
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Adaptive Rendering and Scheduling Techniques to Enable Cloud Mobile Gaming

Permalink
https://escholarship.org/uc/item/8f3470zv

Author
Wang, Shaoxuan

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8f3470zv
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Adaptive Rendering and Scheduling Techniques to Enable Cloud Mobile Gaming

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Shaoxuan Wang

Committee in charge:

 Professor Sujit Dey, Chair
 Professor David Kriegman
 Professor Bill Lin
 Professor Ramesh Rao
 Professor Geoffrey Voelker

2013

Copyright

Shaoxuan Wang, 2013

All rights reserved.

iii

This Dissertation of Shaoxuan Wang is approved, and it is acceptable

in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2013

iv

TABLE OF CONTENTS

Signature Page ... iii

Table of Contents .. iv

List of Figures ... vii

List of Tables .. ix

Acknowledgements .. x

Vita and Publications .. xiii

Abstract of the Dissertation .. xv

Chapter 1. Introduction ... 1

1.1 Cloud Mobile Gaming: Advantages and Overview ... 2

1.2 Challenges of Cloud Mobile Gaming ... 6

1.2.1 Mobile Gaming User Experience .. 6

1.2.2 Fluctuating and Constrained Mobile Network Bandwidth. 7

1.2.3 Cloud Service Cost and Scalability ... 9

1.3 Contributions and Overview .. 11

Chapter 2. Modeling and Characterizing User Experience in Cloud Mobile Gaming
Approach ... 14

2.1 Mobile Gaming User Experience (MGUE) Model .. 15

2.1.1 Impairment Factors Affecting MGUE... 16

2.1.2 Quantitative Measurement of MGUE ... 21

2.2 Deriving Impairment Functions ... 23

2.2.1 Subjective Quality Assessment Experiments .. 23

2.2.2 Deriving Impairment Function IC .. 24

v

2.2.3 Deriving Impairment Function IR, IP, IL .. 27

2.3 MGUE Prototype, and Model Validation and Enhancement 29

2.3.1 MGUE Prototype: Measuring Impairment Factors and Calculating GMOS........... 30

2.3.2 MGUE Model Validation .. 31

2.3.3 Enhancing MGUE Model by Cross-effect Functions ... 32

2.4 Measuring MGUE in a Mobile Cellular Network .. 35

2.5 Conclusions .. 38

Chapter 3. Application Adaptation techniques to Address Wireless Communication and
Cloud Computation Constraints in Cloud Mobile Gaming ... 40

3.1 Introduction .. 41

3.2 Related Work .. 43

3.3 Overview of Application Adaptation Approach ... 45

3.3.1 Principles of Rendering Adaptation .. 45

3.3.2 Overview of Proposed Application Adaptation Approach 48

3.3.3 Novelty and Feasibility of Proposed Application Adaptation Approach 50

3.4 Rendering Adaptation Technique ... 52

3.4.1 Adaptive Rendering Parameters and Adaptive Rendering Settings 52

3.4.2 Derivation of Complexity Model .. 54

3.4.3 Derivation of the Rendering Levels Model ... 62

3.4.4 Derivation of the Joint Adaptation Model ... 64

3.4.5 Online JREA Algorithm .. 67

3.5 Experiment and Results .. 70

3.5.1 Addressing Communication Constraint .. 72

3.5.2 Addressing Computation Constraint ... 75

3.6 Conclusions .. 77

Chapter 4. Mobile Cloud Scheduling: Scheduling Heterogeneous Network and Cloud
Resources to Enable Scalable Cloud Mobile Gaming ... 79

4.1 Mobile Cloud Scheduling: Overview, Objectives, and Related Work 81

4.1.1 Overview of Mobile Cloud Scheduling Problem .. 81

4.1.2 Mobile Cloud Scheduling Objectives .. 85

vi

4.1.3 Related Work ... 87

4.2 Problem Formulation for Mobile Cloud Scheduling .. 88

4.2.1 Mobile Cloud System Model .. 89

4.2.2 Definition of Mobile Cloud Scheduling Problem ... 92

4.3 Mobile Cloud Scheduling Approach .. 93

4.3.1 Solution for Mobile Cloud Scheduling Problem ... 94

4.3.2 Heuristic Approach to Calculate FN and FS for MCS Method 99

4.4 Joint Scheduling-Adaptation Approach ... 102

4.4.1 Problem Formulation for JSA Objective 2 .. 105

4.4.2 Solution for JSA objective 2 ... 106

4.4.3 Joint Scheduling-Adaptation Algorithm.. 109

4.5 Experimental Evaluation .. 111

4.5.1 Simulation Framework and Test Scenario .. 112

4.5.2 Experimental Results Using MCS ... 115

4.5.3 Experiment Results Using the Proposed Joint Scheduling-Adaptation 121

4.6 Conclusions .. 124

Chapter 5. Conclusions and Future Directions ... 126

Bibliography ... 129

vii

LIST OF FIGURES

Figure 1.1. Growing gap between (recommended) GPU requirement of rendering-based

applications and GPU capability of mobile devices. ... 4

Figure 1.2. Overview of Cloud Mobile Gaming architecture and data/control flow. 5

Figure 1.3. Delay and response time measured in a CMG session at different time during

a day. ... 7

Figure 1.4. Maximum network downloading throughput measured in the test

environment. .. 8

Figure 1.5. Daily concurrent user pattern for game WoW. ... 10

Figure 2.1. Impairment factors affecting mobile gaming user experience. 17

Figure 2.2. Round-trip flow of gaming response time. .. 19

Figure 2.3. Test bed of subjective quality assessment experiments. 24

Figure 2.4. Subjective test results of RT versus GMOS for WoW.. 27

Figure 2.5. Relationship between predicted and subjective GMOS. 31

Figure 2.6. Correlation of predicted and subjective GMOS: (a) (b) (c) without cross-effect

functions; (d) (e) (f) with cross-effect functions. .. 32

Figure 2.7. Test results for game WoW with video settings [VGA and 15 frames per

second] in a mobile cellular network. ... 36

Figure 3.1. Primary stages of graphic rendering pipeline. ... 46

Figure 3.2. Proposed rendering adaptation methodology: offline and online steps. 49

Figure 3.3. Screenshots of game “PlaneShift” in different settings of view distance and

texture detail (LOD). ... 53

Figure 3.4. Sample data to show how CommC and CompC vary for different rendering

parameters and absolute error distribution and standard deviation of CommC

and CompC for each rendering parameter, for game PS. 58

Figure 3.5. Complexity model of game PS for three different Maximum View Distance

Categories. ... 60

viii

Figure 3.6. Absolute error distribution and standard deviation of measured CommC and

CompC in the tests with different video encoding settings, different video

resolutions, and different GPUs, for game PS.. ... 61

Figure 3.7. Rendering levels and optimal rendering setting for each rendering level. 62

Figure 3.8. Rendering levels model of game PS for three different Maximum View

Distance Categories. .. 64

Figure 3.9. Flow chart of joint rendering and encoding adaptation algorithm. 69

Figure 3.10. Experiment results to demonstrate the effectiveness of proposed rendering

adaptation technique to address CMG communication constraint. 74

Figure 3.11. Experiment results to demonstrate the effectiveness of proposed rendering

adaptation technique in addressing CMG computation constraint. 76

Figure 4.1. Heterogeneous mobile cloud computing system, and an instance of the mobile

cloud scheduling problem. .. 82

Figure 4.2. Mobile Cloud Scheduling (MCS) methodology. .. 98

Figure 4.3. Simulation results showing how network expectation change factor varies

when adding k users in the system. ... 100

Figure 4.4. Heuristic approach to calculate FN. ... 101

Figure 4.5. The level-determining algorithm to decide all the l for the users using an

access network or a cloud server resource. ... 108

Figure 4.6. Joint Scheduling-Adaptation algorithm. ... 110

Figure 4.7. Test scenario simulated. .. 113

Figure 4.8. Results of simulation experiments: scheduling using the proposed MCS

approach, and RS and MQS approaches. .. 118

Figure 4.9. Results of simulation experiments applying the proposed joint scheduling-

adaptation approach. ... 123

ix

LIST OF TABLES

Table 1.1. Cloud pricing structures and cloud cost for a WoW CMG session. 9

Table 2.1. Experimental parameters of subjective quality assessment experiments. 25

Table 2.2. GMOS ratings and “R” values. ... 25

Table 2.3. Value of IC in VGA resolution. ... 25

Table 2.4. The value of variables in MGUE model for three different games.29

Table 3.1. Adaptive rendering parameters and experiment settings. 56

Table 3.2. Minimum encoding bit rate for each CommC rendering level for game PS in

VGA resolution. .. 66

Table 3.3. Maximum CommC rendering level for each encoding bit rate for game PS in

VGA resolution. .. 67

Table 4.1. Summary of symbols for Chapter 4. ... 91

Table 4.2. Different types of user requests used in simulation. 114

Table 4.3. Capacities for access network and cloud server, and average network

delay/standard deviation for each pair of network and cloud server. 114

Table 4.4. QoS Requirements (Reql) / QoE Impairment (Il) for each level in bit rate and

computation adaptation. .. 121

x

ACKNOWLEDGEMENTS

There have been a large number of people whose support and guidance throughout

years at UCSD made this dissertation possible. I take this opportunity to express my sincere

gratitude for all of them. Though I cannot hope to enumerate, let alone repay, all of whom I

am indebted to, I still insist on naming a few in print.

The first people I would like to thank is my advisor, Prof. Sujit Dey, who has been a

constant source of encouragement and support over these years. I thank him for being

extremely patient with me, for teaching me how to conduct research and present ideas, and for

being enthusiastic in venturing into new topics of research. His involvement in every aspect of

my work, from discussing algorithms to shaping my writing, was a defining factor in ensuring

the quality of the final manuscript.

In addition, I would like to thank Yao Liu, my collaborator and friend, for his

contributions, insights and feedback, especially for the work presented in Chapter 4. I also

thank the members of my thesis committee, Professors Bill Lin, David Kriegman, Geoffrey

Voelker, and Ramesh Rao for providing valuable suggestions and feedback. This work has

also improved in quality thanks to detailed feedback provided by the anonymous reviewers of

the related conference and journal papers.

I gratefully acknowledge the financial support provided by the Jacobs Engineering

Fellowship that made my doctoral studies possible. Throughout my graduate studies, I have

been fortunate to have the chance to work with a wonderful group of co-workers in the

MESDAT lab at UCSD. I am very grateful to all the past and present members of our lab for

providing an interesting and encouraging working experience. Our interactions and

discussions made the day-to-day graduate student life enjoyable.

xi

I owe a special debt of gratitude to all my friends whose encouragement and moral

support kept me sane for all these years and helped me bear the various ups and downs of

graduate life. I take this opportunity to thank all the new friends who made me feel at home in

a foreign land, and old ones who, often from across continents, made me think that I had never

left home. The list of all who deserve mention is far too long to include here, but special

thanks go to Chong Zhao, Wenbo Zhao, Shoubhik Mukhopadhyay, and Naomi Ramos for

being incredibly patient listeners and providing valuable feedback on everything from

research, writing and life.

I dedicate this dissertation to my parents. They are the ones who taught me all the

really important things in life, ensured that I got a good education against considerable odds,

and were the first to believe in me. I would not have been able to dream of embarking upon

this journey if it were not for their encouragement and support.

At last, I want to express my special thanks to my dear wife Hanlu Lu. I am so lucky

to know my wife in the first year of my Ph.D study. Because of her, my last six years have

been so great, especially that we had our lovely daughter Julia Wang born in 2010. Yes, I have

ups and downs during my Ph.D study. And I have faced challenges that I never dreamed I’d

face. But my wife has always been there to support me and to support my family. She have

strengthened me when my faith was weak. Without her love, sacrifice, and unfathomable

patience, I would never have been able to complete my Ph.D.

xii

The text of the following chapters, in part or in full, is based on material that has been

published in conference proceedings or journals, or is pending publication in journals, or is in

review.

Chapter 2 is based on material that has been published in ACM Mobile Computing

and Communications Review (MC2R) (S. Wang, S. Dey, “Cloud Mobile Gaming: Modeling

and Measuring User Experience in Mobile Wireless Networks,” ACM SIGMOBILE MC2R,

Jan. 2012) and material published in IEEE Global Communications Conference (Globecom)

(S. Wang, S. Dey, “Modeling and Characterizing User Experience in a Cloud Server Based

Mobile Gaming Approach,” IEEE Globecom, Honolulu, Dec. 2009).

Chapter 3 is based on material that has been published in IEEE Transactions on

Multimedia (TMM) (S. Wang, S. Dey, “ Adaptive Mobile Cloud Computing to Enable Rich

Mobile Multimedia Applications,” IEEE Transactions on Multimedia, Jun. 2013) and material

published in IEEE Global Communi1cations Conference (Globecom) (S. Wang, S. Dey,

"Rendering Adaptation to Address Communication and Computation Constraints in Cloud

Mobile Gaming,” IEEE Globecom, Miami, Dec. 2010).

Chapter 4 is based on material that has been published in IEEE International

Conference on Communications (ICC) (S. Wang, Y. Liu, S. Dey, “Wireless Network Aware

Cloud Scheduler for Scalable Cloud Mobile Gaming”, IEEE ICC, Jun. 2012) and material

submitted to IEEE Transactions on Networking (S. Wang, Y. Liu, S. Dey, “Mobile Cloud

Scheduling: Scheduling Heterogeneous Network and Cloud Resources to Enable Scalable

Mobile Cloud Computing”).

I was the primary researcher and author of each of the above publications, and the co-

authors listed in these publications collaborated on, or supervised the research which forms the

basis for these chapters.

xiii

VITA

1999-2003 B.S., Electrical Engineering,

Peking University, Beijing, China

2004-2007 M.S., Electrical Engineering (in Wireless Communications),

Peking University, Beijing, China

2007-2010 Research Assistant, Dept. of Electrical and Computer Engineering,

University of California, San Diego

2008 Summer Intern, Palm Corp.,

Sunnyvale, California

2009 Summer Intern, Broadcom Corp.,

San Diego, California

2010-2013 Senior Staff Engineer, Broadcom Corp.,

San Diego, California

2013 Ph.D, Electrical Engineering (Computer Engineering),

University of California, San Diego

PUBLICATIONS

S. Wang, Y. Liu, S. Dey, “Mobile Cloud Scheduling: Scheduling Heterogeneous Network and

Cloud Resources to Enable Scalable Mobile Cloud Computing,” IEEE Transactions on

Networking, 2013 (in review).

S. Dey, Y. Liu, S. Wang, Y. Lu, “Addressing Response Time of Cloud-based Mobile

Applications,” ACM Mobile Cloud 2013, (in review).

S. Wang, S. Dey, “Adaptive Mobile Cloud Computing to Enable Rich Mobile Multimedia

Applications,” IEEE Transactions on Multimedia, vol. 15, no. 4, Jun. 2013.

S. Wang, Y. Liu, S. Dey, “Wireless Network Aware Cloud Scheduler for Scalable Cloud

Mobile Gaming”, in Proc. of IEEE ICC, Ottawa, Jun. 2012.

xiv

S. Wang, S. Dey, “Cloud Mobile Gaming: Modeling and Measuring User Experience in

Mobile Wireless Networks,” ACM SIGMOBILE MC2R, vol. 16, issue 1, Jan. 2012, pp. 10-21.

Y. Liu, S. Wang, S. Dey, “Modeling, characterizing, and enhancing user experience in Cloud

Mobile Rendering”, in Proc. of IEEE ICNC, Maui, Jan. 2012.

S. Wang, S. Dey, "Addressing Response Time and Video Quality in Remote Server Based

Internet Mobile Gaming," in Proc. of IEEE WCNC, Sydney, Mar. 2010.

S. Wang, S. Dey, "Rendering Adaptation to Address Communication and Computation

Constraints in Cloud Mobile Gaming,” in Proc. of IEEE GLOBECOM, Miami, Dec. 2010.

S. Wang, S. Dey, “Modeling and Characterizing User Experience in a Cloud Server Based

Mobile Gaming Approach,” in Proc. of IEEE GLOBECOM, Honolulu, Dec. 2009.

xv

ABSTRACT OF THE DISSERTATION

Adaptive Rendering and Scheduling Techniques to Enable Cloud Mobile Gaming

by

Shaoxuan Wang

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California, San Diego, 2013

Professor Sujit Dey, Chair

This dissertation studies a new cloud server based approach for mobile gaming,

termed Cloud Mobile Gaming (CMG), that enables 3D, multiplayer, Internet video games on

mobile phones — the kinds of games that today require a powerful PC tethered to the Internet.

We flipped the traditional client-server architecture for PC-based Internet games on its head

and looked to cloud computing, instead of putting most of the storage and computational

burden of the games on the mobile device. Though promising, the new CMG approach will

impose other challenges, namely to ensure high mobile gaming user experience (as two-way

gaming data including video will need to be transmitted through wireless networks in real

time), and ensure scalability in terms of cloud servers and network bandwidth, so as to ensure

economic viability of the approach. In our work, we have developed key new technologies to

address these challenges.

xvi

We first developed and validated a Mobile Gaming User Experience model, which

can quantitatively measure user perceived mobile gaming experience. Next, we develop an

adaptive rendering technique which can simultaneously vary the richness and complexity of

graphic rendering to adapt the communication and computing needs of each CMG session in

responding to the dynamic conditions of the wireless networks and cloud server. Finally, we

present a mobile cloud scheduling approach which can allocate resources to meet user

experience requirements while maximizing the number of users which can be scheduled

concurrently and minimizing cloud cost.

The experimental results presented demonstrate that our proposed adaptive rendering

technique and the mobile cloud scheduling approach can efficiently address the challenges

imposed by the wireless network and cloud server, ensuring the user perceived gaming quality

as well as the scalability for the CMG approach. We believe the techniques proposed in this

work will not only enable rich Internet cloud gaming, but also other rich mobile multimedia

applications using the cloud.

1

Chapter 1

Introduction

The emergence of new and more capable mobile devices, including smart phones,

tablets, and netbooks, along with the steady deployment of broadband wireless networks is

making mobile access to rich Internet sites a reality. This technological progress opens up a

new possibility: the ability to play rich Internet games produced for PCs on wireline networks

from mobile devices. Enabling mobile Internet gaming will significantly change the

experience of mobile users from the thin, single player gaming possible today to a rich, multi-

player Internet gaming experience of users’ familiar games from any location with the proper

access. It will also open up the possibility for mobile service providers and Internet game

developers to translate the tremendous growth experienced in recent years in Internet PC

games to the fast emerging mobile eco-system. However, due to the inherent hardware

constraint of mobile devices such as memory and graphics processing, the goal might be

difficult to achieve using the current client-server gaming architecture for PC-based Internet

games, since most of the storage and computational burden of the game lies with the client

device.

Instead, it may be promising to investigate a cloud server based mobile gaming

approach termed Cloud Mobile Gaming (CMG), where a gaming server is responsible for

2

executing the appropriate gaming engine and streaming the resulting gaming video to the

client device, while the mobile devices only communicate the user’s gaming commands to the

cloud server. In our work, we first investigate the potential major challenges for this new

CMG approach focusing on response time, user experience, mobile network bandwidth, cloud

computing cost, and scalability to large number of CMG users. Subsequently, we propose and

develop several techniques to address the challenges encountered. We believe the techniques

proposed in this work will help to successfully launch the CMG approach and lead to a

quantum leap in the perception and use of mobile devices for Internet gaming.

In this chapter, we first look at the early trends and advantages for this new CMG

approach, and present an overview of the CMG approach. Next we analyze the challenges that

need to be addressed to make the CMG approach viable. Finally, we outline the contributions

made by this thesis, in applying the proposed techniques to the CMG approach. We conclude

with an overview of the remaining chapters.

1.1 Cloud Mobile Gaming: Advantages and Overview

Over the last few years, there has been an increased number of applications which

have “migrated to the cloud”, as well as new cloud-based applications that have become

recently popular. Most of the early adopters of the cloud have been enterprise applications and

IT departments. According to the recent research report from Analysis Mason [AM13],

revenue from mobile enterprise cloud-based applications and services is expected to rise from

nearly $18.3 billion in 2012 to $31.9 billion in 2017. Similar motivations which have driven

mobile enterprise cloud services are also driving adoption of mobile consumer cloud services:

the ability to access media from anywhere- any device, platform, and network. According to

the Cisco virtual network index mobile forecast [CIS13], the cloud video applications and

3

services such as Netflix, YouTube, Pandora, and Spotify will account for 84 percent of total

mobile data traffic in 2017, as compared to 74 percent at the end of 2012. In other words,

mobile cloud video traffic will grow 14-fold from 2012 to 2017. And according to Juniper

Research, revenues from consumer cloud mobility services, initially driven by cloud based

music and video storage and download services like the ones recently launched by Amazon’s

Cloud Drive and Apple’s iCloud, are expected to reach $6.5 billion per year by 2016 [JUN11].

Besides such storage and download services, a big boost to mobile consumer cloud

services will come from a major shift in the mobile applications market, primarily from native

applications to ones based on Cloud Mobile Computing: utilizing the computing and storage

resources available in the cloud, thereby enabling the use of cutting edge multimedia

technologies that are much more computing and storage intensive than what mobile devices

can offer, and thus enabling a much richer media experiences than what current native

applications can offer.

One promising cloud mobile computing application with the potential to significantly

enhance the media experience of mobile users is Cloud Mobile Gaming (CMG). Despite the

progress in the capabilities of mobile devices, there is a widening gap with the growing

requirements of the latest 3D video games from what can be supported by today’s and the near

future’s mobile devices, including tablets. Figure 1.1 shows this widening gap from 2008 to

2012, in terms of the recommended GPU requirements [3DG] of the most demanding games

in those years such as Call of Duty 4 in 2008, Call of Duty 7 in 2010, and Battlefield 3 in 2012,

and the GPU capabilities [ANA] of the popular smartphones in those years: iPhone 3G,

iPhone 4, and iPhone 5 respectively. CMG can bridge this gap by allowing game rendering to

be executed in the cloud instead of on the mobile device, thereby, potentially enabling mobile

users to play the same rich Internet games available to high-end PC users.

4

 Besides eliminating the hardware constraint of mobile devices, the CMG approach

also provides a new capability to solve the cross-platform issue for mobile gaming, a

fundamental problem which constrains mobile gaming from being very successful. It allows

mobile users to play an Internet game without the installation of a game engine on his/her

platform. With one game software installed on the cloud server, heterogeneous mobile devices

with different operating systems and hardware capacities can play the same game via the

CMG approach. This will significantly relieve game developers from the expensive cycle of

developing device and platform specific mobile versions for the same game.

Figure 1.2 shows the overall CMG approach. In the conventional Internet multiplayer

game architecture, the game synchronization server is the key component that runs the

fundamental game logic in a single process, and maintains the game database. Besides, it

2008 2010 2012

3D game GPU

requirements

Call of Duty 4 Call of Duty 7 Battlefield 3

8.8 GPixels/sec 14.16 GPixels/sec 25.9 GPixels/sec

Smartphone

GPU capability

Iphone 3G Iphone 4 Iphone 5

0.135 pixels/sec 0.5 Gpixels/sec 4.875 Gpixels/sec

3D game GPU requirement

Mobile device GPU capacity

Figure 1.1. Growing gap between (recommended) GPU requirement of rendering-based

applications and GPU capability of mobile devices.

5

maintains the connections for users, delivers the interactive messages as well as updates the

active users’ game data simultaneously. To support mobile gaming on thin clients, in the

CMG system we extend the conventional game synchronization server with two key

components: game engine server and game streaming server. When a player accesses the

game server from a mobile device, the connection will first be confirmed by the game

synchronization server. Subsequently, it initializes a game engine server and a game streaming

server for this mobile device/user. The game engine server then loads the client’s account

information and game data from game synchronization server, and begins to process the game

logic and user data to render the raw game video. The generated raw game video is encoded

by the game streaming server, and finally sent to the mobile client via the wireless connection.

On the other hand, the mobile user’s inputs are delivered to the CMG server and accepted by

the game synchronization server directly. Figure 1.2 shows the control flow (green) and

data/video flow (red) for a CMG video game session.

Figure 1.2. Overview of Cloud Mobile Gaming architecture and data/control flow.

6

1.2 Challenges of Cloud Mobile Gaming

Though the CMG approach is promising in terms of enabling mobile users to play rich

Internet games on any mobile device without the need to download the game engines, several

challenges exist and must be addressed in order to make the CMG approach feasible.

1.2.1 Mobile Gaming User Experience

The first challenge for the CMG approach is to ensure Mobile Gaming User

Experience (MGUE). Firstly, unlike traditional gaming, the game video in the CMG approach

must first be compressed and transmitted to mobile user devices over bandwidth constrained

and error-prone wireless networks which may cause network packet loss. The user perceived

gaming video quality may suffer an unexpected quality loss besides the compression loss

introduced when gaming video is compressed. Secondly, and more importantly, unlike other

applications such as video streaming and video download, video games are highly interactive

applications, demanding very fast response times. As opposed to conventional server-client

gaming architecture, where the game is executed right on the client, the new CMG approach

introduces the possibility of a significantly higher response time, from the time a gaming

command is issued on a mobile device, to the time the video is streamed back to the device.

This is evidenced by the data presented in Figure 1.3, which shows the measured uplink delay,

downlink delay, and round-trip response time.

The experiments for Figure 1.3 are conducted in a commercial 3G network and under

three different conditions: when the network was not loaded (data collected at midnight),

when the network was loaded (data collected at 5 pm), and when the network was loaded and

signal conditions were not strong (data collected at 6 pm, and inside a building). From Figure

1.3, we can observe that when the network is not loaded and signal strength is strong, the

7

CMG application can achieve a low response time. However, when the 3G network is loaded,

or when the user is in a noisy network condition with poor signal strength, there are significant

increases in uplink, downlink, and round-trip response time, which will lead to a significantly

adverse impact on the quality of gaming experience.

Besides the video quality and network response time, the CMG server over-utilization

encountered and characteristics of the mobile device may add to the entire gaming response

time, and hence affect user experience. To ensure proper understanding and consideration of

the effects of different networks, video compression parameters, as well as CMG server and

mobile device factors on CMG application performance, we need to develop techniques to

model, and quantitatively measure and monitor the mobile gaming user experience in real time.

1.2.2 Fluctuating and Constrained Mobile Network Bandwidth.

It has been well established that wireless networks are characterized by rapid

fluctuations of the network bandwidth experienced by users. For example, in 3G and 4G

cellular networks, while various techniques significantly reduce channel errors experienced by

Response Time

Uplink Delay

Downlink Delay

Figure 1.3. Delay and response time measured in a CMG session at different time during a

day.

8

applications, they produce rapidly changing channel rates, leading to significant spatial and

temporal variations of the mobile network bandwidth [BLB06] [LSM08] [TLL07]. To

understand and characterize the available network bandwidth for a mobile user, we have

conducted experiments using a commercial 3G mobile network. During the experiment, we

measured the maximum network downloading throughput on a mobile client while we roamed

with this device at different locations inside a building. These locations were selected as they

displayed different network conditions such as signal-to-noise ratio received by the mobile

device. Figure 1.4 shows a representative sample of data. From Figure 1.4, we have mainly

two observations: a) the maximum network downloading throughput is changing rapidly. It

can drop more than 60% in a few seconds; b) the available downloading bandwidth for a

mobile user may become very constrained to as low as 0.2Mbps as shown in Figure 1.4.

This inherent characteristic (fluctuating and constrained network bandwidth) of the

mobile network imposes a challenge for the CMG approach, as the gaming videos streamed

from CMG servers to mobile devices can be subject to high and unpredictable congestion

delay and packet loss, leading to an undesirable increase in response time, besides the adverse

impact on the quality of the video streamed.

0 100 200 300 400 500 600
0

0.4

0.8

1.2

1.6

Figure 1.4. Maximum network downloading throughput measured in the test environment.

9

1.2.3 Cloud Service Cost and Scalability

One of the primary advantages of using cloud services is to eliminate capital expenses,

increase dependability on the elasticity of cloud computing, and determine the cloud utility or

pricing model to scale to varying capacity needs. However, there will be challenges faced by

computing intensive CMG application in terms of prohibitively high operating expenses when

using current cloud pricing models.

Table 1.1 shows the cloud pricing structures of the Amazon Elastic Compute Cloud

(EC2) [EC2] including computing price, storage price, and network price. It also shows the

cost per hour of a VGA resolution cloud mobile gaming session of the popular Multiplayer

Online Role-Playing Game (MMORPG), World of Warcraft (WoW), assuming each session

needs 2 Compute Units (CU), 1GB storage space, and 600kbps of network bandwidth. AWS

mainly provides two types of cloud instances: on-demand instances and reserved instances.

On-demand instances allow customers to pay for compute capacity by the hour with no long-

term commitments, while reserved instances give customers the option to make a low, one-

time payment for each instance customers want to reserve and in turn receive a significant

discount on the hourly charge for each instance. From Table 1.1, we can observe the

Table 1.1. Cloud pricing structures and cloud cost for a WoW CMG session.

Cloud Instances
Type

Computing Price Storage Price Network Price CostCLOUD

On-demand cluster
compute instances

$0.048 /EC2 CU
per hour

$1.39e-4 /GB
per hour

$0.054 /Mb $0.1285 per
hour

Heavy utilization
reserved cluster
compute instances

$0.00887 /EC2
CU per hour

$1.39e-4 /GB
per hour

$0.054 /Mb $0.0503 per
hour

10

CostCLOUD of using on-demand cloud instances is much higher (more than 2x) than the

CostCLOUD of using reserved cloud instances, due to the higher computing price of on-demand

cloud instances. Cloud providers which consume a large amount of cloud resource will

definitely want to purchase the reserved instances to get a better price discount. This infers

that the capacity of reserved cloud resource by the CMG provider is limited.

Assuming an average playing time of 23 hours/week [WBD], from Table 1.1 the

monthly operating expense for a cloud mobile gaming provider using public cloud platforms

would be about $12/month per WoW player if using on-demand cloud instance as compared

to $5/month if using reserved cloud instance. Considering the typical subscription prices (for

example, current price of WoW prepaid card is $15/month), this level of operating expense

would be too high, even to support VGA resolution.

Moreover, considering the CMG provider must serve millions of users in a given day,

the total cloud service cost could become extremely high. Figure 1.5 shows the estimate of

concurrent WoW online gamers according to hours of day in China. Our estimation is based

on a study showing daily usage patterns for WoW gamers [LCC11], and extrapolating with the

number of WoW peak concurrent users in China, which has maintained steady at 1 million for

several years [AT10]. The daily operating cost for the concurrent user profile shown in Figure

0 6 12 18 24

Hour of Day

0

500,000

1,000,000

Figure 1.5. Daily concurrent user pattern for game WoW.

11

1.5 can be as high as $1.53M even to support VGA resolution WoW gaming, which questions

the scalability of cloud mobile gaming, as the level of concurrency needed support may be

much higher to support all other popular games. Clearly, techniques must be developed to

address the cloud cost and scalability challenges faced by CMG services in using public

clouds.

1.3 Contributions and Overview

The main contributions made by this thesis are threefold. First, to ensure proper

understanding of the effects of different impact factors on user perceived gaming experience,

we develop and validate a Mobile Gaming User Experience (MGUE) model through

controlled subjective testing. Several impact factors have been taken into account including

the game video settings, the server and client conditions, the wireless network conditions, and

the game genres. We also develop a software prototype which can in-service measure impact

factors and simultaneously report MGUE. To the best of our knowledge, this is the first work

to characterize and model mobile gaming user experience for a CMG approach. The MGUE

model developed in this chapter is helpful for researchers or mobile gaming service providers

to assess the performance of this new CMG technique. In addition, there is also a trend to

deploy many interactive multimedia applications into the cloud server, such as virtual reality

and augmented reality. We believe our approach to develop a MGUE model outlined in this

chapter can be potentially used to develop Quality of Experience (QoE) models for these new

cloud server based applications.

Second, we wish to ensure the scalability and address the challenges imposed by

fluctuating and constrained wireless network bandwidth rates and expensive cloud service cost,

thus we have developed several application adaptation techniques, including a dynamic game

12

rendering adaptation and a joint rendering and encoding adaptation technique. There are two

aspects to the novelty of this work. The proposed dynamic game rendering adaptation can vary

the graphic rendering settings to adapt both communication and computation needs of a CMG

session, thereby addressing both wireless network bandwidth constraint and cloud service cost

challenges. To the best of our knowledge, the ability to adapt content source, here graphic

rendering, is something that has not been attempted. The joint rendering and encoding

adaptation can leverage our proposed rendering adaptation technique and any encoding

adaptation in a proper manner as to optimally address the network and cloud cost challenges

discussed in section 1.2, which again have not been attempted before for a video based

interactive application like CMG.

Third, we have proposed a mobile cloud scheduling technique which takes into

account the available capacity and usage probability of each heterogeneous access network

and cloud server choice for each mobile user and the corresponding network round-trip delays,

to minimize the average cloud service cost and maximize the number of concurrent mobile

cloud users which can be served, while satisfying their user experience requirements,

including response times. We furthermore, propose a joint adaptation and scheduling, where

mobile cloud scheduling algorithm can leverage the application adaptation techniques, such

that the capacity of the CMG system is dramatically increased. To the best of our knowledge,

this is the first research work to solve the scheduling problem by jointly considering the

heterogeneous access network and cloud server. We believe the scheduling technique

developed in this thesis is potentially very useful for other new cloud server based mobile

applications.

In the remainder of this dissertation, we take a detailed look at the novel techniques

previously introduced. Note that we will compare our techniques with the previously

13

published research work in each Chapter. In Chapter 2, we present the methods of how we

develop the Mobile Gaming User Experience model. With this new proposed MGUE model,

we characterize user achievable gaming experience in a commercial mobile cellular network.

In Chapter 3, we elaborate the application adaptation techniques. We will also present

experiment results to demonstrate the effectiveness of our proposed adaptation techniques to

make the CMG approach feasible: ensuring protection against wireless network conditions,

thereby, ensuring an acceptable mobile gaming user experience as well as ensuring scalability

in regards to the mobile network and CMG cloud server availability. Chapter 4 will introduce

our mobile cloud scheduling approach. We have also performed a set of simulation

experiments to compare and characterize the performance of our proposed algorithms and the

performance of the original CMG approaches where our scheduling techniques are not applied.

The simulation results show that a) our proposed mobile cloud scheduling algorithm can help

the CMG approach to maximize the number of blocked users and minimize cloud service cost

while ensuring the user perceived gaming experience when comparing with the original CMG

approach under the same conditions; b) the proposed joint adaptation and scheduling

algorithm can dramatically increase the system capacity while ensuring acceptable user

experience for each assigned user.

14

Chapter 2

Modeling and Characterizing User

Experience in Cloud Mobile Gaming

Approach

In the previous chapter, we presented an overview of the Cloud Mobile Gaming

(CMG) approach and analyzed several important challenges we have to cope with for the

success of the CMG approach. In this chapter, we develop a Mobile Gaming User Experience

(MGUE) model to quantitatively measure the user experience of mobile gaming using the

CMG approach. We validate the model using controlled subjective testing, and then use this

model to characterize MGUE in various settings and commercially deployed wireless

networks. Based on the characterization results, we furthermore suggested the possible

solutions that may help improve the user experience achieved by the CMG approach, thereby

leading to the feasibility of rich, multi-player, Internet games on mobile devices.

15

2.1 Mobile Gaming User Experience (MGUE) Model

The ability to model and evaluate the QoE of a network service is important to

network operators and service providers, so that they can provision for the appropriate QoE

levels, monitor the Quality of Experience (QoE) achieved, and take steps to improve the

service as needed. QoE standardization has been actively pursued by International

Telecommunications Union (ITU). Its existing standards cover the video quality metrics and

tools (ITU-T J.144) [J144], and quality assessment approaches for multimedia services like

IPTV (ITU-T SG12) [COM12], VoIP (ITU-T G.107) [G107], and Videophone (ITU-T

G.1070) [G1070]. Unfortunately, there is no ITU standard quality measurement tool available

for gaming. Moreover, many other video quality metrics and measurement techniques

[Han04][TYK04][TW07][YH06][RNR08] cannot be directly applied to measure the user

experience of (mobile) gaming, which is a highly interactive application, and where the round-

trip response time has a significant impact on user experience, as opposed to the one-way

nature of video. Though ITU standards of VoIP and Videophone have considered the impacts

of network delay, they do not take into account round-trip delay, but only one-way delay.

There has also been some work to analyze factors affecting user experience in gaming

[BF10][CC06][DWW05][FCF+05][FRS05][YII05]. However, they focus on conventional PC

games and do not apply to the Cloud server based Mobile Gaming (CMG) approach, which is

the subject of this dissertation.

Among existing QoE measurement methodologies, parametric model is the most

commonly used way of measuring network multimedia QoE. It generally has three key

components: model inputs, model assumptions, and quality estimation function. The inputs of

parametric model are a group of impairment factors which affect user experience, while the

16

model assumptions restrict the model working conditions. The quality estimation function is

the essential part of the parametric model presenting the relationship between the impairment

factors and model output of the predicted user experience. To develop such a parametric

model that can quantitatively measure MGUE, we start this section by analyzing the various

factors affecting MGUE. Through giving some model assumptions and discussions, we then

identify several important impairment factors as model inputs, which are sub-sequentially

used to formulate quality estimation function of MGUE model. The quality estimation

function of MGUE model will be finally derived through subjective experiments introduced in

the next section.

2.1.1 Impairment Factors Affecting MGUE

User perceived MGUE would mainly depend on two subjective factors: gaming visual

experience and gaming response experience. The gaming visual experience depends on the

resolution, smoothness, and image quality of gaming video received by mobile client, while

the gaming response experience refers to the total delay from the user control command

occurring to the corresponding video frame displaying on the mobile device. User perceived

video quality needs to be measured from the off-line comparison of the video displayed in the

client and the reference video in the server. The exact response time can be measured from the

video obtained from recording the entire visual progress when the user played the game. Both

measurements of these two subjective factors are time consuming and costly. To ensure

feasibility, we decided to formulate MGUE model based on objective factors that can be in-

service measured.

As shown in Figure 2.1, MGUE is affected by a number of objective factors, which

can be categorized into four groups: source video factors, cloud server factors, wireless

network factors, and client factors. Each of these objective factors affects the gaming visual

17

experience and gaming response experience in a complex manner. For example, quality

degradation of user received gaming video may occur during the compression process from

the source, depending on compression codec and compression Quantization Parameter (QP).

Besides compression loss, network packet loss due to network congestion or wireless RF

conditions could also reduce the video quality. The smoothness of the video is decided by the

video frame rate, network packet loss, and network delay jitter. On the other hand, the gaming

response experience will be affected by various delays created in cloud server, wireless

network, and mobile client.

Among all the objective factors, server utilization and network bandwidth will only

affect the MGUE when they are over-utilized. Moreover, the negative effects of these two

factors could be represented by other factors. For example, server over-utilization will cause

Figure 2.1. Impairment factors affecting mobile gaming user experience.

18

unexpected increase on rendering delay, encoding delay and service delay, while wireless

channel over-utilization will cause network packet loss and unexpected delay. Therefore, we

do not need to consider server utilization and network bandwidth into the MGUE model.

Besides the factors shown in Figure 2.1, game genre is also an important factor that

determines the contributions of all the other factors in determining the MGUE. For instance, in

some games (e.g. racing games) fast response time is more crucial in determining the MGUE,

while in some other games (e.g. Massively Multiplayer Online Role-Playing Game

(MMORPG)) being able to clearly see the objects, and hence sufficient video quality, is more

crucial in determining the MGUE. Therefore, parametric MGUE model can be formulated as:

(, , , , ,

 , , , ,

 , ,)

MGUE F Game Resolution FrameRate Codec EncodingQP

RenderingDelay EncodingDelay ServiceDelay PacketLoss

NetworkDelay DelayJitter DecodingDelay

 (2.1).

However it is hard to integrate all the objective factors in Equation 2.1 as the model inputs to

determine the MGUE. Thus we present the following analysis and model assumptions which

allow us to reduce the complexity of the model by reducing the number of factors.

First, video resolution and frame rate are video configurations, which are given when

the video streaming starts. We group these two factors together termed as VConfig. Giving the

VConfig, the encoding QP determines the video quality, but is conditional on the codec and

video content. Therefore, it is hard to study and determine its impact in determining the

MGUE. Instead, we use Peak Signal to Noise Ratio (PSNR), the most commonly used

distortion metric, to measure the quality of compressed video at the gaming video source.

Second, as discussed earlier, user perceived gaming response experience is hard to

measure. Therefore, we use a derived objective factor gaming Response Time (RT) to indicate

the gaming response experience. To study and understand RT, we consider the round trip data

19

flow in a CMG session shown in Figure 2.2. When a user command occurs on the mobile

device, it will be sent to the gaming server with a network uplink delay DUPLINK (T1-T2). This

command may be held in the processing queue if there are plenty of commands from other

clients waiting to be processed by the cloud server. Only the first command in the queue will

be processed by the server, while the other commands have to wait for a period of time called

service delay DS. Then the game engine will process this command and then generate raw

game video. This will take a period of time called rendering delay DR. However, the raw game

video is not always generated just after the command is processed. There is an interval TFRAME

between consequential video frames, which is equal to the reciprocal of Frame Rate (FR). Due

to this TFRAME, there might be a delay DF with a range from 0 to TFRAME depending on interval

between the time when the server processes command and the time when the next raw game

video is generated. Since command is processed randomly, DF is uniformly distributed

between 0 to TFRAME. Therefore the average value of DF is 1/(2 FR). Once raw game video is

generated, it will be encoded and packetized in a period of time called encoding delay DE (T3-

T4). The video packets will be received after a network downlink delay DDOWLINK (T4-T5), and

Figure 2.2. Round-trip flow of gaming response time.

20

displayed onto the mobile device after a client buffering and decoding delay DC (T5-T6). Let

RDelay denotes the round-trip network delay including DUPLINK and DDOWNLINK, RT can be

formulated to:

where 1 / (2)
S R F E C

F

RT RDelay D D D D D

D FR

 (2.2).

Some of delays in Equation 2.2 can be directly measured by CMG server and mobile client,

like DR, DF, DE, and DC, while for some other delays like RDelay and DS, we will measure

them by a network probing mechanism (introduced in section 2.3.1).

Next, we analyze another factor, delay jitter, and explain why we will not consider it

in modeling MGUE. Delay jitter denotes the network delay variation. Given an average

network delay, there are two kinds of delay jitter, negative jitter and positive jitter. Negative

jitter is caused by late arriving packets, and early arriving packets lead to positive jitter. The

client buffer can eliminate positive jitter by caching the early arriving packets, while the effect

of negative jitter can be represented by the larger network delay, captured in RDelay. Hence,

we do not consider explicitly the effects of delay jitter in modeling MGUE.

Based on the above analysis and assumptions, we could reduce all the objective

factors to five impairment factors: Game genre played, VConfig used, source video PSNR,

network packet loss (PLoss), and gaming response time (RT). Thus MGUE can be formulated

as:

(, , , ,)MGUE F Game VConfig RT PSNR PLoss (2.3).

21

2.1.2 Quantitative Measurement of MGUE

Having decided model inputs (impairment factors in Equation 2.3), next we need

define a quantitative measurement metric for MGUE. In audio and video services, the most

widely used subjective quality assessment methodology is opinion rating, which is defined in

ITU-T Recommendation P.800 [P800]. In the subjective assessment tests, subjects are

instructed to rate their perceived quality of the services according to the following opinion

scales: 5(excellent), 4(good), 3(fair), 2(poor), and 1(bad). Subsequently, the arithmetic Mean

of all the collected Opinion Scores, MOS [P800], is used as the measure of QoE. Similarly, we

introduce a Game Mean Opinion Score (GMOS) as the measurement metric for MGUE, and

later in this chapter, go on to develop a parametric MGUE model to quantitatively measure

GMOS:

(, , , ,)GMOS F Game VConfig RT PSNR PLoss (2.4).

Since GMOS in Equation 2.4 is determined by 5 factors and its formulation can be a

complex function, we attempt to derive simple individual functions of each factor, similar to

the framework of ITU-T E-model [G107] for transmission planning. Although this E-model

was originally proposed for the audio transmission planning, the framework of transmission

rating factor R is helpful for any transmission planning because it makes the quality judgments

for good or better and poor or worse in a good statistical mapping, hence can be applied in our

study. The function of MOS formulated by R can be found in [G107]. We duplicate that

function for our GMOS formulation:

61 0.035 7 10 (60)(100)GMOS R R R R (2.5).

The R-factor ranges from 0 to 100 and is related to GMOS through a non-linear

22

mapping. We first derive MGUE model with only considering the individual effect of each

impairment factor, while the cross-effects of different impairment factors will be considered

and added into MGUE model later in section 2.3.3. The R-factor only considering the

individual effect of each impairment factor can be formulated as:

100 (if 100)

0 (if 100)

i i
i i

i
i

I I

R
I

 (2.6).

Ii is the impairment function for each impairment factor, which indicates the

individual impairment on MGUE of each impairment factor. As discussed earlier, Game genre

will determine the contributions of all the other factors in determining the MGUE. Therefore,

Game genre will be a parameter in every impairment function for each of the other four

impairment factors (VConfig, RT, PSNR, and PLoss). Based on above discussions, we

formulate the R-factor with individual impairment functions:

100 (,) (,)

 (,) (,)
C R

P L

R I Game VConfig I Game RT

I Game PSNR I Game PLoss

 (2.7).

IC includes the effect of the initial streaming video VConfig (resolution, frame rate); IR

indicates the impairment caused by Response Time; IP represents the impairment caused by

source streaming video quality PSNR; IL covers the impairment caused by Packet Loss. The

quality estimation Equations 2.5 and 2.7 indicate that GMOS can be evaluated by the Game

played, initial VConfig and measurable factors: RT, PSNR, and PLoss. In this section, we

have decided the MGUE model inputs based on some model assumptions, and introduced a

metric GMOS as a measure for MGUE. Then we have derived the quality estimation

equations of MGUE model and introduced its impairment functions. In the next section, we

23

will derive the impairment functions in quality estimation Equation 2.7 to complete MGUE

model.

2.2 Deriving Impairment Functions

In this section, we describe the approach we use to derive the impairment functions, IC,

IR, IP, and IL. As a first step, we set up a controlled test environment, where each of the factors,

VConfig, RT, PSNR, and PLoss, can be varied independently without affecting the settings of

the other factors. Next, we conduct a series of MGUE subjective tests using a study group,

where each test constitutes playing a game under a particular setting of one of the factors.

Each study group participant provides an assessment of his/her gaming experience for each

subjective test using a GMOS score. Base on our experiment results and regression analysis,

we can derive the impairment function for each impairment factor. We start by describing the

subjective testing process. Next, we describe how we derive the impairment functions to

complete the MGUE model.

2.2.1 Subjective Quality Assessment Experiments

To study the effect of each of the factors on MGUE, we conduct a group of subjective

quality assessment experiments. Figure 2.3 shows our experiment test bed. We connect the

mobile device, which will be used by the study group participants, to a CMG server, directly

via a network emulator, which we can use to control the network RDelay and PLoss. The user

perceived RT is measured by a network probing mechanism introduced later in section 2.3.1,

and we vary the RT by changing the RDelay via network emulator. The VConfig is varied by

changing the resolution and frame rate settings in the video encoder. Similarly, the PSNR of

source video is varied by appropriately changing the compression QP of the video encoder

24

used by the CMG server. Table 2.1 shows the parameters of different factors that have been

used in the subjective quality assessment experiments.

The study group was comprised of 25 students and staff at UCSD, who have prior

experience of playing the selected games. Each study group participant played each of the

three games under a certain test condition using the experimental parameters in Table 2.1, and

provided assessment of their MGUE using a GMOS score rating system shown in Table 2.2.

Finally, the results of the study group were tabulated for further analysis and derivation of the

impairment functions.

2.2.2 Deriving Impairment Function IC

To determine IC, we consider the results of the subjective tests where only the Game

and VConfig are changed, keeping all the other three factors at their best values, such that

there is no impairment caused by them. For a given Game type, and a VConfig, we get the

average GMOS score of all the participants, and use it to get the value of R from (5), and

subsequently the value of IC using (7), where the other impairment functions IR, IP and IL are

Figure 2.3. Test bed of subjective quality assessment experiments.

25

all 0 (as they do not cause any impairment). Table 2.3 shows the values of IC for each of the

VConfig used for each Game type. When adjacent two or more frame rates have close

Table 2.1. Experimental parameters of subjective quality assessment experiments.

Game (Type) WoW(MMORPG), NFS(Racing), PES(Sports)

VConfig
Resolution VGA, QVGA

Frame Rate [25:2:17], [15:1:5]

RDelay (ms) [0:40:800]

PSNR (dB) [26: 0.5: 38]

PLoss (%) 0, 0.5, 1, 2, 3, 4, 6, 8

Table 2.2. GMOS ratings and “R” values.

GMOS R Description

4.5—5.0 100 Excellent game, no impairment at all

4.0—4.5 80-100 Minor impairment, will not quit game

3.0—4.0 60-80 Impairment noticeable, might quit the game

2.0—3.0 40-60 Clearly impairment, usually quit the game

1.0—2.0 0-40 Annoying environment, definitely quit.

Table 2.3. Value of IC in VGA resolution.

Game 25-16 15-13 12-11 10-9 8-7 6-5

WoW VGA 3 3 8 14 25 41

QVGA 10 10 16 23 35 54

NFS VGA 0 0 7 15 26 51

QVGA 3 3 10 18 28 53

PES VGA 0 3 10 28 46 72

QVGA 5 7 17 32 51 70

26

subjective GMOS score, we group them together (as their impacts on user experience are very

close). For instance, for all three games, game users can hardly feel differences if we vary the

frame rate from 25 to 16. Therefore there is only one average value of IC of frame rate 25 to 16

for each game in different resolutions. It should also be noted that we did not study the MGUE

where frame rate is below 5. One reason is that if frame rate is 5, user experience GMOS will

drop below 3.0, where users cannot accept the gaming quality. Therefore, it is less necessary

to study the user experience of frame rate below 5. Another important reason of not studying

frame rate below 5 is related to the delay DF in Response Time (RT). As discussed earlier,

frame rate also affects the factor RT by DF. When the frame rate is high, DF is low, and thus

cannot be felt by user. However when frame rate is below 5, the average DF will be over

100ms. The experiment results of RT in next sub-section will show that such kind of delay

will affect user perceived gaming experience, which we do not want happen in the derivation

of IC.

The impairment function IC in Table 2.3 indicates how much the impairment of

VConfig affects the user perceived quality. From Table 2.3, we find that all three games are

not sensitive to changes in frame rate from 25 to 15. When frame rate is below 15, game PES

is more sensitive to the frame rate than the other two games. For example, the impairment of

VConfig (IC) in game PES jumps over 40 at the frame rate of 8, while it is still around 30 in

game WoW and NFS at the same frame rate. Regarding to the resolution changes, game WoW

demands high resolution as the value of IC increases dramatically (and hence MGUE suffers)

while the resolution is reduced from VGA to QVGA. However, it seems that quality of the

game NFS and PES are not affected significantly by the video resolution reduced from VGA

to QVGA.

27

2.2.3 Deriving Impairment Function IR, IP, IL

To determine IR, we use the results from the subjective tests, where only RT is varied

and all the other factors are kept at their best values. As expected, the GMOS score goes down

when the RT increases in all three games. As an example, Figure 2.4 shows the GMOS

scoring by the study group for the game WoW. For each game genre, we define two delay

points, T1 and T2. T1 denotes the RT when the GMOS score starts to decrease below 4.5

(R=100), and T2 denotes the RT where GMOS hits 3.1(R=60). Then T1 and T2 divide RT into

three segments. In the first segment (T1> RT), GMOS keeps at a constant value of 4.5, which

implies the user experience remains unimpaired. Therefore, for this segment, the value of

impairment function IR should be 0. In the second segment (T2> RT >T1), GMOS decreases

from highest 4.5 to 3.1 (minimum acceptable GMOS), while R-factor decreases from 100 to

60, which implies the value of IR increases from 0 to 40. After T2, the value of IR keeps

increasing from 40 with a slower slope, denoted by 　. We have tried several function models

for regression analysis to derive the function of IR. Based on the experiment results of

RT (ms)

G
M

O
S

T1 T2

Figure 2.4. Subjective test results of RT versus GMOS for WoW.

28

regression analysis, the linear function as shown in Equation 2.8 is a simple and accurate

model.

1

1 2 1 2 1

2 2

0 (0)

40 [() / ()] ()

40 () ()
R

T RT

I RT T T T T RT T

RT T RT T

 (2.8).

Similarly, to derive the impairment function IP, we analyze the GMOS scores of the

corresponding subjective tests (where only PSNR is varied, keeping other factors at their best

values). We notice similar trends like displayed by the Delay factor, except that the GMOS

score increases while increasing PSNR. We derive IP as:

1 1

2 2 1 2 1

2

40 () (0)

40 [() / ()] ()

0 ()
P

P PSNR P PSNR

I P PSNR P P P PSNR P

PSNR P

 (2.9).

From the subjective tests corresponding to PLoss, we see a different trend on how it

affects user experience. We notice that even low packet loss rate tends to affect the quality and

smoothness of the video received by the end device and perceived by the subject. And

increasing PLoss will lead to a continuous drop in GMOS. Similar to the derivation of IR and

IP, we have tried several function models for regression analysis to derive the function of IL.

Based on the experiment results of regression analysis, the linear Equation 2.10 is an accurate

model to estimate the effect caused by packet Loss:

LI PLoss (2.10).

The values of T1, T2, P1, P2, and coefficients andshown in Table 2.4, are

determined by applying (8) (9) (10) to the subjective test results. This completes the derivation

of the impairment functions in Equation 2.7.

29

Equations 2.5-2.10, together with the Tables 2.3 and 2.4 provides the complete

MGUE model, which can be used to quantitatively measure the quality of gaming experience

over mobile wireless networks using the CMG approach. Note that the values in Tables 2.3

and 2.4 apply to the three game genres considered in this study. However, they can be easily

extended to other game genres by repeating the approach (subjective study, regression analysis)

outlined in this section.

2.3 MGUE Prototype, and Model Validation and

Enhancement

In this section, we first introduce a software MGUE prototype for measuring the

factors and calculating the corresponding GMOS score during live CMG sessions. Next, we

validate the accuracy of the MGUE model by conducting another set of subjective

experiments. Then we go on enhancing the accuracy of MGUE model with considering cross-

effects of impairment factors.

Table 2.4. The value of variables in MGUE model for three different games.

Game T2 T1 P2 P1

WoW 0.05 5 8 560 240 34 30

NFS 0.08 6 13.5 440 200 33 29

PES 0.12 9 20 360 200 36 33

30

2.3.1 MGUE Prototype: Measuring Impairment Factors and Calculating

GMOS

We have developed a client-server software MGUE prototype to automatically

measure the objective factors (RT, PSNR, and PLoss) during a mobile gaming session, and

calculate the corresponding GMOS score, using the MGUE model.

We first design a network probing mechanism that can help CMG server to obtain the

client delay DC and measure server queuing delay DS, network RDelay, and network PLoss.

The CMG server periodically sends a UDP probe to the mobile client (5 probes a second),

which includes the probe send out time and probe sequence number. Once mobile client

receives a probe, it puts the information of its buffering and decoding delay DC, into the

received probe, and sends it back to the server through the TCP connection. The difference of

probe send out time and receive time can indicate the current network round-trip delay RDelay

and server queuing delay DS. And the packet loss rate PLoss can be calculated by checking the

received probe sequence number.

Simultaneously, we let CMG server measure the source video PSNR, rendering delay

DR, encoding delay DE, and frame interval DF. With the RDelay, DS, DC obtained from the

network probing mechanism, and DR, DF, DE measured by CMG server, we can calculate the

response time RT at the server side (as we have all the parameters in Equation 2.2).

The above design allows CMG server to real-time simultaneously obtain RT, PSNR,

and PLoss. And with the additional information of VConfig, CMG server is able to calculate

GMOS score in real time during a CMG session, by using (5) - (10), and the values of IC

(Table 2.3) and T1, T2, P1, P2, (Table 2.4) as appropriate for the type of Game being

played. In the MGUE prototype, the client need to measure its decoding delay which can be

obtained directly from the video player installed on the mobile client. Besides, the client will

31

just forward back the probe packets sent from server. Therefore, the computing load added by

MGUE prototype is extremely small (less than 0.01 percent per our test), such that it can be

neglected.

2.3.2 MGUE Model Validation

Whereas the impairment functions of MGUE model is estimated using test results

where only one factor is varying, the accuracy of the MGUE model needs to be validated by

conducting another set of controlled experiments considering the effect of simultaneously

varying all the factors. We use the same experimental framework as deriving the impairment

functions, but a different study group consisting of 15 participants. As opposed to testing the

effect of individual factors, we conduct 267 subjective tests where all the factors are varying

randomly. It should be noted that during some of the validation tests, we also vary server and

client utilization to introduce server and client delay. These tests will demonstrate that the way

we estimate the impairment function of RT and the RT relation Equation 2.2 are correct.

Figure 2.5 shows the relationship between the MGUE scores predicted by the MGUE model

(x-axis) and the subjective (average) GMOS score by the participants (y-axis). The correlation

between predicted and subjective user experience is 0.917. This result demonstrates the

Figure 2.5. Relationship between predicted and subjective GMOS.

32

accuracy of our MGUE model in quantitatively measuring the Mobile Gaming User

Experience of a user, given the Game, video configure VConfig used, video PSNR, and RT

and Packet Loss experienced during the gaming session.

2.3.3 Enhancing MGUE Model by Cross-effect Functions

The above validation results demonstrate that MGUE model derived in section 2.2 has

a good accuracy in predicating user perceived gaming quality. However, our further analysis

on validation results discovers that the MGUE model developed in section 2.2 could perfectly

predict GMOS when we only vary one factor but it is not very accurate in predicting GMOS if

two or more factors are varied at the same time. Figure 2.6(a)(b) present the differences of

validation results of game WoW between varying one factor and varying several factors. The

correlation of predicted and subjective GMOS is 0.965 in Figure 2.6(a), while it is only 0.887

Figure 2.6. Correlation of predicted and subjective GMOS: (a) (b) (c) without cross-effect

functions; (d) (e) (f) with cross-effect functions.

33

in Figure 2.1(b). Though the overall correlation is good (0.918) as shown in Figure 2.6(c), we

believe the accuracy of MGUE can be potentially enhanced if we could address the problem in

predicting GMOS when several factors vary simultaneously.

The main reason for the above problem is that we are not taking into account the

cross-effects of impairment factors when deriving Equation 2.6. Obviously, the overall

impairment of several factors is not exactly the same as the total of the individual impairments

of all the factors, though it is related to them. For example, the impairment of 300ms RT and

2% PLoss is different (worse or better) than the total of individual impairment of 300ms RT

and individual impairment of 2% PLoss. This difference is distinct especially when individual

impairments of two or more factor are significant. To improve our MGUE model, we need to

develop cross-effect functions and add them to Equation 2.6. Equation 2.11 below is the

enhanced equation for R-factor considering cross-effects of impairment factors:

100 (,) (, ,) ... (100 0)i ij i j ijk i j k
i i j i j k

R I f I I g I I I R

 (2.11),

where (,)ij i jf I I denotes the cross-effects of two impairment factors, while

(, ,)ijk i j kg I I I denotes cross-effects of three impairment factors. More the impairment factors

used, more cross-effect functions Equation 2.11 will have. However, the MGUE model would

be very complex if we consider all kinds of cross-effect functions. Considering the feasibility,

we decide to use only pair wise cross-effect functions (,)ij i jf I I . Thus the enhanced equation

for R-factor is:

100 (,) (100 0)i ij i j
i i j

R I f I I R

 (2.12).

We have trained the model for R (Equation 2.12) with many different types of

34

functions for (,)ij i jf I I , including ()n
i jI a I , n m

i jI I , and ()n
i jI a Ie . We finally selected the

function below (Equation 2.13), because the predicted GMOS scores using this function have

the highest correlation with subjective scores obtained from our validation experiments:

(,)ij i j ij i jf I I k I I (2.13).

The coefficients kij can be determined by applying Equation 2.13 to the validation test

results. As a result, Equations 2.14-2.16 are the enhanced equations of R-factor for game

WoW, NFS, and PES respectively:

1

100 0.05 0.42 0.10

 0.08 0.15 0.67

n

i C R C P C L
i

R P R L P L

R I I I I I I I

I I I I I I

 (2.14).

1

100 0.05 0.30 0.36

 0.06 0.13 0.76

n

i C R C P C L
i

R P R L P L

R I I I I I I I

I I I I I I

 (2.15).

1

100 0.02 0.24 0.12

 0.11 0.34 0.62

n

i C R C P C L
i

R P R L P L

R I I I I I I I

I I I I I I

 (2.16).

Figure 2.6(d)(e)(f) present the prediction results of using enhanced Equation 2.14 for

game WoW. The correlation of predicted and subjective GMOS has been greatly improved,

from 0.887 (Figure 2.6(b)) to 0.946 (Figure 2.6(e)), for the tests where two or more factors are

varied. This leads to an improved correlation of total validation results which reaches as high

as 0.955 (Figure 2.6(f)), as opposed to only 0.918 (Figure 2.6(c)) without using cross-effect

functions.

35

2.4 Measuring MGUE in a Mobile Cellular Network

We have also applied enhanced MGUE model (section 2.3.3) and MGUE prototype

(section 2.3.1) to measure MGUE in real wireless mobile networks. This will also help assess

the feasibility and challenges of employing cloud mobile gaming to deliver desired gaming

experience in today's mobile wireless networks. The experiments are conducted with a

commercially available mobile cellular network. The game server is located in the UCSD

campus, while the mobile game is played on a mobile device in four different scenarios:

outdoor locations, indoor locations with poor coverage (low Carrier Interference Noise Ratio

(CINR)), mobility conditions, and the conditions when cloud server is over-utilized. All three

games (genres) and various video settings are used during the testing. Figure 2.7 shows a

representative sample of the data (RT, PLoss, PSNR, and GMOS score) collected from

numerous gaming sessions in the mobile cellular network in each of the four scenarios. We

make the following observations from our experiments:

1) In outdoor locations, we stream the gaming video at 600kbps data rate, as this is

sufficient to ensure very good source video quality (PSNR). The experiments are conducted in

both midnight and noon during a day. As presented in Figure 2.7(a), CMG approach can

provide the minimum acceptable MGUE (GMOS>3.0) but not very good MGUE (GMOS>4.0)

at most times. This is mainly due to the high response time caused by round-trip network

delay. As the gaming server is not located in mobile network system, gaming video has to be

delivered via multiple hops and routes, including core network back-haul, carrier Ethernet, and

wireless access link. Moreover, the gaming commands need to be sent from the mobile device

to the server. Therefore, it is challenging to satisfy low response time, and thereby achieve

high QoE, using current CMG approach and network architecture. It might be worthwhile to

investigate the approaches to reduce this round-trip delay by deploying the gaming servers in

36

the wireless carrier network close to the base stations, as opposed to in the Internet cloud.

From the results presented in Figure 2.7(a), we also notice that the user perceived GMOS

varies during a day. For example, the average response time during noon is higher than during

less busy midnight, leading to a relatively low GMOS score. In addition, the GMOS score

during noon has occasional drops to less than 2.0 at times due to the severe packet losses

experienced occasionally.

2) In indoor and in mobility conditions, we test with the gaming video streaming at

two data rates: 600kbps with high source video quality as the outdoor test, and 400kbps with

reduced source video quality. Figures 2.7(b) and (c) present sample results tested in both data

rates. When we stream the gaming video at high data rate (600kbps), CMG approach cannot

provide stable MGUE in both conditions, though GMOS score can reach above 3.0 during

Figure 2.7. Test results for game WoW with video settings [VGA and 15 frames per second]

in a mobile cellular network.

37

brief periods in the mobility conditions. This unacceptable user experience is mainly caused

by limited network bandwidth in the indoor and mobility conditions, where the wireless RF

link quality can be poor or unstable at times. Unexpected network delay and packet loss will

happen, as the wireless channel cannot provide adequate bandwidth for high data rate video

streaming application. In contrast, when we stream the gaming video at 400kbps, though video

quality is degraded a little at this data rate, the MGUE is more stable and overall better than

the MGUE in high data rate (600kbps). The above results show the ability of our MGUE

model to capture the networking impairments during cloud mobile gaming sessions on a live

mobile wireless network, and provide feedback on the overall quality of user experience,

considering the tradeoffs between source video quality impairments, and network impairments.

The ability to quantitatively measure the overall user experience under different conditions

may help in developing techniques to effect the right tradeoffs between different objective

factors and improve user experience during cloud mobile gaming sessions.

3) We also conducted experiments to understand the effect of server

utilization/overloading on the user experience during cloud mobile gaming sessions using our

MGUE model. As we mentioned before, when cloud gaming server is over-utilized, the

rendering delay DR and encoding delay DE will increase. In the meanwhile, the generated

frame rate will dramatically decrease, which will affect IC (Table 2.3) and DF, thus leading to a

deteriorating MGUE. As shown in Figure 2.7(d), the CMG approach cannot provide

acceptable MGUE when the server computation resource is over-utilized, mainly due to the

high response time and low frame rate. Like in the case of networking artifacts, the above

results show the ability of our MGUE model to capture server related impairments in cloud

mobile gaming user experience, which can be potentially used in the future to develop

38

techniques to appropriately schedule gaming sessions to cloud servers to minimize the server

delays and reductions in rendering frame rates.

2.5 Conclusions

In this chapter, we develop and validate a Mobile Gaming User Experience (MGUE)

model, to quantitatively measure user perceived gaming experience in the CMG approach. We

also develop a MGUE prototype measurement tool to enable in-network monitoring of MGUE.

Consequently, we measure and analyze the performance of the CMG approach in a mobile

cellular network. Our analysis shows that while it is possible to achieve good quality gaming

experience over mobile wireless networks, there are several network conditions in which

MGUE may be incompatible/unacceptable. We suggest the investigation of possible solutions

that may lead to significant improvement in user experience achieved by the CMG approach.

The MGUE model discussed in this chapter can be potentially used by researchers to assess

the performance of new CMG techniques, and by future mobile gaming service providers,

including network operators to better plan and optimize their CMG services as well as monitor

in-network the user experience of their mobile gaming subscribers. We also believe that the

approach used to develop the MGUE model outlined in this chapter can be useful to develop

QoE models for other new mobile cloud computing based interactive multimedia applications,

such as virtual and augmented reality.

The text of this chapter, in part or in full, is based on material that has been published

in ACM Mobile Computing and Communications Review (MC2R) (S. Wang, S. Dey, “Cloud

Mobile Gaming: Modeling and Measuring User Experience in Mobile Wireless Networks,”

ACM SIGMOBILE MC2R, Jan. 2012) and material published in IEEE Global

39

Communications Conference (Globecom) (S. Wang, S. Dey, “Modeling and Characterizing

User Experience in a Cloud Server Based Mobile Gaming Approach,” IEEE Globecom,

Honolulu, Dec. 2009). The dissertation author was the primary researcher and author in the

publications, and the coauthors listed supervised the research that forms the basis of this

chapter.

40

Chapter 3

Application Adaptation techniques to

Address Wireless Communication and

Cloud Computation Constraints in

Cloud Mobile Gaming

To address the communication constraint imposed by the fluctuating and limited

bandwidth of the mobile network and the computation constraint imposed by cost and

availability of cloud servers, in this chapter we develop several application-adaptation

techniques, including a dynamic game rendering adaptation and a joint rendering and

encoding adaptation technique. With the help of these adaptation techniques, we can adapt the

CMG application communication and computing needs to protect quality of service against

dynamic variations of mobile network bandwidth and cloud server utilization. Experiments

conducted on a commercial mobile network demonstrate that our proposed adaptation

techniques can significantly improve user perceived mobile gaming experience, and ensure the

41

scalability of the CMG approach in terms of both network bandwidth and server computing

needs , thereby ensuring the feasibility of the Cloud Mobile Gaming approach.

3.1 Introduction

Though the CMG approach promises to enable mobile users to play rich Internet

games on any mobile device without having to download the game engines, two fundamental

questions arise. Firstly, how good will the user experience be using the CMG approach,

considering (a) unlike conventional PC Internet game, gaming video will have to be streamed

from the cloud servers to the mobile devices through the wireless networks (as opposed to

games rendered on the devices themselves), and (b) unlike conventional mobile video

streaming/download, CMG is a highly interactive application, where round-trip latency will

have to satisfy stringent response time requirements of gaming [WDA10][TLL07][CC06]

[JVC03][QML04]. Secondly, how scalable the CMG solution can be, given that (a) compute

intensive 3D rendering tasks for each concurrent gaming user will need to be performed

simultaneously on the computing servers, and (b) streaming all the game video for each user

to his/her mobile device may consume significant back-haul and wireless network bandwidth.

In other words, there are two challenges for CMG approach: 1) communication constraint in

terms of limited and fluctuating mobile network bandwidth [BLB06][LSM08], which can

cause unexpected delay and packet loss, leading to undesirable increase in response time,

besides adverse impact on the quality of the video streamed; 2) computation constraint

reflected by the CMG server computing resource available for each gaming client, considering

that the CMG cloud servers will have to host numerous clients at the same time. It is vital to

address the above two constraints for the success of the CMG approach, as both of them are

42

closely associated to the perceived gaming experience of each user and the scalability of CMG

approach.

In this chapter we develop a dynamic game rendering adaptation and a Joint

Rendering and Encoding Adaptation (JREA) technique, to address the communication

constraint of wireless networks and the computation constraints of CMG servers. The

proposed dynamic game rendering adaptation can vary the graphic rendering settings to adapt

communication/computing needs of a CMG session, thereby addressing both communication

and computation constraints. However, though our experiments we realized that it is not

sufficient to provide acceptable gaming quality in several circumstances if only applying our

proposed rendering adaptation technique. Therefore, we develop a Joint Rendering and

Encoding Adaptation algorithm which integrates the proposed rendering adaptation technique

and traditional video encoding adaptation technique, and simultaneously leverages both of

them to address the constraints of the CMG approach, such that the aggregated Mobile

Gaming User Experience (MGUE) of the CMG approach is maximized.

Section 3.2 compare our techniques with previous related work. In section 3.3, we

explain the principle of rendering adaptation and provide an overview of the detailed

methodology of adaptation techniques in section 3.4. The experiment results presented in

section 3.5 demonstrate the success of our proposed adaptation techniques in ensuring high

MGUE while addressing both the computation and communication constraints, and hence the

scalability of the CMG approach. We summarize our findings and conclude our work in

section 3.6.

43

3.2 Related Work

Several approaches have been developed to model the computation cost of graphic

rendering [TML+04][WW03][RLS+02]. However they do not study the impact of rendering

parameters on communication bandwidth, which is an important objective of CMG approach.

There have also been several adaptive rendering techniques [SM99] [NRL+04] [MPL+J07]

[MPL+C07] to address the costs associated with rendering on clients in client-server

architectures. These techniques attempt to adapt the complexity of the rendering objects,

depending on the bandwidth of the communication link and the computational capability of

the clients. The lower complexity of the objects, the less rendering cost at the client, and also

the less communication bandwidth needed to transmit the objects to the client. However, in

the CMG approach, where rendering is performed by CMG servers and not clients, the

computation cost can be affected by adapting the rendering tasks themselves, as proposed in

our approach, with much more impact than just by adapting the complexity of graphic objects.

Moreover, the communication bandwidth cost in the CMG approach is determined by the

game video that needs to be streamed from the CMG servers to the clients, and not the size of

the rendering objects as in the traditional client-server architectures. Hence, the above

approaches [SM99][NRL+04][MPL+J07][MPL+C07] are sub-optimal to address CMG

computation constraint, and not applicable to address the CMG communication constraint.

There have been many video bit rate and encoding adaptation techniques that have

been developed and used for live video streaming and video conferencing applications

[CV05][SMW07]. However, these video encoding adaptation techniques, depending on the

application scenarios and requirements, rely on adapting two parameters, video quality and

frame rate. For instance, in the case of live (real-time) video streaming, video encoding

adaptation techniques [WCG+07][BSW+07] can compromise video quality as needed because

44

users typically have some tolerance towards quality degradation. In the case of video

conferencing, video adaptation techniques [CSW+11][CSH+08] mainly use frame rate

adaptation to meet the network constraints as typical video conferencing scenarios involve low

motion video. Unfortunately, video streaming in the case of Cloud Mobile Gaming has more

challenging requirements, needing both high video quality and high frame rate, and hence the

existing video adaptation techniques may not be sufficient to address network communication

constraints. In our previous work [WDA10], we proposed a game aware video encoding

adaptation technique, which derives the optimal video encoding settings for different types of

games by analyzing the effects of different video encoding parameters, including video quality

and video frame rate, on MGUE. Though we have demonstrated that using the optimal video

encoding settings [WDA10] can minimize the impairment on MGUE when adapting the video

bit rate, it is not able to provide acceptable MGUE under severe network constraints, as shown

in experiment results (Figure 3.10(d)) in section 3.5.1. In addition, the video encoding

adaptation techniques [CV05][SMW07][WCG+07][BSW+07][CSW+11][CSH+08][WDA10]

do not address the problem of server computation constraint, which is another important

objective of CMG approach.

There have also been several applications that are designed for desktop sharing, like

windows Remote Desktop Service (RDS) and Virtual Network Computing (VNC), which can

potentially be used for CMG. However, similar to video conferencing, these desktop sharing

applications mainly use frame rate adaptation to meet the network constraints, as they are

mainly designed for remote computer control and hence can afford to have video streamed at

much lower frame rate. Consequently, such desktop sharing applications cannot be adopted

for CMG which is a motion sensitive application and hence cannot compromise on video

frame rate.

45

In summary, CMG has the most stringent requirements: need to support high video

quality and high sensitivity to video frame rate, and the existing video adaptation techniques

for live video streaming [WCG+07][BSW+07], video conferencing [CSW+11][CSH+08], and

desktop sharing applications (RDS and VNC) are not able to address these stringent

requirements to produce desired user experience. Hence, in this chapter we propose an

approach to dynamically adapt the video source itself, graphic rendering which generates the

gaming video, which can significantly impact the encoding bit rate of the resulting video,

without compromising video frame rate or frame quality. Adapting the content source itself

has not been attempted, and may not be possible to do, for live video streaming or video

conferencing. We furthermore propose a joint adaptation between content source (here

rendering) and video encoding, to address mobile network and server computing constraints,

which again has not been attempted before to the best of our knowledge.

3.3 Overview of Application Adaptation Approach

In this section, we first give a brief introduction to the principles of the innovative

rendering adaptation. Next, we provide an overview of our proposed rendering adaptation

approach, including the different offline and online steps involved, and explain the novelty

and feasibility of the approach.

3.3.1 Principles of Rendering Adaptation

Figure 3.1 shows the primary stages of graphics pipeline in modern GPU. All the

graphic data for one frame is first cached in a display list. When a display list is executed, the

data is sent from the display list as if it were sent by the application. All the graphic data

(vertices, lines, and polygons) are eventually converted to vertices or treated as vertices once

46

the display list starts. Vertex shading (transform and lighting) is then performed on each

vertex, followed by rasterization to fragments. Finally the fragments are subjected to a series

of fragment shading and raster operations, after which the final pixel values are drawn into the

frame buffer. To best present a geometric object, graphic rendering usually applies texture

images onto the object, so as to make it look more realistic. The texture images are usually

pre-calculated and stored in system memory, and loaded into GPU texture cache when needed.

Each of the above rendering stage is configurable by a set of rendering parameters. The term

“rendering setting” is usually used to denote a tuple of values used for these rendering

parameters. We next describe the Communication Complexity (CommC) and Computation

Complexity (CompC) associated with each rendering setting in CMG.

The Communication Complexity (CommC) of a rendering setting denotes the level of

how much the bit rate is needed to deliver CMG video with this rendering setting. While the

video bit rate is determined by the video compression rate used, it is largely affected by the

video content complexity. Different rendering settings will lead to different content

complexities, thereby different communication complexities. To quantitatively measure

CommC, we define the value of CommC of a rendering setting as the ratio of the bit rate needs

Figure 3.1. Primary stages of graphic rendering pipeline.

47

of this rendering setting to the minimum bit rate need among all the possible rendering

settings, for the same game scene using the same video compression rate.

The Computation Complexity (CompC) of a rendering setting indicates the level of

how much GPU computation resource needed to render the game with this rendering setting.

Different rendering settings will lead to different computation complexities. The higher

CompC, the richer rendering graphics, and correspondingly the higher GPU utilization that

will be consumed by the game engine. Similar to quantifying CommC, we define the value of

CompC of a rendering setting as the ratio of the GPU utilization using this rendering setting to

the minimum GPU utilization of all possible rendering settings, under the same game scene.

We next propose two key principles how rendering adaptation can be used to affect

CommC and CompC. The first principle is to reduce the number of objects in the display list,

as not all objects in the display list created by game engine are necessary for playing the game.

For example, in the Massively Multiplayer Online Role-Playing Game (MMORPG), a player

mainly manipulates one object, his avatar, in the gaming virtual world. Many other

unimportant objects (e.g. flowers, small animals, and rocks) or far way avatars will not affect

the user playing the game. Removing some of these unimportant objects in display list will not

only release the load of graphic computation but also reduce the video content complexity, and

thereby CommC and CompC. The second key principle for rendering adaptation is related to

the complexity of rendering operations. In the rendering pipeline, many operations are applied

to improve the graphic reality. The complexities of these rendering operations directly affect

CompC. More importantly, some of the operations also have significant impact on content

complexity, and thereby CommC, such as adjusting texture detail. If we can scale these

operations, we will be able to scale CommC and CompC as needed.

48

3.3.2 Overview of Proposed Application Adaptation Approach

We have explained the rendering adaptation principles that can change the video

content complexity and GPU rendering complexity to scale the video bit rate needed and

server computation needed. As will be shown in section 3.4, both the rendering adaptation

principles can be affected by selecting appropriate rendering settings. In this section, we give a

brief overview of our proposed rendering adaptation approach, which will dynamically select

an optimal rendering setting with proper CommC and CompC to ensure video bit rate needed

and server computation needed meet current available network bandwidth (communication

constraint) and server computing resource (computation constraint). However, since the

number of different rendering settings possible may be very large, finding the optimal

rendering setting for a given communication and/or computation constraint may be time

consuming. On the other hand, to be effective rendering adaptation should be performed in

real time in response to rapid changes in network and server conditions. To resolve the above

conflict, we propose to partition the rendering adaptation approach into two parts: offline and

online steps. The offline steps will characterize and pre-determine the optimal rendering

settings for different levels of CommC and CompC, thereby allowing the online steps to select

and vary the rendering settings in real time in response to the fluctuations of network and

server resources.

Figure 3.2 gives an overview of the proposed rendering adaptation approach which

involves the above mentioned offline and online steps. Details of each of these steps will be

provided in section 3.4. In the first offline step, rendering parameters are identified which can

affect the communication and computation complexities of the game. Subsequently, for each

possible rendering setting involving the selected parameters, CommC and CompC values are

derived. This will result in a complexity model, which is a mapping of CommC and CompC to

49

different rendering settings. Next, in the second offline step, several rendering levels are

selected, each of which reflects a certain CommC and a certain CompC. Then using the

complexity model, optimal rendering settings are derived that meet the CommC and CompC

targets of each rendering level, leading to a rendering levels model. During an online gaming

session, our adaptation technique can select in real time a proper rendering level and the

corresponding optimal rendering setting, using the rendering levels model. However, since the

mobile network bandwidth can vary very frequently, use of rendering adaptation alone may

lead to frequent varying of rendering levels, which is not desirable from a user experience

perspective. Therefore, we develop an online Joint Rendering and Encoding Adaptation

(JREA) algorithm, which addresses communication constraints by judiciously utilizing the

power of changing the video source through rendering adaptation, with large impact on

network bandwidth needed, together with adapting the video encoding bit rate to address

relatively small but frequent network bandwidth fluctuations. Since adapting encoding bit rate

Figure 3.2. Proposed rendering adaptation methodology: offline and online steps.

50

cannot affect computational constraints, rendering adaptation is used by itself to address server

utilization conditions.

Adapting both rendering and video encoding jointly will necessitate understanding the

optimal values of encoding bit rate or rendering level that can be used when encoding or

rendering is adapted respectively. More precisely, we will need to know the following: (a) for

each rendering level, the Minimum Encoding Bit Rate (MEBR) below which gaming video

quality will not be acceptable by game users, so the JREA algorithm can use MEBR without

affecting user experience, and (b) for each encoding bit rate used, what is the Maximum

CommC Rendering Level (MCRL), the rendering level which has the highest CommC while

its resulting video has minimum user experience impairment. In the third offline step, a joint

adaptation model is derived, which includes the mappings of MEBR to each rendering level

and MCRL to each encoding bit rate. Also shown in Figure 3.2 are the online steps.

Depending on the network and server conditions, JREA decides if the rendering level and

encoding bit rate level needs to be adapted. If either of them is changed, it will check the joint

adaptation model to decide if the other one needs to be changed correspondingly. If rendering

level is to be changed, it will select the optimal rendering setting based on rendering levels

model and update the game engine consequentially to effect the rendering level change.

3.3.3 Novelty and Feasibility of Proposed Application Adaptation

Approach

The proposed rendering adaptation approach has several significant contributions.

First, to the best of our knowledge, this is the first work which has proposed dynamic

adaptation of rendering as an effective way to adapt the rendered video to the fluctuations in

network and server utilization, opening up a completely new way of efficiently delivering

51

CMG video over wireless network. In addition, our work has extensively characterized how

the different rendering parameters affect CMG video communication and server computation

needs. The results and findings in this chapter will be very helpful for many other cloud based

rendering applications, like augmented reality and telemedicine. Furthermore, this chapter has

developed a joint adaptation technique which is also the first work attempting to link

rendering tasks to video encoding bit rate and exploiting the dependency of video bit rate to

rendering complexity.

In almost every 3D video game, game rendering parameters are designed to be

configurable by a game player corresponding to the capacity of the hardware platform the

player is using. Hence, in our proposed adaptive CMG approach, it should be easy to access

and use these rendering parameters for any subscribed game. While the rendering parameters

are set by individual game players manually and statically once for the hardware platform

used/game played, the novelty and contribution of our approach is developing automated and

dynamic rendering adaptation, using the same available parameters, to address dynamic

changes in network and cloud server utilization conditions, thereby enabling high quality and

bandwidth efficient Cloud Mobile Gaming. Also because these configurable rendering

parameters are recommended by the game developers, the variations on these rendering

parameters will not affect the game user to play the game though the richness of rendering

graphics may vary.

It should be noted that we recommend conducting the offline modeling steps for each

game individually. This is because the CommC and CompC of the same rendering parameter

could be different for different games mainly due to the design changes from game to game.

However, the variations of CommC and CompC in different gaming scenes of one game are

marginal, as we discuss in section 3.4.2. Therefore, the offline modeling for each game will

52

only need to be executed once, which makes our approach feasible and practical for

commercial implementation.

3.4 Rendering Adaptation Technique

We have given a brief introduction to the principles of game rendering and an

overview of our proposed rendering adaptation technique. In this section we will present the

detailed methodology of how we design and enable rendering adaptation for Cloud Mobile

Gaming, including three offline modeling steps and an online adaptation algorithm.

3.4.1 Adaptive Rendering Parameters and Adaptive Rendering Settings

The first thing in enabling dynamic game rendering adaptation in CMG approach is to

identify the adaptive rendering parameters. A game may have many different rendering

parameters, but only a few of them have the obvious impacts on the CommC or the CompC.

An adaptive rendering parameter p must be able to adapt at least one of CommC and CompC.

In general, a game may have k different rendering parameters. We use a k-dimension tuple s to

denote an adaptive rendering setting and use S to denote the set of all the possible adaptive

rendering settings of a game. The elements of s indicate the values of the adaptive rendering

parameters used in the adaptive rendering setting s:

1 2(, ,...,)ks p p p s S ， (3.1).

As discussed in section 3.3.1, reducing the number of objects in the display list or

reducing the complexity of rendering operations could lead to the decreases in CommC and

CompC. Based on this concept, we identify four common parameters which we believe are

suitable for rendering adaptation in most 3D games:

53

1) Realistic effect: Realistic effect basically includes four parameters: color depth,

anti-aliasing, texture filtering, and lighting mode. Each of the four parameters only affects one

stage of the graphic pipeline. Varying any one of them will only have an impact on one

special-purpose processor, which may not reduce the load on bottleneck processor. Thus when

we reduce/increase the realistic effect, we vary all four parameters to have a reduced/increased

CompC.

2) Environment detail: Many objects and effects (grass, flowers, and weather) are

applied in modern games, especially the RPG games, to make the virtual world look more

Figure 3.3. Screenshots of game “PlaneShift” in different settings of view distance and

texture detail (LOD).

54

realistic. However they are not really necessary for users playing the game. Therefore, we

could eliminate some of these objects or effects to reduce CommC and CompC if needed.

3) Texture detail: This is also known as Level of Detail (LOD). It refers to how large

and how many textures are used to present objects. The lower texture detail level, the lower

resolution the textures have. As shown in Figure 3.3(a)(c)(d), the surfaces of objects get

blurred as we decrease the texture detail. It is also important to be aware of that reducing

texture detail has a less impact on important objects (avatars and monsters) than unimportant

objects (ground, plants, and buildings), because the important objects in game engines have

much more textures than unimportant objects. Thereby we could leverage this information to

properly downgrade the texture detail level for less communication bit rate, while maintaining

the good visual quality of important objects.

4) View distance: This parameter determines which objects in the camera view will be

included in the resulting frame, and thereby should be sent to the display list for graphic

rendering. Figure 3.3(a)(b) compare the visual effects in two different view distance settings

(300m and 60m) in the game PlaneShift (PS), a cross-platform MMORPG game. Though

shorter view distance has impairments on user perceived gaming quality, the game will be still

playable if we properly control the view distance above a certain acceptable threshold. Since

the view distance affects the number of objects to be rendered, it has the impact on CompC as

well as the CommC.

3.4.2 Derivation of Complexity Model

Having defined adaptive rendering settings, we next introduce how to derive the

complexity model. For each game, k different test scenes are used to measure the average of

CommC and CompC for each rendering setting. Let SCENE denote the set of all k test scenes,

and let scenei denote each test scene. As we defined in section 3.3.1, in each scenei the value

55

of CommC and CompC of a rendering setting is the ratio of the bit rate need and computation

need of this rendering setting to the minimum bit rate need and computation need among all

the possible rendering settings. Therefore for each scenei, we first find out the lowest adaptive

rendering setting si
L, which has the minimum bit rate need and computation need among all

the possible rendering settings. We use GPU utilization to quantify the computation need. Let

BitRate(s,scenei) denote the bit rate need of rendering setting s in test scenei, and let ServUtil(s,

scenei) denote the server utilization of s in test scenei. Then for a set of test scenes, the average

CommC and CompC of rendering setting s can be calculated by Equations 3.2 and 3.3:

1

(,)1
() ()

(,)

k
i

iL
i i i

BitRate s scene
CommC s scene SCENE

k BitRate s scene

 ， (3.2),

1

(,)1
() ()

(,)

k
i

iL
i i i

ServUtil s scene
CompC s scene SCENE

k ServUtil s scene

 ， (3.3).

Having defined the CommC and CompC, given a game and its possible adaptive rendering

settings, we could conduct offline experiments to measure CommC and CompC for each

rendering setting to complete the complexity model for this game. We next use game PS as an

example to explain our modeling approach in details, where we have elaborately studied how

different rendering settings affect the CommC and CompC. Subsequently, we also have

studied the impacts on CommC and CompC when video encoding setting, or video resolution,

or server GPU is changed. This will help to demonstrate that the key concept that

communication complexity and computation complexity can be affected by different

rendering settings is broadly applicable, no matter what kind of video resolution or video

encoding setting, and no matter what kind of graphic GPU is used.

56

Four adaptive rendering parameters are selected (corresponding to the adaptive

rendering parameters introduced in section 3.4.1) for game PS. Table 3.1 shows the settings

used for these four rendering parameters. Then we conduct experiments to measure the

CommC and CompC for every possible rendering setting s using the settings of parameters in

Table 3.1. The experiments are conducted on a desktop server which integrates a NVIDIA

Geforce 8300 graphic card. Video resolution used is VGA. The video codec used is X264, and

its encoding method is set to Variable Bit Rate (VBR). The Quantization Parameter (QP) is 25,

while the encoding frame rate is 15fps and the size of Group of Pictures (GOP) is 30. We have

randomly selected 20 different gaming scenes. In each test scene, for each rendering setting s,

we let the game avatar roam in the gaming world along the same route. We measure the

average compressed video bit rate and GPU utilization in each experiment test are measured

and tabulated during the test. After all the experiment tests are completed, we calculate the

average CommC and CompC for each rendering setting over all the test scenes by the

Equations 3.2 and 3.3, and tabulate the results for the next offline modeling step.

Table 3.1. Adaptive rendering parameters and experiment settings.

Parameters Experiment Values

Realistic Effect H(High) M(Medium) L(Low)

 color depth 32 32 16

multi-sample factor 8 2 0

texture-filter factor 16 4 0

lighting mode Vertex light Lightmap Disable

Texture Down Sample Rate (Texture Detail) 0, 2, 4

View Distance (meter) 300, 100, 60, 40, 20

Enabling Grass (Environment Detail) Y(Yes), N(No)

57

Figure 3.4 shows some representative data points from the experimental results. For

each adaptive rendering parameter, we first present the sample results of CommC and CompC

in two figures respectively. In each of these two-figures, each plot represents a rendering

setting where only one of the rendering parameters is varied (marked by “X” in the associated

setting), while keeping the other parameters to the fixed values shown in the rendering setting

tuple. We also show the absolute error distribution and standard deviation of CommC and

CompC values obtained for different test game scenes used, when only one rendering

parameter is varied while the other parameters are kept to the minimum values. From Figure

3.4, we have the following observations:

1) Realistic effect has a great impact on CompC. But it affects CommC very little,

because the realistic effect has little impact on content complexity of game video. The

standard deviations of CommC and CompC, when only changing realistic effect among 20 test

scenes, are 0.027 and 0.0936. This infers that variations of CommC and CompC among

different gaming scenes are relatively marginal if only varying realistic effect.

2) The impacts of enabling environment details on CommC and CompC are limited

(up to 9%), and the standard deviations of CommC and CompC are also marginal, mainly

because the effect of environment details in game PS is very simple such that varying

environment details only has slight impacts on frame content complexity and computation

complexity.

58

0 2 4
Texture Down Sample Rate

0 2 4
Texture Down Sample Rate

C
om

p
C

High Medium Low

Realistic Effect Level

High Medium Low

Realistic Effect Level

C
om

m
C

3

2

1

C
om

p
C

4

3

2

1

S(X, 0, 100, N)

S(X, 0, 60, N)

S(X, 2, 300, N)
S(X, 0, 100, N)

S(X, 0, 60, N)

S(X, 2, 300, N)

S(H, X, 100, N)

S(M, X, 40, N)

S(H, X, 100, N)

S(M, X, 40, N)

S(L, X, 20, N)

S(H, 0, X, N)

S(L, 0, X, N)

S(M, 2, X, N)

S(H, 0, X, N)

S(M, 2, X, N)

S(L, 0, X, N)

S(L, X, 20, N)

Absolute error of CommC and CompC when only
change Realistic Effect in different test scenes

0.4 0.8 1.2 1.6

C
u

m
ul

at
iv

e
D

is
tr

ib
u

ti
on

(f

ra
ct

io
n

)

1.0

0.8

0.6

0.4

0.2

0

Std(CommC)= 0.0843
Std(CompC)= 0.0108

Std(CommC)= 0.0270
Std(CompC)= 0.0936

Std(All MVDC)= 0.2631
Std(MVDC>60)= 0.0503
Std(60>=MVDC>20)= 0.0809
Std(MVDC<=20)= 0.0147

Yes No

S(H, 2, 100, X)

S(M, 0, 60, X)

S(L, 2, 60, X)
Std(CommC)= 0.0135
Std(CompC)= 0.0286

Environment Details

C
om

p
C

4

3

2

1

Yes No

S(H, 2, 100, X)

S(M, 0, 60, X)

S(L, 2, 60, X)

Environment Details

C
om

m
C

3

2

1

4

3

2

1

C
om

m
C

3

2

1

View Distance (meter)
20

View Distance (meter)

C
om

p
C

4

3

2

1

C
om

m
C

3

2

1

4060100300 204060100300

CommC

CompC

0 2.0

Absolute error of CommC and CompC when only vary
Environment Details in in different test scenes

0.4 0.8 1.2 1.6

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
on

(f

ra
ct

io
n

)

1.0

0.8

0.6

0.4

0.2

0

CommC

CompC

0 2.0

Absolute error of CommC and CompC when only vary
Texture Down Sample Rate in different test scenes

0.4 0.8 1.2 1.6
C

u
m

u
la

ti
ve

 D
is

tr
ib

u
ti

on

(f
ra

ct
io

n
)

1.0

0.8

0.6

0.4

0.2

0

CommC

CompC

0 2.0

Std(CommC)= 0.2631
Std(CompC)= 0.5450

Absolute error of CommC and CompC when only
vary View Distance in in different test scenes

0.4 0.8 1.2 1.6

C
u

m
u

la
ti

ve
 D

is
tr

ib
ut

io
n

(f

ra
ct

io
n)

1.0

0.8

0.6

0.4

0.2

0

CommC

CompC

0 2.0

Absolute error of CommC if divide the test scenes into
different maximum video distance categories (MVDC)

0.4 0.8 1.2 1.6

C
u

m
u

la
ti

ve
 D

is
tr

ib
ut

io
n

(f
ra

ct
io

n)

1.0

0.8

0.6

0.4

0.2

0
0 2.0

Std(All MVDC)= 0.5450
Std(MVDC>60)= 0.1041
Std(60>=MVDC>20)= 0.0841
Std(MVDC<=20)= 0.0171

Absolute error of CompC if divide the test scenes into
different maximum video distance categories (MVDC)

0.4 0.8 1.2 1.6

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
on

(f

ra
ct

io
n

)

1.0

0.8

0.6

0.4

0.2

0
0 2.0

All MVDC
MVDC>60

60>=MVDC>20

MVDC<=20

All MVDC
MVDC>60

60>=MVDC>20

MVDC<=20

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure 3.4. Sample data to show how CommC and CompC vary for different rendering

parameters and absolute error distribution and standard deviation of CommC and CompC for

each rendering parameter, for game PS.

59

3) Texture down sample rate significantly affects CommC. The highest CommC is

about 1.6 times of the lowest CommC when we vary the texture down sample rates from 0 to

4. However, texture detail almost does not affect the CompC. This is because the reduced

textures in different levels for an object are pre-calculated and loaded in the memory, so that

the graphic pipeline can load the textures quickly without any additional computing cost.

Similar to the realistic effect, the standard deviations of CommC and CompC when only

varying texture down sample rate are not significant. They are 0.0843 and 0.0108 respectively.

4) View distance will significantly affect both CommC and CompC. While its impact

on CompC is almost linear, impact on CommC becomes clear only below a certain point (100

meters). However, unlike the other rendering parameters, varying view distance in different

test scenes will have a significant variation in CommC and CompC values, indicated by the

higher standard deviations of CommC and CompC as 0.2631 and 0.5450 respectively. This is

because the ability to reduce video content complexity by adapting view distance is limited by

the maximum video distance in the real-time gaming scene. For instance, in the indoor scene

where the objects rendered are all in a relatively short distance, it will become difficult to

reduce the video content complexity by adapting view distance. To eliminate this constraint

and improve the accuracy of our offline complexity model, we propose to divide all the test

scenes into several different Maximum View Distance Categories (MVDC). Each MVDC has

a certain range of the maximum view distance of the current rendered scene. The average

CommC and CompC will be measured only using the test results collected in the test scenes

belonging to the same scene category. Let MVDCj denote the view distance category j, and the

number of test scenes in MVDCj is kj. MVDCj is a subset of the set of all the test scenes

(SCENE). Then the Equations 3.2 and 3.3 to calculate CommC and CompC need to be revised

to:

60

1

(,)1
() (),

(,)

jk
i

j L
ij i i

i j j

BitRate s scene
CommC s MVDC

k BitRate s scene

scene MVDC MVDC SCENE

，

，

 (3.4).

1

(,)1
() (),

(,)

jk
i

j L
ij i i

i j j

ServUtil s scene
CompC s MVDC

k ServUtil s scene

scene MVDC MVDC SCENE

，

，

 (3.5).

In order to demonstrate the efficiency of the above proposed ideas, we have divided

all the 20 test scenes of game PS into three scene categories: a) maximum view distance is

larger than 60 meters; b) maximum view distance is between 20 and 60 meters; c) maximum

view distance is less than 20 meters. Figures 3.4(m) and 3.4(n) show the absolute error

distribution and standard deviations of CommC and CompC in different MVDC. From

Figures 3.4(m) and (n), we can observe that the variations of CommC and CompC in each

MVDC are significantly less than the variations if we do not consider dividing the test scenes

by maximum view distance. It should be noted that dividing the test scenes into different view

distance categories will not increase any computation load in the offline modeling step. It

Figure 3.5. Complexity model of game PS for three different maximum view distance

categories.

61

actually has only changed the results of complexity model from one dimension to a two

dimensions mapping, to make the complexity model more accurate.

The final complexity model of game PS for three different Maximum View Distance

Categories is presented in Figure 3.5. Note that the complexity model will not include the

rendering setting whose view distance is higher than the maximum view distance of its

MVDC. For example, when MVDC is between 20 meters and 60 meters (Figure 3.5(b)), the

complexity model does not have the data points for the rendering settings whose view

distances are either 100 meters or 300 meters. Similarly, in Figure 3.5(c), complexity model

covers the rendering settings which only have 20 meters view distance. From Figure 3.5 we

can also observe that the maximum CommC and CompC becomes less when the maximum

view distance becomes shorter. The results in Figure 3.5 will be subsequently used to derive

rendering levels model in the section 3.4.3.

The example of complexity model we presented above was derived using a certain

video encoding setting, video resolution, and GPU. We next investigate the impact of using

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
on

(f

ra
ct

io
n

)

0.8

0.6

0.4

0.2

0

Absolute error of CommC if using different video encoding
settings, different video resolutions, and different GPUs

0.4 0.8 1.2 1.6 2.0

1.0

Std(Encoding)= 0.0931
Std(Resolution)= 0.0804
Std(GPU)= 0.0100 C

u
m

u
la

ti
ve

 D
is

tr
ib

u
ti

on

(f
ra

ct
io

n
)

0.8

0.6

0.4

0.2

0

Absolute error of CompC if using different video encoding
settings, different video resolutions, and different GPUs

0.4 0.8 1.2 1.6 2.0

1.0

Std(Encoding)= 0.0124
Std(Resolution)= 0.1348
Std(GPU)= 0.0579

(a) (b)

Different Encoding Settings
Different Resolutions

Different GPUs

Different Encoding Settings
Different Resolutions

Different GPUs

Figure 3.6. Absolute error distribution and standard deviation of measured CommC and

CompC in the tests with different video encoding settings, different video resolutions, and

different GPUs, for game PS.

62

different video encoding and resolution settings, and different GPUs, on the complexity

model. We have conducted experiments and measured CommC and CompC of each rendering

setting in three test cases: a) using various encoding settings (different QP and GOP settings),

b) using three different resolutions (QVGA, CIF, and VGA), and c) using three different

GPUs (Intel GMA4500, NVIDIA 8300, and NVIDIA GTX580). Figure 3.6 shows absolute

error distribution and standard deviations of measured CommC and CompC in these test cases.

From Figure 3.6, we can observe that the overall variations of CommC and CompC in these

different test cases are not significant. Hence, we can conclude that the offline modeling step

does not need to characterize the CommC and CompC and create different complexity models

for different video resolutions, or video encoding settings, or different platforms.

3.4.3 Derivation of the Rendering Levels Model

In this section, we introduce how we leverage the complexity model to derive the

rendering levels model, which is a mapping of optimal rendering setting to each rendering

level. Each rendering level has two dimensions: 1) CommC rendering level, reflecting the

level of network bandwidth need of that rendering level; 2) CompC rendering level, reflecting

1 2

12 22 2

11 21 1

...

...

...

...

n n mn

ij

m

m

L L L

L

L L L

L L L

Figure 3.7. Rendering levels and optimal rendering setting for each rendering level.

63

the level of computation need of that rendering level. As shown in Figure 3.7, we use Lij to

denote a rendering level, whose CommC and CompC rendering levels are i and j, and target

complexities are CommCLi and CompCLj respectively. For each game, depending on the

range of CommC and CompC values derived during the complexity modeling step, the

CommC and CompC levels can be set in many ways. In our work, we evenly divide the

possible ranges (from the maximum value to minimum value) of CommC and CompC into m

and n levels for each MVDC:

()=

() ()
1+ (1), i [1,m]

iCommCL MVDC

MaxCommC MVDC MinCommC MVDC
i

m

 (3.6),

()=

() ()
1+ (1), j [1,n]

jCompCL MVDC

MaxCommpC MVDC MinCompC MVDC
j

n

 (3.7).

Once having target CommCLi and CompCLj, given a certain MVDC, as shown in

Equation 3.8 we could find a optimal rendering setting sij for each rendering level Lij from all

adaptive rendering settings set S, such that the root mean squared error between the target

complexities (by Equations 3.6 and 3.7) of Lij and measured complexities (by Equations 3.4

and 3.5) of setting sij obtained from complexity model is minimized:

2
 i

2
 j

() { |

(() (,))
is minimized}

(() (,))

ijs MVDC s S

CommCL MVDC CommC s MVDC

CompCL MVDC CompC s MVDC

 (3.8).

For instance, if we applied the above Equations 3.6, 3.7, and 3.8 with the complexity

model (Figure 3.5) of game PS, we can obtain the rendering levels model of game PS, as

64

shown in Figure 3.8. For instance, when MVDC is higher than 60 meters, if CommC

rendering level and CompC rendering level are both 2, the graphic rendering engine should

use the following rendering setting: medium realistic effect, 2 for texture down sample rate, 40

meters for gaming view distance, and not enabling the environment details.

3.4.4 Derivation of the Joint Adaptation Model

Having derived rendering levels model, we can come up with an online rendering

adaptation technique. During the online gaming sessions, the adaptation technique can decide

a proper rendering level in real time depending on the network and server conditions, and then

select the corresponding optimal rendering setting for that level. One problem of such

rendering adaptation is that there can be sometimes very frequent, but limited, variations in

wireless network bandwidth during a short period. If we only apply rendering adaptation to

address these quick fluctuations of the network bandwidth, we may need to frequently vary the

rendering levels, which probably is not desirable as game users may be sensitive if rendering

levels are changed too frequently too fast during a gaming session. To address this problem,

we may need the help of the traditional encoding adaptation technique, which can quickly

respond to fast network bandwidth fluctuations, without game users being sensitive to the

changes and without affecting the perceptual experience of the users. We have implemented a

Figure 3.8. Rendering levels model of game PS for three different Maximum View Distance

Categories.

65

algorithm incorporating the above ideas, called Joint Rendering and Encoding Adaptation

(JREA) algorithm. In JREA algorithm, rendering adaptation technique is used to address

computation constraint by varying its CompC rendering level, while rendering and encoding

adaptation technique will be jointly utilized to address communication constraint by varying

CommC rendering level and video bit rate. However, it is imperative to know how to

optimally select video bit rates and CommC rendering levels such that MGUE is maximized.

In fact, for each CommC rendering level, there is a Minimum Encoding Bit Rate (MEBR) that

is acceptable for the resulting video quality. And similarly, for each bit rate we use for gaming

video, there is an Maximum CommC Rendering Level (MCRL) that provides the video

quality which has minimum impacts on user gaming experience. We next explain how we

obtain MEBR and MCRL to derive the joint adaptation model.

Minimum Encoding Bit Rate (MEBR) for each CommC Rendering Level

Encoding adaptation techniques can adapt video bit rate to the fluctuating network

bandwidth to avoid network congestion. However, lowering video bit rate may lead to

unacceptable gaming video quality. Therefore there is a Minimum Encoding Bit Rate (MEBR)

below which gaming video quality will not be acceptable by game users. Similar to the

complexity modeling, for each CommC rendering level, the offline experiment will be

conducted in different test scenes. For each bit rate level, the average video PSNR of

compressed game video is measured. The Minimum Encoding Bit Rate (MEBR) is the

minimum bit rate which can at least provide the user minimum acceptable PSNR [WD09].

The results of MEBR for different encoding bit rate are tabulated. Thus in the online joint

adaptation algorithm, when encoding bit rate used is lower than the MEBR associated with the

current CommC rendering level being used, the rendering level will be adapted to a lower

level to get a lower required MEBR, such that the user perceived video quality is acceptable.

66

Similar to complexity model and rendering levels model, MEBR also needs to divide the test

scenes into different MVDC. And it should also be noted that the MEBR are dependent on the

video resolution used. Table 3.2 shows the MEBR for each CommC rendering level for game

PS in VGA resolution. For instance, when MVDC is higher than 60, if CommC rendering

level 4 is used, the video encoder needs at least 300kbps to encode the resulting gaming video

to produce the final video with acceptable gaming quality.

Maximum CommC Rendering Level (MCRL) for each Encoding Bit Rate

While encoding bit rate adaptation reduces video quality to satisfy communication

bandwidth constraint, our rendering adaptation can improve video quality by lowering graphic

rendering complexity. However, for a certain encoding bit rate, one should attempt to use the

richest rendering possible, without having any impacts on user experienced gaming quality.

Similar to the method used to derive the MEBR values for each rendering level, the following

method is used to derive the MCRL for each video encoding bit rate used. For each encoding

bit rate, offline experiment selects different CommC rendering levels. Then for each CommC

rendering level, it measures the average PSNR of compressed video among different test

Table 3.2. Minimum encoding bit rate for each CommC rendering level for game PS in VGA
resolution.

Maximum
View Distance
Category

MVDC>60 60>=MVDC>20 MVDC <=20

CommC
Rendering
level

4 3 2 1 4 3 2 1 4 3 2 1

MEBR (kbps) 300 250 200 150 400 300 250 200 500 400 300 250

67

scenes. For each encoding bit rate, the MCRL is the maximum CommC rendering level in

which the resulting source video PSNR is at least higher than the excellent video quality

threshold [WD09] below which user will feel the impacts due to the video quality. It is

possible that in some encoding bit rates even the lowest CommC rendering level cannot meet

this excellent video quality. For these bit rates, MCRL should be the lowest CommC rendering

level (level 1). Table 3.3 shows the MCRL for each encoding bit rate for game PS in VGA

resolution. During the gaming session, depending on the encoding bit rate used, we

periodically update the CommC rendering level from Table 3.3, such that rendering setting

used is maximized while user perceived video quality remains unimpaired.

3.4.5 Online JREA Algorithm

The motivation for developing an online Joint Rendering and Encoding Adaptation

(JREA) algorithm is presented in the previous section 3.4.4. In this section we describe the

JREA algorithm which decides when and how to switch the CommC and CompC rendering

levels during a gaming session, in response to the current network conditions and server

utilization.

Table 3.3. Maximum CommC rendering level for each encoding bit rate for game PS in VGA
resolution.

Encoding Bit Rate
(kbps)

700 600 500 400 300 250 200 150

MVDC>60 4 3 3 2 2 2 1 1

60>=MVDC>20 4 3 2 2 2 1 1 1

MVDC<=20 4 3 2 2 1 1 1 1

68

Firstly, we need to make sure the CommC is lower than available network bandwidth.

Otherwise, the network will be congested, leading to high response time and packet loss.

Network delay has been widely used to indicate congestion (bandwidth constraint) [PMD+03].

However, in mobile networks, network delay is not always caused by congestion. To address

this problem, we make use of the observation [DJ02] that network delay keeps increasing

when the network link starts to become congested, while delay in a non-congested network

does not have this property. To accurately detect network congestion, in this work we decide a

network link is congested, only when the Round trip Delay (RDelay) keeps increasing for a

certain period and the average RDelay is bigger than a certain threshold. With the Mobile

Gaming User Experience (MGUE) model and associated Game Mean Opinion Score (GMOS)

described in Chapter 2, for each game, we can obtain the minimum Acceptable Round-trip

Delay RDA, which is the minimal delay threshold to achieve an acceptable MGUE (GMOS >

3.0). We thereby use this RDA as the round-trip delay threshold to determine network

congestion.

To decide on the proper CompC, we monitor the server GPU utilization. We define an

upper utilization threshold, U1, and a lower utilization threshold, U2, and use them to decide

CompC rendering level. Figure 3.9 shows the flow chart of the JREA algorithm. At short time

interval λ, depending on the network conditions, network Round-trip Delay (RDelay) and

packet Loss (Loss), server utilization (ServUtil), and the Maximum View Distance Category

(MVDC) of the current game scene, the JREA algorithm decides to select a lower or higher

CommC rendering level I, CompC rendering level J, and encoding bit rate K, such that 1)

network round trip delay threshold RDA is met, and 2) gaming video quality is maximized.

The JREA algorithm consists of three steps as follows:

69

RDelay > RDA?

Reduce K,
TE=T

Loss>0 ?

TE > T+T1 ?

I, J, K, RDelay, Loss,
ServUtil, T

I--,
TR=T

TR > T+T2 ?

Increase K,
TE=T

ServUtil>U1?

J--,
TR=T

ServUtil>U2?

Update rendering parameters to the level (I, J)
Update encoding bitrate to K

Measure network
RDelay, Packet Loss,
ServUtil, and MVDC,

update in a short

interval λ.

MEBR[] uses the
results presented

in Table 2

MCRL[] uses the
results presented

in Table 3

I: rendering CommC level
J: rendering CompC level
K: encode bit rate
T: current system time (ms)
TE: last encoding adaptation
applied time (ms)
TR: last rendering adaptation
applied time (ms)Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N

TR > T+T3 ?
Y N

I=MCRL[K,MVDC],
TR=T

J++,
TR=T

Step 1

Step 2

Step 3

MEBR[I,MVDC]
>K?

Figure 3.9. Flow chart of joint rendering and encoding adaptation algorithm.

70

1) The first step is to decide the encoding bit rate K used to encode the rendered

video. During a certain period λ, if the network RDelay keeps increasing and its average value

is greater than RDA, we reduce encoding bit rate K. On the other hand, if for a significant time

T1, RDelay remains below RDA and there is no packet loss, we increase the encoding bit rate.

2) The second step is to check and update CommC rendering level I. After the first

step, the new encoding bit rate may be below the Minimum Encoding Bit Rate (MEBR) for

the current CommC rendering level I and Maximum View Distance Category (MVDC), which

will lead to an unexpected user experience as we discussed before. If this happens, we have to

reduce CommC rendering level to reduce the Minimum Encoding Bit Rate. On the other hand,

if the CommC rendering level has not been changed for over a certain significant period T2, it

will be updated and changed to the Maximum CommC Rendering Level (MCRL) depending

on the current encoding bit rate and MVDC.

3) The third and last step is to decide on CompC rendering level J, depending on

server utilization ServUtil. If ServUtil is over U1, the lower CompC rendering level is selected.

Otherwise, if CompC rendering level has not been changed for more than time T3, and

ServUtil is below U2, we increase CompC rendering level J by 1.

Next, based on the new selected CommC and CompC rendering levels we use the

optimal rendering settings from Figure 3.8 to update the game engine server, while we use

new selected video bit rate to update the game streaming server.

3.5 Experiment and Results

In this section, we report on experiments conducted to verify the effectiveness of the

proposed rendering adaptation technique. We first conduct experiments in a commercially

available cellular mobile network, which can validate the effectiveness of our technique to

71

satisfy wireless mobile communication constraint. The results show that it can lead to about 4

times reduction in video bit rate, while ensuring an acceptable MGUE. Next, we conduct

experiments in a controlled environment which can validate the effectiveness of rendering

adaptation technique in addressing computation constraint. The experiment results show that

the proposed technique can ensure a high stable rendering frame rate, thus a good user

experience, while the number of users on a CMG server increases by almost 5 times. The

experiment results of these tests demonstrate that the proposed rendering adaptation technique

can ensure MGUE and high scalability of the CMG approach in regards to both network

bandwidth and server computing needs, thereby making Cloud Mobile Gaming economically

feasible.

We have explained the parameters of online JREA algorithm in section 3.4.5.

Generally, λ has to be a relative small period such that the JREA algorithm can quickly

respond to the variations in network. The update periods (T2 and T3) for rendering levels

should be higher than the update period (T1) for encoding bit rate. The upper GPU utilization

threshold U1 should be much higher than lower GPU utilization threshold U2, to avoid the

adaptation from oscillating. For the experiments reported in this chapter, we use the values 3

seconds, 20 seconds, 60 seconds, 60 seconds, 90%, and 40% for the parameters λ, T1, T2, T3,

U1, and U2 as respectively. The game used is PlaneShift, its RDA is 440ms [WD12][WD09].

The rendering levels model and joint adaptation model for game PS are pre-calculated on off-

line experiments. The Maximum View Distance Category (MVDC) is measured and provided

by the PS game engine during the gaming session. It should be noted that our proposed JREA

algorithm can leverage any video encoding adaptation technique with our proposed rendering

adaptation technique. In this chapter, for the purpose of experimental results, we use a video

72

encoding adaptation technique [WDA10] which has been shown to produce better video

quality by being aware of the gaming content.

3.5.1 Addressing Communication Constraint

To evaluate the effectiveness of our proposed technique in addressing communication

constraint, we carried out multiple experiments using a 3G network and multiple test

environments (locations, times) having different network conditions. In this section, we select

one of the test environments to compare and discuss in details the effectiveness of our

proposed rendering adaptation technique. Figure 3.10(a) shows a test environment used in the

UCSD campus, where the tests are conducted starting at an indoor location A (our lab), then at

location B (outdoor), C (indoor), D (indoor), then from D back to C, B. The locations are

selected as they display different network conditions: network bandwidth, and signal-to-noise

ratio (SINR), received by the mobile device at each location. In this case, the SINR of these

four places from highest to lowest are B, A, C, D.

We first measure the maximum mobile network throughput at these locations, as

presented in Figure 3.10(b). Figures 3.10(c)(d)(e) present the data collected from experiments

in three scenes: without using any adaptation technique, only using game aware video

encoding adaptation technique [WDA10], and using our proposed rendering adaptation

technique, respectively. We provide below a summary of the key observations from our

experiments:

1) In the experiment without using any adaptation technique, we stream the gaming

video at the rate of 700kbps where the source video quality is good enough to avoid

deteriorating user experience. Figure 3.10(c) shows the resulting round-trip delay (RDelay),

Packet Loss, and GMOS score of the gaming session. At outdoor location B, as the wireless

channel rate is high due to good SINR, the resulting network delay and packet loss are

73

relatively low, and hence the GMOS score measuring the mobile gaming user experience is

mostly above 3.0 (acceptable user experience threshold). However, at indoor locations, A, C,

and D, due to the bad SINR, the wireless channel rate adapts to a lower level. This causes

network congestion, reflected by the high network delay and packet loss rate, leading to

unacceptably poor gaming quality (GMOS scores below 3.0).

2) In the experiment only using encoding adaptation, the encoding bit rates used are

adapted to the fluctuating network conditions. Figure 3.10(d) shows the resulting network

delay, packet loss, the encoding bit rates used, the PSNR of the encoded video, the game

Maximum View Distance Category (MVDC) and the resulting GMOS score at the different

locations. As shown in Figure 3.10(d), the network congestion is almost eliminated, and as a

result, network delay and packet loss are greatly improved at all the locations. However, the

video quality (PSNR) is deteriorated while lowering video bit rate by encoding adaptation.

When wireless network bandwidth is extremely low in bad SINR locations, like D, the user

has very poor experience, reflected by poor GMOS, primarily due to the poor video quality.

3) Figure 3.10(e) shows the results of applying the proposed rendering adaptation

technique, including the resulting adaptive bit rates and CommC rendering levels used. In

contrast to the results shown in Figures 3.10(c)(d), Figure 3.10(e) shows that application of

our rendering adaptation technique can greatly improve the network delay and packet loss

rate, while maintaining a good video quality (PSNR). Consequently, the user gaming

experience, which includes response time, is significantly enhanced at all the locations,

reflected by the relatively high and stable GMOS, dipping below 3.0 only very occasionally

when the adaptation algorithm is responding to the channel rate variations.

74

Figure 3.10. Experiment results to demonstrate the effectiveness of proposed rendering

adaptation technique to address CMG communication constraint: (a) test environments; (b)

network bandwidth measurement results; (c) CMG without any adaptation technique; (d)

CMG with video encoding adaptation technique only; (e) CMG with our proposed rendering

adaptation technique.

75

3.5.2 Addressing Computation Constraint

As discussed before, considering that the cloud mobile gaming (CMG) servers will

need to execute concurrently a large number of compute intensive game engines (to support

the concurrent gaming sessions), it is imperative to show the scalability of the CMG servers.

To demonstrate the effectiveness of proposed rendering adaptation technique in addressing

computation constraint so as to ensure scalability of the CMG servers, we conduct

experiments where we increase server GPU load by increasing the number of concurrent game

engine tasks executed. The experimental server integrates a NVIDIA GTX580 graphic card.

We initialize the CMG server with one game engine for a cloud mobile gaming session. After

every 60 seconds, we start a new PS game engine for each new concurrent gaming session.

Each game engine is configured to render 15 frames per second, but the actual rendered frame

rate produced may drop below 15 if the GPU resource is over utilized. In the latter cases, the

gaming user experience will suffer, with either gaming video appearing jerky, or the response

time appearing slower than expected.

Figure 3.11 presents the effects of increasing the number of concurrent gaming

sessions on a CMG server, and the resulting server GPU utilization and the rendering quality

achieved (rendering frames per second) for one sample gaming session, without and with

applying rendering adaptation technique (Figures 3.11(a) and (b) respectively). It should be

noted that when the server utilization goes above the upper utilization threshold U1, the

adaptation technique will adapt the CompC rendering levels on all the gaming engines

executed. Also showed in Figure 3.11(b) is the MVDC used for the sample gaming session

during the test. We summarize below the following observations:

1) As shown in Figure 3.11(a), without the use of our rendering adaptation technique,

the CMG server can support only 6 CMG sessions with good quality (expected rendering rate

76

of 15fps), as the GPU utilization reaches 100% when we add the 7th gaming session and the

rendered frame rate drops to as low as 12. With the addition of each new game engine task,

the rendering frame rate keeps going down, to as low as 1 frame per second when the CMG

server has to execute 30 concurrent game engines.

2) In contrast, as shown in Figure 3.11(b), the CMG server can support up to 27

clients when using our proposed rendering adaptation technique, without deterioration in

rendered quality (rendered frame rate). With appropriate adaptation of the CompC rendering

levels used, rendering adaptation technique is able to ensure that the GPU is able to deliver the

expected 15 fps for each gaming session, dipping a little below 15 only very occasionally

when the adaptation algorithm is responding to the changes in-server GPU loading. The above

experimental results demonstrate that our proposed rendering adaptation technique can

address computation constraint of CMG server by properly adapting the computation need of

Time (s) Time (s)

(a) Without applying rendering adaptation technique (b) Applying rendering adaptation technique

Number of Users

CompC
Rendering Level

0

20

30

40

10

300 600 900 1200 1500 18000
0

50

75

100

25

Number of Users

300 600 900 1200 1500 18000
0

8

12

16

4

20

Number of Users

0

20

30

40

10

300 600 900 1200 1500 18000
0

50

75

25

300 600 900 1200 1500 18000
0

8

12

16

4

20

1

3

4

2

MVDC<=2060>=MVDC>20MVDC >60

100

MVDC<=2060>=MVDC>20MVDC >60

Figure 3.11. Experiment results to demonstrate the effectiveness of proposed rendering

adaptation technique in addressing CMG computation constraint.

77

each mobile gaming session, thereby increasing by almost 5x the scalability of the CMG

application.

3.6 Conclusions

To ensure the feasibility of the CMG approach, it is vital to provision high Mobile

Gaming User Experience (MGUE) for each CMG user, and ensure the scalability both in

terms of communication and computation needs. To achieve our proposed objectives, in this

chapter, we have developed a dynamic game rendering adaptation technique which can

simultaneously vary the richness and complexity of graphic rendering to adapt the

communication and computing needs of each CMG session in responding to the dynamic

conditions of the wireless mobile networks and CMG server. The experiments conducted on

the commercial cellular mobile network and CMG server demonstrate the effectiveness of the

proposed adaptation techniques to make the CMG approach feasible: ensuring protection

against wireless network conditions and thus ensuring acceptable mobile gaming user

experience and scalability in regards to the availability of the mobile network and CMG

server.

The text of this chapter, in part or in full, is based on material that has been published

in IEEE Transactions on Multimedia (TMM) (S. Wang, S. Dey, “ Adaptive Mobile Cloud

Computing to Enable Rich Mobile Multimedia Applications,” IEEE Transactions on

Multimedia, Jun. 2013) and material published in IEEE Global Communications Conference

(Globecom) (S. Wang, S. Dey, "Rendering Adaptation to Address Communication and

Computation Constraints in Cloud Mobile Gaming,” IEEE Globecom, Miami, Dec. 2010).

78

The dissertation author was the primary researcher and author in the publications, and the

coauthors listed supervised the research that forms the basis of this chapter.

79

Chapter 4

Mobile Cloud Scheduling: Scheduling

Heterogeneous Network and Cloud

Resources to Enable Scalable Cloud

Mobile Gaming

In this chapter, we address the problem of making Cloud Mobile Gaming scalable and

economically feasible by proposing a novel Mobile Cloud Scheduling (MCS) solution that

increases the allowed number of concurrent CMG sessions to be scheduled. The method is

implemented while satisfying the Quality of Service (QoS) requirements for each scheduled

user using the available wireless network resources while minimizing the cloud cost incurred

by the CMG provider. We consider heterogeneous cloud and network resources with different

capacities and delays, including cloud resources in the mobile network supplementing

traditional Internet clouds and heterogeneous access networks, including macro cells, small

cells, and WiFi. Unlike conventional mobile network or cloud schedulers, MCS considers

80

simultaneously the constraints of the wireless access networks that may be available to each

CMG user, as well as the cost of available cloud resources, while scheduling the most optimal

wireless access link and cloud server for each CMG session. To further enhance the

performance of MCS, we also propose a joint scheduling-adaptation approach that can

systematically leverage application adaptation techniques proposed in Chapter 3 to adapt the

communication bit rate needs of in-service users if the available wireless network bandwidth

is not sufficient for a new user, or adapt the computational needs if the reserved cloud resource

is over utilized. Our simulation results demonstrate that the use of MCS and the joint

scheduling-adaptation approach, can significantly improve the performance of the CMG

method , increasing the number of simultaneous CMG sessions which can be supported, while

maximizing aggregate Mobile Gaming User Experience (MGUE) and minimizing the average

cloud cost.

Section 4.1 introduces the overview and objectives of mobile cloud scheduling, and

compares our contributions with related work. In section 4.2, we identify and formulate

mobile cloud scheduling problems. The Mobile Cloud Scheduling (MCS) approach and Joint

Scheduling-Adaptation (JSA) approach are proposed and studied in sections 4.3 and 4.4. In

section 4.5, we perform a set of simulation experiments to compare and characterize the

performance of our proposed approaches and the performance of the original CMG approach

where MCS and JSA approaches are not applied. The simulation results show that a) our

proposed MCS can help the CMG approach to minimize the number of blocked users and

cloud cost while ensuring the user perceived MGUE when comparing with the original CMG

approach under the same conditions; b) the proposed JSA approach can significant increase

(by about 2.5 times) the system capacity while ensuring the minimum acceptable MGUE for

each assigned user. Section 4.6 summaries our findings in this chapter.

81

4.1 Mobile Cloud Scheduling: Overview, Objectives, and

Related Work

In this section, we first provide an overview of Mobile Cloud Scheduling (MCS) and

summarize the objectives of the proposed MCS approach. While the problem of mobile cloud

scheduling has not been addressed before, we summarize previous work in cloud and network

scheduling, and compare with our contributions.

4.1.1 Overview of Mobile Cloud Scheduling Problem

Figure 4.1 shows the architecture and eco-system of a heterogeneous mobile cloud

computing system, consisting of Heterogeneous Network (HetNet) access nodes, cloud

computing servers in both the mobile network as well as traditional Internet cloud servers, and

a Mobile Cloud Scheduler (MCS) proposed in this dissertation. To deal with tremendous

growth in mobile wireless data demands, mobile network operators are increasingly adopting

the Heterogeneous Network (HetNet) architecture [ARC11][PQ11]. The heterogeneous

network can consist of different cell sizes which range from macro to micro, pico and even

femto cells, potentially sharing the same spectrum. Nodes can deploy different access

technologies such as LTE and WiFi, over both licensed and unlicensed bands. While the

macro cells provide coverage, small cells (micro, pico and femto) complement macro cells to

provide high capacity and better indoor coverage.

In Figure 4.1, we show an example scenario consisting of four types of wireless

access nodes: macrocell Base Stations (BS), microcell BSs, carrier WiFi Hotspots, and public

WiFi Access Points (AP). The application data from/to mobile device has to be routed via a

82

service provider’s core network - in this case, the macrocell and microcell BSs and carrier

WiFi Hotspots connect to the Internet through mobile provider’s core network, while public

WiFi APs uses the broadband core network. Most of mobile users (like mobile users 1, 2, and

3 in Figure 4.1) can access using more than one wireless node; for example, user 1 can access

through macrocell BS #1, carrier WiFi Hotspot #2, and public WiFi AP #3; user 2 can access

through macrocell BS #1, public WiFi AP #5, and microcell BS #6; and user 3 can access

through macrocell BS #1 and public WiFi AP #6. However, due to the wireless coverage and

device constraints, at any given time, some users may only be able to connect only one node,

like mobile users 4 and 5 in Figure 4.1.

 To enable rich mobile applications on mobile devices, CMG applications can utilize

the cloud servers in the Internet Cloud. However, a critical challenge for CMG applications is

to satisfy the round-trip latency requirement between the mobile device and the cloud servers.

Moreover, the transmission of large amount of content between cloud servers and mobile

devices poses a major concern for the capacity of the networks to enable CMG applications.

Figure 4.1. Heterogeneous mobile cloud computing system, and an instance of the mobile

cloud scheduling problem.

83

To address these concerns, we propose a new architecture which supplements Internet cloud

servers with cloud servers located in the mobile carrier core network, so that the content

processing and retrieval can be performed at the edge of the mobile networks, as opposed to in

Internet clouds, thereby reducing round-trip latency, as well as reducing the traffic load

between the Internet cloud and mobile core network. Figure 4.1 shows an example with the

service gateways (SGW) and packet gateways (PGW) of a mobile core network supplemented

by cloud servers.

We assume CMG provider reserves Internet cloud servers and mobile network cloud

servers from Internet cloud providers and mobile network operators respectively, and reserves

certain amount of access capacity from mobile network operators and WiFi service providers.

While a certain number of cloud servers are reserved by the CMG provider, at any time any

excess computing demand may be met using the pay-as-you-go model for cloud computing,

though the latter is more expensive than the reservation cost. On the other hand, we assume

the mobile cloud service provider is constrained by the wireless access capacity reserved by it,

and the pay-as-you-go model is not available for wireless access capacity.

The mobile cloud scheduling, which is operated by the CMG provider, will keep

monitoring the network availabilities and server utilization from the cloud server and access

network reservations made by the mobile cloud service provider. When a new mobile cloud

user requests service, it will schedule the proper access network and cloud server for this user.

At any given time, there usually might be multiple choices available to serve a new requesting

mobile cloud user. For instance, the table in Figure 4.1 shows all the possible scheduling

choices for the mobile user 1, including the possible networks and the bandwidth utilization

for each network, the possible cloud servers and the resource utilization for each server. In

addition, we have shown a usage probability for each network and cloud server, which

84

indicates the probability that a requesting user will use this network or cloud server; the usage

probability can be maintained based on usage statistics. For each pair of access network and

cloud server, we have provided the average and standard deviation of network round-trip

delay obtained from thirty measurements conducted using commercial wireless networks and

cloud servers. The networks used in the measurements are Verizon 3G (macrocell BS #1),

AT&T WiFi (carrier WiFi Hotspot #2), and Time Warner Cable WiFi (public WiFi AP #3).

Note the round-trip delays with respect to AT&T Packet Gateway (column 2) are significantly

lower than when using either the Amazon server located in Southern California (column 3) or

Amazon server located in Eastern US (column 4), justifying the inclusion of mobile cloud

servers in our heterogeneous architecture.

The mobile cloud scheduling decision from the multiple choices available for a new

mobile user request can be complex because the available choices may force a tradeoff

between available capacity and usage probability of access network, available capacity and

usage probability of cloud server, and round-trip delay (which affects user experience). For

example, if minimizing the number of Blocked Users (BUsers), users that cannot be scheduled

due to the network bandwidth constraint, is the primary objective, we should select the

network with the highest available capacity and the lowest usage probability, like public WiFi

AP #3 in Figure 4.1. If preventing over-utilizing cloud resources is the primary objective, we

should select the cloud server with the highest available capacity and the lowest usage

probability, like mobile cloud server #1 in Figure 4.1. However, the mobile users connected to

public WiFi AP #3 may not be able to access the mobile cloud server #1 due to the policy

issue. Therefore, choice G is not available for mobile user 1. Besides choice G, if MCS wants

to select the mobile cloud server #1, the cloud server which has the highest available capacity

and the lowest usage probability, choice A is better than choice D in terms of available

85

capacity and usage probability of access network. Similarly, if MCS wants to select public

WiFi AP #3, the access network with the highest available capacity and the lowest usage

probability, choice I is better than choice H in terms of the cloud server capacity and usage

probability. However, it is still difficult to decide which one is better between choice A and

choice I: a) if choosing choice A, the number of blocked users due to the subsequent requests

on mobile BS #1 will increase; b) if choosing choice I, the chance of over-utilizing reserved

cloud resource on Internet cloud server #3 for the future requests will increase.

In this chapter, we propose a mobile cloud scheduling approach which takes into

account the available capacity and usage probability of each heterogeneous access network

and cloud server choice for each mobile user, and the corresponding network round-trip delays,

to maximize the number of concurrent mobile cloud users that can be served and minimizing

the average cloud cost, while satisfying their QoS requirements, including response time.

4.1.2 Mobile Cloud Scheduling Objectives

In this section, we describe in details the objectives for mobile cloud scheduling. Due

to the limited network resource reserved by CMG provider, it is possible that a user request

cannot be scheduled due to the insufficient network available capacity. Hence, one of the

objectives of mobile cloud scheduling should be to minimize the number of blocked users

(BUsers) given the available (reserved) access network capacity. A challenge for mobile cloud

scheduling is that when a new user needs to be scheduled, the already live (in-service) users

cannot be rescheduled, that is, a new optimal schedule cannot be obtained for all concurrent

users with all available network and cloud resources. This is because rescheduling the live

users to either different access networks or cloud servers may introduce unacceptable

interruption and delay in the mobile cloud sessions. Because it is not feasible to reschedule the

resources for the live cloud users every time a new user request comes, the scheduling

86

decision for any requesting user will affect the availability and hence scheduling decision of

future users. For instance, in Figure 4.1, scheduling a requesting user to a highly utilized

network resource among several available choices (like carrier WiFi Hotspot #2) may increase

the number of blocked users (due to the subsequent requests on carrier WiFi Hotspot #2) in

the long run. Therefore, scheduling decision for a new user has to be performed in a way that

minimizes blocking of future users/requests, so as to minimize the value of BUsers.

Second, unlike enterprise applications, the CMG application is extremely compute

intensive and network bandwidth demanding, leading to a high cloud cost. Besides being

expensive, the cloud costs are different across different cloud instance types. As we discussed

in Chapter 1, Amazon Elastic Compute Cloud (EC2) [EC2] offers two types of cloud

instances: on-demand instances and reserved instances. On-demand instances let customers

pay for compute capacity by the hour with no long-term commitments, while reserved

instances give customers the option to make a low, one-time payment for each instance that

customers want to reserve and in turn receive a significant discount on the hourly charge for

that instance. Table 1.1 has shown the costs for each world of warcraft CMG session using

two different AWS EC2 instances. From Table 1.1, we can observe that cloud cost of using

on-demand cloud instances is much higher (more than 2x) than the cloud cost of using

reserved cloud instances, due to higher computing price of on-demand cloud instances. Hence,

in this chapter, we assume that the mobile cloud service provider reserves a certain set of

Internet and mobile cloud servers, which forms the cloud resource constraint, above which the

provider will have to pay for Additional computing Cost (ACost) which is charged on-

demand. Similar to the previous discussion for network constraint, because mobile cloud

scheduling cannot reschedule the in-service users, the scheduling decision for a new user will

impact cloud server availability for future users, and may impact the ACost that mobile cloud

87

service provider may pay for the future users. Therefore, for scheduling decision the MCS

needs to consider the cloud server conditions and try to find out the optimal cloud server for

the current request such that the future ACost will be minimized.

Third, the proposed mobile cloud scheduling technique needs to satisfy Quality of

Service (QoS) requirements of an CMG application, which can be characterized by:

acceptable Round-trip Delay RDelayA (above which user cannot tolerate the service any more),

application bit rate needed CMGDataRate, and computation needed CMGComp.

In summary, for the success of Cloud Mobile Gaming approach it is vital for mobile

cloud scheduling technique to achieve the following three objectives: 1) minimizing the

number of Blocked Users (BUsers), 2) minimizing the Additional computing Cost (ACost), 3)

and satisfying QoS requirements to meet acceptable user experience for each scheduled user.

4.1.3 Related Work

The problems of cloud computation scheduling and network communication

scheduling have been studied extensively but mostly considered in isolation. In [AAB+10]

[Gho+11] [LCK11] [BVB10] [Bel+10] [NKG10] [CGF+10], problems of assigning computing

resources to a cloud user over a set of cloud servers are studied, to achieve any or multiple of

the following objectives: increasing resource utilization [AAB+10], ensuring fairness among

requesting tasks [Gho+11] [LCK11], reducing cloud cost [BVB10], reducing energy

consumption [Bel+10], and alleviating the impacts of cloud resource fluctuation on service

quality a cloud user perceives [NKG10] [CGF+10]. On the other hand, scheduling and

allocation of wireless network resources has been widely studied and incorporated in current

wireless networks. For example, [VDG05] [SKG+11] propose various types of wireless

network schedulers to allocate network bandwidth to users for different goals, including

maximizing the aggregate throughput [SKG+11] [CKX+08] [EMC+07], achieving network

88

fairness [VDG05] [CKX+08] and maintaining quality of service [EMC+07]. However, the

above techniques do not consider the problem of scheduling considering simultaneously both

cloud computing and wireless network resources, which is the goal of our work. There has

been one prior research [MSD07] which has considered scheduling computing tasks on mobile

devices to remote processors, considering both the availability of the computing resources as

well as the bandwidth availability of the mobile access networks. However, the above

technique needs knowledge of all the tasks that need to be scheduled and all the available

resources to make a scheduling decision, and hence is not suitable for the MCS problem we

address in this chapter, where the set of CMG users can change dynamically, and rescheduling

the entire set of users every time a new user requests service would be too computationally

expensive. Moreover, the approach in [MSD07] considers fixed computing resources, while

MCS needs to consider elastic cloud resources, where the prime consideration is cloud cost

and not the constraint on availability of computing resources.

Next, we will give a problem formulation for Mobile Cloud Scheduling which will

meet all its objectives. Subsequently, we will propose a MCS approach which is designed to

achieve the three objectives discussed in section 4.1.2. Consequentially, we will propose a

Joint Scheduling-Adaptation (JSA) approach which can leverage the application adaptation

techniques to ensure the scalability of CMG applications.

4.2 Problem Formulation for Mobile Cloud Scheduling

In this section, we develop a formal definition of the mobile cloud scheduling problem.

We first present our system model and assumptions, and then present a formal definition of

the problem based on this model.

89

4.2.1 Mobile Cloud System Model

Our system consists of cloud servers located in different locations with different

reserved computing capacities, heterogeneous network (HetNet) offering multiple wireless

access methods, and mobile clients who can enter or leave the system at random times. A

mobile client can be connected to multiple wireless access networks, for example a cellular

macrocell, a cellular microcell, a carrier WiFi network, and a public WiFi network, as shown

in Figure 4.1.

As we described in section 4.1, we assume that the CMG provider reserves certain

amount of access capacity from mobile network operators and WiFi service providers. The

capacity (in terms of number of users that can be simultaneously served) for each access

network is determined by the total bandwidth of the network reserved by CMG provider.

Different types of CMG applications may have different network bandwidth needs. In our

system, we assume the scheduler estimates the bandwidth need of each CMG session as the

average bandwidth need of the different types of CMG applications being supported. Based on

the above assumptions, we use a term aN
i to denote the available network capacity for any

access network i at a given time, which is the number of concurrent users that can be

additionally severed by this network, taking into account the number of users it is currently

serving.

Similarly, the computation need of a CMG session also depends on the application

type. We assume the scheduler estimates the computation need of each session as the average

computation need among all types of CMG applications. As we mentioned before (section 4.1),

to reduce the cloud cost, CMG provider will reserve a certain amount of computing units on

each cloud server. Given the available reserved computing units and the average computation

90

need of the CMG applications, the number of concurrent users that can be severed on any

server j can be calculated and denoted as aS
j.

In addition, according to the statistical history of the CMG system, we can obtain the

maximum concurrent number of users in the system (denoted as MAX), and the probability

distribution of all the possible concurrent numbers of users in the system at any given time

(denoted as P(x), where x is the concurrent number of users in the system). Also can be

obtained from statistic history are the access probability of any network i (pN
i), the probability

that any new requesting user may use the network i, and the access probability of any server j

(pS
j), the probability that any new requesting user may use server j. As we mentioned in

section 4.1.2, the MCS has to satisfy QoS requirements (including minimum acceptable round

trip delay RDelayA, application bit rate need CMGDataRate, and computation need CMGComp) to

meet acceptable user experience for each scheduled user. Because cloud resource is elastic,

CMGComp can be always satisfied. To meet CMGDataRate, MCS needs to guarantee the available

capacity of network i is higher than 1 (i.e. aN
i>1). We use RDelayij to denote the achievable

network round trip delay if using network i and cloud server j. Let RDelayA
 denote the

minimum acceptable round trip delay for the new mobile user To provision a user

acceptable network delay, MCS needs to make sure RDelayij is lower than RDelayA.

 While MCS will periodically monitor the system status including the network delays

and resource capacities, it will only be invoked for scheduling when mobile clients enter or

leave the system. When the mobile user starts a CMG session, the MCS will check all the

available assignments of access networks and cloud servers of user (denoted as R), and

assign an appropriate wireless network i and a proper cloud server j (denoted as assignment rij),

such that the QoS requirements of the requested CMG session will be met. Note that it is

possible that MCS cannot find any appropriate assignment for user , due to the QoS

91

requirements or resource limitation. When this happens, the user will be queued into a

waiting list and his/her achieved QoS is 0. Whenever a client leaves the system, MCS will be

invoked, checking the waiting list in the order of the user arrival time to see if any queued user

can be scheduled. We use n to denote the number of all current users in the system, including

both scheduled and queued users. For convenience, Table 4.1 summarizes all the symbols

discussed above.

Table 4.1. Summary of symbols for Chapter 4.

Symbol Explanation

n Number of all the current users in the system, including scheduled and

queued users

MAX Number of maximum concurrent users in the system

pN
i Usage probability that a requesting user will use access network i

pS
j Usage probability that a requesting user will use server j

aN
i Available capacity for access network i

aS
j Available capacity for server j

rij An assignment using access network i and server j

R The set of all the available assignments for user

RDelayij Achievable network round trip delay if using assignment rij

RDelayA
 Minimum acceptable round trip delay for user

P(x) Probability distribution of number of concurrent users in the system

92

4.2.2 Definition of Mobile Cloud Scheduling Problem

Based on the mobile cloud system model described above, we now present a formal

definition of the mobile cloud scheduling problem. As discussed before (in section 4.1.2),

when a new user requests service, MCS allocates network and cloud computing resources only

for that user, and does not re-schedule in-service users. Hence, different scheduling decisions

for a current requesting user may affect the scheduling of future requesting users, resulting in

different numbers of blocked users and cloud costs in the long run. Therefore, the mobile

cloud scheduling problem is different than the traditional network and processor scheduling

problems. Given a certain system state condition, while the traditional network and processor

scheduling problems try to maximize the number of users/tasks that can be scheduled, MCS

will try to minimize the impact on BUsers and ACost for future requests.

We first define an objective criteria (D) for mobile cloud scheduling, which can be

formulated as the sum of BUsers and ACost with two different weights, WN and WS:

= , 1N S N SD W BUsers W ACompCost where W W (4.1).

The objective for MCS is to minimize D. The weights WN and WS in Equation 4.1 are used to

represent system-specific interests. A CMG provider can adjust these two weights to achieve

different primary and secondary objectives, for example, minimizing BUsers as the primary

objective with minimizing ACost as the secondary objective, and vice verse. We use C to

denote the system state condition, including the number of current users, and current available

capacities and usage probabilities of all the access networks and cloud servers. Given the

current system condition C, we use E[DC] to denote the value of D that can be expected in the

long run. When we schedule a requesting user to network and server resources, the available

capacities of the networks and servers will be reduced. This will lead to an increase in E[DC].

93

We use δij
(E[DC]) to denote the change on E[DC] due to scheduling user to the network i

and the server j. To minimize E[DC], we need to minimize the increase of E[DC] whenever we

schedule a new requesting user. Therefore δij
(E[DC]) is the scheduling criteria for MCS for

any new requesting user . Then the Mobile Cloud Scheduling problem for minimizing the

expected number of BUsers and the expected ACost by allocating optimal assignment rij

(network i and server j) for user is formulated as:

{ ([])}, where ,

subject to: (C1) a 1; (C2)

ij

C
r ij ij

N
i ij A

Min E D r R

RDelay RDelay

 (4.2).

Constraint 1 in Equation 4.2 is the network bandwidth constraint to provision the sufficient

network bandwidth for the requesting user. Constraint 2 ensures that each (non-blocked) user

will receive an acceptable network round trip delay via the scheduled network i and server j. It

should be noted that the computation need of any request can be always meet because of the

elastic nature of the cloud computing resources, though any requirements additional to the

reserved CUs will incur additional cost ACost. Thus, there is no additional constraint for

computation need in Equation 4.2, and minimizing ACost is incorporated in the objective

function in Equation 4.2.

4.3 Mobile Cloud Scheduling Approach

In this section, we introduce our mobile cloud scheduling approach, which can

simultaneously find the optimal access network and cloud server resources for the new

requesting user, to solve the mobile cloud scheduling problem formulated in section 4.2. We

first develop a MCS approach which can optimally solve the MCS problem in Equation 4.2,

followed by the run time analysis for this approach. In order to reduce the run time of MCS

94

approach, we have proposed a heuristic approach which has been validated to be able to

significantly reduce the run time thereby ensuring the feasibility of applying the MCS

approach to practical CMG systems.

4.3.1 Solution for Mobile Cloud Scheduling Problem

The key to solve the MCS problem is to be able to calculate the value of δij
(E[DC]).

In this section, we first develop a solution which can quantitatively calculate δij
(E[DC]) for

each possible choice. Next we propose a MCS method which will use the proposed solution to

calculate δij
(E[DC]) for all the possible choices for a new requesting user and decide on the

optimal choice for this user.

As we explained in section 4.2.2, δij
(E[DC]) denotes the change of E[DC] due to

scheduling user to access network i and cloud server j. After this scheduling, the conditions

of all the networks and servers have not changed, except network i and server j. Hence, any

change on E[DC] after scheduling user will be only caused by changes in availabilities of

network i and server j. For instance, as shown in Figure 4.1, if we schedule mobile user 1 to

choice A, then only the capacities on mobile cloud server #1 and macrocell BS #1 will be

reduced by 1, while the conditions of all other networks and servers remain the same. To

calculate δij
(E[DC]), we only need to consider the expectation change of BUsers due to the

change in availability of macrocell BS #1 and the expectation change of ACost due to change

in availability of mobile cloud server #1. Therefore, the MCS objective (Equation 4.2) can be

simplified as below:

([]) (, ,) (, ,)C N N S S
ij N N i i S S j jE D W F a p n W F a p n (4.3).

95

FN(aN
i,p

N
i,n) is the network scheduling factor for network i, which denotes the changes on the

expected number of BUsers if scheduling the current requesting user to the network i.

Similarly, FS(a
S
j,p

S
j,n) is the server scheduling factor for server j, which denotes the changes

on the expected ACost when CMG system if scheduling the current requesting user to the

server j. We use k to denote the possible number of increased concurrent users in the system,

and use ([()])
N
i
N
i

p

i a
E BUsers k to denote the expected value of FN for each possible k. P(x) is

the probability distribution of all the possible number of concurrent users in the system. Then

FN can be calculated by Equation 4.4:

0

(, ,) (() ([()])), 0
N
i
N
i

MAX n
pN N N

N i i i ia
k

F a p n P k n E BUsers k a

 (4.4).

Similarly, we use ([()])
S
j

S
j

p

j a
E ACost k to denote the expected value of FS for each k. It

should be noted that Equation 4.4 assumes aN
i is nonzero value. This is always true, as the

available capacity of any possible access network i should be more than 1. However, for cloud

server, it is possible that the reserved cloud resource has completely used up (i.e. aS
j =0). If

this is the case, we determine the server expectation change factor always as the maximum

value 1. Thus the equation to calculate FS(a
S

j,p
S
j,n) is as below:

0

0

(), 0

(, ,)=

(() ([()])), 0
S
j

S
j

MAX n
S
j

kS S
S j j MAX n

p S
j ja

k

P k n if a

F a p n

P k n E ACost k if a

 (4.5).

To calculate network and server scheduling factors in Equations 4.4 and 4.5, we next

discuss and simplify the calculations for ([()])
N
i
N
i

p

i a
E BUsers k and ([()])

S
j

S
j

p

j a
E ACost k . The

probability of any new user using access network i is pN
i, while it has the probability of 1- pN

i

96

to use other networks. This is a well known Bernoulli Trial [Haz] process. Therefore, given

the capacity (aN
i) and probability (pN

i) of access network i, the expected number of BUsers

when CMG system has k increased users can be calculated by the following equation:

1

(() () (1)),
[()] =

0,

N
i

NN
ii

k
N N m N k m N

p i i i i
m aa

k
m a p p if k a

mE BUsers k

otherwise

 (4.6).

When we schedule user to the network i, only the capacity of network i will be reduced by 1

while other conditions do not change. Therefore the network expectation change factor can be

calculated as below:

1
[()] [()] ,

([()])=
0,

N N
i i

N
N Ni
i i

N
i

p p N
p ia a

i a

E BUsers k E BUsers k if k a
E BUsers k

otherwise

 (4.7).

Equation 4.7 can be further derived to Equation 4.8. The latter part of Equation 4.8 is a well

known binomial cumulative distribution (binocdf) function [Haz]. Therefore, the final solution

to calculate network expectation change factor ([()])
N
i
N
i

p

i a
E BUsers k can be expressed to

Equation 4.9.

1

+1

1

0

[()] [()]

= ((+1) () (1)) (() () (1))

= (() (1)) = 1 (() (1))

N N
i i
N N
i i

N N
i i

N
i

N
i

p p

a a

k k
N N m N n m N N m N n m
i i i i i i

m a m a

ak
N m N k m N m N k m
i i i i

mm a

E BUsers k E BUsers k

k k
m a p p m a p p

m m

k k
p p p p

m m

(4.8).

1 (1, ,),
([()])=

0,

N
i

N
i

N N N
p i i i

i a

binocdf a k p if k a
E BUsers k

otherwise

 (4.9).

Similarly, we can express the function to calculate ([()])
S
j

S
j

p

j a
E ACost k as below:

97

1 (1, ,),
([()])=

0,

S
j

S
j

S S S
p j j j

j a

binocdf a k p if k a
E ACost k

otherwise

 (4.10).

There are many existing models [MAT] which can calculate the binocdf function efficiently.

Equations 4.9 and 4.10 together with Equations 4.3, 4.4, and 4.5, give a simple and feasible

way to calculate the scheduling criteria δij
(E[DC]) in MCS problem (Equation 4.2).

Given the equations to quantitatively calculate δij
(E[DC]), we next propose a Mobile

Cloud Scheduling (MCS) method, which will help to choose the optimal choice for a

requesting user using the equations provided above.

The MCS method will simultaneously monitor the available resources of each

network and cloud server, so the values aN
i and aS

j, can be always updated. Note that

according to our CMG system model described in section 4.2.1, the initial values of aN
i and aS

j

are the capacities of the individual access networks and cloud servers provisioned by the CMG

provider. Besides the capacities, the number of maximum number of concurrent users in the

CMG system (MAX), the access probabilities pN
i and pS

j, and the probability distribution of

concurrent number of users P(x), are all obtained from the statistic history of CMG system

off-line. As shown in Figure 4.2, given R, the set of all the available assignments for the

requesting user , the MCS method first decides the possible solution set S. Each element rij in

S indicates the choice of network i and server j, which satisfies the two constraints defined in

MCS problem (Equation 4.2): 1) available network capacity aN
i is greater than 0; 2) RDelayij is

less than acceptable delay threshold for user , RDelayA. Then MCS method selects the

optimal choice rxy (network x and server y) from S, which can maximize the value of the

scheduling criteria δij
(E[DC]). Note that the requesting user may not be able to be

scheduled, if we cannot find any qualified network and server to satisfy its requirements.

98

For example, as shown in Figure 4.1, available assignment set R for mobile user 1

includes all the choices listed in the table except choice G. Assuming the minimum Round-trip

Delay requirement for user 1 is 120ms, then the possible solution set S will only include

choices A, D, and H. Assuming the weights WN and WS are 0.5 and 0.5, and assuming MAX is

300 and there are 50 users in the system, then for each choice in S we can calculate δij
(E[DC])

by Equations 4.3, 4.4, 4.5, 4.9, and 4.10. After compared the resulting values of δij
(E[DC]) of

all three choices, we realize choice A is the best choice for mobile user 1, as it results in the

least value of δij
(E[DC]) among the three possible choices.

We next analyze the run time of the MCS method. To determine the optimal solution

for user , MCS has to calculate δij
(E[DC]) for each possible solution rij, which might

consume huge amount of time. From Equation 4.3, the run time to calculate δij
(E[DC]) mainly

depends on the run time to calculate FN and FS, which depend on the upper limit in Equations

Initial set S = Φ;

For each rij ∈ R　 (network i and server j)

If RDelayij<= RDelayA
, and aN

i > 1

Then S = S ∪ {rij}; Endif

Endfor

If S equal to Φ

Then user cannot be scheduled; Exit;

Else

 Calculate δij
(E[DC]) for each rij in S using equations 4.3, 4.4, 4.5, 4.9, and 4.10.

Select x, y, where rxy∈ S, such that

 δij
(E[DC]) is minimized Exit;

Endif

Figure 4.2. Mobile Cloud Scheduling (MCS) methodology.

99

4.4 and 4.5. The maximum upper limit in Equations 4.4 and 4.5 is the maximum concurrent

number of users in the system MAX (when n is 0). If MCS has to support a high number of

concurrent users, the time to calculate FN and FS can be high, leading to a high run time to

compute δij
(E[DC]).

For example, we have tested the run time of calculating δij
(E[DC]) on a platform

using Intel i7 CPU. The capacity and probability of access network i given is 200 and 0.2, and

the capacity and probability of cloud server j given is 2000 and 0.1. If the max number of

concurrent users MAX is 1000, the run time to calculate δij
(E[DC]) is about 2.2 seconds, but if

MAX is one million, the run time to calculate δij
(E[DC]) will be as high as 21362 seconds.

Obviously, the latter will be an unacceptably long time for scheduling a new mobile user.

To obtain scalability in terms of number of concurrent users that can be served by

MCS, there can be two approaches. The first is to use multiple MCS servers, each server

addressing a separate geographical area and serving a maximum number of concurrent users

limited to say 1000. The second alternative, explored in the next section, is to introduce a

heuristic approach which can significantly reduce the run time of calculating δij
(E[DC]) by

relaxing the accuracy when computing FN and FS.

4.3.2 Heuristic Approach to Calculate FN and FS for MCS Method

The way to reduce the run time of calculating δij
(E[DC]) is to relax accuracy of

computing the network and server scheduling factors FN and FS. As shown in Equations 4.4

and 4.5, to obtain FN and FS, MCS has to calculate the network and server expectation change

factors for all the possible n. We have conducted experiments to simulate the network

expectation change factor ([()])
N
i
N
i

p

i a
E BUsers k . As shown in Figure 4.3, three access networks

with different network capacities aN
i (200, 800, and 2000) and different usage probabilities pN

i

100

(0.2, 0.5, and 0.8) are simulated, and the maximum number of users (MAX) is set to 10000.

From Figure 4.3 we can observe that the value of network expectation change factor is

monotonically increasing, and it is either 0 or 1 for most input k. We make a similar

observation for server expectation change factor. Therefore, when computing the FN and FS

(by Equations 4.4 and 4.5), the MCS approach does not need to calculate the network and

server expectation change factors for all the possible k.

The above observation gives us the opportunity to significantly reduce the run time to

calculate FN and FS. As shown in Figure 4.4, we propose a heuristic approach to calculate FN

(same approach can be applied to calculate FS also; it just needs to change aN
i and pN

i to aS
j and

pS
j.). Given an acceptable calculation error, err, we first find two bounds among all the

possible k. One is the Greatest Lower Bound (GLB), at which the value of expectation change

factor is just smaller than err, and the other one is the Least Upper Bound (LUB), at which the

value of expectation change factor is just larger than 1-err. Because the expectation change

0 2000 6000 4000 8000 10000

0.8

0.6

0.4

0.2

0

(
[

(
)]

)
N i N ip

i
a

E
B

U
se

rs
k

k

aN
i=200 pN

i=0.2
aN

i=800 pN
i=0.5

aN
i=2000 pN

i=0.8

1.0

Figure 4.3. Simulation results showing how network expectation change factor varies when

adding k users in the system.

101

factor is monotonically increasing, the problem to find these two bounds will be as simple as

to search a element with a given value in a sorted list, which leads to a complexity of

O(log2MAX). Once we have these two bounds, we can set expectation change factor to 0 if k is

less than aN
i or GLB, and set it to 1 if k is larger than LUB. Therefore, we only need to

calculate the value of expectation change factor for k between these two bounds. This

optimization will significantly reduce run time to compute FN. For instance, using the same

example as above (network capacity and probability are 200 and 0.2) and giving the err as

10e-3, the run time to calculate the network scheduling factor FN is only about 0.7 second

even if MAX is as big as one million.

In addition, when the maximum concurrent number of users MAX is very big, the

small variations of aN
i and aS

j will almost not change the values of resulting network and

server scheduling factors, unless the values of aN
i and aS

j are very small. For instance, if P(x)

is an even distribution and MAX is one million, the changes of network and server scheduling

Given err, Find GLB and LUB ∈ [0, MAX-n],

Such that

([()])
N
i

N
i

p

i a
E BlockedUser GLB <err, and ([(1)])

N
i

N
i

p

i a
E BlockedUser GLB >=err

([()])
N
i

N
i

p

i a
E BlockedUser LUB >1-err, and ([(-1)])

N
i

N
i

p

i a
E BlockedUser LUB <=1-err

if k< aN
i or k< GLB then ([()])

N
i

N
i

p

i a
E BlockedUser k = 0

else if k> LUB then ([()])
N
i

N
i

p

i a
E BlockedUser k = 1

else ([()])
N
i

N
i

p

i a
E BlockedUser k = 1-binocdf(aN

i, k, pN
i) end if

0

(, ,) (() ([()]))
N
i

N
i

MAX n
pN N t

N i i i a
k

F a p n P k n E BlockedUser k

Figure 4.4. Heuristic approach to calculate FN.

102

factors will be less than 10e-3 if the variation of aN
i or aS

j is less than 1000. Due to this

property, the MCS server does not need to calculate the network and server scheduling factors

FN and FS every time when MCS has a new request. Instead, MCS just needs to periodically

update the values of FN and FS, to account for big variations in aN
i and aS

j. With this periodical

updating improvement, the average run time of MCS approach to schedule each new request is

less than 1ms, even if the maximum number of users in the system is as big as one million. As

shown later in the experiment section 4.5, we have conducted experiments to investigate the

loss of accuracy by applying the proposed heuristic approach. The results show that the

resulting objective criteria D if applying our proposed heuristic approach is only 0.2% higher

than the result without applying the heuristic approach. This demonstrates that our proposed

heuristic approach can achieve a good accuracy in minimizing objective criteria D while

significantly reducing the run time for MCS approach.

As a conclusion, with the heuristic approach to calculate FN and FS proposed in this

section, the MCS approach can be made very run-time efficient and scalable, taking only

milliseconds for each scheduling decision even while supporting a very large numbers of

concurrent users. In the next section, we will further propose a Joint Scheduling-Adaptation

(JSA) approach, which can adapt the QoS requirements of CMG users to increase capacity

while trading off with user experienced Quality of Experience (QoE).

4.4 Joint Scheduling-Adaptation Approach

As discussed in section 4.1, CMG applications may require significant data and

computation needs. The provisioning for the peak demands can be significantly more than

normal or average demands, thus very expensive. On the other hand, under provisioning can

lead to insufficient network bandwidth for new CMG users (when the reserved networks get

103

over utilized) or large additional computing cost (when the reserved cloud servers are over

utilized). One way to address the above challenge is to make the CMG applications scalable

and adaptive to the available capacities of the network and server, such that during busy or

peak periods MCS can leverage the scalable CMG applications to reduce their QoS

requirements to satisfy more concurrent users and reduce the cloud cost.

Fortunately, for most CMG applications, it is possible to adapt the application such

that the QoS requirements in terms of bit rate need and computation need can be reduced. For

instance, the bit rate requirement of a video application based on Scalable Video Coding

(SVC) [WCG+07] [KSG04] [CSW+11] can be adapted by scaling the spatial and temporal

quality of the video content. The above may come at the cost of impairment [WDA10]

[WD09] on user perceived Quality of Experience (QoE). For rendering based cloud mobile

applications, both bit rate need and computation need can be adapted (as we shown in Chapter

3), each resulting in an impairment [WD12] [WD09] [LWD12] on the user perceived QoE.

These adaptation techniques provide a great opportunity to significantly minimize the MCS

objective criteria D (Equation 4.1), i.e. minimizing the number of blocked users and

minimizing addition cloud cost.

In this section, to ensure the scalability for Cloud Mobile Gaming, we introduce a

Joint Scheduling-Adaptation (JSA) approach. Our approach is to increase the number of users

that can be assigned in CMG system and reduce the cloud cost by leveraging computation and

bit rate adaptation techniques to reduce the resource needs of the CMG users while performing

scheduling. For each application adaptation, we give an associated adaptation level from K to

1, each of which reflects a certain communication bit rate need and a certain computation

need. Level 1 has the least computation and communication needs, and level K has the highest

needs which are same as the needs when adaptation techniques are not applied. Due to

104

application adaptation, the capacity on each resource will be significantly increased. In fact,

for each resource there is a Maximum Capacity (MaxCap), which denotes the number of users

that can be assigned to this resource assuming the adaptation levels of all the assigned users

are the lowest level 1.

It should be noted that the objective of MCS problem defined in section 4.2 is to

minimize scheduling criteria D while ensuring the user QoS requirements without applying

any adaptation (i.e. the QoS requirements at adaptation level K). However, in JSA it is

targeted to minimizing D while ensuring the user minimum QoS requirements (i.e. the QoS

requirements at adaptation level 1). Therefore, the first objective of JSA approach is:

JSA objective 1: minimize D (Equation 4.1) while ensuring the minimum QoS

requirements of each assigned user.

To achieve this objective, JSA can utilize the MCS approach but using the Maximum

Capacity (MaxCap) of the resources to calculate the current maximum available capacity of a

resource. When a new CMG user comes, JSA will first let MCS find the optimal assignment

for this user, considering MaxCap capacity. However, the current available capacities on the

assigned resources may not be sufficient because the users of these resources may not be at the

lowest adaptation level. If the new CMG user cannot be scheduled due to lack of currently

available capacity on the assigned network resource, bit rate adaptation will be used to lower

the user QoS requirements (but ensuring the minimum acceptable QoS requirement) of the

currently assigned users, albeit at a possible impairment on the user perceived QoE. This will

provide additional network capacity, thereby allowing MCS to successfully schedule the new

CMG user, such that the value of BUsers is minimized. Similarly, when the assigned cloud

resource has been completely utilized, computation adaptation can be invoked to lower the

105

applications’ QoS requirements on the cloud resource to minimize ACost (the additional cloud

cost charged for on-demand cloud resource), such that the aggregate cloud cost is minimized.

Though JSA approach is promising to minimize BUsers and ACost, it also has to

minimize the impairments on user QoE whenever an application adaptation occurs. Therefore,

the second objective of JSA approach is:

JSA objective 2: minimize the aggregate QoE impairments (due to the application

adaptation) of all the assigned users.

Objective 2 is a new problem which has not been studied before. In the reminder of

this section, we will first give a formal definition of objective 2. Next, we propose a level-

determination algorithm which can find out the optimal adaptation level for each assigned user

given the resource capacity, such that objective 2 is addressed. Finally, we will present a Joint

Scheduling-Adaptation approach which can leverage the application adaptations while

performing the scheduling instructed by MCS approach, such that the objectives 1 and 2 of

JSA approach are both satisfied.

4.4.1 Problem Formulation for JSA Objective 2

As explained earlier, when an assigned network or cloud resource is not sufficient to

provide the highest quality to the new scheduled user, application adaptation will be invoked.

The JSA approach needs to simultaneously decide the optimal adaptation level for each user

assigned to the resource, such that objective 2 is satisfied. For any resource (either an access

network or a cloud server), let l denote the number of users using this resource whose

applications are running at adaptation level l. Let Il denote the impairment on user experience

due to using adaptation level l. As discussed before, application adaptation has K adaptation

levels. Level 1 has the least resource need, and level K has the highest resource need which is

same as the need when adaptation techniques are not applied. Therefore, adaptation level 1

106

will have the highest impairment (I1) on user experience, while the impairment at adaptation

level K (IK) is 0. Let Reql denote the resource requirement at adaptation level l. The value of

resource requirement at the lowest level 1 (i.e. Req1) is equal to 1. The values of other Reql

indicate the resource needed at level l is how many times the resource needed at level 1, Req1.

For instance, if bit rate requirement at level 1 is 200kbps and is 600kbps at level K, then the

value of ReqK is 3. The number of current users which are using this resource is NumCurUser.

Given the above terms, JSA objective 2 can be stated as determining values of l such that the

aggregate QoE impairments (due to application adaptation) of all the assigned users is

minimized, and can be formalized as below:

1
1

1
1

1

 2 : (), where 0 , ;

. . : (C1) () , ,

(C2)

K

l l l l l
l

K

l l l l
l

K

l
l

JSA objective Min I I I l

s t Req MaxCap where Req Req l

NumCurUser

，

 (4.11)

Constraint 1 in Equation 4.11 is the resource capacity constraint. The higher adaptation level,

the higher QoS requirements needed. The total resource requirement for all the assigned users

on a certain resource should be no more than MaxCap of this resource. Constraint 2 indicates

that the total number of users at different adaptation levels should be equal to NumCurUser.

We next develop a solution to solve JSA objective 2 defined in Equation 4.11.

4.4.2 Solution for JSA objective 2

Next, we develop the solution to solve the problem defined in Equation 4.11. From

constraint C2 of Equation 4.11, we can have:

1

1

K

K l
l

NumCurUser

 (4.12).

Using Equation 4.12, we can derive Equation 4.11 to:

107

1

1
1

1

1

1

 2 : (), where 0 ,

. . : (())

, ,

K

l l l l l
l

K

l K l K
l

l l

JSA objective Min I I I l

s t Req Req NumCurUser Req

MaxCap where Req Req l

，

 (4.13).

We next define several symbols to simplify Equation 4.13:

l l ly I (4.14),

() /l K l lReq Req I (4.15),

KS NumCurUser Req MaxCap (4.16).

Then Equation 4.13 can be simplified to:

1

1
1

1

 2 : , where 0,

. . : , 0,

K

l l
l

K

l l l
l

JSA objective Min y y l

s t y S where l

 (4.17).

If S is a negative value (MaxCap is big enough to support all the assigned users at

level K), the solution to Equation 4.17 is: {yK= NumCurUser, yl = 0, for all l from level 1 to K-

1}. This indicates all the assigned users can be scheduled to the highest adaptation level K. If S

is a positive value, the key to solve the above problem is to find out the maximum value of l

from level 1 to K-1. Without the loss of generality, assuming level m has the biggest value of

among all the levels from 1 to K-1, then the solution for Equation 4.17 is:

= /
, 0

0 [1, 1]
m m

l

y S
if S

y l K except m

 ，

 (4.18).

Based on Equations 4.12, 4.14, 4.15 and 4.18, we can have the final solution for Equation

4.11:

= / () (4.19.)

 (4.19.) 0

0 [1, 1] (4.19.)

m K m

K m

l

S Req Req a

NumCurUser b if S

l K except m c

，

，

 (4.19).

108

However, the results of mcalculated by Equation 4.19.a may not be an integer. In

this case, we cannot round down the value of mfrom results of Equation 4.19.a and calculate

by Equation 4.19.b, because the values of mand will not meet the constraint C2. It is

also not an optimal solution to round up m because it may not achieve the minimum

aggregate impairments.

To address the above situation, we propose a level-determining algorithm to find the

optimal values of l for the problem defined in Equation 4.11. As shown in Figure 4.5, we

first sort l from level 1 to K-1, resulting to a level list L[e]. Each element in list L indicates an

Calculate l for each :1 1l K

Sort l, resulting to a list L[e], where L[e] >= L[e+1];

Init e=1; L[e]=0, [1, 1]e K ;

LOOP:

L[e]= Round(S/(ReqKReqL[e]));

If L[e]>NumCurUser Then e++; Goto LOOP;

Else

NumCurUser= NumCurUser L[e];

MaxCap= MaxCap L[e]ReqL[e];

S= NumCurUserK MaxCap;

If NumCurUser>0 Then

e++;

If e==K Then K= NumCurUser; EXIT;

Else Goto LOOP;

Else EXIT;

Figure 4.5. The level-determining algorithm to decide all the l for the users using an

access network or a cloud server resource.

109

adaptation level. The list L is sorted in descending order in terms of the value of (i.e. L[e] >=

L[e+1]). Starting with L[1] which has the biggest value of , we calculate L[1] by Equation

4.19.a and give the round-down value to L[1]. After this, we update NumCurUser (deducted

by L[e]) and MaxCap (deducted by L[e]ReqL[e]) leading to a new value of S. The level-

determining algorithm will repeat the above step for each L[e], from L[2] to L[K-1], until

NumCurUser is 0, indicating the adaptation levels for all the users have been determined.

4.4.3 Joint Scheduling-Adaptation Algorithm

Having derived the solution for JSA objective 2, we next propose a Joint Scheduling-

Adaptation (JSA) algorithm which can simultaneously leverage the MCS method proposed in

section 4.3 and application adaptation with adaptation levels determined by the level-

determining algorithm (Figure 4.5), such that the objectives 1 and 2 of JSA problem can be

both achieved. The mechanism of JSA algorithm is shown in Figure 4.6, and is described

below. For a requesting user , given the set of all the available assignments R, the Joint

Scheduling-Adaptation algorithm will first find the optimal assignment rxy by the MCS method

proposed in section 4.3. As explained at the beginning of section 4.4, to minimize D (objective

1 of JSA problem), JSA approach uses the MaxCap (the maximum capacity when all users are

assigned the lowest adaptation level) to calculate the maximum available capacity of the

resource. The maximum available capacity of a resource is equal to MaxCap-n, where n is the

number of concurrent users of this resource. MCS will use this maximum available capacity

instead of available capacity (i.e. aN
i and aS

j) to make the scheduling decision. It is possible

that MCS cannot find any appropriate assignment for user , due to the QoS requirements or

resource limitation. When this happens, the request from user will be rejected.

110

Once the assignment rxy is determined, JSA will check if the current available capacity

of access network x (i.e. aN
x) can be sufficient enough to meet the QoS requirement at the

highest network adaptation level K (i.e. ReqN
K) for user . If aN

x is able to meet requirement

ReqN
K, user will be scheduled at the highest adaptation level K. Otherwise, application

adaptation will be invoked. To minimize the aggregate QoE impairments of all the assigned

users on network x (JSA objective 2), JSA will utilize the level-determining algorithm (Figure

4.5) to decide all the l for network x. Similarly, JSA will also check if the current available

capacity of cloud server y (i.e. aS
y) can meet the highest server resource requirement ReqS

K. If

not, JSA will execute the level-determining algorithm to decide all the l for server y. Once all

the l for access network x and cloud server y are determined, JSA will update the application

Figure 4.6. Joint Scheduling-Adaptation algorithm.

111

adaptation levels for all assigned users on access network x and cloud server y. Finally, JSA

will adjust and update MCS the available capacity of network x (aN
x) and cloud server y (aS

y).

The run time for JSA algorithm is mainly decided by two parts: MCS and level-

determining algorithm. In section 4.3.2, we have proposed a heuristic approach which can

reduce the average running time of MCS approach to under 1ms per scheduling decision. The

running time of level-determining algorithm consists of time to sort K l and time to calculate

L[e] (up to K loops). Hence, the run time complexity of the level-determining algorithm is

O(Klog2K)+O(K). It should be fine to assume K is less than 100, as it will be unusual for an

application to have more than 100 adaptation levels. For example, the scalable CMG

application introduced in [WD10] has only 4 network adaptation levels and 4 computing

adaptation levels. We have simulated the level-determining algorithm on a platform which

uses an Intel i7 CPU. With K equaling 100, the total run time of level-determine algorithm is

only 0.8ms. The above analysis shows the run time feasibility of using the proposed JSA

algorithm.

4.5 Experimental Evaluation

We have developed a simulation framework to validate the effectiveness of our

proposed MCS and JSA approaches for CMG applications. With this simulation framework,

we evaluate our proposed approaches in two parts. In the first part, we characterize the

performance of our proposed MCS approach using different combinations of scheduling

weights WN and Ws (defined in Equation 4.1). We compare the performance of the MCS

approach with two scheduling approaches, a Random Scheduling (RS) approach where the

access network and cloud server used are selected randomly, and a Maximizing QoE

112

Scheduling (MQS) approach where the scheduling decision is targeted to maximize the QoE

that can be achieved for each assigned user. In the second part, we apply our proposed JSA

approach and compare its performance with the results of MCS approach without applying

adaptation techniques.

4.5.1 Simulation Framework and Test Scenario

Our MATLAB-based simulation framework consists of several geographical regions

(reflecting each mobile macrocell) with heterogeneous access network coverage with different

bandwidth and delay characteristics, and a set of Internet and mobile cloud servers with

different reserved cloud capacities beyond which CMG provider has to pay for additional

computing cost. For users arriving and leaving the system, the simulation framework can use

any kind of user arrival and departure model. Depending on the types of the CMG

applications, the framework allows the generation of CMG user requests with different QoS

requirements, including acceptable Round-trip Delay RDelayA, application bit rate needed, and

computation needed.

During the simulation, the incoming user (under a certain arrival model) is randomly

added into one of the geographical regions. Though the user’s mobile device can support

multiple communication modes in each region, it may be bound by one of the communication

modes depending on which area he/she is in and the network availability in that area. Our

simulation framework allows the generation of CMG users with different types of

communication modes even if these users are in the same geographical region.

113

While we have tested our proposed scheduling approaches with multiple scenarios,

Figure 4.7 shows one such scenario based on which we present and discuss the experimental

results in this chapter. Note that our observations of the experimental results are valid for other

test scenarios we have simulated. In the test scenario shown in Figure 4.7, we use three CMG

servers. Like in Figure 4.1, we assume one of the three cloud servers is located in a mobile

core network (Mobile CMG Server #1) while the other two are Internet CMG Servers #1 and

#2. The total reserved Cloud Compute Units (CU) [EC2] for these servers are configured as

2800, 2100, and 1750 respectively. We simulate 16 geographic regions. In each geographic

region, we assume there are three types of networks available, a mobile 3G/4G network (via

mobile macrocell BS), a mobile carrier WiFi network (via carrier WiFi Hotspot), and a public

WiFi network (via public WiFi AP). The maximum data rates for the three networks are

configured as 60Mbps, 90Mbps, and 200Mbps respectively. In each geographic region, we

assume 60% incoming users have both the mobile cellular connection and a WiFi network

Macrocell
BS

Mobile
User

Carrier WiFi
Hotspot

Public WiFi
AP

Mobile CMG
Server #1

Internet CMG
Server #3

Internet CMG
Server #2

Game
Engine

Encoder
/Streamer

App. Adaptation

Game
Video

Game
Control

Mobile Cloud
Scheduler

Figure 4.7. Test scenario simulated.

114

connection, while 20% incoming users only have a WiFi network connection, and the rest

20% have only the mobile cellular connection. For each pair of network and cloud server in

Figure 4.7, we use the same average and standard deviation of network round-trip delay

measured in the real experiments conducted in the commercial wireless networks and cloud

servers as described in section 4.1 (Figure 4.1).

To measure the user perceived Quality of Experience (QoE) for CMG, we use our

Mobile Gaming User Experience (MGUE) model described in Chapter 2, which can

quantitatively measure GMOS in a real-time gaming session.

We have used two different games in the simulation: World of Warcraft (WoW) and

Planshift. Two resolutions are used for each game: VGA(800x600) and XGA(1024x768).

Table 4.2. Different types of user requests used in simulation.

User Requests WoW in XGA
resolution

PlaneShift in
XGA resolution

WoW in
VGA
resolution

PlaneShift in
VGA
resolution

Computing Need 2 CU 1.6 CU 1.2 CU 1 CU

Communication
Need

1.2 Mbps 0.9 Mbps 0.7 Mbps 0.6 Mbps

Table 4.3. Capacities for access network and cloud server, and average network

delay/standard deviation for each pair of network and cloud server.

 Mobile Cloud
Server #1

(Capacity
aS

1=1920)

Internet Cloud
Server #2

(Capacity
aS

2=1440)

Internet Cloud
Server #3

(Capacity
aS

3=1200)

Mobile macrocell BS

(Capacity aN
1=71)

83ms/21ms 135ms/47ms 171ms/53ms

Carrier WiFi Hotspot

(Capacity aN
2=106)

74ms/18ms 127ms/43ms 167ms/48ms

Public WiFi AP

(Capacity aN
3=261)

N/A 93ms/23ms 145ms/32ms

115

During the simulation, we generate user requests randomly from four different types of

profiles as shown in Table 4.2. The average computation need of all user requests is 1.45CU,

while the average communication need is 0.85Mbps. Given the above user request types, we

could calculate the capacity of network and cloud servers in terms of the number of users. The

complete setup of cloud servers and networks for each geographic region are shown in Table

4.3, including the capacity, and the average network round-trip delay and standard deviation

for each pair of possible choice.

While the number of users in the system will go up and down during a day, we

simulate peak periods when the user inter-arrival time is smaller than the user inter-departure

time. In our simulation, the user arrival and departure model used is birth-death process

[LR99]. The user mean inter-arrival time is 1 second, while the user mean inter-departure time

is 5 seconds.

4.5.2 Experimental Results Using MCS

We first compare our proposed Mobile Cloud Scheduling (MCS) with two scheduling

approaches, namely Random Scheduling (RS) and Maximizing QoE Scheduling (MQS). RS

will select the wireless access network and cloud server randomly as long as they can meet

QoS requirement. MQS will choose the access network and server for each requesting user

such that his/her QoE is maximized. To characterize our proposed MCS approach with

different weights WN and WS (in Equation 4.1), we have used three different settings. As we

mentioned before, the weights WN and WS are used to represent system-specific interests. The

first simulated MCS approach assumes the weights are WN=1, WS=0, termed as MCS-1-0.

MCS-1-0 is aimed to help cloud provider to minimize the number of blocked users (that is,

maximize capacity in terms of number of concurrently scheduled users). In the second MCS

simulation (termed as MCS-0.5-0.5) it assumes WN and WS are both 0.5. MCS-0.5-0.5 gives

116

equal weights to the dual objectives of maximizing capacity (minimizing number of blocked

users) and minimizing additional cloud cost. The third MCS simulation (termed as MCS-0-1)

assumes the weights are WN=0, WS=1, which is only targeted to minimize the additional cloud

service cost.

The experiments are conducted using the simulation framework and setup introduced

above (section 4.5.1). The number of maximum concurrent users in the system, MAX, is set to

10000. We use a Gaussian distribution for P(x) (as defined in Table 4.1). Its mean is 5000, and

standard deviation is 1000. We first use the user arrival/departure model described in section

4.5.1 to train the CMG system to obtain the profiles of the history of the resource usage for

deriving the access probability of each network (pN
i) and each server (pS

j). Then we simulate

the experiments with five different scheduling approaches: MCS-1-0, MCS-0.5-0.5, MCS-0-1,

RS, and MQS. During the simulations of using each approach, we measure and calculate the

number of blocked users (BUsers), the number of users who need additional computing cost

(ACost), the objective criterion D (as defined in Equation 4.1), the average cloud cost per

scheduled user, the average GMOS per user, and the statistical average cloud cost and GMOS

by applying the probability distribution of concurrent number of users P(x). Figure 4.8 shows

the experimental results.

Figure 4.8(a) presents the relationship between BUsers and the number of users in the

entire CMG system, n. From Figure 4.8(a), we note that MCS may not be able to schedule

some incoming users when n keeps increasing. This is mainly because these incoming users

have entered into the regions where network bandwidth is fully utilized. It can be also

observed from Figure 4.8(a) that the performance of MCS-1-0 and MCS-0.5-0.5 are very close

and always much better than other three scheduling approaches. This is because MCS-1-0 and

117

MCS-0.5-0.5 have considered the utilization and accessing probability of networks during

each scheduling decision so as to avoid over-utilization.

Figure 4.8(b) shows the results of ACost while n keeps increasing. As we expected,

MCS-0-1 has the best performance in reducing the ACost because it fully considers the

reserved cloud server resource during the scheduling. Besides MCS-0-1, we noticed that

MCS-0.5-0.5 also performs much better than the other three approaches. The results in Figures

4.8(a) and (b) demonstrate that the proposed MCS approach of minimizing BUsers and ACost

for future users is effective.

To demonstrate the efficiency of our proposed MCS approach in minimizing the MCS

objective criteria D defined in section 4.2, we also calculate the statistical average of D during

the simulation. For each n, we first calculate D by Equation 4.1 using the results shown in

Figures 4.8(a)(b), and then we calculate the statistical average of D by applying the P(x), the

weights of all possible values that n can take on. Figure 4.8(c) compares the objective criteria

D between our proposed MCS and the other two scheduling approaches, RS and MQS. Note

that for scheduling weights {WN=1, Ws=0}, WCS-1-0 is used. Similarly, for scheduling

weights {WN=0.5, Ws=0.5} and {WN=0, Ws=1}, MCS-0.5-0.5 and MCS-0-1 are used

respectively. From Figure 4.8(c), we can observe that for different scheduling weights, the

proposed MCS approach always performs the best among the tested scheduling approaches.

For example, for the first pair of scheduling weights {WN=1, Ws=0}, the statistical average of

D by using MCS-1-0 is about 200, which is at least 2 times less than the other two approaches.

The same trend and observation can be found in the test results for the other two pairs of

scheduling weights. The above experiment and results have demonstrated that our proposed

MCS approach can achieve the best performance in terms of minimizing MCS objective

criteria D, given any scheduling weights WN and WS.

118

MCS-1-0

MCS-0.5-0.5

MCS-0-1

RS

MQS

MCS-1-0
MCS-0.5-0.5
MCS-0-1
RS
MQS

MCS-1-0
MCS-0.5-0.5
MCS-0-1
RS
MQS

3.2

3.6

3.8

S
ta

ti
st

ic
al

 a
ve

ra
ge

 G
M

O
S

p

er
 u

se
r

in
 s

ys
te

m

(f) (g)

3.0

2.5

3.5

4.5

A
ve

ra
ge

 G
M

O
S

 p
er

u

se
r

in
 s

ys
te

m

2.0

3.0

4.0

1000080006000400020000
n

3.4

4.0

1000

2000

3000

4000

B
U

se
rs

1000080006000400020000

1000

2000

3000

n

A
C

os
t

(a) (b)

0 0
1000080006000400020000

n

5000

500

1000

S
ta

ti
st

ic
al

ex

p
ec

ta
ti

on
 o

f
D

(c)

0
(WN=1, WS=0)

1500

(WN=0, WS=1)(WN=0.5, WS=0.5)

0.05

0.1

0.15

C
lo

u
d

 C
os

t
p

er
 e

ac
h

sc

h
ed

u
le

d
 u

se
r

($
 /

H
ou

r)

(d) (e)

MQSRSMCS-
0-1

MCS-
0.5-0.5

MCS-
1-0

0.04

0.06

S
ta

ti
st

ic
al

 a
ve

ra
ge

 c
lo

u
d

 c
os

t
p

er

ea
ch

 s
ch

ed
u

le
d

 u
se

r
($

/H
ou

r)
0.25

100008000600040002000
n

0

0.08

0.1

MCS-1-0
MCS-0.5-0.5
MCS-0-1
RS
MQS

0.2

MQSRSMCS-
0-1

MCS-
0.5-0.5

MCS-
1-0

MCS

RS

MQS

MCS-1-0
MCS-0.5-0.5
MCS-0-1
RS
MQS

MCS-1-0
MCS-0.5-0.5
MCS-0-1
RS
MQS

MCS-1-0
MCS-0.5-0.5
MCS-0-1
RS
MQS

MCS-1-0
MCS-0.5-0.5
MCS-0-1
RS
MQS

Figure 4.8. Results of simulation experiments: scheduling using the proposed MCS approach,

and RS and MQS approaches.

119

It should be noted that the results obtained in this section has used our proposed

heuristic approach (section 4.3.2) with err setting of 10e-3. To investigate the loss of accuracy

by applying the proposed heuristic approach, we have conducted experiments to compare the

objective criteria D achieved between the scheduling without applying heuristic approach and

the scheduling with applying heuristic approach. For the pair of scheduling weights {WN=0.5,

WS=0.5}, the resulting statistical average value of D is 439.9 if without applying heuristic

approach, while it is 440.8 (about 0.2% higher) with applying heuristic approach. This result

demonstrates that our proposed heuristic approach can achieve a good accuracy in minimizing

objective criteria D while significantly reducing the run time for the MCS approach.

We have measured the average cloud cost per scheduled user, including the costs paid

for reserved and on-demand computing resource and the costs for on-demand usage of cloud

network bandwidth and storage as shown in Figure 4.1. Figure 4.8(d) shows how the average

cloud cost changes given different n. From Figure 4.8(d) we notice that for each scheduling

approach the average cloud cost will keep decreasing while number of concurrent users n is

increasing until the CMG provider starts to pay the ACost to the cloud provider. MCS-0.5-0.5

performs best among all five approaches when n is less than 5000, because it can achieve good

performance in both minimizing BUsers and ACost, MCS-0-1 has a little higher average cloud

cost when n is small, but it will eventually drop lower than MCS-0.5-0.5 when n is less than

5000 where the ACost spent becomes significant for MCS-0.5-0.5. To better evaluate and

compare the performances of different scheduling approaches in reducing average cloud cost,

we have calculated the statistical average cloud cost by applying P(x), the weights of all

possible values that n can take on. The results are shown in Figure 4.8(e). From Figure 4.8(e),

the benefits of using MCS-0.5-0.5 and MCS-0-1 are obvious. The statistical average cloud

120

cost per each user of using these two approaches are only about $0.06 per hour, which is at

least $0.02 less than the results of using other approaches.

We have also measured the GMOS of each user in the system (including blocked

users), and calculated the average GMOS and statistical average GMOS. When there is no

blocked user, MQS will result in the best average GMOS among all five approaches, as shown

in Figure 4.8(f). However, when n increases, some requesting users may be blocked due to the

network resource constraint (as shown in Figure 4.8(a)). Because the GMOS of a blocked user

is 0, the average GMOS will decrease. The approach which has less blocking rate, like MCS-

0.5-0.5 and MCS-1-0, will eventually have better average GMOS. For any given number of

user requests n, Figure 4.8(f) has given the corresponding value of average GMOS. We next

calculate the statistical average GMOS by applying P(x), the weights of all possible values

that n can take on. The results of statistical average GMOS for each scheduling approach is

shown in Figure 4.8(g). Based on Figure 4.8(g), we can observe that approaches MCS-0.5-0.5

and MCS-1-0 have similar performance and both of them can achieve much higher average

GMOS than the other three approaches.

Based on the above results (Figures 4.8(e)(g)) and discussions, {WN=0.5, Ws=0.5}

may be an effective setting, because MCS-0.5-0.5 can achieve a low average cloud cost as

well as a high average GMOS, which also indicates its capability of achieving a low number

of blocked users and hence high capacity. Note that while the experimental results reported in

this dissertation compare three pairs of WN and Ws settings, the proposed MCS method allows

CMG providers to explore different values of WN and WS, and select the appropriate setting

depending on the tradeoff between capacity, cloud cost, and aggregate user experience they

want to achieve.

121

4.5.3 Experiment Results Using the Proposed Joint Scheduling-Adaptation

To demonstrate the efficiency of the proposed Joint Scheduling-Adaptation (JSA)

approach, we use similar simulation framework and setup as described in sections 4.5.1 and

4.5.2. The only difference is that we have used a larger number (30000) of maximum

concurrent users in the system, MAX, considering JSA is expected to increase the system

capacity. Correspondingly, we set the mean and the standard deviation of P(x) to 15000 and

3000.

The application adaptation used is a joint rendering and encoding adaptation

technique, proposed in [WD13], which can adapt the bit rate and computation needs of each

CMG session to the dynamic conditions of the wireless network and cloud server

simultaneously. In [WD13], we have defined 4 bit rate adaptation levels and 4 computation

adaptation levels. The QoS requirements in terms of bit rate and computation needs for each

level are defined in [WD13]. The QoE impairments for each level have been studied in

[WD12][LWD12]. Note that the range of impairment is from 0 (no impairment) to 100. It can

be converted to GMOS by a non-linear function [WD12]. Table 4.4 presents the values of QoS

requirements (Reql) QoE impairments (Il) for each bit rate and computation adaptation level.

From Table 4.4, we can observe the bit rate need without any adaptation (level 4) is 2.5 times

of the bit rate need at level 1. This indicates that with the bit rate adaptation technique the

Table 4.4. QoS Requirements (Reql) / QoE Impairment (Il) for each level in bit rate and

computation adaptation.

Adaptation levels 1 2 3 4

Bit rate adaptation 1 / 22 1.5 / 7 2 / 4 2.5 / 0

Computation adaptation 1 / 18 2 / 12 3 / 8 4 / 0

122

maximum capacity of each access network will become 2.5 times of the capacities (Table 4.4)

without application adaptation. Similarly, from Table 4.4 we can observe that the computing

requirement without any adaptation (level 4) is 4 times of the requirement at level 1. Thus, we

can multiply the reserved cloud server capacities (Table 4.4) by 4 to get the maximum

capacity of reserved cloud server.

 We simulate JSA approach with three pairs of scheduling weights as used for MCS in

section 4.5.2: JSA-1-0 where {WN=1, WS=0}, JSA-0.5-0.5 where {WN=0.5, WS=0.5}, and JSA-

0-1 {WN=0, WS=1}. Similar to the experiment conducted in section 4.5.2, during the

simulation, we measure and calculate the number of BUsers, the number of users who need

the ACost, the statistical average of objective criteria D, the statistical average of cloud cost

per each scheduled user, the statistical average of achieved GMOS per each user in the entire

CMG system. We also compare the performance of JSA with the performance of MCS with

settings {WN=0.5, WS=0.5}, the latter performing the best amongst other settings and

approaches tested in section 4.5.2. The results of the simulation experiments are shown in

Figure 4.9.

From Figure 4.9(a) we can observe that given the same number of concurrent users n,

the number of BUsers by applying JSA is much lower than the number of BUsers using MCS-

0.5-0.5. It should be noted that the number of scheduled users can be calculated by deducting

the number of BUsers from n. For instance, from the results presented in Figure 4.9(a), we see

that when the number of concurrent user requests is 24000, the number of scheduled users is

only about 7000 if using MCS with settings 0.5-0.5 while it is about 20000 (about 3x

improved) if using JSA with any of three scheduling weights settings.

Figure 4.9(b) shows the ACost while n keeps increasing. With the application

adaptation techniques, the computation need of cloud mobile gaming will be greatly reduced.

123

This will let each cloud server be able to support much higher number of users within the

reserved computing cloud resource. Due to this reason, as shown in Figure 4.9(b), the ACost

starts to increase at about 4000 user requests if using MCS-0.5-0.5, while with use of the JSA,

the ACost starts to increase at about 8000 user requests.

JSA

MCS

JAS-1-0
JAS-0.5-0.5
JAS-0-1
MCS-0.5-0.5

JAS-1-0
JAS-0.5-0.5
JAS-0-1
MCS-0.5-0.5

5000

10000

15000

20000
B

U
se

rs

3000024000180001200060000

1000

2000

3000

n

A
C

os
t

(a) (b)

0 0
3000024000180001200060000

n

25000

S
ta

ti
st

ic
al

 a
ve

ra
ge

 G
M

O
S

pe
r

u
se

r
in

 s
ys

te
m

1.0

2.0

4.0

MCS-
0.5-0.5

JSA-
0-1

JSA-
0.5-0.5

JSA-
1-0

3.0

(c)

0

300

600

900

S
ta

ti
st

ic
al

ex

p
ec

ta
ti

on
 o

f
D

(WN=1, WS=0) (WN=0, WS=1)(WN=0.5, WS=0.5)

MCS-
0.5-0.5

JSA-
0-1

JSA-
0.5-0.5

JSA-
1-0

0

0.02

S
ta

ti
st

ic
al

 a
ve

ra
ge

 c
lo

u
d

 c
os

t
p

er

ea
ch

 s
ch

ed
u

le
d

 u
se

r
($

/H
ou

r)

0.04

0.08

0.06

(d) (e)

JSA-1-0
JSA-0.5-0.5
JSA-0-1
MCS-0.5-0.5

JSA-1-0
JSA-0.5-0.5
JSA-0-1
MCS-0.5-0.5

Figure 4.9. Results of simulation experiments applying the proposed joint scheduling-

adaptation approach.

124

Base on the results in Figures 4.9(a)(b), we calculate the statistical average objective

criteria D using three different pairs of scheduling weights. The results are presented in Figure

4.9(c). From the Figure 4.9(c), we can observe that JSA in all three scheduling weights

settings can achieve much less value of D than MCS-0.5-0.5.

We have also calculated the statistical average cloud cost and statistical average

GMOS. The results are present in the Figure 4.9(d) and Figure 4.9(e). Based on the results

shown in these two figures, we can conclude that compared to MCS, the JSA with any of the

three settings can significantly reduce the average cloud cost (by about 3.5x), and can

significantly increase the average GMOS achieved (by more than 2x). The above results

demonstrate that the proposed joint scheduling-adaptation approach is efficient in achieving

the JSA objectives defined in section 4.4: minimizing the number of BUsers and the ACost

while maintaining a high average GMOS, thus providing the desired scalability to the CMG

approach.

Besides the above improvements, the other test results and conclusions are very

similar as what we have described in section 4.5.2, that JSA-1-0 has the best performance in

minimizing the BUsers; JSA-0-1 has the best performance in minimizing ACost; and JSA-0.5-

0.5 provides the best setting among the three JSA settings simulated as it can achieve a good

statistical expectation of average cloud cost and average GMOS.

4.6 Conclusions

In this chapter, we proposed a mobile cloud scheduler for cloud mobile gaming, which

can simultaneously schedule the wireless network and cloud server resources to requesting

mobile cloud users in a dynamically changing and heterogeneous CMG environment. We first

developed a Mobile Cloud Scheduling (MCS) approach, with can allocate resources to meet

125

user Quality of Service (QoS) requirements while maximizing number of users that can be

scheduled concurrently and minimizing cloud cost. We have conducted a set of simulation

experiments using the CMG application to compare the performance between CMG sessions

without applying MCS and CMG session with applying MCS. Our simulation results

demonstrate that our proposed MCS approach can help the CMG provider to achieve higher

capacity and lower cloud cost than the original CMG approach without MCS. In order to

further enhance scalability, we introduce a Joint Scheduling-Adaptation (JAS) approach where

the communication and computation requirements of CMG application can be adaptively

adjusted according to the dynamic conditions of the wireless access network and cloud server

at anytime. Simulation results show that the proposed JAS approach can significantly increase

the number of concurrent CMG users and reduce cloud cost while meeting user minimum

acceptable QoS requirements.

The text of this chapter, in part or in full, is based on material that has been published

in IEEE International Conference on Communications (ICC) (S. Wang, Y. Liu, S. Dey,

“Wireless Network Aware Cloud Scheduler for Scalable Cloud Mobile Gaming”, IEEE ICC,

Jun. 2012) and material submitted to IEEE Transactions on Networking (S. Wang, Y. Liu, S.

Dey, “Mobile Cloud Scheduling: Scheduling Heterogeneous Network and Cloud Resources to

Enable Scalable Mobile Cloud Computing”). The dissertation author was the primary

researcher and author in the publications, and the coauthors listed supervised the research that

forms the basis of this chapter.

126

Chapter 5

Conclusions and Future Directions

This chapter concludes the dissertation with a summary of our principle contributions

and some thoughts about the possible future research work.

In Chapter 2, we developed a Mobile Gaming User Experience (MGUE) model,

which can quantitatively measure user perceived mobile gaming experience. Consequently,

we develop a MGUE prototype measurement tool to enable in-network monitoring of MGUE.

The MGUE model developed in this dissertation can be potentially used by researchers to

assess the performance of new CMG techniques, and by future mobile gaming service

providers, including network operators, to better plan and optimize their CMG services, as

well as monitor in-network the user experience of their mobile gaming subscribers. We also

believe that the approach used to develop the MGUE model outlined in this work can be

useful for developing QoE models for other new cloud server based interactive multimedia

applications, such as virtual reality and augmented reality.

To address the communication constraint imposed by the fluctuating bandwidth and

mobile network and computation constraint due to the cost and availability of cloud servers, in

Chapter 3, we developed a dynamic game rendering adaptation technique which can

127

simultaneously vary the richness and complexity of graphic rendering to adapt the

communication and computing needs of each CMG session in responding to the dynamic

conditions of the wireless mobile networks and CMG server. Adapting the content source has

not been studied, and may not be a possibility for other types of video applications, like live

video streaming or video conferencing. We furthermore, proposed a joint adaptation between

content source (here rendering) and video encoding to address mobile network and server

computing constraints, which again has not been previously attempted to the best of our

knowledge.

In Chapter 4, we proposed a mobile cloud scheduler for Cloud Mobile Gaming, which

can simultaneously schedule the wireless network and cloud server resources to requesting

mobile cloud users in a dynamically changing and heterogeneous CMG environment. We first

developed a Mobile Cloud Scheduling (MCS) approach, which can allocate resources to meet

user Quality of Service (QoS) requirements while maximizing number of users which can be

scheduled concurrently and minimizing cloud cost. We demonstrate that the proposed MCS

approach can assist the CMG provider to achieve a higher capacity and a lower cloud cost

than the original CMG approach without MCS. In order to further enhance scalability, we

introduce a Joint Scheduling-Adaptation (JAS) approach where the communication and

computation requirements of CMG applications can be adaptively adjusted according to the

dynamic conditions of the wireless access network and cloud server at anytime.

In the future, we envision two ideas to be the initial steps in the direction of the new

techniques specialized for the CMG system. The first is to enhance our proposed mobile cloud

scheduling approach because the current proposed MCS approach works best for stationary

and nomadic users, and does not address mobility explicitly. Thus, if the access network

coverage for a user has changed, MCS will consider this user a new requesting client and may

128

reschedule the access network resource and possibly even the cloud server for this user. This

may lead to some interruption and delay in his/her CMG session, especially when the cloud

server which performs all computing tasks must be rescheduled. In the future, mobile cloud

scheduling techniques will need to be developed with consideration to user mobility and

access network handover issues which may occur even for a stationary user in a heterogeneous

wireless access network environment.

Secondly, while in our proposed Cloud Mobile Gaming architecture the entire game

engine is executed on cloud servers, it may be valuable to investigate whether it is possible to

partition the game engine into different tasks. If this is possible, both mobile devices and

cloud servers can be involved/designed to process part of gaming engine tasks. Depending on

the types of game engine tasks and the costs of network communication and computing on

different platforms, the game engine tasks will be dynamically scheduled to the appropriate

hardware platforms. For instance, the mobile devices will mainly process the tasks which need

less computing resource but demanding quick response time, while the cloud servers will take

over the tasks that are not critical for the gaming response time. We envision that

appropriately partitioning the game engine will eventually be adopted by the future cloud

mobile gaming system, as it is very promising for reducing the gaming response time as well

as the cloud cost.

129

Bibliography

[3DG] 3D game system requirements, http://www.game-debate.com.

[AAB+10] P. Armstrong, A. Agarwal, A. Bishop, et al, “Cloud Scheduler: a resource
manager for distributed compute clouds,” arXiv:1007.0050v1 [cs.DC], 2010.

[ADH12] H. Ahlehagh, S. Dey, “Hierarchical Video Caching in Wireless Cloud:
Approaches and Algorithms”, Workshop on Realizing Advanced Video
Optimized Wireless Networks (ICC'12 WS – ViOpt), in Proc. of IEEE ICC,
Ottawa, Jun. 2012.

[ADV12] H. Ahlehagh and S.Dey “Video Caching in Radio Access Network”, in Proc.
of IEEE WCNC, Paris, Apr. 2012.

[AM13] Analysis Mason, http://www.analysysmason.com/About-Us/News/Insight
/Enterprise-cloud-services-revenue-Feb2013/#.UYKEzsqOrdw, Jan. 2013.

[ANA] Anandtech iphone performance reviews, http://www.anandtech.com.

[ARC11] ARCchart, “The Mobile Cloud: Market Analysis and Forecasts”, Jun. 2011.

[ARC12] ARCchart, “HetNet Market Summary & Forecasts: Macro Cells, Small Cells
& Wi-Fi Offload,” Retrieved 17, Nov. 2012.

[AT10] Asia Times, “Game still on at Tencent”,
http://www.atimes.com/atimes/China_Business/LC24Cb01.html, Mar. 2010.

[Bel+11] A.Beloglazov, et al, “Energy Efficient Resource Management in Virtualized
Cloud Data Centers”, in Proceedings of 2010 IEEE/ACM Conference on
Cluster, Cloud and Grid Computing, Jul. 2010.

[BF10] M. Bredel, M. Fidler, “A Measurement Study regarding Quality of Service
and its Impact on Multiplayer Online Games”, In ACM SIGCOMM workshop
on Network and System Support for Games, (NetGames), 2010.

[BLB06] N. Bhusha, C. Lott, P. Black, et al., “CDMA200 1xEV-DO Revision A: A
physical layer and MAC layer overview,” IEEE Comm. Magazine, 44(2), Feb.
2006.

[BSW+07] P. Baccichet, T. Schierl, T. Wiegand, and B. Girod, “Low-delay Peer-to-Peer
Streaming Using Scalable Video Coding,” in Packet Video 2007, Nov. 2007,
pp. 173–181.

[BVB10] R. Bossche, K. Vanmechelen, J. Broeckhove, “Cost-optimal Scheduling in
Hybrid IaaS Clouds for Deadline Constrained Workload”, in Proc. of IEEE
International Conference on Cloud Computing, Miami, Jul. 2010.

130

[CAN12] Canalys, “Smart phones overtake client PCs in 2011”,
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011 ”,
Feb. 2012.

[CC06] M. Claypool and K. Claypool, “Latency and Player Actions in Online
Games,” Communications of the ACM, 49(11), 2006.

[CGF+10] T. Cucinotta, D. Giani, D. Faggioli, F. Checconi. “Providing performance
guarantees to virtual machines using realtime scheduling”, in in Proceedings
of the 5th Workshop on Virtualization and High-Performance Cloud
Computing, Italy, Aug. 2010.

[CISCO12] Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2011–
2016”, May 30, 2012.

[CKX+08] P. Chaporkar, K. Kar, L. Xiang, S. Sarkar, “Throughput and fairness
guarantees through maximal scheduling in wireless networks,” in IEEE
Transactions on Information Theory, 2008.

[COM12] ITU-T Contribution COM12-D13-E, “Proposal on Basic Concepts of a
Multimedia Quality Assessment Model,” Jan. 2005.

[CSH+08] H. L. Cycon, T. C. Schmidt, G. Hege, et al, “Peer-to-Peer Videoconferencing
with H.264 Software Codec for Mobiles,” in WoWMoM08 – WS on Mobile
Video Delivery (MoViD), IEEE Press, Jun. 2008, pp. 1–6.

[CSW+11] H. L. Cycon, T. C. Schmidt, M. Wahlisch, et al, “A Temporally Scalable
Video Codec and its Applications to a Video Conferencing System with
Dynamic Network Adaption for Mobiles”, IEEE Trans. on Consumer
Electronics, vol. 57, no. 3, pp. 1408-1415, Aug. 2011.

[CV05] S.-F. Chang and A. Vetro, “Video Adaptation: Concepts, Technologies, and
Open Issues,” Proc. IEEE, vol. 93, no. 1, pp. 148–158, Jan. 2005.

[Dey12] S. Dey, “Cloud Mobile Media: Opportunities, challenges, and directions”, in
Proceedings of IEEE International Conference on Computing, Networking
and Communications (ICNC), Jan. 2012.

[DJ02] C. Dovrolis, and M. Jain, ``End-to-end Available Bandwidth: Measurement
Methodology, Dynamics, and Relation with TCP Throughput''. In
Proceedings of ACM SIGCOMM 2002, Aug. 2002.

[DLN+11] H.T. Dinh, C. Lee, D. Niyato, P. Wang, “A Survey of Mobile Cloud
Computing: Architecture, Applications and Approaches,” Wireless
Communications and Mobile Computing, Wiley Journals, Oct. 2011.

[DWW05] M. Dick, O. Wellnitz, and L. Wolf, “Analysis of Factors Affecting Players'
Performance and Perception in Multiplayer Games”, In ACM SIGCOMM
workshop on Network and System Support for Games, (NetGames), 2005.

[EC2] Amazon EC2 Pricing, http://aws.amazon.com/ec2/pricing/.

[EMC+07] J. Elias, F. Martignon, A. Capone, G. Pujolle, “A new approach to dynamic
bandwidth allocation in Quality of Service networks: Performance and
bounds”, in International Journal of Computer and Telecommunications
Networking, 2007.

131

[FCF+05] W.-C. Feng, F. Chang, W.-C.Feng, and J. Walpole, “A Traffic
Characterization of Popular On-line Games”, IEEE/ACM Trasactions on
Networking, vol 13, no.3, pp.588-500, Jun. 2005.

[FLR12] N. Fernando, S.W. Loke, W. Rahayu. “Mobile cloud computing: A survey,”
Future Generation Computer Systems, Jun. 2012.

[FRS05] T. Fritsch, H. Ritter and J. Schiller, “The Effect of Latency and Network
Limitations on MMORPGs - (A Field Study of Everquest2)”, In ACM
SIGCOMM workshop on Network and System Support for Games,
(NetGames), 2005.

[G107] ITU-T Recommendation G.107, “The E-model, a Computational Model for
Use in Transmission Planning,” Mar. 2005.

[G1070] ITU-T Recommendation G.1070, “Opinion Model for Videotelephony,” Apr.
2007.

[Gho+11] A. Ghodsi, et al, “Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types”, Berkerley Technical Report, Mar. 2011.

[Han04] D. S. Hands, “A Basic Multimedia Quality Model,” IEEE Transactions on
Multimedia, vol. 6, no. 6, pp. 806-816, Dec. 2004.

[Haz] M. Hazewinkel, "Bernoulli trials", Encyclopedia of Mathematics, Springer,
ISBN 978-1-55608-010-4.

[HK09] I-H. Hou and P.R. Kumar. “Admission control and scheduling for QoS
guarantees for variable-bit-rate applications on wireless channels,” In Proc. of
ACM MobiHoc, pages 175-184, May. 2009.

[IDC11] IDC, “More Mobile Internet Users Than Wireline Users in the U.S. by 2015”,
http://www.idc.com/getdoc.jsp?containerId=prUS23028711 , Sep. 2011.

[J144] ITU-T J.144, “Objective Perceptual Video Quality Measurement Techniques
for Digital Cable Television in the Presence of a Full Reference,” Mar. 2004.

[JFE+09] A. Jurgelionis, P. Fechteler, P. Eisert, et al., “Platform for Distributed 3D
Gaming”, International Journal of Computer Games Technology, Volume
2009, Article ID 231863.

[JUN11] Juniper Research, “Mobile Cloud: Smart Device Strategies for Enterprise &
Consumer Markets 2011-2016”, http://juniperresearch.com/ , Jul. 2011.

[LCC11] Y-T. Lee, K. Chen, Y. Cheng, C. Lei., "World of Warcraft Avatar History
Dataset," In Proc. Of ACM Multimedia Systems, Feb. 2011.

[LCK11] G. Lee, B. Chun, R. Katz, ”Heterogeneity-aware Resource Allocation and
Scheduling in the Cloud”, in Proc. of 3rd USENIX Workshop on Hot Topics
in Cloud Computing, Jun. 2011.

[JVC+03] T. Jehaes, D. De Vleeschauwer, T. Coppens, et al., “Access Network Delay In
Networked Games,” in Proc. of the Second Workshop on Network and System
Support for Games, 2003.

[KSG04] M. Kalman, E. Steinbach, and B. Girod, “Adaptive Media Playout for Low–
delay Video Streaming over Error–prone Channels,” IEEE Trans. On Circuits

132

Syst. Video Technol., 2004.

[LR99] G. Latouche, V. Ramaswami. “Chapter 1: Quasi-Birth-and-Death Processes,”
Introduction to Matrix Analytic Methods in Stochastic Modelling, 1st edition,
ASA SIAM, 1999.

[LSM+08] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and H. Zang, “Experiences
in a 3G Network: Interplay between the Wireless Channel and Applications,”
in Proc. ACM MobiCom 2008, Sep. 2008.

[LWD12] Y. Liu, S. Wang, S. Dey, “Modeling, characterizing, and enhancing user
experience in Cloud Mobile Rendering”, in Proc. of IEEE ICNC, Maui, Jan.
2012.

[MAM10] MarketsAndMarkets, “World Mobile Applications Market - Advanced
Technologies, Global Forecast (2010-2015)”,
http://www.marketsandmarkets.com/, Aug. 2010.

[MAT] MATLAB, http://www.mathworks.com

[MPL+C07] F. Morán, M. Preda, G. Lafruit, et al., "Adaptive 3D Content for Multi-
Platform On-Line Games," IEEE International Conference on Cyberworlds,
2007.

[MPL+J07] F. Morán, M. Preda, G. Lafruit, et al., “3D Game Content Distributed
Adaptation in Heterogeneous Environments”, in EURASIP Journal on
Advances in Signal Processing, 2007.

[MSD07] S. Mukhopadhyay, C. Schurgers, S. Dey, “Joint Computation and
Communication Scheduling to Enable Rich Mobile Applications,” in Proc. of
IEEE GLOBECOM, Washington D.C., Nov. 2007.

[NDS+08] I. Nave, H. David, A. Shani, A. Laikari, P. Eisert, and P.Fechteler,
“Games@Large Graphics Streaming Architecture,” Proceedings of the 12th
Annual IEEE International Symposium on Consumer Electronics, pp. 1–4,
Algarve, Portugal, Apr. 2008.

[NKG10] R. Nathuji, A. Kansal, A. Ghaffarkhah, “Q-clouds: managing performance
interference effects for QoS-aware clouds”, in Proc. 5th European conference
on computer systems, pp. 237–250. ACM, New York, 2010.

[NRL+04] N. Pham Ngoc, W. Van Raemdonck, G. Lafruit, et al., “A QoS Framework
for Interactive 3D Applications”, in Proc. of the 9th international conference
on 3D Web technology, 2004.

[OneAPI] https://gsma.securespsite.com/access/Access%20API%20Wiki/Home.aspx

[ONL] “Onlive”, http://www.onlive.com.

[P800] ITU-T Recommendation ITU-T P.800, “Methods for Subjective
Determination of Transmission Quality,” 1996.

[PMD+03] R. S. Prasad, M. Murray, C. Dovrolis, and K. Claffy, “Bandwidth Estimation:
Metrics, Measurement Techniques, and Tools,” IEEE Network, vol. 17, pp.
27–35, Nov. 2003.

[PQ11] Y. Peng, F. Qin, “Exploring Het-Net in LTE-Advanced System: Interference

133

Mitigation and Performance Improvement in Macro-Pico Scenario”, in Proc.
of IEEE ICC, Kyoto, Jun. 2011.

[QML+04] Peter Quax, Patrick Monsieurs, Wim Lamotte, et al., “Objective and
subjective evaluation of the influence of small amounts of delay and jitter on a
recent first person shooter game,” in Proc. of the Third Workshop on Network
and System Support for Games, 2004.

[RLS+02] W. Van Raemdonck, G. Lafruit, E.F.M. Steffens, et al., “Scalable 3D
Graphics Processing in Consumer Terminals”, IEEE International Conference
on Multimedia and Expo, 2002.

[RNR08] M. Ries, O. Nemethova, M. Rupp, ”Video Quality Estimation for Mobile
H.264/AVC Video Streaming,” Journal of Communications, vol. 3, pp. 41 -
50, 2008.

[PS] Planeshift, http://www.planeshift.it/.

[SKG+11] A. Shieh, , S. Kandula, A. Greenberg, et al., “Sharing the data center
network”, in Proceedings of the 8th USENIX conference on Networked
systems design and implementation, 2011.

[SM99] B.-O. Schneider, and I. Martin, “An Adaptive Framework for 3D Graphics
over Networks”, in Computers and Graphics, 23, 867-874, 1999.

[SMW07] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard,” IEEE Trans. On Circuits
System and Video Technology., vol. 17, no. 9, pp. 1103–1120, Sep. 2007.

[TLL07] W. Tan, F. Lam, and W. Lau, “An Empirical Study on 3G Network Capacity
and Performance,” in Proc. of IEEE INFOCOM, pages 1514–1522, 2007.

[TML+04] N. Tack, F. Morán, G. Lafruit, R. Lauwereins, “3D Graphics Rendering Time
Modeling and Control for Mobile Terminals,” in Proc. of Int. Conf. on 3D
Web technology , 2004.

[TW07] S. Tasaka and Y. Watanabe, “Real-Time Estimation of User-Level QoS in
Audio-Video IP Transmission by Using Temporal and Spatial Quality,” IEEE
GLOBECOM, Nov. 2007.

[TYK04] A. Takahashi, H. Yoshino, and N. Kitawaki, “Perceptual QoS Assessment
Technologies for VoIP,” IEEE Communications Magazine, pp. 28- 34, Jul.
2004.

[VDG+05] N. Vaidya, A. Dugar, S. Gupta, P. Bahl, “Distributed Fair Scheduling in a
wireless LAN,” in IEEE Transaction on Mobile Computing, vol. 4, 2005.

[WBD] WoW Basic Demographics, http://www.nickyee.com/daedalus/archives-
/001365.php .

[WCG+07] M. Wien, R. Cazoulat, A. Graffunder, A. Hutter, and P. Amon, “Realtime
System for Adaptive Video Streaming Based on SVC,” IEEE Trans. Circuits
Syst. Video Technol., vol. 17, no. 9, Sep. 2007.

[WD09] S. Wang, S. Dey, “Modeling and Characterizing User Experience in a Cloud
Server Based Mobile Gaming Approach,” in IEEE GLOBECOM, Nov. 2009.

134

[WD10] S. Wang, S. Dey, “Rendering Adaptation to Address Communication and
Computation Constraints in Cloud Mobile Gaming,” in IEEE GLOBECOM,
Dec. 2010.

[WD12] S. Wang, S. Dey, “Cloud Mobile Gaming: Modeling and Measuring User
Experience in Mobile Wireless Networks,” ACM SIGMOBILE MC2R, vol.
16, issue 1, Jan. 2012, pp. 10-21.

[WD13] S. Wang, S. Dey, “Adaptive Mobile Cloud Computing to Enable Rich Mobile
Multimedia Applications,” IEEE Transactions on Multimedia, vol. 15, no. 4,
Jun. 2013.

[WDA10] S. Wang, S. Dey, "Addressing Response Time and Video Quality in Remote
Server Based Internet Mobile Gaming," in Proc. of IEEE WCNC, Sydney,
Mar. 2010.

[WLD12] S. Wang, Y. Liu, S. Dey, “Wireless Network Aware Cloud Scheduler for
Scalable Cloud Mobile Gaming”, in Proc. of IEEE ICC, Ottawa, Jun. 2012.

[WW03] M. Wimmer and P. Wonka, “Rendering Time Estimation for Real-Time
Rendering,” in Eurographics Symposium on Rendering, 2003.

[YH06] K. Yamagishi and T. Hayashi, “Opinion Model for Estimating Video Quality
of Videophone Services,” IEEE GLOBECOM, Nov. 2006.

[YII05] T. Yasui, Y. Ishibashi, T. Ikedo, “Influences of Network Latency and Packet
Loss on Consistency in Networked Racing Games,” In ACM SIGCOMM
workshop on Network and System Support for Games, (NetGames), 2005.

