
UC Irvine
ICS Technical Reports

Title
Slim binaries

Permalink
https://escholarship.org/uc/item/8f41s6q7

Authors
Franz, Michael
Kistler, Thomas

Publication Date
1996-06-07
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8f41s6q7
https://escholarship.org
http://www.cdlib.org/


Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Slim Binaries

Michael Franz and Thomas Kistler

Technical Report 96-24

Department of Information and Computer Science
University of California, Irvine, CA 92717-3425

7th June 1996

SL

C3

^



Slim Binaries

Michael Franz and Thomas Kistler

Department ofInformation and Computer Science

University ofCalifornia at Irvine

Abstract

The traditional path to software portability among various hardware platforms has been
the provision of "fat binaries", object files that containmultiple instruction sequences for
different target architectures. This paper presents an alternative approach based on "slim
binaries", files that contain a target-machine-independent program representation from
which native code is generated on-the-fly at load-time. The slim binaries used in our
implementation are based on adaptive compression of syntax trees, and not on a virtual-
machine representation such as p-code or Java byte-codes. They are highly compact and
can be read from a storage medium very efficiently, significantly reducing the I/O cost of
loading. The time thus saved is then spent on code generation, making the implemented
system fast enough to compete with traditional loaders. Slim binaries are well suited for
realizing portable software components, such as downloadable content-specific editor
applets for multimedia documents on the World Wide Web, or "intelligent agents" that
move from machine to machine and perform computing tasks locally.

Introduction

The power of computers has increased dramatically over the past 20 years. Not only has
the performance of processors risen continuously from one generation to the next and
from architecture to architecture, but also has the interval between these performance
steps been shrinking steadily. Unfortunately, computer users often cannot take immediate
advantage of these improvements, as they are working with software that has been
optimized for earlier processor generations (as an example, consider 16-bit software
running on 32-bit processors). The heightened frequency of new processor releases
makes it increasingly difficult for software suppliers to furnish adequate program updates
in a timely manner. Even then, software is usually tailored only toward the most common



implementation of an architecture. For cost reasons and to avoid user confusion,
manufacturers do not ordinarilyprovide separate versions of their programs for different
members of a processor family.

At present, we are witnessing a potentially even more disruptive transition than the
mere appearance of yet anothergeneration of an established processorarchitecture. Major
computermanufacturers are embracing RISC as their new technology platform, although
they have a large installed base of CISC machines with a substantial software legacy. In
order to offer existing customers a smooth upgrade path to the new RISC architectures,
these manufacturers often provide software emulation of a previous CISC platform on
their new hardware, or even full dynamic translation from an old instruction set to a new
one [SCK93].

Emulation solves the problem of backward-compatibility, but keeps the software
tied to the old architecture. A software developer wishing to give users of the new
architecture the maximum possible performance without alienating those who haven't
made the transition yet will have to provide his products in both formats simultaneously.
Having multiple versions of a program, however, irritates users. It is also discouraged by
hardware manufacturers, who want to create the illusion of a unified vendor-specific
platform.

This illusion can be conveyed by the provision offat binaries, multiple versions of
the same program within a single object file. Providing users with a fat binary containing
executable code for different hardware architectures enables them to substitutecomputers
at their leisure among the supported processor families without having to worry about
software compatibility.

Unfortunately, this convenience comes at a price. As their name suggests, fat
binaries are largerthan their counterparts that run on only one architecture. They are also
harder to manufacture, as they require the simultaneous operation of multiple compilers.
And since each fat binary usually contains only a single code image per supported
architecture, rather than separate versions for different implementations of each
architecture, fat binaries still don't solve the problem of intra-architectural hardware
variation.

We have implemented a system taking a wholly different approach that we call slim
binaries. The object files in our system don't really contain native code for any particular
processor at all, but a highly compact, architecture-neutral intermediate program
representation. The major achievement of our implementation is that it manages to
generate native code of high quality on-the-fly from this intermediate representation, fast
enough that it can compete with the loading of compiled code from a fat binary. Slim
binaries don't only solve the problem of compatibility between different architectures, but
also allow to fine-tune the object code towards the specific processor and operating
system version that it will run on, for example, with regard to instruction scheduling.
Further benefits ofour scheme will be explored below.



The Importance of Being Slim

As strange as it may sound at first, the key to the effectiveness of slim binaries is indeed

their slim-ness. Recent performance data for off-the-shelf components from major
hardware manufacturers suggests that currently the input and output speed of computer

memories and popular peripheral devices is not growing at the same rate as the raw
"number-crunching" power of microprocessors (Figure 1). This is shifting the economics
of a variety of computing tasks in such a way that it is increasingly becoming more
efficient to re-calculate certain intermediate results than to off-load them to secondary
storage and read them back later. The central claim of this article is that code generation
belongs to the class of computing tasks that exhibit this behavior.

Pertormance Comparison of Macintosh Computer Models

CPU Index

8100/100

S100/80AV

8100/80

Quadra 700
Quadra 800

Jan 89 Jan 90 Jan91 Jan92 : Jan83 J»n 94 Jan;

Figure 1: Different Performance Growth Rates of "Number Crunching" and
Input/Output Operations in the Apple Macintosh Family ofComputers

Slim-binary encoding is based on the observation that different parts of a program are
often similar to each other. For example, in typical programs there are often procedures
that get called over and over with practically identical parameter lists. We exploit these
similarities by use of a predictive compression algorithm that allows to encode recurring
sub-expressions in a program space-efficiently while facilitating also time-efficient



decoding with simultaneous code-generation. Our compression scheme is based on
adaptive methods such as LZW [Wel84] but has been tailored towards encoding abstract
syntax trees rather than character streams. It takes advantage of the limited scope of
variables in programming languages, which allows to deterministically prune entries
from the compression dictionary, and uses prediction heuristics to achieve a denser
encoding.

Adaptive compression schemes encode their input using an evolving vocabulary. In
our encoding, the vocabulary initially consists of a small number of primitive operations
(such as assignment, addition and multiplication), and of the data items appearing in the
program being processed (such as integer i and procedure F). Translation of the source
code into the portable intermediate representation is a two-step process (Figure 2). First,
the source program is parsed and an abstract syntax tree and a symbol table are
constructed. If the program contains syntax or type errors (including illegal uses of items
imported from external libraries), they are discovered during this phase. After successftil
completion of the parsing phase, the symbol table is written to the slim binary file. It is
required for placing the initial data-symbols into the vocabulary of the decoder, and for
supplying type information to the code generator.

Then, the abstract syntax tree is traversed and encoded into a stream of symbols
from the evolving vocabulary. The encoder processes whole sub-trees of the abstract
syntax tree at a time; these roughly correspond to statements on the level of the source
language. For each of the sub-trees, it searches the current vocabulary to find a sequence
of symbols that expresses the same meaning. For example, the procedure call P(i + 1)
can be represented by a combination of the operation-symbols procedure call and
addition, and the data-symbols procedure P, variable i, and constant 1.

After encoding a sub-expression, the vocabulary is updated using adaptation and
prediction heuristics. Further symbols describing variations of the expression just
encoded are added to the vocabulary, and symbols referring to closed scopes are removed
from it. For example, after encoding the expression i + 1, the special symbols i-plus-
something and something-plus-one might be added. Suppose that further along in the
encoding process the similar expression i + j were encountered, this could then be
represented using only two symbols, namely i-plus-something andj. This is more space
efficient, provided that the new symbol i-plus-something takes up less space than the two
previous symbols i andplus. Using prediction heuristics, one might also add i-minus-
something and something-minus-one to the vocabulary, speculating on symmetry in the
program. This decision could also be made dependent on earlier observations about
symmetry during the ongoing encoding session.

In our implementation, compression lowers the input/output overhead by so much
that it can almost compensate for the extra time that is needed for on-the-fly code
generation. The load-time code-generators that we have constructed are exceptionally
fast, orders of magnitude faster than the traditional compilers and linkers they supplant.



Again, this is partly a result of reduced input/output costs: in addition to reading files,
ordinary compilers and linkers need to write to output files, which is often even slower

than reading.

Compression Proces

•interface

wr.te

interface

source

program

parse

scHJrc e r e

add

symbols

abstract

syntax tree

fltxi best

sequence

w'lte

sequence

uixJaTQ
del onary

:« I 1 14-1 P<.) U1

data

dictionary

PM

P(W)

ot^ect file

Figure 2: Translation from Source Code into a Slim Binary



Software Modules

We have integrated slim binaries into an environment that supports software modules
with type-safe separate compilation and dynamic loading. A module is an encapsulated
unit of software that interacts with other modules through some well-defined interfaces.
Only the interface part of a module is visible from the outside; the rest is considered
private and protected from accidental misuse. By crafting interfaces carefully, one can
often even guarantee module invariants. Programming languages such as Mesa,
Modula-2^ Ada and their descendants provide direct language support for modules.

A Module imports ftinctionality from the interfaces of other modules and exports its
own interface. This leads to a hierarchical module-ordering, in which the intermediate
levels simultaneously serve as libraries to higher-level client modules and as clients to
lower-level library modules. In this model, the operating system can be represented as a
collection of modules that are situated at the bottom of the module hierarchy. User
programs extend this pre-existing hierarchy by adding modules at the top.

The import/export relationships between modules are resolved in a process called
binding or linking, which in many modem systems takes place only at the time of
loading. It is then called dynamic loading, which usually also implies that at most one
copy of any library module exists in memory at any one time, although several client
modules (which might even be part of different application programs) may be using it
concurrently. Another implication of dynamic loading is that individual modules are
procured independently; one can upgrade an existing module simply by replacing it with
another one that fulfills the same interface.

Our implementation provides users with this "plug-and-play" functionality of
software modules in a run-time environment based on the Oberon System [WG89].
Programmers create software modules using the programming language Oberon
[Wir88a] and pass them through a compiler that creates slim binaries as its output. The
resulting object-modules are then immediately dynamically loadable on any of the
supported architectures; generation of the final executable code occurs transparently as
part of the dynamic loading process and is invisible to users.

In our system, compilation and dynamic loading are fully type-safe: illegal uses of
imported items are detected at compilation (encoding) time, and import/export
relationships are again verified at dynamic loading (code generation) time. We use a
combination of the methods described by Franz [Fra93a] and Crelier [Cre96] to describe
inter-module links within slim binaries, yielding a highly flexible link format that permits
local library-interfaces tocontain slight variations across different target platforms. It also
allows the addition of functionality to an existing software module without affecting any
of its dependents, i.e., no recompilations are ever necessary unless a change in a library
actually invalidates a client (for example, by removing a function called by the client, or
by changing its result type).



Extensible Systems

While the original idea of dynamic linking had been to factor out common functions so
that they could be shared among several application programs, extensible systems take
this idea one step further, allowing the addition offurther modules at the top of a module
hierarchy at run-time. Application programs can thereby be augmented by additional
functionality in reaction to user needs. For example, viewing a certain multimedia
document on the World Wide Web might require the support of a specific video data-
format. In an extensible system, a software module providing such support can be
downloaded and activated without the user ever noticing that the capabilities of his
WWW-browser had increased.

Not only does our implementation provide this kind of run-time extensibility
transcending even machine-architecture boundaries, but it does so in a type-safe manner.
The programming language Oberon [Wir88a], upon which our system is based, provides
explicit support for extensibility by way of a type extension (sub-typing) mechanism
[Wir88b]. Type extension enables the definition of new data types with extended
functionality that are backward-compatible with the data types of the original application.
The ability to exclude type-errors mechanically greatly simplifies the construction of
extensible systems, which unlike traditional software systems have no final form and
cannot be subjected to final total analysis.

There has been considerable popular interest in extensible software systems lately,
as general-purpose operating systems are moving forward to embrace dynamic linking
and compound-document architectures. A compound document is a container that
seamlessly integrates various forms of user data, such as text, graphics, and multimedia.
These various kinds of content are supported by independent, dynamically-loadable
content editors ("applets") that cooperate in such a way that they appear to the end-user
as a single unified application. The user's software environment can be augmented by
such applets at run-time when required.

Hence, instead of a single software package that "does everything", users obtain
only those components that they actually need. This is ideal as long as users are authoring
new documents all the time, but what happens if a user wants to work with an already
existing document: how does he find out which components are needed, and where can he
obtain these components?

Possible solutions, which could also be combined with each other, are the following:
Most basically, an extensible system might provide a special "fall-back" mode to handle
cases of missing components; for example, by representing the corresponding parts of the
document by non-functional outlines or bitmaps. Beyond that, the system could attempt
to download missing components from a remote server; this would of course require a
network connection. And, even more unusual at first sight, the software components



themselves could be included within the document, leading to fully self-contained active
documents.

Slim binaries facilitate elegant implementations of the latter two solutions. Since
they are independent of the target architecture on which they will eventually run, they
require only a single version of each component to be stored on a central server for
downloading-on-demand scenarios. Further, their compactness makes downloading
particularly efficient. Both of these qualities also make the inclusion of software

components inside of documents practicable. In fact, since documents form the basis of
information interchange, it is then entirely feasible to distribute whole "application
packages" as documents that represent the corresponding user interface: in the user's
view, the application becomes the user interface!

A further potential application area of slim binaries is the encoding of "intelligent
agents", software entities that move from machine to machine and perform local
computing tasks at different sites. The slim binary format offers the necessary target-
machine independence for this purpose while simultaneously providing a flexible linking
scheme that accommodates minor variations in library interfaces without jeopardizing
type-safety when mobile agents call such libraries. Moreover, the small size of slim
binaries makes the format particularly attractive when network transfer of agent code is
required.

Results

Slim binaries have been available for A/C(5<5(520-based Apple Macintosh computers since
late 1993. Originally a by-product of the first author's doctoral-dissertation work [Fra94a,
Fra94b], the slim binary format meanwhile has become a core technology of ETH's
popular MacOberon software distribution. MacOberon is a package that emulates the
Oberon operating environment on the Macintosh platform [Fra93b]. The complete
package consists of a core system, incorporating the central functions such as memory
and file management and a module loader, as well as a suite of application modules that
can be dynamically linked and run from within this environment.

Before the arrival of slim binaries, we used to maintain two separate versions of
MacOberon, one each for MC68020- and PowerPC-based Macintoshes. Replacing their
respective suites of natively-compiled application modules by a single set of slim-binary
encoded modules has reduced the total sizeof our software distribution quitedramatically
(Figure 3). Although it required the addition of a dedicated code-generating loader to
each of the two core systems, the additional space required for these code-generating
loaders was insignificant in comparison to the savings of not having to duplicate all of the
application modules. Almost paradoxically, we were able to hide the distinction between



the two kinds of Macintosh versions from users altogether by embedding their two core
systems into a singlefat binary.

Oberon Distribution Size

Without Slim Binarios

Applications (native)

ni Lo lOIOtLOIOIOI to 10101 IvOIOlO
Lx rioioiorioioio(^101010 ft 0101

Core

MC680x0 05M _:Q,
PowerPC 0.6M -D

1386 0.5M -D

oiotoio 0101010 ^0101010 L.oiaioio
1010101 f* 1010101 r 1010101 rioieioi

010101 toioioi L010101 toioioi t^
1010 lOflOIOlO fioioio fioioio (

with Slim Binaries

Core Applications (portd»i«)
(ineludino on-th#>ftyeompiitt)

MC68Q)(0 0.5M

PowerPC 0.7M

1386 06M

)01>]0lli0ll|0ti
'loriOMOfiioi

Figure 3: InfluenceofSlim Binarie.s on the Size ofOur Software Distribution

On-the-fiy code generation turned out to be so reliable that the provision of native
binaries could be discontinued altogether in MacOberon, resulting in significantly
reduced maintenance overhead for the distribution package.

The economies of size and maintenance effort effected by our use of slim binaries
don't end with MacOberon. They are easily multiplied by adding further code-generating
loaders. A third of these for the i80x86 architecture is already available, enabling
WinOberon users (on the Microsoft Windows 95 platform) to use modules from the
Macintosh distribution as if they contained native Intel code. It is, of course, also possible
to generate slim binaries on any of the supported architectures, as the compiler that
produces them is itself part of the portable application suite.

Hence, slim binaries provide seamless cross-platform portability. By removing the
need for multiple compiled versions of a program, they can also significantly reduce the



overall space required for storing software that needs to run on several different hardware

platforms. But interestingly enough, the representation even reduces the space
requirements for computerprograms on an absolute scale: slim binaries are not only more
compact than ordinary compiled code, but also surpass the infonnation density effected
by popular variants of the LZW [Wel84] compression scheme when applied to either
object code or to source code after the removal of program comments.

We have summarized these results (Figure 4) for two program suites from ETH's
Oberon software distribution: the Net Package includes a World Wide Web browser, a
Telnet application with VTIOO emulation, an electronic mail program based on
POP/SMTP, an Internet News reader, and applications supporting the Finger, FTP, and
Gopher protocols. The size of this package on the native platforms is around 500-600
Kilobytes of object code. The Gadgets Package on the other hand comprises the
graphical user interface tool-kit ofOberon and is on the order of two Megabytes in size.

Slim Brnwy

LZSS Compressed Source Code —

L2SS Compressed MC68020 Binary-
IZSS Comf^essed 1386 Binary

LZSS Compressed Pn^erPC Binary

MC68020 Binary ^

1386Bktary

PowerPC Binary

Source Code

File Size Comparison

Net Packa^ Gadgets Package

resun in t«st. Snortw bars ar« o«a«r. Rasuts are em»8 as larga as Slim Btnwias.

Figure 4: Size Comparison Between Different Representations
ofthe Same Program Suite

The initial claim of this article was that reducing the size of object files allows to exploit
the different growth rates of processorpower relative to storage speeds, so that on-the-fly
code generation becomes viable. Our measurements (Figure 5) compare our code-
generating loader to its respective native counterparts, on a variety of hardware platforms
(the same as listed in Figure 1) introduced over a 6-year period. Our benchmark measures

the time required for loading all of the applications in the Net Package discussed above;



the values referring to slim binaries additionally include the time of generating the
appropriate executable code.

Net Package
Dynamic Loading Time

Quadra B40

7100«0

eioonoo

don 88 Jan^ Jan 90 Jan 91 JartSK2 Jan 93 Jan 94 Jan 95

Figure 5: Time Requiredfor LoadingAlloftheApplications in the NetPackage

These results suggest that the overhead required for on-the-fly code generation is largely
a function of processor power, and substantiate our initial claim that code-generation
should be considered an I/O-bound process. Of course, as processors become more
complex, the techniques required to generate good code for them tend to be more
elaborate also. It is an open question whether the speed of processors will grow faster
than the complexity of generating adequate code for them, but we are confident that this
is the case. The code quality achieved by our current generation of code-generating
loaders is comparable to that of ETH's latest generation of Oberon compilers; the two
build on a common family of compiler back-ends [BCF95].

It is also important to note that the absolute delay that an interactive user
experiences when code is generated dynamically is more important than the relative
speed in comparison to traditional loading. On the fastest computers of our benchmarks,
it takes about two seconds to simultaneously load all of the applications contained in our
Net Package from slim binaries. Although this is still almost twice as much as required
for native binaries, the extra second is within the range that we have found users to be



willing to tolerate. In return for a minimally increased application-startup time, they gain
the benefit of cross-platform portability without sacrificing any run-time efficiency.

Further, typical users of our system do not start all of the applications in the Net
Package at the same time. Quite the opposite: due to the extensible, modular structure of
our system, the incremental workload of on-the-fly code generation is usually quite small.
Most of the applications are structured in such a marmer that seldom-used functions are

implemented separately and linked dynamically only when needed; moreover, there are
many modules that are shared among different applications and need to be loaded only
once. Hence, the effective throughput demanded of our on-the-flycode generator is much
smaller than might be expected when extrapolating from systems based on statically-
linked application programs.

Related Work

On-the-fly code generation has traditionally been used for improving the performance of
dynamically-typed object-oriented languages. Implementations such as Deutsch and
Schiffmann's Smalltalk-80 [DS84] and Chambers and Ungar's ^e//[CUL89] have
benefited from type information available at run-time that, in the absence of static typing,
could not have been extracted from source code.

The use of a machine-independent intermediate representation for achieving
portability is also an old concept. The idea has recently undergone a renaissance, as
exemplified by the ANDF project of the Open Software Foundation [OSF91, DRA93],
Sun Microsystems' Java, and our own work [Fra94a, Fra94b]. Of these projects, the OSF-
ANDF project is the most conventional, as it never seems to have contemplated code
generation on-the-fly; the available literature treats code generation strictly as an off-line
process.

The Java project at Sun Microsystems has attracted considerable popularity and
industry support. Although for the time being, the common mode of using Java is by
interpreted execution of the intermediate representation,y«jr-//i-//me compilers have been
announced by major vendors. These just-in-time compilers operate similarly to our own
on-the-fly compiler, except that they compile individual procedures at the time of
invocation rather than whole modules at the time of loading. The granularity of our
approach might be better suited if code optimization is anticipated.

The tree-based encoding used inside of slim binaries is markedly different from the
virtual-machine representation on which Java is based [LYJ96]. It has the apparent
disadvantage that it cannot simply be interpreted byte-by-byte. Rather, every symbol in a
slim binary describes a sub-tree of an abstract syntax tree in terms of all the sub-trees that
precede it in the file. Constructing a decoder for slim binaries is so complex that it would



be relatively pointless to attach a simple-interpreter at its output. Instead, all of our
implementations are integrating the decoding step with on-the-fly code generation; the
two can be interweaved elegantly. ^

On the other hand, a tree-based encoding has several important advantages over a
linear stream of byte-codes for some virtual machine. It preserves the control-flow
structure of the original program, which makes it much easier to subsequently perform
code optimization. For example, modem processors have several functional units that

require a certain instruction-mix in order to operate at top speed. By re-ordering certain
mutually independent instructions, a better instruction-mix may be achieved. A tree-
based encoding maintains the notion of a basic block and makes it relatively easy to
decide if two instructions are mutually independent. In effect, the tree stmcture needs to
be laboriously reconstructed from a linear virtual-machine representation before
comparable optimizations can be performed.

Further, our tree-based encoding has an advantage, the effects of which we are only
just beginning to contemplate: we have reason to believe that our approach avoids many
of the security issues that are difficult to solve in Java, or in any virtual-machine
representation for that matter. As explained above, we represent a program by a stream of
symbols from an evolving vocabulary. By the very definition of the encoding scheme,
this vocabulary at all times contains only those data-reference symbols (e.g., procedures
and variables) that can be accessed legally at the current position in the program. As
mentioned above, this pruning of the dictionary had been introduced originally to
minimize the size of the dictionary and achieve a denser encoding. It does, however, also
make it impossible to construct, even by hand, a slim binary that violates the scoping
rules of our source language.

Java's byte-code instructions are at a much lower semantic level. Although it is
possible to verify that a given byte-code sequence doesn't perform any illegal action, this
requires data-flow analysis and a partial repetition of the compiler's integrity checks. The
slim binary format in effect makes this particular data-flow analysis unnecessary. It also
allows for highly efficient load-time integrity checking, as every node in the encoded
abstract syntax tree is fully typed.

Outlook

Our present implementation of slim binaries is in so far restrictive as it supports exactly
one source language, Oberon. In this respect, our system presently doesn't do much better
than abstract-machine-based portability schemes in which the instruction set of the virtual
machine is explicitly crafted to support a particular source language. While we do not
foresee any difficulties in encoding syntax trees for other languages, possibly even using



the identical format, the suitability for other languages has yet to be established by an
actual implementation.

The main thrust of our current research is focused on improving code quality. Our
implementations so far are all based on ETH's well-established family of compiler back-
ends that produce high quality code comparable to that of straightforward commercial
compilers [BCF95]. On the newer RISC architectures, however, these back-ends cannot
compete with highly optimizing compilers. Of further concern to our particular
application of load-time code generation is the fact that optimizers for certain RISC
architectures may have vastly different run-time characteristics than the compilers we
have been using so far.

Consequently, we are now pursuing a two-tier strategy of code generation. Rather
than compiling every module exactly once when it is loaded and then leaving it alone, we
use a background process executing only during idle cycles that keeps compiling the
already loaded modules over and over. Since this is strictly a re-compilation of already
functioning modules, and since it occurs completely in the background, this process can
be as slow as it needs to be, allowing the use of far more aggressive, albeit slower,
optimization techniques than would be tolerable in an "interactive" compiler. When
background code-generation has completed, the code-images of the re-generated modules
are substituted for their older counterparts.

Periodic re-optimization of already executing code allows to fine-tune the code-
generator's output beyond the level generally achievable by static compilation. Not only
does it enable run-time profiling data from the current execution to drive the next
iteration of code optimization, but it also makes it possible to cross-optimize application
programs and their dynamically loaded extensions and libraries. We are currently
experimenting with global optimization techniques that were pioneered by incremental
compilers and link-time optimizers. Among them are register allocation and code inlining
across module boundaries, global instruction scheduling, and cache optimization.
Extensible systems present new challenges to these old problems, as no closed analysis is
possible due to the fact that further modules can be added to the module graph at any
time.

We are also working on other aspects of highly dynamic extensible systems,
specifically the problems posed by run-time code-generation in heterogeneous,
distributed environments connected over unsecuredata links. Our primary concern in this
area at the moment is security, as we are devising ways in which an extensible system
can protect itself from malicious migrating objects attempting to cause damage.

Finally, we are currently developing a family of plug-in extensions to the Netscape
WWW browser that provide slim-binary support even outside of the Oberon
environment. Code-named "Juice", we have implemented two prototypes for the
Macintosh and Windows platforms that support interactive, slim-binary-encoded applets
embedded within WWW pages. Each plug-in contains an on-the-fly code generator that



is activated by the Netscape browser upon downloading of the applet. Similar in
functionality, but not in the underlying technology. Juice is intended to complement Java:
the two kinds of applets can live on the same page and communicate with each other
through the Netscape API. The Juice prototype plug-ins can be downloaded from our
WWW site.

While the road still left to travel is long, it seems as if slim binaries and related
approaches have finally brought us a step closerto the dream of mass-produced software
components that was envisioned by Macllroy so many years ago [McI68].

Acknowledgement

The majority of the research described in this paper was carried out while both authors
were at Institut fiir Computersysteme, ETH Zurich, Switzerland. We would like to thank

Niklaus Wirth for many years of guidance, inspiration, and for creating the environment
that made this research possible in the first place.

References

M. Brandis, R. Crelier, M. Franz, and J. Tempi; "The Oberon System
Family"; Software-Practice and Experience^ 25:12, 1331-1366; 1995.

C. Chambers, D. Ungar and E. Lee; "An Efficient Implementation of
Self, a Dynamically-Typed Object-Oriented Language Based on
Prototypes"; OOPSLA '89 Conference Proceedings, published as Sigplan
Notices, 24:10, 49-70; 1989.

R. Crelier; "Extending Module Interfaces without Invalidating Clients";
Structured Programming, 16:1,49-62; 1996.

United Kingdom Defence Research Agency; TDFSpecification. Issue 2A\
June 1993.

L. P. Deutsch and A. M. Schiffmann; "Efficient Implementation of the
Smalltalk-80 System"; Conference Record of the 11th Annual ACM
Symposium on Principles of Programming Languages, Salt Lake City,
Utah, 297-302; 1984.



[Fra93a] M. Franz; "The Case for Universal Symbol Files"; Structured
Programming, 14:3, 136-147; 1993.

[Fra93b] M. Franz; "Emulating an Operating System on Top of Another";
Software-Practiceand Experience, 23:6, 677-692; 1993.

[Fra94a] M. Franz; Code-Generation On-the-Fly: A Key to Portable Software
(Doctoral Dissertation); Verlag der Fachvereine, Zurich; 1994.

[Fra94b] M. Franz; "Technological Steps toward a Software Component Industry";
in Programming Languages andSystem Architectures, Springer Lecture
Notes in Computer Science, No. 782, 259-281.

[LYJ96] T. Lindholm, F. Yellin, B. Joy, and K. Walrath; "The Java Virtual
Machine Specification"; Addison-Wesley; 1996.

[McI68] M. D. Mcllroy; "Mass Produced Software Components"; in Software
Engineering, Concepts and Techniques, Proceedings of the NATO
Conferences, New York, 88-98; 1976.

[OSF91] Open Software Foundation; OSF Architecture-Neutral Distribution
Format Rationale', 1991.

[SCK93] R. L. Sites, A. Chemoff, M. B. Kirk, M. P. Marks, and S. G. Robinson;
"Binary Translation"; Communications oftheACM, 36:2, 69-81; 1993.

[WeI84] T. A. Welch; "A Technique for High-Performance Data Compression";
IEEE Computer, 17:6, 8-19; 1984.

[WG89] N. Wirth and J. Gutknecht; "The Oberon System"; Software-Practice and
Experience, 19:9, 857-893; 1989.

[Wir88a] N. Wirth; "The Programming Language Oberon"; Software-Practice and
Experience, 18:7, 671-690; 1988.

[Wir88b] N. Wirth; "Type Extensions"; ACM Transactions on Programming
Languages and Systems, 10:2, 204-214; 1988.

Note

The figures for this paper were originally produced in color. Full-color renderings can be
obtained from http://www.ics.uci.edu/~franz/SlimBinaries.html.




