 

GMOS score in real time during a CMG session, by using (5) - (10), and the values of IC 

(Table 2.3) and T1, T2, P1, P2,  (Table 2.4) as appropriate for the type of Game being 

played. In the MGUE prototype, the client need to measure its decoding delay which can be 

obtained directly from the video player installed on the mobile client. Besides, the client will 
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just forward back the probe packets sent from server. Therefore, the computing load added by 

MGUE prototype is extremely small (less than 0.01 percent per our test), such that it can be 

neglected. 

2.3.2 MGUE Model Validation 

Whereas the impairment functions of MGUE model is estimated using test results 

where only one factor is varying, the accuracy of the MGUE model needs to be validated by 

conducting another set of controlled experiments considering the effect of simultaneously 

varying all the factors. We use the same experimental framework as deriving the impairment 

functions, but a different study group consisting of 15 participants. As opposed to testing the 

effect of individual factors, we conduct 267 subjective tests where all the factors are varying 

randomly. It should be noted that during some of the validation tests, we also vary server and 

client utilization to introduce server and client delay. These tests will demonstrate that the way 

we estimate the impairment function of RT and the RT relation Equation 2.2 are correct. 

Figure 2.5 shows the relationship between the MGUE scores predicted by the MGUE model 

(x-axis) and the subjective (average) GMOS score by the participants (y-axis). The correlation 

between predicted and subjective user experience is 0.917. This result demonstrates the 

 

Figure 2.5. Relationship between predicted and subjective GMOS. 
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accuracy of our MGUE model in quantitatively measuring the Mobile Gaming User 

Experience of a user, given the Game, video configure VConfig used, video PSNR, and RT 

and Packet Loss experienced during the gaming session. 

2.3.3 Enhancing MGUE Model by Cross-effect Functions 

The above validation results demonstrate that MGUE model derived in section 2.2 has 

a good accuracy in predicating user perceived gaming quality. However, our further analysis 

on validation results discovers that the MGUE model developed in section 2.2 could perfectly 

predict GMOS when we only vary one factor but it is not very accurate in predicting GMOS if 

two or more factors are varied at the same time. Figure 2.6(a)(b) present the differences of 

validation results of game WoW between varying one factor and varying several factors. The 

correlation of predicted and subjective GMOS is 0.965 in Figure 2.6(a), while it is only 0.887 

 

Figure 2.6. Correlation of predicted and subjective GMOS: (a) (b) (c) without cross-effect

functions; (d) (e) (f) with cross-effect functions. 
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in Figure 2.1(b). Though the overall correlation is good (0.918) as shown in Figure 2.6(c), we 

believe the accuracy of MGUE can be potentially enhanced if we could address the problem in 

predicting GMOS when several factors vary simultaneously. 

The main reason for the above problem is that we are not taking into account the 

cross-effects of impairment factors when deriving Equation 2.6. Obviously, the overall 

impairment of several factors is not exactly the same as the total of the individual impairments 

of all the factors, though it is related to them. For example, the impairment of 300ms RT and 

2% PLoss is different (worse or better) than the total of individual impairment of 300ms RT 

and individual impairment of 2% PLoss. This difference is distinct especially when individual 

impairments of two or more factor are significant. To improve our MGUE model, we need to 

develop cross-effect functions and add them to Equation 2.6. Equation 2.11 below is the 

enhanced equation for R-factor considering cross-effects of impairment factors: 

100 ( , ) ( , , ) ... (100 0)i ij i j ijk i j k
i i j i j k

R I f I I g I I I R
  

          (2.11), 

where ( , )ij i jf I I  denotes the cross-effects of two impairment factors, while 

( , , )ijk i j kg I I I denotes cross-effects of three impairment factors. More the impairment factors 

used, more cross-effect functions Equation 2.11 will have. However, the MGUE model would 

be very complex if we consider all kinds of cross-effect functions. Considering the feasibility, 

we decide to use only pair wise cross-effect functions ( , )ij i jf I I . Thus the enhanced equation 

for R-factor is:  

100 ( , ) (100 0)i ij i j
i i j

R I f I I R


         (2.12). 

We have trained the model for R (Equation 2.12) with many different types of 



34 

 

functions for ( , )ij i jf I I , including ( )n
i jI a I  , n m

i jI I , and ( )n
i jI a Ie   . We finally selected the 

function below (Equation 2.13), because the predicted GMOS scores using this function have 

the highest correlation with subjective scores obtained from our validation experiments: 

( , )ij i j ij i jf I I k I I       (2.13). 

The coefficients kij can be determined by applying Equation 2.13 to the validation test 

results. As a result, Equations 2.14-2.16 are the enhanced equations of R-factor for game 

WoW, NFS, and PES respectively: 

1

100 0.05 0.42 0.10

      0.08 0.15 0.67

n

i C R C P C L
i

R P R L P L

R I I I I I I I

I I I I I I



       

     


   (2.14). 

1

100 0.05 0.30 0.36

      0.06 0.13 0.76

n

i C R C P C L
i

R P R L P L

R I I I I I I I

I I I I I I



       

     


   (2.15). 

1

100 0.02 0.24 0.12

      0.11 0.34 0.62

n

i C R C P C L
i

R P R L P L

R I I I I I I I

I I I I I I



       

     


   (2.16). 

Figure 2.6(d)(e)(f) present the prediction results of using enhanced Equation 2.14 for 

game WoW. The correlation of predicted and subjective GMOS has been greatly improved, 

from 0.887 (Figure 2.6(b)) to 0.946 (Figure 2.6(e)), for the tests where two or more factors are 

varied. This leads to an improved correlation of total validation results which reaches as high 

as 0.955 (Figure 2.6(f)), as opposed to only 0.918 (Figure 2.6(c)) without using cross-effect 

functions. 
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2.4 Measuring MGUE in a Mobile Cellular Network 

We have also applied enhanced MGUE model (section 2.3.3) and MGUE prototype 

(section 2.3.1) to measure MGUE in real wireless mobile networks. This will also help assess 

the feasibility and challenges of employing cloud mobile gaming to deliver desired gaming 

experience in today's mobile wireless networks. The experiments are conducted with a 

commercially available mobile cellular network. The game server is located in the UCSD 

campus, while the mobile game is played on a mobile device in four different scenarios: 

outdoor locations, indoor locations with poor coverage (low Carrier Interference Noise Ratio 

(CINR)), mobility conditions, and the conditions when cloud server is over-utilized. All three 

games (genres) and various video settings are used during the testing. Figure 2.7 shows a 

representative sample of the data (RT, PLoss, PSNR, and GMOS score) collected from 

numerous gaming sessions in the mobile cellular network in each of the four scenarios. We 

make the following observations from our experiments: 

1) In outdoor locations, we stream the gaming video at 600kbps data rate, as this is 

sufficient to ensure very good source video quality (PSNR). The experiments are conducted in 

both midnight and noon during a day. As presented in Figure 2.7(a), CMG approach can 

provide the minimum acceptable MGUE (GMOS>3.0) but not very good MGUE (GMOS>4.0) 

at most times. This is mainly due to the high response time caused by round-trip network 

delay. As the gaming server is not located in mobile network system, gaming video has to be 

delivered via multiple hops and routes, including core network back-haul, carrier Ethernet, and 

wireless access link. Moreover, the gaming commands need to be sent from the mobile device 

to the server. Therefore, it is challenging to satisfy low response time, and thereby achieve 

high QoE, using current CMG approach and network architecture. It might be worthwhile to 

investigate the approaches to reduce this round-trip delay by deploying the gaming servers in 
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the wireless carrier network close to the base stations, as opposed to in the Internet cloud. 

From the results presented in Figure 2.7(a), we also notice that the user perceived GMOS 

varies during a day. For example, the average response time during noon is higher than during 

less busy midnight, leading to a relatively low GMOS score. In addition, the GMOS score 

during noon has occasional drops to less than 2.0 at times due to the severe packet losses 

experienced occasionally. 

2) In indoor and in mobility conditions, we test with the gaming video streaming at 

two data rates: 600kbps with high source video quality as the outdoor test, and 400kbps with 

reduced source video quality. Figures 2.7(b) and (c) present sample results tested in both data 

rates. When we stream the gaming video at high data rate (600kbps), CMG approach cannot 

provide stable MGUE in both conditions, though GMOS score can reach above 3.0 during 

Figure 2.7. Test results for game WoW with video settings [VGA and 15 frames per second]

in a mobile cellular network. 
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brief periods in the mobility conditions. This unacceptable user experience is mainly caused 

by limited network bandwidth in the indoor and mobility conditions, where the wireless RF 

link quality can be poor or unstable at times. Unexpected network delay and packet loss will 

happen, as the wireless channel cannot provide adequate bandwidth for high data rate video 

streaming application. In contrast, when we stream the gaming video at 400kbps, though video 

quality is degraded a little at this data rate, the MGUE is more stable and overall better than 

the MGUE in high data rate (600kbps). The above results show the ability of our MGUE 

model to capture the networking impairments during cloud mobile gaming sessions on a live 

mobile wireless network, and provide feedback on the overall quality of user experience, 

considering the tradeoffs between source video quality impairments, and network impairments. 

The ability to quantitatively measure the overall user experience under different conditions 

may help in developing techniques to effect the right tradeoffs between different objective 

factors and improve user experience during cloud mobile gaming sessions. 

3) We also conducted experiments to understand the effect of server 

utilization/overloading on the user experience during cloud mobile gaming sessions using our 

MGUE model. As we mentioned before, when cloud gaming server is over-utilized, the 

rendering delay DR and encoding delay DE will increase. In the meanwhile, the generated 

frame rate will dramatically decrease, which will affect IC (Table 2.3) and DF, thus leading to a 

deteriorating MGUE. As shown in Figure 2.7(d), the CMG approach cannot provide 

acceptable MGUE when the server computation resource is over-utilized, mainly due to the 

high response time and low frame rate. Like in the case of networking artifacts, the above 

results show the ability of our MGUE model to capture server related impairments in cloud 

mobile gaming user experience, which can be potentially used in the future to develop 
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techniques to appropriately schedule gaming sessions to cloud servers to minimize the server 

delays and reductions in rendering frame rates. 

2.5 Conclusions 

In this chapter, we develop and validate a Mobile Gaming User Experience (MGUE) 

model, to quantitatively measure user perceived gaming experience in the CMG approach. We 

also develop a MGUE prototype measurement tool to enable in-network monitoring of MGUE. 

Consequently, we measure and analyze the performance of the CMG approach in a mobile 

cellular network. Our analysis shows that while it is possible to achieve good quality gaming 

experience over mobile wireless networks, there are several network conditions in which 

MGUE may be incompatible/unacceptable. We suggest the investigation of possible solutions 

that may lead to significant improvement in user experience achieved by the CMG approach. 

The MGUE model discussed in this chapter can be potentially used by researchers to assess 

the performance of new CMG techniques, and by future mobile gaming service providers, 

including network operators to better plan and optimize their CMG services as well as monitor 

in-network the user experience of their mobile gaming subscribers. We also believe that the 

approach used to develop the MGUE model outlined in this chapter can be useful to develop 

QoE models for other new mobile cloud computing based interactive multimedia applications, 

such as virtual and augmented reality. 

 

The text of this chapter, in part or in full, is based on material that has been published 

in ACM Mobile Computing and Communications Review (MC2R) (S. Wang, S. Dey, “Cloud 

Mobile Gaming: Modeling and Measuring User Experience in Mobile Wireless Networks,” 

ACM SIGMOBILE MC2R, Jan. 2012) and material published in IEEE Global 
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Communications Conference (Globecom) (S. Wang, S. Dey, “Modeling and Characterizing 

User Experience in a Cloud Server Based Mobile Gaming Approach,” IEEE Globecom, 

Honolulu, Dec. 2009). The dissertation author was the primary researcher and author in the 

publications, and the coauthors listed supervised the research that forms the basis of this 

chapter. 
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Chapter 3 

Application Adaptation techniques to 

Address Wireless Communication and 

Cloud Computation Constraints in 

Cloud Mobile Gaming 

To address the communication constraint imposed by the fluctuating and limited 

bandwidth of the mobile network and the computation constraint imposed by cost and 

availability of cloud servers, in this chapter we develop several application-adaptation 

techniques, including a dynamic game rendering adaptation and a joint rendering and 

encoding adaptation technique. With the help of these adaptation techniques, we can adapt the 

CMG application communication and computing needs to protect quality of service against 

dynamic variations of mobile network bandwidth and cloud server utilization. Experiments 

conducted on a commercial mobile network demonstrate that our proposed adaptation 

techniques can significantly improve user perceived mobile gaming experience, and ensure the 
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scalability of the CMG approach in terms of both network bandwidth and server computing 

needs , thereby ensuring the feasibility of the Cloud Mobile Gaming approach. 

3.1 Introduction 

Though the CMG approach promises to enable mobile users to play rich Internet 

games on any mobile device without having to download the game engines, two fundamental 

questions arise. Firstly, how good will the user experience be using the CMG approach, 

considering (a) unlike conventional PC Internet game, gaming video will have to be streamed 

from the cloud servers to the mobile devices through the wireless networks (as opposed to 

games rendered on the devices themselves), and (b) unlike conventional mobile video 

streaming/download, CMG is a highly interactive application, where round-trip latency will 

have to satisfy stringent response time requirements of gaming [WDA10][TLL07][CC06] 

[JVC03][QML04]. Secondly, how scalable the CMG solution can be, given that (a) compute 

intensive 3D rendering tasks for each concurrent gaming user will need to be performed 

simultaneously on the computing servers, and (b) streaming all the game video for each user 

to his/her mobile device may consume significant back-haul and wireless network bandwidth. 

In other words, there are two challenges for CMG approach: 1) communication constraint in 

terms of limited and fluctuating mobile network bandwidth [BLB06][LSM08], which can 

cause unexpected delay and packet loss, leading to undesirable increase in response time, 

besides adverse impact on the quality of the video streamed; 2) computation constraint 

reflected by the CMG server computing resource available for each gaming client, considering 

that the CMG cloud servers will have to host numerous clients at the same time. It is vital to 

address the above two constraints for the success of the CMG approach, as both of them are 
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closely associated to the perceived gaming experience of each user and the scalability of CMG 

approach. 

In this chapter we develop a dynamic game rendering adaptation and a Joint 

Rendering and Encoding Adaptation (JREA) technique, to address the communication 

constraint of wireless networks and the computation constraints of CMG servers. The 

proposed dynamic game rendering adaptation can vary the graphic rendering settings to adapt 

communication/computing needs of a CMG session, thereby addressing both communication 

and computation constraints. However, though our experiments we realized that it is not 

sufficient to provide acceptable gaming quality in several circumstances if only applying our 

proposed rendering adaptation technique. Therefore, we develop a Joint Rendering and 

Encoding Adaptation algorithm which integrates the proposed rendering adaptation technique 

and traditional video encoding adaptation technique, and simultaneously leverages both of 

them to address the constraints of the CMG approach, such that the aggregated Mobile 

Gaming User Experience (MGUE) of the CMG approach is maximized. 

Section 3.2 compare our techniques with previous related work. In section 3.3, we 

explain the principle of rendering adaptation and provide an overview of the detailed 

methodology of adaptation techniques in section 3.4. The experiment results presented in 

section 3.5 demonstrate the success of our proposed adaptation techniques in ensuring high 

MGUE while addressing both the computation and communication constraints, and hence the 

scalability of the CMG approach. We summarize our findings and conclude our work in 

section 3.6. 
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3.2 Related Work 

Several approaches have been developed to model the computation cost of graphic 

rendering [TML+04][WW03][RLS+02]. However they do not study the impact of rendering 

parameters on communication bandwidth, which is an important objective of CMG approach. 

There have also been several adaptive rendering techniques [SM99] [NRL+04] [MPL+J07] 

[MPL+C07] to address the costs associated with rendering on clients in client-server 

architectures. These techniques attempt to adapt the complexity of the rendering objects, 

depending on the bandwidth of the communication link and the computational capability of 

the clients. The lower complexity of the objects, the less rendering cost at the client, and also 

the less communication bandwidth needed to transmit the objects to the client. However, in 

the CMG approach, where rendering is performed by CMG servers and not clients, the 

computation cost can be affected by adapting the rendering tasks themselves, as proposed in 

our approach, with much more impact than just by adapting the complexity of graphic objects. 

Moreover, the communication bandwidth cost in the CMG approach is determined by the 

game video that needs to be streamed from the CMG servers to the clients, and not the size of 

the rendering objects as in the traditional client-server architectures. Hence, the above 

approaches [SM99][NRL+04][MPL+J07][MPL+C07] are sub-optimal to address CMG 

computation constraint, and not applicable to address the CMG communication constraint.  

There have been many video bit rate and encoding adaptation techniques that have 

been developed and used for live video streaming and video conferencing applications 

[CV05][SMW07]. However, these video encoding adaptation techniques, depending on the 

application scenarios and requirements, rely on adapting two parameters, video quality and 

frame rate. For instance, in the case of live (real-time) video streaming, video encoding 

adaptation techniques [WCG+07][BSW+07] can compromise video quality as needed because 
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users typically have some tolerance towards quality degradation. In the case of video 

conferencing, video adaptation techniques [CSW+11][CSH+08] mainly use frame rate 

adaptation to meet the network constraints as typical video conferencing scenarios involve low 

motion video. Unfortunately, video streaming in the case of Cloud Mobile Gaming has more 

challenging requirements, needing both high video quality and high frame rate, and hence the 

existing video adaptation techniques may not be sufficient to address network communication 

constraints. In our previous work [WDA10], we proposed a game aware video encoding 

adaptation technique, which derives the optimal video encoding settings for different types of 

games by analyzing the effects of different video encoding parameters, including video quality 

and video frame rate, on MGUE. Though we have demonstrated that using the optimal video 

encoding settings [WDA10] can minimize the impairment on MGUE when adapting the video 

bit rate, it is not able to provide acceptable MGUE under severe network constraints, as shown 

in experiment results (Figure 3.10(d)) in section 3.5.1. In addition, the video encoding 

adaptation techniques [CV05][SMW07][WCG+07][BSW+07][CSW+11][CSH+08][WDA10] 

do not address the problem of server computation constraint, which is another important 

objective of CMG approach.  

There have also been several applications that are designed for desktop sharing, like 

windows Remote Desktop Service (RDS) and Virtual Network Computing (VNC), which can 

potentially be used for CMG. However, similar to video conferencing, these desktop sharing 

applications mainly use frame rate adaptation to meet the network constraints, as they are 

mainly designed for remote computer control and hence can afford to have video streamed at 

much lower frame rate. Consequently, such desktop sharing applications cannot be adopted 

for CMG which is a motion sensitive application and hence cannot compromise on video 

frame rate. 
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In summary, CMG has the most stringent requirements: need to support high video 

quality and high sensitivity to video frame rate, and the existing video adaptation techniques 

for live video streaming [WCG+07][BSW+07], video conferencing [CSW+11][CSH+08], and 

desktop sharing applications (RDS and VNC) are not able to address these stringent 

requirements to produce desired user experience. Hence, in this chapter we propose an 

approach to dynamically adapt the video source itself, graphic rendering which generates the 

gaming video, which can significantly impact the encoding bit rate of the resulting video, 

without compromising video frame rate or frame quality. Adapting the content source itself 

has not been attempted, and may not be possible to do, for live video streaming or video 

conferencing. We furthermore propose a joint adaptation between content source (here 

rendering) and video encoding, to address mobile network and server computing constraints, 

which again has not been attempted before to the best of our knowledge. 

3.3 Overview of Application Adaptation Approach 

In this section, we first give a brief introduction to the principles of the innovative 

rendering adaptation. Next, we provide an overview of our proposed rendering adaptation 

approach, including the different offline and online steps involved, and explain the novelty 

and feasibility of the approach.  

3.3.1 Principles of Rendering Adaptation 

Figure 3.1 shows the primary stages of graphics pipeline in modern GPU. All the 

graphic data for one frame is first cached in a display list. When a display list is executed, the 

data is sent from the display list as if it were sent by the application. All the graphic data 

(vertices, lines, and polygons) are eventually converted to vertices or treated as vertices once 
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the display list starts. Vertex shading (transform and lighting) is then performed on each 

vertex, followed by rasterization to fragments. Finally the fragments are subjected to a series 

of fragment shading and raster operations, after which the final pixel values are drawn into the 

frame buffer. To best present a geometric object, graphic rendering usually applies texture 

images onto the object, so as to make it look more realistic. The texture images are usually 

pre-calculated and stored in system memory, and loaded into GPU texture cache when needed. 

Each of the above rendering stage is configurable by a set of rendering parameters. The term 

“rendering setting” is usually used to denote a tuple of values used for these rendering 

parameters. We next describe the Communication Complexity (CommC) and Computation 

Complexity (CompC) associated with each rendering setting in CMG. 

The Communication Complexity (CommC) of a rendering setting denotes the level of 

how much the bit rate is needed to deliver CMG video with this rendering setting. While the 

video bit rate is determined by the video compression rate used, it is largely affected by the 

video content complexity. Different rendering settings will lead to different content 

complexities, thereby different communication complexities. To quantitatively measure 

CommC, we define the value of CommC of a rendering setting as the ratio of the bit rate needs 

 

Figure 3.1. Primary stages of graphic rendering pipeline. 
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of this rendering setting to the minimum bit rate need among all the possible rendering 

settings, for the same game scene using the same video compression rate. 

The Computation Complexity (CompC) of a rendering setting indicates the level of 

how much GPU computation resource needed to render the game with this rendering setting. 

Different rendering settings will lead to different computation complexities. The higher 

CompC, the richer rendering graphics, and correspondingly the higher GPU utilization that 

will be consumed by the game engine. Similar to quantifying CommC, we define the value of 

CompC of a rendering setting as the ratio of the GPU utilization using this rendering setting to 

the minimum GPU utilization of all possible rendering settings, under the same game scene. 

We next propose two key principles how rendering adaptation can be used to affect 

CommC and CompC. The first principle is to reduce the number of objects in the display list, 

as not all objects in the display list created by game engine are necessary for playing the game. 

For example, in the Massively Multiplayer Online Role-Playing Game (MMORPG), a player 

mainly manipulates one object, his avatar, in the gaming virtual world. Many other 

unimportant objects (e.g. flowers, small animals, and rocks) or far way avatars will not affect 

the user playing the game. Removing some of these unimportant objects in display list will not 

only release the load of graphic computation but also reduce the video content complexity, and 

thereby CommC and CompC. The second key principle for rendering adaptation is related to 

the complexity of rendering operations. In the rendering pipeline, many operations are applied 

to improve the graphic reality. The complexities of these rendering operations directly affect 

CompC. More importantly, some of the operations also have significant impact on content 

complexity, and thereby CommC, such as adjusting texture detail. If we can scale these 

operations, we will be able to scale CommC and CompC as needed. 
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3.3.2 Overview of Proposed Application Adaptation Approach 

We have explained the rendering adaptation principles that can change the video 

content complexity and GPU rendering complexity to scale the video bit rate needed and 

server computation needed. As will be shown in section 3.4, both the rendering adaptation 

principles can be affected by selecting appropriate rendering settings. In this section, we give a 

brief overview of our proposed rendering adaptation approach, which will dynamically select 

an optimal rendering setting with proper CommC and CompC to ensure video bit rate needed 

and server computation needed meet current available network bandwidth (communication 

constraint) and server computing resource (computation constraint). However, since the 

number of different rendering settings possible may be very large, finding the optimal 

rendering setting for a given communication and/or computation constraint may be time 

consuming. On the other hand, to be effective rendering adaptation should be performed in 

real time in response to rapid changes in network and server conditions. To resolve the above 

conflict, we propose to partition the rendering adaptation approach into two parts: offline and 

online steps. The offline steps will characterize and pre-determine the optimal rendering 

settings for different levels of CommC and CompC, thereby allowing the online steps to select 

and vary the rendering settings in real time in response to the fluctuations of network and 

server resources. 

Figure 3.2 gives an overview of the proposed rendering adaptation approach which 

involves the above mentioned offline and online steps. Details of each of these steps will be 

provided in section 3.4. In the first offline step, rendering parameters are identified which can 

affect the communication and computation complexities of the game. Subsequently, for each 

possible rendering setting involving the selected parameters, CommC and CompC values are 

derived. This will result in a complexity model, which is a mapping of CommC and CompC to 
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different rendering settings. Next, in the second offline step, several rendering levels are 

selected, each of which reflects a certain CommC and a certain CompC. Then using the 

complexity model, optimal rendering settings are derived that meet the CommC and CompC 

targets of each rendering level, leading to a rendering levels model. During an online gaming 

session, our adaptation technique can select in real time a proper rendering level and the 

corresponding optimal rendering setting, using the rendering levels model. However, since the 

mobile network bandwidth can vary very frequently, use of rendering adaptation alone may 

lead to frequent varying of rendering levels, which is not desirable from a user experience 

perspective. Therefore, we develop an online Joint Rendering and Encoding Adaptation 

(JREA) algorithm, which addresses communication constraints by judiciously utilizing the 

power of changing the video source through rendering adaptation, with large impact on 

network bandwidth needed, together with adapting the video encoding bit rate to address 

relatively small but frequent network bandwidth fluctuations. Since adapting encoding bit rate 

 

Figure 3.2. Proposed rendering adaptation methodology: offline and online steps. 
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cannot affect computational constraints, rendering adaptation is used by itself to address server 

utilization conditions. 

Adapting both rendering and video encoding jointly will necessitate understanding the 

optimal values of encoding bit rate or rendering level that can be used when encoding or 

rendering is adapted respectively. More precisely, we will need to know the following: (a) for 

each rendering level, the Minimum Encoding Bit Rate (MEBR) below which gaming video 

quality will not be acceptable by game users, so the JREA algorithm can use MEBR without 

affecting user experience, and (b) for each encoding bit rate used, what is the Maximum 

CommC Rendering Level (MCRL), the rendering level which has the highest CommC while 

its resulting video has minimum user experience impairment. In the third offline step, a joint 

adaptation model is derived, which includes the mappings of MEBR to each rendering level 

and MCRL to each encoding bit rate. Also shown in Figure 3.2 are the online steps. 

Depending on the network and server conditions, JREA decides if the rendering level and 

encoding bit rate level needs to be adapted. If either of them is changed, it will check the joint 

adaptation model to decide if the other one needs to be changed correspondingly. If rendering 

level is to be changed, it will select the optimal rendering setting based on rendering levels 

model and update the game engine consequentially to effect the rendering level change. 

3.3.3 Novelty and Feasibility of Proposed Application Adaptation 

Approach 

The proposed rendering adaptation approach has several significant contributions. 

First, to the best of our knowledge, this is the first work which has proposed dynamic 

adaptation of rendering as an effective way to adapt the rendered video to the fluctuations in 

network and server utilization, opening up a completely new way of efficiently delivering 
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CMG video over wireless network. In addition, our work has extensively characterized how 

the different rendering parameters affect CMG video communication and server computation 

needs. The results and findings in this chapter will be very helpful for many other cloud based 

rendering applications, like augmented reality and telemedicine. Furthermore, this chapter has 

developed a joint adaptation technique which is also the first work attempting to link 

rendering tasks to video encoding bit rate and exploiting the dependency of video bit rate to 

rendering complexity.  

In almost every 3D video game, game rendering parameters are designed to be 

configurable by a game player corresponding to the capacity of the hardware platform the 

player is using. Hence, in our proposed adaptive CMG approach, it should be easy to access 

and use these rendering parameters for any subscribed game. While the rendering parameters 

are set by individual game players manually and statically once for the hardware platform 

used/game played, the novelty and contribution of our approach is developing automated and 

dynamic rendering adaptation, using the same available parameters, to address dynamic 

changes in network and cloud server utilization conditions, thereby enabling high quality and 

bandwidth efficient Cloud Mobile Gaming. Also because these configurable rendering 

parameters are recommended by the game developers, the variations on these rendering 

parameters will not affect the game user to play the game though the richness of rendering 

graphics may vary.  

It should be noted that we recommend conducting the offline modeling steps for each 

game individually. This is because the CommC and CompC of the same rendering parameter 

could be different for different games mainly due to the design changes from game to game. 

However, the variations of CommC and CompC in different gaming scenes of one game are 

marginal, as we discuss in section 3.4.2. Therefore, the offline modeling for each game will 
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only need to be executed once, which makes our approach feasible and practical for 

commercial implementation. 

3.4 Rendering Adaptation Technique 

We have given a brief introduction to the principles of game rendering and an 

overview of our proposed rendering adaptation technique. In this section we will present the 

detailed methodology of how we design and enable rendering adaptation for Cloud Mobile 

Gaming, including three offline modeling steps and an online adaptation algorithm. 

3.4.1 Adaptive Rendering Parameters and Adaptive Rendering Settings 

The first thing in enabling dynamic game rendering adaptation in CMG approach is to 

identify the adaptive rendering parameters. A game may have many different rendering 

parameters, but only a few of them have the obvious impacts on the CommC or the CompC. 

An adaptive rendering parameter p must be able to adapt at least one of CommC and CompC. 

In general, a game may have k different rendering parameters. We use a k-dimension tuple s to 

denote an adaptive rendering setting and use S to denote the set of all the possible adaptive 

rendering settings of a game. The elements of s indicate the values of the adaptive rendering 

parameters used in the adaptive rendering setting s: 

1 2( , ,..., )ks p p p s S ，     (3.1). 

As discussed in section 3.3.1, reducing the number of objects in the display list or 

reducing the complexity of rendering operations could lead to the decreases in CommC and 

CompC. Based on this concept, we identify four common parameters which we believe are 

suitable for rendering adaptation in most 3D games: 
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1) Realistic effect: Realistic effect basically includes four parameters: color depth, 

anti-aliasing, texture filtering, and lighting mode. Each of the four parameters only affects one 

stage of the graphic pipeline. Varying any one of them will only have an impact on one 

special-purpose processor, which may not reduce the load on bottleneck processor. Thus when 

we reduce/increase the realistic effect, we vary all four parameters to have a reduced/increased 

CompC. 

2) Environment detail: Many objects and effects (grass, flowers, and weather) are 

applied in modern games, especially the RPG games, to make the virtual world look more 

 

Figure 3.3. Screenshots of game “PlaneShift” in different settings of view distance and

texture detail (LOD). 
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realistic. However they are not really necessary for users playing the game. Therefore, we 

could eliminate some of these objects or effects to reduce CommC and CompC if needed. 

3) Texture detail: This is also known as Level of Detail (LOD). It refers to how large 

and how many textures are used to present objects. The lower texture detail level, the lower 

resolution the textures have. As shown in Figure 3.3(a)(c)(d), the surfaces of objects get 

blurred as we decrease the texture detail. It is also important to be aware of that reducing 

texture detail has a less impact on important objects (avatars and monsters) than unimportant 

objects (ground, plants, and buildings), because the important objects in game engines have 

much more textures than unimportant objects. Thereby we could leverage this information to 

properly downgrade the texture detail level for less communication bit rate, while maintaining 

the good visual quality of important objects. 

4) View distance: This parameter determines which objects in the camera view will be 

included in the resulting frame, and thereby should be sent to the display list for graphic 

rendering. Figure 3.3(a)(b) compare the visual effects in two different view distance settings 

(300m and 60m) in the game PlaneShift (PS), a cross-platform MMORPG game. Though 

shorter view distance has impairments on user perceived gaming quality, the game will be still 

playable if we properly control the view distance above a certain acceptable threshold. Since 

the view distance affects the number of objects to be rendered, it has the impact on CompC as 

well as the CommC. 

3.4.2 Derivation of Complexity Model 

Having defined adaptive rendering settings, we next introduce how to derive the 

complexity model. For each game, k different test scenes are used to measure the average of 

CommC and CompC for each rendering setting. Let SCENE denote the set of all k test scenes, 

and let scenei denote each test scene. As we defined in section 3.3.1, in each scenei the value 



55 

 

of CommC and CompC of a rendering setting is the ratio of the bit rate need and computation 

need of this rendering setting to the minimum bit rate need and computation need among all 

the possible rendering settings. Therefore for each scenei, we first find out the lowest adaptive 

rendering setting si
L, which has the minimum bit rate need and computation need among all 

the possible rendering settings. We use GPU utilization to quantify the computation need. Let 

BitRate(s,scenei) denote the bit rate need of rendering setting s in test scenei, and let ServUtil(s, 

scenei) denote the server utilization of s in test scenei. Then for a set of test scenes, the average 

CommC and CompC of rendering setting s can be calculated by Equations 3.2 and 3.3: 

1

( , )1
( ) ( )  

( , )

k
i

iL
i i i

BitRate s scene
CommC s scene SCENE

k BitRate s scene

  ，   (3.2), 

1

( , )1
( ) ( )  

( , )

k
i

iL
i i i

ServUtil s scene
CompC s scene SCENE

k ServUtil s scene

  ，   (3.3). 

Having defined the CommC and CompC, given a game and its possible adaptive rendering 

settings, we could conduct offline experiments to measure CommC and CompC for each 

rendering setting to complete the complexity model for this game. We next use game PS as an 

example to explain our modeling approach in details, where we have elaborately studied how 

different rendering settings affect the CommC and CompC. Subsequently, we also have 

studied the impacts on CommC and CompC when video encoding setting, or video resolution, 

or server GPU is changed. This will help to demonstrate that the key concept that 

communication complexity and computation complexity can be affected by different 

rendering settings is broadly applicable, no matter what kind of video resolution or video 

encoding setting, and no matter what kind of graphic GPU is used. 
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Four adaptive rendering parameters are selected (corresponding to the adaptive 

rendering parameters introduced in section 3.4.1) for game PS. Table 3.1 shows the settings 

used for these four rendering parameters. Then we conduct experiments to measure the 

CommC and CompC for every possible rendering setting s using the settings of parameters in 

Table 3.1. The experiments are conducted on a desktop server which integrates a NVIDIA 

Geforce 8300 graphic card. Video resolution used is VGA. The video codec used is X264, and 

its encoding method is set to Variable Bit Rate (VBR). The Quantization Parameter (QP) is 25, 

while the encoding frame rate is 15fps and the size of Group of Pictures (GOP) is 30. We have 

randomly selected 20 different gaming scenes. In each test scene, for each rendering setting s, 

we let the game avatar roam in the gaming world along the same route. We measure the 

average compressed video bit rate and GPU utilization in each experiment test are measured 

and tabulated during the test. After all the experiment tests are completed, we calculate the 

average CommC and CompC for each rendering setting over all the test scenes by the 

Equations 3.2 and 3.3, and tabulate the results for the next offline modeling step. 

Table 3.1. Adaptive rendering parameters and experiment settings. 

Parameters Experiment Values 

Realistic Effect  H(High) M(Medium) L(Low) 

 color depth 32 32 16 

multi-sample factor 8 2 0 

texture-filter factor 16 4 0 

lighting mode Vertex light Lightmap Disable  

Texture Down Sample Rate (Texture Detail) 0, 2, 4 

View Distance (meter) 300, 100, 60, 40, 20 

Enabling Grass (Environment Detail) Y(Yes), N(No) 
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Figure 3.4 shows some representative data points from the experimental results. For 

each adaptive rendering parameter, we first present the sample results of CommC and CompC 

in two figures respectively. In each of these two-figures, each plot represents a rendering 

setting where only one of the rendering parameters is varied (marked by “X” in the associated 

setting), while keeping the other parameters to the fixed values shown in the rendering setting 

tuple. We also show the absolute error distribution and standard deviation of CommC and 

CompC values obtained for different test game scenes used, when only one rendering 

parameter is varied while the other parameters are kept to the minimum values. From Figure 

3.4, we have the following observations: 

1) Realistic effect has a great impact on CompC. But it affects CommC very little, 

because the realistic effect has little impact on content complexity of game video. The 

standard deviations of CommC and CompC, when only changing realistic effect among 20 test 

scenes, are 0.027 and 0.0936. This infers that variations of CommC and CompC among 

different gaming scenes are relatively marginal if only varying realistic effect.  

2) The impacts of enabling environment details on CommC and CompC are limited 

(up to 9%), and the standard deviations of CommC and CompC are also marginal, mainly 

because the effect of environment details in game PS is very simple such that varying 

environment details only has slight impacts on frame content complexity and computation 

complexity.  
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Figure 3.4. Sample data to show how CommC and CompC vary for different rendering 

parameters and absolute error distribution and standard deviation of CommC and CompC for 

each rendering parameter, for game PS. 
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3) Texture down sample rate significantly affects CommC. The highest CommC is 

about 1.6 times of the lowest CommC when we vary the texture down sample rates from 0 to 

4. However, texture detail almost does not affect the CompC. This is because the reduced 

textures in different levels for an object are pre-calculated and loaded in the memory, so that 

the graphic pipeline can load the textures quickly without any additional computing cost. 

Similar to the realistic effect, the standard deviations of CommC and CompC when only 

varying texture down sample rate are not significant. They are 0.0843 and 0.0108 respectively.  

4) View distance will significantly affect both CommC and CompC. While its impact 

on CompC is almost linear, impact on CommC becomes clear only below a certain point (100 

meters). However, unlike the other rendering parameters, varying view distance in different 

test scenes will have a significant variation in CommC and CompC values, indicated by the 

higher standard deviations of CommC and CompC as 0.2631 and 0.5450 respectively. This is 

because the ability to reduce video content complexity by adapting view distance is limited by 

the maximum video distance in the real-time gaming scene. For instance, in the indoor scene 

where the objects rendered are all in a relatively short distance, it will become difficult to 

reduce the video content complexity by adapting view distance. To eliminate this constraint 

and improve the accuracy of our offline complexity model, we propose to divide all the test 

scenes into several different Maximum View Distance Categories (MVDC). Each MVDC has 

a certain range of the maximum view distance of the current rendered scene. The average 

CommC and CompC will be measured only using the test results collected in the test scenes 

belonging to the same scene category. Let MVDCj denote the view distance category j, and the 

number of test scenes in MVDCj is kj. MVDCj is a subset of the set of all the test scenes 

(SCENE). Then the Equations 3.2 and 3.3 to calculate CommC and CompC need to be revised 

to: 
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  (3.5). 

In order to demonstrate the efficiency of the above proposed ideas, we have divided 

all the 20 test scenes of game PS into three scene categories: a) maximum view distance is 

larger than 60 meters; b) maximum view distance is between 20 and 60 meters; c) maximum 

view distance is less than 20 meters. Figures 3.4(m) and 3.4(n) show the absolute error 

distribution and standard deviations of CommC and CompC in different MVDC. From 

Figures 3.4(m) and (n), we can observe that the variations of CommC and CompC in each 

MVDC are significantly less than the variations if we do not consider dividing the test scenes 

by maximum view distance. It should be noted that dividing the test scenes into different view 

distance categories will not increase any computation load in the offline modeling step. It 

 
Figure 3.5. Complexity model of game PS for three different maximum view distance

categories. 



61 

 

actually has only changed the results of complexity model from one dimension to a two 

dimensions mapping, to make the complexity model more accurate. 

The final complexity model of game PS for three different Maximum View Distance 

Categories is presented in Figure 3.5. Note that the complexity model will not include the 

rendering setting whose view distance is higher than the maximum view distance of its 

MVDC. For example, when MVDC is between 20 meters and 60 meters (Figure 3.5(b)), the 

complexity model does not have the data points for the rendering settings whose view 

distances are either 100 meters or 300 meters. Similarly, in Figure 3.5(c), complexity model 

covers the rendering settings which only have 20 meters view distance. From Figure 3.5 we 

can also observe that the maximum CommC and CompC becomes less when the maximum 

view distance becomes shorter. The results in Figure 3.5 will be subsequently used to derive 

rendering levels model in the section 3.4.3. 

The example of complexity model we presented above was derived using a certain 

video encoding setting, video resolution, and GPU. We next investigate the impact of using 
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Figure 3.6. Absolute error distribution and standard deviation of measured CommC and

CompC in the tests with different video encoding settings, different video resolutions, and

different GPUs, for game PS. 
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different video encoding and resolution settings, and different GPUs, on the complexity 

model. We have conducted experiments and measured CommC and CompC of each rendering 

setting in three test cases: a) using various encoding settings (different QP and GOP settings), 

b) using three different resolutions (QVGA, CIF, and VGA), and c) using three different 

GPUs (Intel GMA4500, NVIDIA 8300, and NVIDIA GTX580). Figure 3.6 shows absolute 

error distribution and standard deviations of measured CommC and CompC in these test cases. 

From Figure 3.6, we can observe that the overall variations of CommC and CompC in these 

different test cases are not significant. Hence, we can conclude that the offline modeling step 

does not need to characterize the CommC and CompC and create different complexity models 

for different video resolutions, or video encoding settings, or different platforms. 

3.4.3 Derivation of the Rendering Levels Model 

In this section, we introduce how we leverage the complexity model to derive the 

rendering levels model, which is a mapping of optimal rendering setting to each rendering 

level. Each rendering level has two dimensions: 1) CommC rendering level, reflecting the 

level of network bandwidth need of that rendering level; 2) CompC rendering level, reflecting 
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Figure 3.7. Rendering levels and optimal rendering setting for each rendering level. 
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the level of computation need of that rendering level. As shown in Figure 3.7, we use Lij to 

denote a rendering level, whose CommC and CompC rendering levels are i and j, and target 

complexities are CommCLi and CompCLj respectively. For each game, depending on the 

range of CommC and CompC values derived during the complexity modeling step, the 

CommC and CompC levels can be set in many ways. In our work, we evenly divide the 

possible ranges (from the maximum value to minimum value) of CommC and CompC into m 

and n levels for each MVDC: 

( )=

( ) ( )
1+ ( 1),  i [1,m]

iCommCL MVDC

MaxCommC MVDC MinCommC MVDC
i

m


  

 (3.6), 

( )=

( ) ( )
1+ ( 1),  j [1,n]

jCompCL MVDC

MaxCommpC MVDC MinCompC MVDC
j

n


  

 (3.7). 

Once having target CommCLi and CompCLj, given a certain MVDC, as shown in 

Equation 3.8 we could find a optimal rendering setting sij for each rendering level Lij from all 

adaptive rendering settings set S, such that the root mean squared error between the target 

complexities (by Equations 3.6 and 3.7) of Lij and measured complexities (by Equations 3.4 

and 3.5) of setting sij obtained from complexity model is minimized: 
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  (3.8). 

For instance, if we applied the above Equations 3.6, 3.7, and 3.8 with the complexity 

model (Figure 3.5) of game PS, we can obtain the rendering levels model of game PS, as 
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shown in Figure 3.8. For instance, when MVDC is higher than 60 meters, if CommC 

rendering level and CompC rendering level are both 2, the graphic rendering engine should 

use the following rendering setting: medium realistic effect, 2 for texture down sample rate, 40 

meters for gaming view distance, and not enabling the environment details. 

3.4.4 Derivation of the Joint Adaptation Model 

Having derived rendering levels model, we can come up with an online rendering 

adaptation technique. During the online gaming sessions, the adaptation technique can decide 

a proper rendering level in real time depending on the network and server conditions, and then 

select the corresponding optimal rendering setting for that level. One problem of such 

rendering adaptation is that there can be sometimes very frequent, but limited, variations in 

wireless network bandwidth during a short period. If we only apply rendering adaptation to 

address these quick fluctuations of the network bandwidth, we may need to frequently vary the 

rendering levels, which probably is not desirable as game users may be sensitive if rendering 

levels are changed too frequently too fast during a gaming session. To address this problem, 

we may need the help of the traditional encoding adaptation technique, which can quickly 

respond to fast network bandwidth fluctuations, without game users being sensitive to the 

changes and without affecting the perceptual experience of the users. We have implemented a 

 
Figure 3.8. Rendering levels model of game PS for three different Maximum View Distance

Categories. 
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algorithm incorporating the above ideas, called Joint Rendering and Encoding Adaptation 

(JREA) algorithm. In JREA algorithm, rendering adaptation technique is used to address 

computation constraint by varying its CompC rendering level, while rendering and encoding 

adaptation technique will be jointly utilized to address communication constraint by varying 

CommC rendering level and video bit rate. However, it is imperative to know how to 

optimally select video bit rates and CommC rendering levels such that MGUE is maximized. 

In fact, for each CommC rendering level, there is a Minimum Encoding Bit Rate (MEBR) that 

is acceptable for the resulting video quality. And similarly, for each bit rate we use for gaming 

video, there is an Maximum CommC Rendering Level (MCRL) that provides the video 

quality which has minimum impacts on user gaming experience. We next explain how we 

obtain MEBR and MCRL to derive the joint adaptation model. 

Minimum Encoding Bit Rate (MEBR) for each CommC Rendering Level 

Encoding adaptation techniques can adapt video bit rate to the fluctuating network 

bandwidth to avoid network congestion. However, lowering video bit rate may lead to 

unacceptable gaming video quality. Therefore there is a Minimum Encoding Bit Rate (MEBR) 

below which gaming video quality will not be acceptable by game users. Similar to the 

complexity modeling, for each CommC rendering level, the offline experiment will be 

conducted in different test scenes. For each bit rate level, the average video PSNR of 

compressed game video is measured. The Minimum Encoding Bit Rate (MEBR) is the 

minimum bit rate which can at least provide the user minimum acceptable PSNR [WD09]. 

The results of MEBR for different encoding bit rate are tabulated. Thus in the online joint 

adaptation algorithm, when encoding bit rate used is lower than the MEBR associated with the 

current CommC rendering level being used, the rendering level will be adapted to a lower 

level to get a lower required MEBR, such that the user perceived video quality is acceptable. 
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Similar to complexity model and rendering levels model, MEBR also needs to divide the test 

scenes into different MVDC. And it should also be noted that the MEBR are dependent on the 

video resolution used. Table 3.2 shows the MEBR for each CommC rendering level for game 

PS in VGA resolution. For instance, when MVDC is higher than 60, if CommC rendering 

level 4 is used, the video encoder needs at least 300kbps to encode the resulting gaming video 

to produce the final video with acceptable gaming quality. 

Maximum CommC Rendering Level (MCRL) for each Encoding Bit Rate 

While encoding bit rate adaptation reduces video quality to satisfy communication 

bandwidth constraint, our rendering adaptation can improve video quality by lowering graphic 

rendering complexity. However, for a certain encoding bit rate, one should attempt to use the 

richest rendering possible, without having any impacts on user experienced gaming quality. 

Similar to the method used to derive the MEBR values for each rendering level, the following 

method is used to derive the MCRL for each video encoding bit rate used. For each encoding 

bit rate, offline experiment selects different CommC rendering levels. Then for each CommC 

rendering level, it measures the average PSNR of compressed video among different test 

Table 3.2. Minimum encoding bit rate for each CommC rendering level for game PS in VGA 
resolution. 

Maximum 
View Distance 
Category 

MVDC>60 60>=MVDC>20 MVDC <=20 

CommC 
Rendering 
level 

4 3 2 1 4 3 2 1 4 3 2 1 

MEBR (kbps) 300 250 200 150 400 300 250 200 500 400 300 250 
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scenes. For each encoding bit rate, the MCRL is the maximum CommC rendering level in 

which the resulting source video PSNR is at least higher than the excellent video quality 

threshold [WD09] below which user will feel the impacts due to the video quality. It is 

possible that in some encoding bit rates even the lowest CommC rendering level cannot meet 

this excellent video quality. For these bit rates, MCRL should be the lowest CommC rendering 

level (level 1). Table 3.3 shows the MCRL for each encoding bit rate for game PS in VGA 

resolution. During the gaming session, depending on the encoding bit rate used, we 

periodically update the CommC rendering level from Table 3.3, such that rendering setting 

used is maximized while user perceived video quality remains unimpaired. 

3.4.5 Online JREA Algorithm 

The motivation for developing an online Joint Rendering and Encoding Adaptation 

(JREA) algorithm is presented in the previous section 3.4.4. In this section we describe the 

JREA algorithm which decides when and how to switch the CommC and CompC rendering 

levels during a gaming session, in response to the current network conditions and server 

utilization. 

Table 3.3. Maximum CommC rendering level for each encoding bit rate for game PS in VGA 
resolution. 

Encoding Bit Rate 
(kbps) 

700 600 500 400 300 250 200 150 

MVDC>60 4 3 3 2 2 2 1 1 

60>=MVDC>20 4 3 2 2 2 1 1 1 

MVDC<=20 4 3 2 2 1 1 1 1 
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Firstly, we need to make sure the CommC is lower than available network bandwidth. 

Otherwise, the network will be congested, leading to high response time and packet loss. 

Network delay has been widely used to indicate congestion (bandwidth constraint) [PMD+03]. 

However, in mobile networks, network delay is not always caused by congestion. To address 

this problem, we make use of the observation [DJ02] that network delay keeps increasing 

when the network link starts to become congested, while delay in a non-congested network 

does not have this property. To accurately detect network congestion, in this work we decide a 

network link is congested, only when the Round trip Delay (RDelay) keeps increasing for a 

certain period and the average RDelay is bigger than a certain threshold. With the Mobile 

Gaming User Experience (MGUE) model and associated Game Mean Opinion Score (GMOS) 

described in Chapter 2, for each game, we can obtain the minimum Acceptable Round-trip 

Delay RDA, which is the minimal delay threshold to achieve an acceptable MGUE (GMOS > 

3.0). We thereby use this RDA as the round-trip delay threshold to determine network 

congestion. 

To decide on the proper CompC, we monitor the server GPU utilization. We define an 

upper utilization threshold, U1, and a lower utilization threshold, U2, and use them to decide 

CompC rendering level. Figure 3.9 shows the flow chart of the JREA algorithm. At short time 

interval λ, depending on the network conditions, network Round-trip Delay (RDelay) and 

packet Loss (Loss), server utilization (ServUtil), and the Maximum View Distance Category 

(MVDC) of the current game scene, the JREA algorithm decides to select a lower or higher 

CommC rendering level I, CompC rendering level J, and encoding bit rate K, such that 1) 

network round trip delay threshold RDA is met, and 2) gaming video quality is maximized. 

The JREA algorithm consists of three steps as follows: 
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Figure 3.9. Flow chart of joint rendering and encoding adaptation algorithm. 
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1) The first step is to decide the encoding bit rate K used to encode the rendered 

video. During a certain period λ, if the network RDelay keeps increasing and its average value 

is greater than RDA, we reduce encoding bit rate K. On the other hand, if for a significant time 

T1, RDelay remains below RDA and there is no packet loss, we increase the encoding bit rate. 

2) The second step is to check and update CommC rendering level I. After the first 

step, the new encoding bit rate may be below the Minimum Encoding Bit Rate (MEBR) for 

the current CommC rendering level I and Maximum View Distance Category (MVDC), which 

will lead to an unexpected user experience as we discussed before. If this happens, we have to 

reduce CommC rendering level to reduce the Minimum Encoding Bit Rate. On the other hand, 

if the CommC rendering level has not been changed for over a certain significant period T2, it 

will be updated and changed to the Maximum CommC Rendering Level (MCRL) depending 

on the current encoding bit rate and MVDC. 

3) The third and last step is to decide on CompC rendering level J, depending on 

server utilization ServUtil. If ServUtil is over U1, the lower CompC rendering level is selected. 

Otherwise, if CompC rendering level has not been changed for more than time T3, and 

ServUtil is below U2, we increase CompC rendering level J by 1. 

Next, based on the new selected CommC and CompC rendering levels we use the 

optimal rendering settings from Figure 3.8 to update the game engine server, while we use 

new selected video bit rate to update the game streaming server. 

3.5 Experiment and Results 

In this section, we report on experiments conducted to verify the effectiveness of the 

proposed rendering adaptation technique. We first conduct experiments in a commercially 

available cellular mobile network, which can validate the effectiveness of our technique to 
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satisfy wireless mobile communication constraint. The results show that it can lead to about 4 

times reduction in video bit rate, while ensuring an acceptable MGUE. Next, we conduct 

experiments in a controlled environment which can validate the effectiveness of rendering 

adaptation technique in addressing computation constraint. The experiment results show that 

the proposed technique can ensure a high stable rendering frame rate, thus a good user 

experience, while the number of users on a CMG server increases by almost 5 times. The 

experiment results of these tests demonstrate that the proposed rendering adaptation technique 

can ensure MGUE and high scalability of the CMG approach in regards to both network 

bandwidth and server computing needs, thereby making Cloud Mobile Gaming economically 

feasible.  

We have explained the parameters of online JREA algorithm in section 3.4.5. 

Generally, λ has to be a relative small period such that the JREA algorithm can quickly 

respond to the variations in network. The update periods (T2 and T3) for rendering levels 

should be higher than the update period (T1) for encoding bit rate. The upper GPU utilization 

threshold U1 should be much higher than lower GPU utilization threshold U2, to avoid the 

adaptation from oscillating. For the experiments reported in this chapter, we use the values 3 

seconds, 20 seconds, 60 seconds, 60 seconds, 90%, and 40% for the parameters λ, T1, T2, T3, 

U1, and U2 as respectively. The game used is PlaneShift, its RDA is 440ms [WD12][WD09]. 

The rendering levels model and joint adaptation model for game PS are pre-calculated on off-

line experiments. The Maximum View Distance Category (MVDC) is measured and provided 

by the PS game engine during the gaming session. It should be noted that our proposed JREA 

algorithm can leverage any video encoding adaptation technique with our proposed rendering 

adaptation technique. In this chapter, for the purpose of experimental results, we use a video 
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encoding adaptation technique [WDA10] which has been shown to produce better video 

quality by being aware of the gaming content. 

3.5.1 Addressing Communication Constraint 

To evaluate the effectiveness of our proposed technique in addressing communication 

constraint, we carried out multiple experiments using a 3G network and multiple test 

environments (locations, times) having different network conditions. In this section, we select 

one of the test environments to compare and discuss in details the effectiveness of our 

proposed rendering adaptation technique. Figure 3.10(a) shows a test environment used in the 

UCSD campus, where the tests are conducted starting at an indoor location A (our lab), then at 

location B (outdoor), C (indoor), D (indoor), then from D back to C, B. The locations are 

selected as they display different network conditions: network bandwidth, and signal-to-noise 

ratio (SINR), received by the mobile device at each location. In this case, the SINR of these 

four places from highest to lowest are B, A, C, D. 

We first measure the maximum mobile network throughput at these locations, as 

presented in Figure 3.10(b). Figures 3.10(c)(d)(e) present the data collected from experiments 

in three scenes: without using any adaptation technique, only using game aware video 

encoding adaptation technique [WDA10], and using our proposed rendering adaptation 

technique, respectively. We provide below a summary of the key observations from our 

experiments: 

1) In the experiment without using any adaptation technique, we stream the gaming 

video at the rate of 700kbps where the source video quality is good enough to avoid 

deteriorating user experience. Figure 3.10(c) shows the resulting round-trip delay (RDelay), 

Packet Loss, and GMOS score of the gaming session. At outdoor location B, as the wireless 

channel rate is high due to good SINR, the resulting network delay and packet loss are 
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relatively low, and hence the GMOS score measuring the mobile gaming user experience is 

mostly above 3.0 (acceptable user experience threshold). However, at indoor locations, A, C, 

and D, due to the bad SINR, the wireless channel rate adapts to a lower level. This causes 

network congestion, reflected by the high network delay and packet loss rate, leading to 

unacceptably poor gaming quality (GMOS scores below 3.0). 

2) In the experiment only using encoding adaptation, the encoding bit rates used are 

adapted to the fluctuating network conditions. Figure 3.10(d) shows the resulting network 

delay, packet loss, the encoding bit rates used, the PSNR of the encoded video, the game 

Maximum View Distance Category (MVDC) and the resulting GMOS score at the different 

locations. As shown in Figure 3.10(d), the network congestion is almost eliminated, and as a 

result, network delay and packet loss are greatly improved at all the locations. However, the 

video quality (PSNR) is deteriorated while lowering video bit rate by encoding adaptation. 

When wireless network bandwidth is extremely low in bad SINR locations, like D, the user 

has very poor experience, reflected by poor GMOS, primarily due to the poor video quality. 

3) Figure 3.10(e) shows the results of applying the proposed rendering adaptation 

technique, including the resulting adaptive bit rates and CommC rendering levels used. In 

contrast to the results shown in Figures 3.10(c)(d), Figure 3.10(e) shows that application of 

our rendering adaptation technique can greatly improve the network delay and packet loss 

rate, while maintaining a good video quality (PSNR). Consequently, the user gaming 

experience, which includes response time, is significantly enhanced at all the locations, 

reflected by the relatively high and stable GMOS, dipping below 3.0 only very occasionally 

when the adaptation algorithm is responding to the channel rate variations. 
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Figure 3.10. Experiment results to demonstrate the effectiveness of proposed rendering

adaptation technique to address CMG communication constraint: (a) test environments; (b)

network bandwidth measurement results; (c) CMG without any adaptation technique; (d)

CMG with video encoding adaptation technique only; (e) CMG with our proposed rendering

adaptation technique. 
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3.5.2 Addressing Computation Constraint 

As discussed before, considering that the cloud mobile gaming (CMG) servers will 

need to execute concurrently a large number of compute intensive game engines (to support 

the concurrent gaming sessions), it is imperative to show the scalability of the CMG servers. 

To demonstrate the effectiveness of proposed rendering adaptation technique in addressing 

computation constraint so as to ensure scalability of the CMG servers, we conduct 

experiments where we increase server GPU load by increasing the number of concurrent game 

engine tasks executed. The experimental server integrates a NVIDIA GTX580 graphic card. 

We initialize the CMG server with one game engine for a cloud mobile gaming session. After 

every 60 seconds, we start a new PS game engine for each new concurrent gaming session. 

Each game engine is configured to render 15 frames per second, but the actual rendered frame 

rate produced may drop below 15 if the GPU resource is over utilized. In the latter cases, the 

gaming user experience will suffer, with either gaming video appearing jerky, or the response 

time appearing slower than expected.  

Figure 3.11 presents the effects of increasing the number of concurrent gaming 

sessions on a CMG server, and the resulting server GPU utilization and the rendering quality 

achieved (rendering frames per second) for one sample gaming session, without and with 

applying rendering adaptation technique (Figures 3.11(a) and (b) respectively). It should be 

noted that when the server utilization goes above the upper utilization threshold U1, the 

adaptation technique will adapt the CompC rendering levels on all the gaming engines 

executed. Also showed in Figure 3.11(b) is the MVDC used for the sample gaming session 

during the test. We summarize below the following observations: 

1) As shown in Figure 3.11(a), without the use of our rendering adaptation technique, 

the CMG server can support only 6 CMG sessions with good quality (expected rendering rate 
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of 15fps), as the GPU utilization reaches 100% when we add the 7th gaming session and the 

rendered frame rate drops to as low as 12. With the addition of each new game engine task, 

the rendering frame rate keeps going down, to as low as 1 frame per second when the CMG 

server has to execute 30 concurrent game engines. 

2) In contrast, as shown in Figure 3.11(b), the CMG server can support up to 27 

clients when using our proposed rendering adaptation technique, without deterioration in 

rendered quality (rendered frame rate). With appropriate adaptation of the CompC rendering 

levels used, rendering adaptation technique is able to ensure that the GPU is able to deliver the 

expected 15 fps for each gaming session, dipping a little below 15 only very occasionally 

when the adaptation algorithm is responding to the changes in-server GPU loading. The above 

experimental results demonstrate that our proposed rendering adaptation technique can 

address computation constraint of CMG server by properly adapting the computation need of 
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Figure 3.11. Experiment results to demonstrate the effectiveness of proposed rendering

adaptation technique in addressing CMG computation constraint. 
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each mobile gaming session, thereby increasing by almost 5x the scalability of the CMG 

application. 

3.6 Conclusions 

To ensure the feasibility of the CMG approach, it is vital to provision high Mobile 

Gaming User Experience (MGUE) for each CMG user, and ensure the scalability both in 

terms of communication and computation needs. To achieve our proposed objectives, in this 

chapter, we have developed a dynamic game rendering adaptation technique which can 

simultaneously vary the richness and complexity of graphic rendering to adapt the 

communication and computing needs of each CMG session in responding to the dynamic 

conditions of the wireless mobile networks and CMG server. The experiments conducted on 

the commercial cellular mobile network and CMG server demonstrate the effectiveness of the 

proposed adaptation techniques to make the CMG approach feasible: ensuring protection 

against wireless network conditions and thus ensuring acceptable mobile gaming user 

experience and scalability in regards to the availability of the mobile network and CMG 

server. 

 

The text of this chapter, in part or in full, is based on material that has been published 

in IEEE Transactions on Multimedia (TMM) (S. Wang, S. Dey, “ Adaptive Mobile Cloud 

Computing to Enable Rich Mobile Multimedia Applications,” IEEE Transactions on 

Multimedia, Jun. 2013) and material published in IEEE Global Communications Conference 

(Globecom) (S. Wang, S. Dey, "Rendering Adaptation to Address Communication and 

Computation Constraints in Cloud Mobile Gaming,” IEEE Globecom, Miami, Dec. 2010). 
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Chapter 4 

Mobile Cloud Scheduling: Scheduling 

Heterogeneous Network and Cloud 

Resources to Enable Scalable Cloud 

Mobile Gaming 

In this chapter, we address the problem of making Cloud Mobile Gaming scalable and 

economically feasible by proposing a novel Mobile Cloud Scheduling (MCS) solution that 

increases the allowed number of concurrent CMG sessions to be scheduled. The method is 

implemented while satisfying the Quality of Service (QoS) requirements for each scheduled 

user using the available wireless network resources while minimizing the cloud cost incurred 

by the CMG provider. We consider heterogeneous cloud and network resources with different 

capacities and delays, including cloud resources in the mobile network supplementing 

traditional Internet clouds and heterogeneous access networks, including macro cells, small 

cells, and WiFi. Unlike conventional mobile network or cloud schedulers, MCS considers
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simultaneously the constraints of the wireless access networks that may be available to each 

CMG user, as well as the cost of available cloud resources, while scheduling the most optimal 

wireless access link and cloud server for each CMG session. To further enhance the 

performance of MCS, we also propose a joint scheduling-adaptation approach that can 

systematically leverage application adaptation techniques proposed in Chapter 3 to adapt the 

communication bit rate needs of in-service users if the available wireless network bandwidth 

is not sufficient for a new user, or adapt the computational needs if the reserved cloud resource 

is over utilized. Our simulation results demonstrate that the use of MCS and the joint 

scheduling-adaptation approach, can significantly improve the performance of the CMG 

method , increasing the number of simultaneous CMG sessions which can be supported, while 

maximizing aggregate Mobile Gaming User Experience (MGUE) and minimizing the average 

cloud cost. 

Section 4.1 introduces the overview and objectives of mobile cloud scheduling, and 

compares our contributions with related work. In section 4.2, we identify and formulate 

mobile cloud scheduling problems. The Mobile Cloud Scheduling (MCS) approach and Joint 

Scheduling-Adaptation (JSA) approach are proposed and studied in sections 4.3 and 4.4. In 

section 4.5, we perform a set of simulation experiments to compare and characterize the 

performance of our proposed approaches and the performance of the original CMG approach 

where MCS and JSA approaches are not applied. The simulation results show that a) our 

proposed MCS can help the CMG approach to minimize the number of blocked users and 

cloud cost while ensuring the user perceived MGUE when comparing with the original CMG 

approach under the same conditions; b) the proposed JSA approach can significant increase 

(by about 2.5 times) the system capacity while ensuring the minimum acceptable MGUE for 

each assigned user. Section 4.6 summaries our findings in this chapter. 
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4.1 Mobile Cloud Scheduling: Overview, Objectives, and 

Related Work  

In this section, we first provide an overview of Mobile Cloud Scheduling (MCS) and 

summarize the objectives of the proposed MCS approach. While the problem of mobile cloud 

scheduling has not been addressed before, we summarize previous work in cloud and network 

scheduling, and compare with our contributions. 

4.1.1 Overview of Mobile Cloud Scheduling Problem 

Figure 4.1 shows the architecture and eco-system of a heterogeneous mobile cloud 

computing system, consisting of Heterogeneous Network (HetNet) access nodes, cloud 

computing servers in both the mobile network as well as traditional Internet cloud servers, and 

a Mobile Cloud Scheduler (MCS) proposed in this dissertation. To deal with tremendous 

growth in mobile wireless data demands, mobile network operators are increasingly adopting 

the Heterogeneous Network (HetNet) architecture [ARC11][PQ11]. The heterogeneous 

network can consist of different cell sizes which range from macro to micro, pico and even 

femto cells, potentially sharing the same spectrum. Nodes can deploy different access 

technologies such as LTE and WiFi, over both licensed and unlicensed bands. While the 

macro cells provide coverage, small cells (micro, pico and femto) complement macro cells to 

provide high capacity and better indoor coverage. 

In Figure 4.1, we show an example scenario consisting of four types of wireless 

access nodes: macrocell Base Stations (BS), microcell BSs, carrier WiFi Hotspots, and public 

WiFi Access Points (AP). The application data from/to mobile device has to be routed via a 
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service provider’s core network - in this case, the macrocell and microcell BSs and carrier 

WiFi Hotspots connect to the Internet through mobile provider’s core network, while public 

WiFi APs uses the broadband core network. Most of mobile users (like mobile users 1, 2, and 

3 in Figure 4.1) can access using more than one wireless node; for example, user 1 can access 

through macrocell BS #1, carrier WiFi Hotspot #2, and public WiFi AP #3; user 2 can access 

through macrocell BS #1, public WiFi AP #5, and microcell BS #6; and user 3 can access 

through macrocell BS #1 and public WiFi AP #6. However, due to the wireless coverage and 

device constraints, at any given time, some users may only be able to connect only one node, 

like mobile users 4 and 5 in Figure 4.1.  

 To enable rich mobile applications on mobile devices, CMG applications can utilize 

the cloud servers in the Internet Cloud. However, a critical challenge for CMG applications is 

to satisfy the round-trip latency requirement between the mobile device and the cloud servers. 

Moreover, the transmission of large amount of content between cloud servers and mobile 

devices poses a major concern for the capacity of the networks to enable CMG applications. 

 
Figure 4.1. Heterogeneous mobile cloud computing system, and an instance of the mobile

cloud scheduling problem. 
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To address these concerns, we propose a new architecture which supplements Internet cloud 

servers with cloud servers located in the mobile carrier core network, so that the content 

processing and retrieval can be performed at the edge of the mobile networks, as opposed to in 

Internet clouds, thereby reducing round-trip latency, as well as reducing the traffic load 

between the Internet cloud and mobile core network. Figure 4.1 shows an example with the 

service gateways (SGW) and packet gateways (PGW) of a mobile core network supplemented 

by cloud servers. 

We assume CMG provider reserves Internet cloud servers and mobile network cloud 

servers from Internet cloud providers and mobile network operators respectively, and reserves 

certain amount of access capacity from mobile network operators and WiFi service providers. 

While a certain number of cloud servers are reserved by the CMG provider, at any time any 

excess computing demand may be met using the pay-as-you-go model for cloud computing, 

though the latter is more expensive than the reservation cost. On the other hand, we assume 

the mobile cloud service provider is constrained by the wireless access capacity reserved by it, 

and the pay-as-you-go model is not available for wireless access capacity.  

The mobile cloud scheduling, which is operated by the CMG provider, will keep 

monitoring the network availabilities and server utilization from the cloud server and access 

network reservations made by the mobile cloud service provider. When a new mobile cloud 

user requests service, it will schedule the proper access network and cloud server for this user. 

At any given time, there usually might be multiple choices available to serve a new requesting 

mobile cloud user. For instance, the table in Figure 4.1 shows all the possible scheduling 

choices for the mobile user 1, including the possible networks and the bandwidth utilization 

for each network, the possible cloud servers and the resource utilization for each server. In 

addition, we have shown a usage probability for each network and cloud server, which 
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indicates the probability that a requesting user will use this network or cloud server; the usage 

probability can be maintained based on usage statistics. For each pair of access network and 

cloud server, we have provided the average and standard deviation of network round-trip 

delay obtained from thirty measurements conducted using commercial wireless networks and 

cloud servers. The networks used in the measurements are Verizon 3G (macrocell BS #1), 

AT&T WiFi (carrier WiFi Hotspot #2), and Time Warner Cable WiFi (public WiFi AP #3). 

Note the round-trip delays with respect to AT&T Packet Gateway (column 2) are significantly 

lower than when using either the Amazon server located in Southern California (column 3) or 

Amazon server located in Eastern US (column 4), justifying the inclusion of mobile cloud 

servers in our heterogeneous architecture. 

The mobile cloud scheduling decision from the multiple choices available for a new 

mobile user request can be complex because the available choices may force a tradeoff 

between available capacity and usage probability of access network, available capacity and 

usage probability of cloud server, and round-trip delay (which affects user experience). For 

example, if minimizing the number of Blocked Users (BUsers), users that cannot be scheduled 

due to the network bandwidth constraint, is the primary objective, we should select the 

network with the highest available capacity and the lowest usage probability, like public WiFi 

AP #3 in Figure 4.1. If preventing over-utilizing cloud resources is the primary objective, we 

should select the cloud server with the highest available capacity and the lowest usage 

probability, like mobile cloud server #1 in Figure 4.1. However, the mobile users connected to 

public WiFi AP #3 may not be able to access the mobile cloud server #1 due to the policy 

issue. Therefore, choice G is not available for mobile user 1. Besides choice G, if MCS wants 

to select the mobile cloud server #1, the cloud server which has the highest available capacity 

and the lowest usage probability, choice A is better than choice D in terms of available 
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capacity and usage probability of access network. Similarly, if MCS wants to select public 

WiFi AP #3, the access network with the highest available capacity and the lowest usage 

probability, choice I is better than choice H in terms of the cloud server capacity and usage 

probability. However, it is still difficult to decide which one is better between choice A and 

choice I: a) if choosing choice A, the number of blocked users due to the subsequent requests 

on mobile BS #1 will increase; b) if choosing choice I, the chance of over-utilizing reserved 

cloud resource on Internet cloud server #3 for the future requests will increase.  

In this chapter, we propose a mobile cloud scheduling approach which takes into 

account the available capacity and usage probability of each heterogeneous access network 

and cloud server choice for each mobile user, and the corresponding network round-trip delays, 

to maximize the number of concurrent mobile cloud users that can be served and minimizing 

the average cloud cost, while satisfying their QoS requirements, including response time. 

4.1.2 Mobile Cloud Scheduling Objectives 

In this section, we describe in details the objectives for mobile cloud scheduling. Due 

to the limited network resource reserved by CMG provider, it is possible that a user request 

cannot be scheduled due to the insufficient network available capacity. Hence, one of the 

objectives of mobile cloud scheduling should be to minimize the number of blocked users 

(BUsers) given the available (reserved) access network capacity. A challenge for mobile cloud 

scheduling is that when a new user needs to be scheduled, the already live (in-service) users 

cannot be rescheduled, that is, a new optimal schedule cannot be obtained for all concurrent 

users with all available network and cloud resources. This is because rescheduling the live 

users to either different access networks or cloud servers may introduce unacceptable 

interruption and delay in the mobile cloud sessions. Because it is not feasible to reschedule the 

resources for the live cloud users every time a new user request comes, the scheduling 
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decision for any requesting user will affect the availability and hence scheduling decision of 

future users. For instance, in Figure 4.1, scheduling a requesting user to a highly utilized 

network resource among several available choices (like carrier WiFi Hotspot #2) may increase 

the number of blocked users (due to the subsequent requests on carrier WiFi Hotspot #2) in 

the long run. Therefore, scheduling decision for a new user has to be performed in a way that 

minimizes blocking of future users/requests, so as to minimize the value of BUsers. 

Second, unlike enterprise applications, the CMG application is extremely compute 

intensive and network bandwidth demanding, leading to a high cloud cost. Besides being 

expensive, the cloud costs are different across different cloud instance types. As we discussed 

in Chapter 1, Amazon Elastic Compute Cloud (EC2) [EC2] offers two types of cloud 

instances: on-demand instances and reserved instances. On-demand instances let customers 

pay for compute capacity by the hour with no long-term commitments, while reserved 

instances give customers the option to make a low, one-time payment for each instance that 

customers want to reserve and in turn receive a significant discount on the hourly charge for 

that instance. Table 1.1 has shown the costs for each world of warcraft CMG session using 

two different AWS EC2 instances. From Table 1.1, we can observe that cloud cost of using 

on-demand cloud instances is much higher (more than 2x) than the cloud cost of using 

reserved cloud instances, due to higher computing price of on-demand cloud instances. Hence, 

in this chapter, we assume that the mobile cloud service provider reserves a certain set of 

Internet and mobile cloud servers, which forms the cloud resource constraint, above which the 

provider will have to pay for Additional computing Cost (ACost) which is charged on-

demand. Similar to the previous discussion for network constraint, because mobile cloud 

scheduling cannot reschedule the in-service users, the scheduling decision for a new user will 

impact cloud server availability for future users, and may impact the ACost that mobile cloud 
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service provider may pay for the future users. Therefore, for scheduling decision the MCS 

needs to consider the cloud server conditions and try to find out the optimal cloud server for 

the current request such that the future ACost will be minimized. 

Third, the proposed mobile cloud scheduling technique needs to satisfy Quality of 

Service (QoS) requirements of an CMG application, which can be characterized by: 

acceptable Round-trip Delay RDelayA (above which user cannot tolerate the service any more), 

application bit rate needed CMGDataRate, and computation needed CMGComp. 

In summary, for the success of Cloud Mobile Gaming approach it is vital for mobile 

cloud scheduling technique to achieve the following three objectives: 1) minimizing the 

number of Blocked Users (BUsers), 2) minimizing the Additional computing Cost (ACost), 3) 

and satisfying QoS requirements to meet acceptable user experience for each scheduled user.  

4.1.3 Related Work 

The problems of cloud computation scheduling and network communication 

scheduling have been studied extensively but mostly considered in isolation. In [AAB+10] 

[Gho+11] [LCK11] [BVB10] [Bel+10] [NKG10] [CGF+10], problems of assigning computing 

resources to a cloud user over a set of cloud servers are studied, to achieve any or multiple of 

the following objectives: increasing resource utilization [AAB+10], ensuring fairness among 

requesting tasks [Gho+11] [LCK11], reducing cloud cost [BVB10], reducing energy 

consumption [Bel+10], and alleviating the impacts of cloud resource fluctuation on service 

quality a cloud user perceives [NKG10] [CGF+10]. On the other hand, scheduling and 

allocation of wireless network resources has been widely studied and incorporated in current 

wireless networks. For example, [VDG05] [SKG+11] propose various types of wireless 

network schedulers to allocate network bandwidth to users for different goals, including 

maximizing the aggregate throughput [SKG+11] [CKX+08] [EMC+07], achieving network 
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fairness [VDG05] [CKX+08] and maintaining quality of service [EMC+07]. However, the 

above techniques do not consider the problem of scheduling considering simultaneously both 

cloud computing and wireless network resources, which is the goal of our work. There has 

been one prior research [MSD07] which has considered scheduling computing tasks on mobile 

devices to remote processors, considering both the availability of the computing resources as 

well as the bandwidth availability of the mobile access networks. However, the above 

technique needs knowledge of all the tasks that need to be scheduled and all the available 

resources to make a scheduling decision, and hence is not suitable for the MCS problem we 

address in this chapter, where the set of CMG users can change dynamically, and rescheduling 

the entire set of users every time a new user requests service would be too computationally 

expensive. Moreover, the approach in [MSD07] considers fixed computing resources, while 

MCS needs to consider elastic cloud resources, where the prime consideration is cloud cost 

and not the constraint on availability of computing resources. 

Next, we will give a problem formulation for Mobile Cloud Scheduling which will 

meet all its objectives. Subsequently, we will propose a MCS approach which is designed to 

achieve the three objectives discussed in section 4.1.2. Consequentially, we will propose a 

Joint Scheduling-Adaptation (JSA) approach which can leverage the application adaptation 

techniques to ensure the scalability of CMG applications. 

4.2 Problem Formulation for Mobile Cloud Scheduling  

In this section, we develop a formal definition of the mobile cloud scheduling problem. 

We first present our system model and assumptions, and then present a formal definition of 

the problem based on this model. 



89 

 

4.2.1 Mobile Cloud System Model 

Our system consists of cloud servers located in different locations with different 

reserved computing capacities, heterogeneous network (HetNet) offering multiple wireless 

access methods, and mobile clients who can enter or leave the system at random times. A 

mobile client can be connected to multiple wireless access networks, for example a cellular 

macrocell, a cellular microcell, a carrier WiFi network, and a public WiFi network, as shown 

in Figure 4.1. 

As we described in section 4.1, we assume that the CMG provider reserves certain 

amount of access capacity from mobile network operators and WiFi service providers. The 

capacity (in terms of number of users that can be simultaneously served) for each access 

network is determined by the total bandwidth of the network reserved by CMG provider. 

Different types of CMG applications may have different network bandwidth needs. In our 

system, we assume the scheduler estimates the bandwidth need of each CMG session as the 

average bandwidth need of the different types of CMG applications being supported. Based on 

the above assumptions, we use a term aN
i to denote the available network capacity for any 

access network i at a given time, which is the number of concurrent users that can be 

additionally severed by this network, taking into account the number of users it is currently 

serving. 

Similarly, the computation need of a CMG session also depends on the application 

type. We assume the scheduler estimates the computation need of each session as the average 

computation need among all types of CMG applications. As we mentioned before (section 4.1), 

to reduce the cloud cost, CMG provider will reserve a certain amount of computing units on 

each cloud server. Given the available reserved computing units and the average computation 
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need of the CMG applications, the number of concurrent users that can be severed on any 

server j can be calculated and denoted as aS
j. 

In addition, according to the statistical history of the CMG system, we can obtain the 

maximum concurrent number of users in the system (denoted as MAX), and the probability 

distribution of all the possible concurrent numbers of users in the system at any given time 

(denoted as P(x), where x is the concurrent number of users in the system). Also can be 

obtained from statistic history are the access probability of any network i (pN
i), the probability 

that any new requesting user may use the network i, and the access probability of any server j 

(pS
j), the probability that any new requesting user may use server j. As we mentioned in 

section 4.1.2, the MCS has to satisfy QoS requirements (including minimum acceptable round 

trip delay RDelayA, application bit rate need CMGDataRate, and computation need CMGComp) to 

meet acceptable user experience for each scheduled user. Because cloud resource is elastic, 

CMGComp can be always satisfied. To meet CMGDataRate, MCS needs to guarantee the available 

capacity of network i is higher than 1 (i.e. aN
i>1). We use RDelayij to denote the achievable 

network round trip delay if using network i and cloud server j. Let RDelayA
 denote the 

minimum acceptable round trip delay for the new mobile user To provision a user 

acceptable network delay, MCS needs to make sure RDelayij is lower than RDelayA. 

 While MCS will periodically monitor the system status including the network delays 

and resource capacities, it will only be invoked for scheduling when mobile clients enter or 

leave the system. When the mobile user starts a CMG session, the MCS will check all the 

available assignments of access networks and cloud servers of user  (denoted as R), and 

assign an appropriate wireless network i and a proper cloud server j (denoted as assignment rij), 

such that the QoS requirements of the requested CMG session will be met. Note that it is 

possible that MCS cannot find any appropriate assignment for user , due to the QoS 
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requirements or resource limitation. When this happens, the user  will be queued into a 

waiting list and his/her achieved QoS is 0. Whenever a client leaves the system, MCS will be 

invoked, checking the waiting list in the order of the user arrival time to see if any queued user 

can be scheduled. We use n to denote the number of all current users in the system, including 

both scheduled and queued users. For convenience, Table 4.1 summarizes all the symbols 

discussed above. 

Table 4.1. Summary of symbols for Chapter 4. 

Symbol Explanation 

n Number of all the current users in the system, including scheduled and 

queued users 

MAX Number of maximum concurrent users in the system 

pN
i Usage probability that a requesting user will use access network i 

pS
j Usage probability that a requesting user will use server j 

aN
i Available capacity for access network i 

aS
j Available capacity for server j 

rij An assignment using access network i and server j 

R The set of all the available assignments for user  

RDelayij Achievable network round trip delay if using assignment rij 

RDelayA
 Minimum acceptable round trip delay for user  

P(x) Probability distribution of number of concurrent users in the system 
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4.2.2 Definition of Mobile Cloud Scheduling Problem 

Based on the mobile cloud system model described above, we now present a formal 

definition of the mobile cloud scheduling problem. As discussed before (in section 4.1.2), 

when a new user requests service, MCS allocates network and cloud computing resources only 

for that user, and does not re-schedule in-service users. Hence, different scheduling decisions 

for a current requesting user may affect the scheduling of future requesting users, resulting in 

different numbers of blocked users and cloud costs in the long run. Therefore, the mobile 

cloud scheduling problem is different than the traditional network and processor scheduling 

problems. Given a certain system state condition, while the traditional network and processor 

scheduling problems try to maximize the number of users/tasks that can be scheduled, MCS 

will try to minimize the impact on BUsers and ACost for future requests. 

We first define an objective criteria (D) for mobile cloud scheduling, which can be 

formulated as the sum of BUsers and ACost with two different weights, WN and WS: 

= ,   1N S N SD W BUsers W ACompCost where W W       (4.1). 

The objective for MCS is to minimize D. The weights WN and WS in Equation 4.1 are used to 

represent system-specific interests. A CMG provider can adjust these two weights to achieve 

different primary and secondary objectives, for example, minimizing BUsers as the primary 

objective with minimizing ACost as the secondary objective, and vice verse. We use C to 

denote the system state condition, including the number of current users, and current available 

capacities and usage probabilities of all the access networks and cloud servers. Given the 

current system condition C, we use E[DC] to denote the value of D that can be expected in the 

long run. When we schedule a requesting user to network and server resources, the available 

capacities of the networks and servers will be reduced. This will lead to an increase in E[DC]. 
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We use δij
(E[DC]) to denote the change on E[DC] due to scheduling user  to the network i 

and the server j. To minimize E[DC], we need to minimize the increase of E[DC] whenever we 

schedule a new requesting user. Therefore δij
(E[DC]) is the scheduling criteria for MCS for 

any new requesting user . Then the Mobile Cloud Scheduling problem for minimizing the 

expected number of BUsers and the expected ACost by allocating optimal assignment rij 

(network i and server j) for user  is formulated as: 

{ ( [ ])}, where , 

subject to:  (C1) a 1; (C2) 

ij

C
r ij ij

N
i ij A

Min E D r R

RDelay RDelay






 

 
   (4.2). 

Constraint 1 in Equation 4.2 is the network bandwidth constraint to provision the sufficient 

network bandwidth for the requesting user. Constraint 2 ensures that each (non-blocked) user 

will receive an acceptable network round trip delay via the scheduled network i and server j. It 

should be noted that the computation need of any request can be always meet because of the 

elastic nature of the cloud computing resources, though any requirements additional to the 

reserved CUs will incur additional cost ACost. Thus, there is no additional constraint for 

computation need in Equation 4.2, and minimizing ACost is incorporated in the objective 

function in Equation 4.2. 

4.3 Mobile Cloud Scheduling Approach 

In this section, we introduce our mobile cloud scheduling approach, which can 

simultaneously find the optimal access network and cloud server resources for the new 

requesting user, to solve the mobile cloud scheduling problem formulated in section 4.2. We 

first develop a MCS approach which can optimally solve the MCS problem in Equation 4.2, 

followed by the run time analysis for this approach. In order to reduce the run time of MCS 



94 

 

approach, we have proposed a heuristic approach which has been validated to be able to 

significantly reduce the run time thereby ensuring the feasibility of applying the MCS 

approach to practical CMG systems. 

4.3.1 Solution for Mobile Cloud Scheduling Problem 

The key to solve the MCS problem is to be able to calculate the value of δij
(E[DC]). 

In this section, we first develop a solution which can quantitatively calculate δij
(E[DC]) for 

each possible choice. Next we propose a MCS method which will use the proposed solution to 

calculate δij
(E[DC]) for all the possible choices for a new requesting user and decide on the 

optimal choice for this user. 

As we explained in section 4.2.2, δij
(E[DC]) denotes the change of E[DC] due to 

scheduling user  to access network i and cloud server j. After this scheduling, the conditions 

of all the networks and servers have not changed, except network i and server j. Hence, any 

change on E[DC] after scheduling user  will be only caused by changes in availabilities of 

network i and server j. For instance, as shown in Figure 4.1, if we schedule mobile user 1 to 

choice A, then only the capacities on mobile cloud server #1 and macrocell BS #1 will be 

reduced by 1, while the conditions of all other networks and servers remain the same. To 

calculate δij
(E[DC]), we only need to consider the expectation change of BUsers due to the 

change in availability of macrocell BS #1 and the expectation change of ACost due to change 

in availability of mobile cloud server #1. Therefore, the MCS objective (Equation 4.2) can be 

simplified as below: 

( [ ]) ( , , ) ( , , )C N N S S
ij N N i i S S j jE D W F a p n W F a p n        (4.3). 
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FN(aN
i,p

N
i,n) is the network scheduling factor for network i, which denotes the changes on the 

expected number of BUsers if scheduling the current requesting user  to the network i. 

Similarly, FS(a
S
j,p

S
j,n) is the server scheduling factor for server j, which denotes the changes 

on the expected ACost when CMG system if scheduling the current requesting user to the 

server j. We use k to denote the possible number of increased concurrent users in the system, 

and use  ( [ ( )] )
N
i
N
i

p

i a
E BUsers k  to denote the expected value of FN for each possible k. P(x) is 

the probability distribution of all the possible number of concurrent users in the system. Then 

FN can be calculated by Equation 4.4: 

0

( , , ) ( ( ) ( [ ( )] )), 0
N
i
N
i

MAX n
pN N N

N i i i ia
k

F a p n P k n E BUsers k a




      (4.4). 

Similarly, we use ( [ ( )] )
S
j

S
j

p

j a
E ACost k  to denote the expected value of FS for each k. It 

should be noted that Equation 4.4 assumes aN
i is nonzero value. This is always true, as the 

available capacity of any possible access network i should be more than 1. However, for cloud 

server, it is possible that the reserved cloud resource has completely used up (i.e. aS
j =0). If 

this is the case, we determine the server expectation change factor always as the maximum 

value 1. Thus the equation to calculate FS(a
S

j,p
S
j,n) is as below: 

0

0

( ),     0

( , , )=

( ( ) ( [ ( )] )),   0
S
j

S
j

MAX n
S
j

kS S
S j j MAX n

p S
j ja

k

P k n if a

F a p n

P k n E ACost k if a









  

   





  (4.5). 

To calculate network and server scheduling factors in Equations 4.4 and 4.5, we next 

discuss and simplify the calculations for ( [ ( )] )
N
i
N
i

p

i a
E BUsers k  and ( [ ( )] )

S
j

S
j

p

j a
E ACost k . The 

probability of any new user using access network i is pN
i, while it has the probability of 1- pN

i 
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to use other networks. This is a well known Bernoulli Trial [Haz] process. Therefore, given 

the capacity (aN
i) and probability (pN

i) of access network i, the expected number of BUsers 

when CMG system has k increased users can be calculated by the following equation: 

1

(( ) ( ) (1 ) ),   
[ ( )] =

0,  

N
i

NN
ii

k
N N m N k m N

p i i i i
m aa

k
m a p p if k a

mE BUsers k

otherwise



 

  
     

  



  (4.6). 

When we schedule user to the network i, only the capacity of network i will be reduced by 1 

while other conditions do not change. Therefore the network expectation change factor can be 

calculated as below: 

1
[ ( )] [ ( )] ,   

( [ ( )] )=
0,  

N N
i i

N
N Ni
i i

N
i

p p N
p ia a

i a

E BUsers k E BUsers k if k a
E BUsers k

otherwise

 
  



 (4.7). 

Equation 4.7 can be further derived to Equation 4.8. The latter part of Equation 4.8 is a well 

known binomial cumulative distribution (binocdf) function [Haz]. Therefore, the final solution 

to calculate network expectation change factor ( [ ( )] )
N
i
N
i

p

i a
E BUsers k  can be expressed to 

Equation 4.9. 

1
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(4.8). 

1 ( 1, , ),   
( [ ( )] )=

0,  

N
i

N
i

N N N
p i i i

i a

binocdf a k p if k a
E BUsers k

otherwise


   



  (4.9). 

Similarly, we can express the function to calculate ( [ ( )] )
S
j

S
j

p

j a
E ACost k  as below: 
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1 ( 1, , ),   
( [ ( )] )=

0,  

S
j

S
j

S S S
p j j j

j a

binocdf a k p if k a
E ACost k

otherwise


   



  (4.10). 

There are many existing models [MAT] which can calculate the binocdf function efficiently. 

Equations 4.9 and 4.10 together with Equations 4.3, 4.4, and 4.5, give a simple and feasible 

way to calculate the scheduling criteria δij
(E[DC]) in MCS problem (Equation 4.2). 

Given the equations to quantitatively calculate δij
(E[DC]), we next propose a Mobile 

Cloud Scheduling (MCS) method, which will help to choose the optimal choice for a 

requesting user using the equations provided above. 

The MCS method will simultaneously monitor the available resources of each 

network and cloud server, so the values aN
i and aS

j, can be always updated. Note that 

according to our CMG system model described in section 4.2.1, the initial values of aN
i and aS

j 

are the capacities of the individual access networks and cloud servers provisioned by the CMG 

provider. Besides the capacities, the number of maximum number of concurrent users in the 

CMG system (MAX), the access probabilities pN
i and pS

j, and the probability distribution of 

concurrent number of users P(x), are all obtained from the statistic history of CMG system 

off-line. As shown in Figure 4.2, given R, the set of all the available assignments for the 

requesting user , the MCS method first decides the possible solution set S. Each element rij in 

S indicates the choice of network i and server j, which satisfies the two constraints defined in 

MCS problem (Equation 4.2): 1) available network capacity aN
i is greater than 0; 2) RDelayij is 

less than acceptable delay threshold for user , RDelayA. Then MCS method selects the 

optimal choice rxy (network x and server y) from S, which can maximize the value of the 

scheduling criteria δij
(E[DC]). Note that the requesting user  may not be able to be 

scheduled, if we cannot find any qualified network and server to satisfy its requirements. 
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For example, as shown in Figure 4.1, available assignment set R for mobile user 1 

includes all the choices listed in the table except choice G. Assuming the minimum Round-trip 

Delay requirement for user 1 is 120ms, then the possible solution set S will only include 

choices A, D, and H. Assuming the weights WN and WS are 0.5 and 0.5, and assuming MAX is 

300 and there are 50 users in the system, then for each choice in S we can calculate δij
(E[DC]) 

by Equations 4.3, 4.4, 4.5, 4.9, and 4.10. After compared the resulting values of δij
(E[DC]) of 

all three choices, we realize choice A is the best choice for mobile user 1, as it results in the 

least value of δij
(E[DC]) among the three possible choices. 

We next analyze the run time of the MCS method. To determine the optimal solution 

for user , MCS has to calculate δij
(E[DC]) for each possible solution rij, which might 

consume huge amount of time. From Equation 4.3, the run time to calculate δij
(E[DC]) mainly 

depends on the run time to calculate FN and FS, which depend on the upper limit in Equations 

Initial set S = Φ; 

For each rij ∈ R　 (network i and server j) 

If RDelayij<= RDelayA
, and aN

i > 1 

Then S = S ∪ {rij}; Endif 

Endfor 

If S equal to Φ 

Then user cannot be scheduled; Exit; 

Else 

   Calculate δij
(E[DC]) for each rij in S using equations 4.3, 4.4, 4.5, 4.9, and 4.10. 

Select x, y, where rxy∈ S, such that 

   δij
(E[DC]) is minimized Exit; 

Endif 

 
Figure 4.2. Mobile Cloud Scheduling (MCS) methodology. 
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4.4 and 4.5. The maximum upper limit in Equations 4.4 and 4.5 is the maximum concurrent 

number of users in the system MAX (when n is 0). If MCS has to support a high number of 

concurrent users, the time to calculate FN and FS can be high, leading to a high run time to 

compute δij
(E[DC]). 

For example, we have tested the run time of calculating δij
(E[DC]) on a platform 

using Intel i7 CPU. The capacity and probability of access network i given is 200 and 0.2, and 

the capacity and probability of cloud server j given is 2000 and 0.1. If the max number of 

concurrent users MAX is 1000, the run time to calculate δij
(E[DC]) is about 2.2 seconds, but if 

MAX is one million, the run time to calculate δij
(E[DC]) will be as high as 21362 seconds. 

Obviously, the latter will be an unacceptably long time for scheduling a new mobile user. 

To obtain scalability in terms of number of concurrent users that can be served by 

MCS, there can be two approaches. The first is to use multiple MCS servers, each server 

addressing a separate geographical area and serving a maximum number of concurrent users 

limited to say 1000. The second alternative, explored in the next section, is to introduce a 

heuristic approach which can significantly reduce the run time of calculating δij
(E[DC]) by 

relaxing the accuracy when computing FN and FS. 

4.3.2 Heuristic Approach to Calculate FN and FS for MCS Method 

The way to reduce the run time of calculating δij
(E[DC]) is to relax accuracy of 

computing the network and server scheduling factors FN and FS. As shown in Equations 4.4 

and 4.5, to obtain FN and FS, MCS has to calculate the network and server expectation change 

factors for all the possible n. We have conducted experiments to simulate the network 

expectation change factor ( [ ( )] )
N
i
N
i

p

i a
E BUsers k . As shown in Figure 4.3, three access networks 

with different network capacities aN
i (200, 800, and 2000) and different usage probabilities pN

i 
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(0.2, 0.5, and 0.8) are simulated, and the maximum number of users (MAX) is set to 10000. 

From Figure 4.3 we can observe that the value of network expectation change factor is 

monotonically increasing, and it is either 0 or 1 for most input k. We make a similar 

observation for server expectation change factor. Therefore, when computing the FN and FS 

(by Equations 4.4 and 4.5), the MCS approach does not need to calculate the network and 

server expectation change factors for all the possible k. 

The above observation gives us the opportunity to significantly reduce the run time to 

calculate FN and FS. As shown in Figure 4.4, we propose a heuristic approach to calculate FN 

(same approach can be applied to calculate FS also; it just needs to change aN
i and pN

i to aS
j and 

pS
j.). Given an acceptable calculation error, err, we first find two bounds among all the 

possible k. One is the Greatest Lower Bound (GLB), at which the value of expectation change 

factor is just smaller than err, and the other one is the Least Upper Bound (LUB), at which the 

value of expectation change factor is just larger than 1-err. Because the expectation change 
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Figure 4.3. Simulation results showing how network expectation change factor varies when

adding k users in the system. 
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factor is monotonically increasing, the problem to find these two bounds will be as simple as 

to search a element with a given value in a sorted list, which leads to a complexity of 

O(log2MAX). Once we have these two bounds, we can set expectation change factor to 0 if k is 

less than aN
i or GLB, and set it to 1 if k is larger than LUB. Therefore, we only need to 

calculate the value of expectation change factor for k between these two bounds. This 

optimization will significantly reduce run time to compute FN. For instance, using the same 

example as above (network capacity and probability are 200 and 0.2) and giving the err as 

10e-3, the run time to calculate the network scheduling factor FN is only about 0.7 second 

even if MAX is as big as one million. 

In addition, when the maximum concurrent number of users MAX is very big, the 

small variations of aN
i and aS

j will almost not change the values of resulting network and 

server scheduling factors, unless the values of aN
i and aS

j are very small. For instance, if P(x) 

is an even distribution and MAX is one million, the changes of network and server scheduling 

Given err, Find GLB and LUB ∈ [0, MAX-n], 
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Figure 4.4. Heuristic approach to calculate FN. 
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factors will be less than 10e-3 if the variation of aN
i or aS

j is less than 1000. Due to this 

property, the MCS server does not need to calculate the network and server scheduling factors 

FN and FS every time when MCS has a new request. Instead, MCS just needs to periodically 

update the values of FN and FS, to account for big variations in aN
i and aS

j. With this periodical 

updating improvement, the average run time of MCS approach to schedule each new request is 

less than 1ms, even if the maximum number of users in the system is as big as one million. As 

shown later in the experiment section 4.5, we have conducted experiments to investigate the 

loss of accuracy by applying the proposed heuristic approach. The results show that the 

resulting objective criteria D if applying our proposed heuristic approach is only 0.2% higher 

than the result without applying the heuristic approach. This demonstrates that our proposed 

heuristic approach can achieve a good accuracy in minimizing objective criteria D while 

significantly reducing the run time for MCS approach. 

As a conclusion, with the heuristic approach to calculate FN and FS proposed in this 

section, the MCS approach can be made very run-time efficient and scalable, taking only 

milliseconds for each scheduling decision even while supporting a very large numbers of 

concurrent users. In the next section, we will further propose a Joint Scheduling-Adaptation 

(JSA) approach, which can adapt the QoS requirements of CMG users to increase capacity 

while trading off with user experienced Quality of Experience (QoE). 

4.4 Joint Scheduling-Adaptation Approach 

As discussed in section 4.1, CMG applications may require significant data and 

computation needs. The provisioning for the peak demands can be significantly more than 

normal or average demands, thus very expensive. On the other hand, under provisioning can 

lead to insufficient network bandwidth for new CMG users (when the reserved networks get 
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over utilized) or large additional computing cost (when the reserved cloud servers are over 

utilized). One way to address the above challenge is to make the CMG applications scalable 

and adaptive to the available capacities of the network and server, such that during busy or 

peak periods MCS can leverage the scalable CMG applications to reduce their QoS 

requirements to satisfy more concurrent users and reduce the cloud cost. 

Fortunately, for most CMG applications, it is possible to adapt the application such 

that the QoS requirements in terms of bit rate need and computation need can be reduced. For 

instance, the bit rate requirement of a video application based on Scalable Video Coding 

(SVC) [WCG+07] [KSG04] [CSW+11] can be adapted by scaling the spatial and temporal 

quality of the video content. The above may come at the cost of impairment [WDA10] 

[WD09] on user perceived Quality of Experience (QoE). For rendering based cloud mobile 

applications, both bit rate need and computation need can be adapted (as we shown in Chapter 

3), each resulting in an impairment [WD12] [WD09] [LWD12] on the user perceived QoE. 

These adaptation techniques provide a great opportunity to significantly minimize the MCS 

objective criteria D (Equation 4.1), i.e. minimizing the number of blocked users and 

minimizing addition cloud cost. 

In this section, to ensure the scalability for Cloud Mobile Gaming, we introduce a 

Joint Scheduling-Adaptation (JSA) approach. Our approach is to increase the number of users 

that can be assigned in CMG system and reduce the cloud cost by leveraging computation and 

bit rate adaptation techniques to reduce the resource needs of the CMG users while performing 

scheduling. For each application adaptation, we give an associated adaptation level from K to 

1, each of which reflects a certain communication bit rate need and a certain computation 

need. Level 1 has the least computation and communication needs, and level K has the highest 

needs which are same as the needs when adaptation techniques are not applied. Due to 



104 

 

application adaptation, the capacity on each resource will be significantly increased. In fact, 

for each resource there is a Maximum Capacity (MaxCap), which denotes the number of users 

that can be assigned to this resource assuming the adaptation levels of all the assigned users 

are the lowest level 1. 

It should be noted that the objective of MCS problem defined in section 4.2 is to 

minimize scheduling criteria D while ensuring the user QoS requirements without applying 

any adaptation (i.e. the QoS requirements at adaptation level K). However, in JSA it is 

targeted to minimizing D while ensuring the user minimum QoS requirements (i.e. the QoS 

requirements at adaptation level 1). Therefore, the first objective of JSA approach is: 

JSA objective 1: minimize D (Equation 4.1) while ensuring the minimum QoS 

requirements of each assigned user. 

To achieve this objective, JSA can utilize the MCS approach but using the Maximum 

Capacity (MaxCap) of the resources to calculate the current maximum available capacity of a 

resource. When a new CMG user comes, JSA will first let MCS find the optimal assignment 

for this user, considering MaxCap capacity. However, the current available capacities on the 

assigned resources may not be sufficient because the users of these resources may not be at the 

lowest adaptation level. If the new CMG user cannot be scheduled due to lack of currently 

available capacity on the assigned network resource, bit rate adaptation will be used to lower 

the user QoS requirements (but ensuring the minimum acceptable QoS requirement) of the 

currently assigned users, albeit at a possible impairment on the user perceived QoE. This will 

provide additional network capacity, thereby allowing MCS to successfully schedule the new 

CMG user, such that the value of BUsers is minimized. Similarly, when the assigned cloud 

resource has been completely utilized, computation adaptation can be invoked to lower the 
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applications’ QoS requirements on the cloud resource to minimize ACost (the additional cloud 

cost charged for on-demand cloud resource), such that the aggregate cloud cost is minimized. 

Though JSA approach is promising to minimize BUsers and ACost, it also has to 

minimize the impairments on user QoE whenever an application adaptation occurs. Therefore, 

the second objective of JSA approach is: 

JSA objective 2: minimize the aggregate QoE impairments (due to the application 

adaptation) of all the assigned users. 

Objective 2 is a new problem which has not been studied before. In the reminder of 

this section, we will first give a formal definition of objective 2. Next, we propose a level-

determination algorithm which can find out the optimal adaptation level for each assigned user 

given the resource capacity, such that objective 2 is addressed. Finally, we will present a Joint 

Scheduling-Adaptation approach which can leverage the application adaptations while 

performing the scheduling instructed by MCS approach, such that the objectives 1 and 2 of 

JSA approach are both satisfied. 

4.4.1 Problem Formulation for JSA Objective 2 

As explained earlier, when an assigned network or cloud resource is not sufficient to 

provide the highest quality to the new scheduled user, application adaptation will be invoked. 

The JSA approach needs to simultaneously decide the optimal adaptation level for each user 

assigned to the resource, such that objective 2 is satisfied. For any resource (either an access 

network or a cloud server), let l denote the number of users using this resource whose 

applications are running at adaptation level l. Let Il denote the impairment on user experience 

due to using adaptation level l. As discussed before, application adaptation has K adaptation 

levels. Level 1 has the least resource need, and level K has the highest resource need which is 

same as the need when adaptation techniques are not applied. Therefore, adaptation level 1 
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will have the highest impairment (I1) on user experience, while the impairment at adaptation 

level K (IK) is 0. Let Reql denote the resource requirement at adaptation level l. The value of 

resource requirement at the lowest level 1 (i.e. Req1) is equal to 1. The values of other Reql 

indicate the resource needed at level l is how many times the resource needed at level 1, Req1. 

For instance, if bit rate requirement at level 1 is 200kbps and is 600kbps at level K, then the 

value of ReqK is 3. The number of current users which are using this resource is NumCurUser. 

Given the above terms, JSA objective 2 can be stated as determining values of l such that the 

aggregate QoE impairments (due to application adaptation) of all the assigned users is 

minimized, and can be formalized as below: 

1
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  (4.11) 

Constraint 1 in Equation 4.11 is the resource capacity constraint. The higher adaptation level, 

the higher QoS requirements needed. The total resource requirement for all the assigned users 

on a certain resource should be no more than MaxCap of this resource. Constraint 2 indicates 

that the total number of users at different adaptation levels should be equal to NumCurUser. 

We next develop a solution to solve JSA objective 2 defined in Equation 4.11. 

4.4.2 Solution for JSA objective 2 

Next, we develop the solution to solve the problem defined in Equation 4.11. From 

constraint C2 of Equation 4.11, we can have: 

1

1

K

K l
l

NumCurUser 




      (4.12). 

Using Equation 4.12, we can derive Equation 4.11 to: 
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 (4.13). 

We next define several symbols to simplify Equation 4.13: 

l l ly I              (4.14), 

( ) /l K l lReq Req I         (4.15), 

KS NumCurUser Req MaxCap       (4.16). 

Then Equation 4.13 can be simplified to: 
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   (4.17). 

If S is a negative value (MaxCap is big enough to support all the assigned users at 

level K), the solution to Equation 4.17 is: {yK= NumCurUser, yl = 0, for all l from level 1 to K-

1}. This indicates all the assigned users can be scheduled to the highest adaptation level K. If S 

is a positive value, the key to solve the above problem is to find out the maximum value of l 

from level 1 to K-1. Without the loss of generality, assuming level m has the biggest value of 

among all the levels from 1 to K-1, then the solution for Equation 4.17 is: 

= /
,   0

0  [1, 1]  
m m

l

y S
if S

y l K except m


     ，

   (4.18). 

Based on Equations 4.12, 4.14, 4.15 and 4.18, we can have the final solution for Equation 

4.11: 

= / ( )                 (4.19. )

             (4.19. )  0

0  [1, 1]       (4.19. )
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However, the results of mcalculated by Equation 4.19.a may not be an integer. In 

this case, we cannot round down the value of mfrom results of Equation 4.19.a and calculate 

by Equation 4.19.b, because the values of mand  will not meet the constraint C2. It is 

also not an optimal solution to round up m because it may not achieve the minimum 

aggregate impairments. 

To address the above situation, we propose a level-determining algorithm to find the 

optimal values of l for the problem defined in Equation 4.11. As shown in Figure 4.5, we 

first sort l from level 1 to K-1, resulting to a level list L[e]. Each element in list L indicates an 

 
Calculate l for each :1 1l K   

Sort l, resulting to a list L[e], where L[e] >= L[e+1]; 

Init e=1; L[e]=0, [1, 1]e K   ; 

LOOP: 

L[e]= Round(S/(ReqKReqL[e])); 

If L[e]>NumCurUser Then e++; Goto LOOP; 

Else 

NumCurUser= NumCurUser  L[e]; 

MaxCap= MaxCap  L[e]ReqL[e]; 

S= NumCurUserK   MaxCap; 

If NumCurUser>0 Then  

e++; 

If e==K Then K= NumCurUser; EXIT; 

Else Goto LOOP; 

Else EXIT; 

 
Figure 4.5. The level-determining algorithm to decide all the l for the users using an 

access network or a cloud server resource. 
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adaptation level. The list L is sorted in descending order in terms of the value of  (i.e. L[e] >= 

L[e+1]). Starting with L[1] which has the biggest value of , we calculate L[1] by Equation 

4.19.a and give the round-down value to L[1]. After this, we update NumCurUser (deducted 

by L[e]) and MaxCap (deducted by L[e]ReqL[e]) leading to a new value of S. The level-

determining algorithm will repeat the above step for each L[e], from L[2] to L[K-1], until 

NumCurUser is 0, indicating the adaptation levels for all the users have been determined. 

4.4.3 Joint Scheduling-Adaptation Algorithm 

Having derived the solution for JSA objective 2, we next propose a Joint Scheduling-

Adaptation (JSA) algorithm which can simultaneously leverage the MCS method proposed in 

section 4.3 and application adaptation with adaptation levels determined by the level-

determining algorithm (Figure 4.5), such that the objectives 1 and 2 of JSA problem can be 

both achieved. The mechanism of JSA algorithm is shown in Figure 4.6, and is described 

below. For a requesting user , given the set of all the available assignments R, the Joint 

Scheduling-Adaptation algorithm will first find the optimal assignment rxy by the MCS method 

proposed in section 4.3. As explained at the beginning of section 4.4, to minimize D (objective 

1 of JSA problem), JSA approach uses the MaxCap (the maximum capacity when all users are 

assigned the lowest adaptation level) to calculate the maximum available capacity of the 

resource. The maximum available capacity of a resource is equal to MaxCap-n, where n is the 

number of concurrent users of this resource. MCS will use this maximum available capacity 

instead of available capacity (i.e. aN
i and aS

j) to make the scheduling decision. It is possible 

that MCS cannot find any appropriate assignment for user , due to the QoS requirements or 

resource limitation. When this happens, the request from user  will be rejected. 
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Once the assignment rxy is determined, JSA will check if the current available capacity 

of access network x (i.e. aN
x) can be sufficient enough to meet the QoS requirement at the 

highest network adaptation level K (i.e. ReqN
K) for user . If aN

x is able to meet requirement 

ReqN
K, user will be scheduled at the highest adaptation level K. Otherwise, application 

adaptation will be invoked. To minimize the aggregate QoE impairments of all the assigned 

users on network x (JSA objective 2), JSA will utilize the level-determining algorithm (Figure 

4.5) to decide all the l for network x. Similarly, JSA will also check if the current available 

capacity of cloud server y (i.e. aS
y) can meet the highest server resource requirement ReqS

K. If 

not, JSA will execute the level-determining algorithm to decide all the l for server y. Once all 

the l for access network x and cloud server y are determined, JSA will update the application 

 

 
 

Figure 4.6. Joint Scheduling-Adaptation algorithm. 
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adaptation levels for all assigned users on access network x and cloud server y. Finally, JSA 

will adjust and update MCS the available capacity of network x (aN
x) and cloud server y (aS

y). 

The run time for JSA algorithm is mainly decided by two parts: MCS and level-

determining algorithm. In section 4.3.2, we have proposed a heuristic approach which can 

reduce the average running time of MCS approach to under 1ms per scheduling decision. The 

running time of level-determining algorithm consists of time to sort K l and time to calculate 

L[e] (up to K loops). Hence, the run time complexity of the level-determining algorithm is 

O(Klog2K)+O(K). It should be fine to assume K is less than 100, as it will be unusual for an 

application to have more than 100 adaptation levels. For example, the scalable CMG 

application introduced in [WD10] has only 4 network adaptation levels and 4 computing 

adaptation levels. We have simulated the level-determining algorithm on a platform which 

uses an Intel i7 CPU. With K equaling 100, the total run time of level-determine algorithm is 

only 0.8ms. The above analysis shows the run time feasibility of using the proposed JSA 

algorithm. 

4.5 Experimental Evaluation 

We have developed a simulation framework to validate the effectiveness of our 

proposed MCS and JSA approaches for CMG applications. With this simulation framework, 

we evaluate our proposed approaches in two parts. In the first part, we characterize the 

performance of our proposed MCS approach using different combinations of scheduling 

weights WN and Ws (defined in Equation 4.1). We compare the performance of the MCS 

approach with two scheduling approaches, a Random Scheduling (RS) approach where the 

access network and cloud server used are selected randomly, and a Maximizing QoE 



112 

 

Scheduling (MQS) approach where the scheduling decision is targeted to maximize the QoE 

that can be achieved for each assigned user. In the second part, we apply our proposed JSA 

approach and compare its performance with the results of MCS approach without applying 

adaptation techniques. 

4.5.1 Simulation Framework and Test Scenario 

Our MATLAB-based simulation framework consists of several geographical regions 

(reflecting each mobile macrocell) with heterogeneous access network coverage with different 

bandwidth and delay characteristics, and a set of Internet and mobile cloud servers with 

different reserved cloud capacities beyond which CMG provider has to pay for additional 

computing cost. For users arriving and leaving the system, the simulation framework can use 

any kind of user arrival and departure model. Depending on the types of the CMG 

applications, the framework allows the generation of CMG user requests with different QoS 

requirements, including acceptable Round-trip Delay RDelayA, application bit rate needed, and 

computation needed.  

During the simulation, the incoming user (under a certain arrival model) is randomly 

added into one of the geographical regions. Though the user’s mobile device can support 

multiple communication modes in each region, it may be bound by one of the communication 

modes depending on which area he/she is in and the network availability in that area. Our 

simulation framework allows the generation of CMG users with different types of 

communication modes even if these users are in the same geographical region. 
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While we have tested our proposed scheduling approaches with multiple scenarios, 

Figure 4.7 shows one such scenario based on which we present and discuss the experimental 

results in this chapter. Note that our observations of the experimental results are valid for other 

test scenarios we have simulated. In the test scenario shown in Figure 4.7, we use three CMG 

servers. Like in Figure 4.1, we assume one of the three cloud servers is located in a mobile 

core network (Mobile CMG Server #1) while the other two are Internet CMG Servers #1 and 

#2. The total reserved Cloud Compute Units (CU) [EC2] for these servers are configured as 

2800, 2100, and 1750 respectively. We simulate 16 geographic regions. In each geographic 

region, we assume there are three types of networks available, a mobile 3G/4G network (via 

mobile macrocell BS), a mobile carrier WiFi network (via carrier WiFi Hotspot), and a public 

WiFi network (via public WiFi AP). The maximum data rates for the three networks are 

configured as 60Mbps, 90Mbps, and 200Mbps respectively. In each geographic region, we 

assume 60% incoming users have both the mobile cellular connection and a WiFi network 

Macrocell 
BS

Mobile 
User

Carrier WiFi 
Hotspot

Public WiFi 
AP

Mobile CMG 
Server #1

Internet CMG 
Server #3

Internet CMG 
Server #2

Game 
Engine

Encoder
/Streamer

App. Adaptation

Game 
Video

Game 
Control

Mobile Cloud 
Scheduler

 
 
Figure 4.7. Test scenario simulated. 
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connection, while 20% incoming users only have a WiFi network connection, and the rest 

20% have only the mobile cellular connection. For each pair of network and cloud server in 

Figure 4.7, we use the same average and standard deviation of network round-trip delay 

measured in the real experiments conducted in the commercial wireless networks and cloud 

servers as described in section 4.1 (Figure 4.1). 

To measure the user perceived Quality of Experience (QoE) for CMG, we use our 

Mobile Gaming User Experience (MGUE) model described in Chapter 2, which can 

quantitatively measure GMOS in a real-time gaming session. 

We have used two different games in the simulation: World of Warcraft (WoW) and 

Planshift. Two resolutions are used for each game: VGA(800x600) and XGA(1024x768). 

Table 4.2. Different types of user requests used in simulation. 

User Requests WoW in XGA 
resolution 

PlaneShift in 
XGA resolution 

WoW in 
VGA 
resolution 

PlaneShift in 
VGA 
resolution 

Computing Need 2 CU 1.6 CU 1.2 CU 1 CU 

Communication 
Need 

1.2 Mbps 0.9 Mbps 0.7 Mbps 0.6 Mbps 

Table 4.3. Capacities for access network and cloud server, and average network 

delay/standard deviation for each pair of network and cloud server. 

 Mobile Cloud 
Server #1 

(Capacity 
aS

1=1920) 

Internet Cloud 
Server #2 

(Capacity 
aS

2=1440) 

Internet Cloud 
Server #3 

(Capacity 
aS

3=1200) 

Mobile macrocell BS 

(Capacity aN
1=71) 

83ms/21ms 135ms/47ms 171ms/53ms 

Carrier WiFi Hotspot 

(Capacity aN
2=106) 

74ms/18ms 127ms/43ms 167ms/48ms 

Public WiFi AP 

(Capacity aN
3=261) 

N/A 93ms/23ms 145ms/32ms 
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During the simulation, we generate user requests randomly from four different types of 

profiles as shown in Table 4.2. The average computation need of all user requests is 1.45CU, 

while the average communication need is 0.85Mbps. Given the above user request types, we 

could calculate the capacity of network and cloud servers in terms of the number of users. The 

complete setup of cloud servers and networks for each geographic region are shown in Table 

4.3, including the capacity, and the average network round-trip delay and standard deviation 

for each pair of possible choice.  

While the number of users in the system will go up and down during a day, we 

simulate peak periods when the user inter-arrival time is smaller than the user inter-departure 

time. In our simulation, the user arrival and departure model used is birth-death process 

[LR99]. The user mean inter-arrival time is 1 second, while the user mean inter-departure time 

is 5 seconds. 

4.5.2 Experimental Results Using MCS 

We first compare our proposed Mobile Cloud Scheduling (MCS) with two scheduling 

approaches, namely Random Scheduling (RS) and Maximizing QoE Scheduling (MQS). RS 

will select the wireless access network and cloud server randomly as long as they can meet 

QoS requirement. MQS will choose the access network and server for each requesting user 

such that his/her QoE is maximized. To characterize our proposed MCS approach with 

different weights WN and WS (in Equation 4.1), we have used three different settings. As we 

mentioned before, the weights WN and WS are used to represent system-specific interests. The 

first simulated MCS approach assumes the weights are WN=1, WS=0, termed as MCS-1-0. 

MCS-1-0 is aimed to help cloud provider to minimize the number of blocked users (that is, 

maximize capacity in terms of number of concurrently scheduled users). In the second MCS 

simulation (termed as MCS-0.5-0.5) it assumes WN and WS are both 0.5. MCS-0.5-0.5 gives 
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equal weights to the dual objectives of maximizing capacity (minimizing number of blocked 

users) and minimizing additional cloud cost. The third MCS simulation (termed as MCS-0-1) 

assumes the weights are WN=0, WS=1, which is only targeted to minimize the additional cloud 

service cost. 

The experiments are conducted using the simulation framework and setup introduced 

above (section 4.5.1). The number of maximum concurrent users in the system, MAX, is set to 

10000. We use a Gaussian distribution for P(x) (as defined in Table 4.1). Its mean is 5000, and 

standard deviation is 1000. We first use the user arrival/departure model described in section 

4.5.1 to train the CMG system to obtain the profiles of the history of the resource usage for 

deriving the access probability of each network (pN
i) and each server (pS

j). Then we simulate 

the experiments with five different scheduling approaches: MCS-1-0, MCS-0.5-0.5, MCS-0-1, 

RS, and MQS. During the simulations of using each approach, we measure and calculate the 

number of blocked users (BUsers), the number of users who need additional computing cost 

(ACost), the objective criterion D (as defined in Equation 4.1), the average cloud cost per 

scheduled user, the average GMOS per user, and the statistical average cloud cost and GMOS 

by applying the probability distribution of concurrent number of users P(x). Figure 4.8 shows 

the experimental results. 

Figure 4.8(a) presents the relationship between BUsers and the number of users in the 

entire CMG system, n. From Figure 4.8(a), we note that MCS may not be able to schedule 

some incoming users when n keeps increasing. This is mainly because these incoming users 

have entered into the regions where network bandwidth is fully utilized. It can be also 

observed from Figure 4.8(a) that the performance of MCS-1-0 and MCS-0.5-0.5 are very close 

and always much better than other three scheduling approaches. This is because MCS-1-0 and 
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MCS-0.5-0.5 have considered the utilization and accessing probability of networks during 

each scheduling decision so as to avoid over-utilization.  

Figure 4.8(b) shows the results of ACost while n keeps increasing. As we expected, 

MCS-0-1 has the best performance in reducing the ACost because it fully considers the 

reserved cloud server resource during the scheduling. Besides MCS-0-1, we noticed that 

MCS-0.5-0.5 also performs much better than the other three approaches. The results in Figures 

4.8(a) and (b) demonstrate that the proposed MCS approach of minimizing BUsers and ACost 

for future users is effective. 

To demonstrate the efficiency of our proposed MCS approach in minimizing the MCS 

objective criteria D defined in section 4.2, we also calculate the statistical average of D during 

the simulation. For each n, we first calculate D by Equation 4.1 using the results shown in 

Figures 4.8(a)(b), and then we calculate the statistical average of D by applying the P(x), the 

weights of all possible values that n can take on. Figure 4.8(c) compares the objective criteria 

D between our proposed MCS and the other two scheduling approaches, RS and MQS. Note 

that for scheduling weights {WN=1, Ws=0}, WCS-1-0 is used. Similarly, for scheduling 

weights {WN=0.5, Ws=0.5} and {WN=0, Ws=1}, MCS-0.5-0.5 and MCS-0-1 are used 

respectively. From Figure 4.8(c), we can observe that for different scheduling weights, the 

proposed MCS approach always performs the best among the tested scheduling approaches. 

For example, for the first pair of scheduling weights {WN=1, Ws=0}, the statistical average of 

D by using MCS-1-0 is about 200, which is at least 2 times less than the other two approaches. 

The same trend and observation can be found in the test results for the other two pairs of 

scheduling weights. The above experiment and results have demonstrated that our proposed 

MCS approach can achieve the best performance in terms of minimizing MCS objective 

criteria D, given any scheduling weights WN and WS. 
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Figure 4.8. Results of simulation experiments: scheduling using the proposed MCS approach, 

and RS and MQS approaches. 
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It should be noted that the results obtained in this section has used our proposed 

heuristic approach (section 4.3.2) with err setting of 10e-3. To investigate the loss of accuracy 

by applying the proposed heuristic approach, we have conducted experiments to compare the 

objective criteria D achieved between the scheduling without applying heuristic approach and 

the scheduling with applying heuristic approach. For the pair of scheduling weights {WN=0.5, 

WS=0.5}, the resulting statistical average value of D is 439.9 if without applying heuristic 

approach, while it is 440.8 (about 0.2% higher) with applying heuristic approach. This result 

demonstrates that our proposed heuristic approach can achieve a good accuracy in minimizing 

objective criteria D while significantly reducing the run time for the MCS approach. 

We have measured the average cloud cost per scheduled user, including the costs paid 

for reserved and on-demand computing resource and the costs for on-demand usage of cloud 

network bandwidth and storage as shown in Figure 4.1. Figure 4.8(d) shows how the average 

cloud cost changes given different n. From Figure 4.8(d) we notice that for each scheduling 

approach the average cloud cost will keep decreasing while number of concurrent users n is 

increasing until the CMG provider starts to pay the ACost to the cloud provider. MCS-0.5-0.5 

performs best among all five approaches when n is less than 5000, because it can achieve good 

performance in both minimizing BUsers and ACost, MCS-0-1 has a little higher average cloud 

cost when n is small, but it will eventually drop lower than MCS-0.5-0.5 when n is less than 

5000 where the ACost spent becomes significant for MCS-0.5-0.5. To better evaluate and 

compare the performances of different scheduling approaches in reducing average cloud cost, 

we have calculated the statistical average cloud cost by applying P(x), the weights of all 

possible values that n can take on. The results are shown in Figure 4.8(e). From Figure 4.8(e), 

the benefits of using MCS-0.5-0.5 and MCS-0-1 are obvious. The statistical average cloud 
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cost per each user of using these two approaches are only about $0.06 per hour, which is at 

least $0.02 less than the results of using other approaches. 

We have also measured the GMOS of each user in the system (including blocked 

users), and calculated the average GMOS and statistical average GMOS. When there is no 

blocked user, MQS will result in the best average GMOS among all five approaches, as shown 

in Figure 4.8(f). However, when n increases, some requesting users may be blocked due to the 

network resource constraint (as shown in Figure 4.8(a)). Because the GMOS of a blocked user 

is 0, the average GMOS will decrease. The approach which has less blocking rate, like MCS-

0.5-0.5 and MCS-1-0, will eventually have better average GMOS. For any given number of 

user requests n, Figure 4.8(f) has given the corresponding value of average GMOS. We next 

calculate the statistical average GMOS by applying P(x), the weights of all possible values 

that n can take on. The results of statistical average GMOS for each scheduling approach is 

shown in Figure 4.8(g). Based on Figure 4.8(g), we can observe that approaches MCS-0.5-0.5 

and MCS-1-0 have similar performance and both of them can achieve much higher average 

GMOS than the other three approaches. 

Based on the above results (Figures 4.8(e)(g)) and discussions, {WN=0.5, Ws=0.5} 

may be an effective setting, because MCS-0.5-0.5 can achieve a low average cloud cost as 

well as a high average GMOS, which also indicates its capability of achieving a low number 

of blocked users and hence high capacity. Note that while the experimental results reported in 

this dissertation compare three pairs of WN and Ws settings, the proposed MCS method allows 

CMG providers to explore different values of WN and WS, and select the appropriate setting 

depending on the tradeoff between capacity, cloud cost, and aggregate user experience they 

want to achieve. 



121 

 

4.5.3 Experiment Results Using the Proposed Joint Scheduling-Adaptation 

To demonstrate the efficiency of the proposed Joint Scheduling-Adaptation (JSA) 

approach, we use similar simulation framework and setup as described in sections 4.5.1 and 

4.5.2. The only difference is that we have used a larger number (30000) of maximum 

concurrent users in the system, MAX, considering JSA is expected to increase the system 

capacity. Correspondingly, we set the mean and the standard deviation of P(x) to 15000 and 

3000. 

The application adaptation used is a joint rendering and encoding adaptation 

technique, proposed in [WD13], which can adapt the bit rate and computation needs of each 

CMG session to the dynamic conditions of the wireless network and cloud server 

simultaneously. In [WD13], we have defined 4 bit rate adaptation levels and 4 computation 

adaptation levels. The QoS requirements in terms of bit rate and computation needs for each 

level are defined in [WD13]. The QoE impairments for each level have been studied in 

[WD12][LWD12]. Note that the range of impairment is from 0 (no impairment) to 100. It can 

be converted to GMOS by a non-linear function [WD12]. Table 4.4 presents the values of QoS 

requirements (Reql) QoE impairments (Il) for each bit rate and computation adaptation level. 

From Table 4.4, we can observe the bit rate need without any adaptation (level 4) is 2.5 times 

of the bit rate need at level 1. This indicates that with the bit rate adaptation technique the 

Table 4.4. QoS Requirements (Reql) / QoE Impairment (Il) for each level in bit rate and 

computation adaptation. 

Adaptation levels 1 2 3 4 

Bit rate adaptation 1 / 22 1.5 / 7 2 / 4 2.5 / 0 

Computation adaptation 1 / 18 2 / 12 3 / 8 4 / 0 

 
 



122 

 

maximum capacity of each access network will become 2.5 times of the capacities (Table 4.4) 

without application adaptation. Similarly, from Table 4.4 we can observe that the computing 

requirement without any adaptation (level 4) is 4 times of the requirement at level 1. Thus, we 

can multiply the reserved cloud server capacities (Table 4.4) by 4 to get the maximum 

capacity of reserved cloud server. 

 We simulate JSA approach with three pairs of scheduling weights as used for MCS in 

section 4.5.2: JSA-1-0 where {WN=1, WS=0}, JSA-0.5-0.5 where {WN=0.5, WS=0.5}, and JSA-

0-1 {WN=0, WS=1}. Similar to the experiment conducted in section 4.5.2, during the 

simulation, we measure and calculate the number of BUsers, the number of users who need 

the ACost, the statistical average of objective criteria D, the statistical average of cloud cost 

per each scheduled user, the statistical average of achieved GMOS per each user in the entire 

CMG system. We also compare the performance of JSA with the performance of MCS with 

settings {WN=0.5, WS=0.5}, the latter performing the best amongst other settings and 

approaches tested in section 4.5.2. The results of the simulation experiments are shown in 

Figure 4.9.  

From Figure 4.9(a) we can observe that given the same number of concurrent users n, 

the number of BUsers by applying JSA is much lower than the number of BUsers using MCS-

0.5-0.5. It should be noted that the number of scheduled users can be calculated by deducting 

the number of BUsers from n. For instance, from the results presented in Figure 4.9(a), we see 

that when the number of concurrent user requests is 24000, the number of scheduled users is 

only about 7000 if using MCS with settings 0.5-0.5 while it is about 20000 (about 3x 

improved) if using JSA with any of three scheduling weights settings.  

Figure 4.9(b) shows the ACost while n keeps increasing. With the application 

adaptation techniques, the computation need of cloud mobile gaming will be greatly reduced. 
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This will let each cloud server be able to support much higher number of users within the 

reserved computing cloud resource. Due to this reason, as shown in Figure 4.9(b), the ACost 

starts to increase at about 4000 user requests if using MCS-0.5-0.5, while with use of the JSA, 

the ACost starts to increase at about 8000 user requests.  
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Figure 4.9. Results of simulation experiments applying the proposed joint scheduling-

adaptation approach. 
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Base on the results in Figures 4.9(a)(b), we calculate the statistical average objective 

criteria D using three different pairs of scheduling weights. The results are presented in Figure 

4.9(c). From the Figure 4.9(c), we can observe that JSA in all three scheduling weights 

settings can achieve much less value of D than MCS-0.5-0.5.  

We have also calculated the statistical average cloud cost and statistical average 

GMOS. The results are present in the Figure 4.9(d) and Figure 4.9(e). Based on the results 

shown in these two figures, we can conclude that compared to MCS, the JSA with any of the 

three settings can significantly reduce the average cloud cost (by about 3.5x), and can 

significantly increase the average GMOS achieved (by more than 2x). The above results 

demonstrate that the proposed joint scheduling-adaptation approach is efficient in achieving 

the JSA objectives defined in section 4.4: minimizing the number of BUsers and the ACost 

while maintaining a high average GMOS, thus providing the desired scalability to the CMG 

approach. 

Besides the above improvements, the other test results and conclusions are very 

similar as what we have described in section 4.5.2, that JSA-1-0 has the best performance in 

minimizing the BUsers; JSA-0-1 has the best performance in minimizing ACost; and JSA-0.5-

0.5 provides the best setting among the three JSA settings simulated as it can achieve a good 

statistical expectation of average cloud cost and average GMOS. 

4.6 Conclusions 

In this chapter, we proposed a mobile cloud scheduler for cloud mobile gaming, which 

can simultaneously schedule the wireless network and cloud server resources to requesting 

mobile cloud users in a dynamically changing and heterogeneous CMG environment. We first 

developed a Mobile Cloud Scheduling (MCS) approach, with can allocate resources to meet 
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user Quality of Service (QoS) requirements while maximizing number of users that can be 

scheduled concurrently and minimizing cloud cost. We have conducted a set of simulation 

experiments using the CMG application to compare the performance between CMG sessions 

without applying MCS and CMG session with applying MCS. Our simulation results 

demonstrate that our proposed MCS approach can help the CMG provider to achieve higher 

capacity and lower cloud cost than the original CMG approach without MCS. In order to 

further enhance scalability, we introduce a Joint Scheduling-Adaptation (JAS) approach where 

the communication and computation requirements of CMG application can be adaptively 

adjusted according to the dynamic conditions of the wireless access network and cloud server 

at anytime. Simulation results show that the proposed JAS approach can significantly increase 

the number of concurrent CMG users and reduce cloud cost while meeting user minimum 

acceptable QoS requirements. 

 

The text of this chapter, in part or in full, is based on material that has been published 

in IEEE International Conference on Communications (ICC) (S. Wang, Y. Liu, S. Dey, 

“Wireless Network Aware Cloud Scheduler for Scalable Cloud Mobile Gaming”, IEEE ICC, 

Jun. 2012) and material submitted to IEEE Transactions on Networking (S. Wang, Y. Liu, S. 

Dey, “Mobile Cloud Scheduling: Scheduling Heterogeneous Network and Cloud Resources to 

Enable Scalable Mobile Cloud Computing”). The dissertation author was the primary 

researcher and author in the publications, and the coauthors listed supervised the research that 

forms the basis of this chapter. 
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Chapter 5 

Conclusions and Future Directions 

This chapter concludes the dissertation with a summary of our principle contributions 

and some thoughts about the possible future research work. 

In Chapter 2, we developed a Mobile Gaming User Experience (MGUE) model, 

which can quantitatively measure user perceived mobile gaming experience. Consequently, 

we develop a MGUE prototype measurement tool to enable in-network monitoring of MGUE. 

The MGUE model developed in this dissertation can be potentially used by researchers to 

assess the performance of new CMG techniques, and by future mobile gaming service 

providers, including network operators, to better plan and optimize their CMG services, as 

well as monitor in-network the user experience of their mobile gaming subscribers. We also 

believe that the approach used to develop the MGUE model outlined in this work can be 

useful for developing QoE models for other new cloud server based interactive multimedia 

applications, such as virtual reality and augmented reality. 

To address the communication constraint imposed by the fluctuating bandwidth and 

mobile network and computation constraint due to the cost and availability of cloud servers, in 

Chapter 3, we developed a dynamic game rendering adaptation technique which can 
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simultaneously vary the richness and complexity of graphic rendering to adapt the 

communication and computing needs of each CMG session in responding to the dynamic 

conditions of the wireless mobile networks and CMG server. Adapting the content source has 

not been studied, and may not be a possibility for other types of video applications, like live 

video streaming or video conferencing. We furthermore, proposed a joint adaptation between 

content source (here rendering) and video encoding to address mobile network and server 

computing constraints, which again has not been previously attempted to the best of our 

knowledge.  

In Chapter 4, we proposed a mobile cloud scheduler for Cloud Mobile Gaming, which 

can simultaneously schedule the wireless network and cloud server resources to requesting 

mobile cloud users in a dynamically changing and heterogeneous CMG environment. We first 

developed a Mobile Cloud Scheduling (MCS) approach, which can allocate resources to meet 

user Quality of Service (QoS) requirements while maximizing number of users which can be 

scheduled concurrently and minimizing cloud cost. We demonstrate that the proposed MCS 

approach can assist the CMG provider to achieve a higher capacity and a lower cloud cost 

than the original CMG approach without MCS. In order to further enhance scalability, we 

introduce a Joint Scheduling-Adaptation (JAS) approach where the communication and 

computation requirements of CMG applications can be adaptively adjusted according to the 

dynamic conditions of the wireless access network and cloud server at anytime.  

In the future, we envision two ideas to be the initial steps in the direction of the new 

techniques specialized for the CMG system. The first is to enhance our proposed mobile cloud 

scheduling approach because the current proposed MCS approach works best for stationary 

and nomadic users, and does not address mobility explicitly. Thus, if the access network 

coverage for a user has changed, MCS will consider this user a new requesting client and may 
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reschedule the access network resource and possibly even the cloud server for this user. This 

may lead to some interruption and delay in his/her CMG session, especially when the cloud 

server which performs all computing tasks must be rescheduled. In the future, mobile cloud 

scheduling techniques will need to be developed with consideration to user mobility and 

access network handover issues which may occur even for a stationary user in a heterogeneous 

wireless access network environment. 

Secondly, while in our proposed Cloud Mobile Gaming architecture the entire game 

engine is executed on cloud servers, it may be valuable to investigate whether it is possible to 

partition the game engine into different tasks. If this is possible, both mobile devices and 

cloud servers can be involved/designed to process part of gaming engine tasks. Depending on 

the types of game engine tasks and the costs of network communication and computing on 

different platforms, the game engine tasks will be dynamically scheduled to the appropriate 

hardware platforms. For instance, the mobile devices will mainly process the tasks which need 

less computing resource but demanding quick response time, while the cloud servers will take 

over the tasks that are not critical for the gaming response time. We envision that 

appropriately partitioning the game engine will eventually be adopted by the future cloud 

mobile gaming system, as it is very promising for reducing the gaming response time as well 

as the cloud cost. 
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