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Abstract

The human capacity for causal judgment has long been thought
to depend on an ability to consider counterfactual alternatives:
the lightning strike caused the forest fire because had it not
struck, the forest fire would not have ensued. To accom-
modate psychological effects on causal judgment, a range of
recent accounts of causal judgment have proposed that peo-
ple probabilistically sample counterfactual alternatives from
which they compute a graded index of causal strength. While
such models have had success in describing the influence of
probability on causal judgments, among other effects, we show
that these models make further untested predictions: probabil-
ity should also influence people’s metacognitive confidence in
their causal judgments. In a large (N=3020) sample of par-
ticipants in a causal judgment task, we found evidence that
normality indeed influences people’s confidence in their causal
judgments and that these influences were predicted by a coun-
terfactual sampling model. We take this result as supporting
evidence for existing Bayesian accounts of causal judgment.
Keywords: causal judgment; metacognition; counterfactual
thinking

Introduction
Judgments about cause and effect are thought to be central
to the way people decide who or what is responsible for an
outcome (Chockler & Halpern, 2004; Knobe & Fraser, 2008;
Malle, Guglielmo, & Monroe, 2014) or explain how a par-
ticular state affairs came to be (Lombrozo, 2007; Lombrozo
& Vasilyeva, 2017). In machine learning, causal judgment
is considered a major requirement for systems that gener-
ate robust predictions in a range of circumstances and inter-
vene in the world, and much recent work accordingly focuses
on how to develop systems capable of representing, learn-
ing, and making use of causal information (Dasgupta et al.,
2019; Gershman, 2017; Gershman, Norman, & Niv, 2015;
Pearl, 2019). Drawing on both of these literatures, compu-
tational models of human causal judgment seek to explain
why people tend to think of some events as more causal than
other events, while also providing a tractable framework for
implementing such judgments in artificial agents. Among
the many possibilities, counterfactual sampling models have
had particular success (Cheng, 1997; Cheng & Novick, 1990;
Icard, Kominsky, & Knobe, 2017; Quillien, 2020; Spellman,
1997). These models account for known effects of prob-
ability (Gerstenberg & Icard, 2020; Henne, O’Neill, Bello,
Khemlani, & De Brigard, 2021; Icard et al., 2017; Knobe &
Fraser, 2008), the presence of alternative causes (Kominsky,
Phillips, Gerstenberg, Lagnado, & Knobe, 2015; Lagnado,

Gerstenberg, & Zultan, 2013), temporal recency (Bramley,
Gerstenberg, Mayrhofer, & Lagnado, 2018; Henne, Kulesza,
Perez, & Houcek, 2021; Spellman, 1997), and foreseeabil-
ity (Kirfel & Lagnado, 2021) on causal judgments, among
other phenomena. Counterfactual sampling models have even
been shown to predict eye movements during causal judgment
(Bello, Lovett, Briggs, & O’Neill, 2018; Gerstenberg, Pe-
terson, Goodman, Lagnado, & Tenenbaum, 2017) and judg-
ments of omissive causation (Gerstenberg & Stephan, 2021;
Henne, Niemi, Pinillos, De Brigard, & Knobe, 2019).

However, while there is a vast amount of research on
causal judgment, little is known about how and whether peo-
ple are able to evaluate the accuracy and reliability of their
causal judgments (but see Liljeholm, 2015, 2020; Liljeholm
& Cheng, 2009). In this paper, taking ideas from models
of metacognition in perception and decision-making (Ma &
Jazayeri, 2014; Meyniel & Dehaene, 2017; Meyniel, Sigman,
& Mainen, 2015; Pouget, Drugowitsch, & Kepecs, 2016), we
propose the first computational model (to our knowledge) of
metacognitive confidence in human causal judgments, or sim-
ply causal metacognition. Comparing several variations of
this model to participants’ ratings, we found that one of these
variations was able to simultaneously predict mean causal
judgment and mean confidence in a simple causal judgment
task. In the Discussion, we argue that our results constitute
strong evidence in favor of this model and we discuss impli-
cations for future research.

Counterfactual sampling and causal judgment
Before extending the predictions of counterfactual sampling
models to the domain of causal metacognition, we will first
briefly review how they account for causal judgments them-
selves. Counterfactual sampling models assume that people
encode causal relationships between variables using a causal
graph consisting of exogenous variables U whose causes are
not explicitly modeled, endogenous variables V which are
determined as a function of the exogenous variables U, and
a set of structural equations F that encode the dependence of
V on U (represented as edges in the graph). Here we will
focus on the causal structure depicted in Figure 1, known
as an unshielded collider (Pearl, 2019). In this structure,
an effect E is produced by two generative causes: a focal
cause C and an alternate cause A. That is, U = {UC, UA},
V = {C, A, E}. We focus on two versions of this structure
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for the case of binary variables. In the conjunctive struc-
ture, both causes are necessary for the effect to occur (i.e.,
F = {C = UC, A = UA, E = min(C,A)}). In the disjunctive
structure, either cause is individually sufficient to produce the
effect (i.e., F = {C =UC, A =UA, E = max(C,A)}).

EC A

Figure 1: A causal graph depicting the relationships between
an effect E as produced by a focal cause C and an alternate
cause A.

Counterfactual sampling models aim to predict people’s
causal judgments of the extent to which C = c caused E = e
given the above causal graph and the observations C = c,
A = a, and E = e. To do so, they propose that people sample
alternative possibilities according to the internal model:

C′ ∼ Bernoulli(θC)

A′ ∼ Bernoulli(θA)

κC→E = f (C′,A′,F )

where θC ∝ P(C), θA ∝ P(A). The value κC→E corresponds
to some measure of the difference (or contribution) made by
C to E for each sampled possibility, where the function f de-
termines exactly how the difference made by C to E is quanti-
fied (Table 1). In addition to two models that were originally
formulated using the sampling algorithm above (Icard et al.,
2017; Quillien, 2020), we also include three classic measures
of causal strength that can be estimated under the same al-
gorithm, though it is important to note that these measures
were not originally derived with this particular problem, al-
gorithm, or causal structure in mind (Cheng, 1997; Cheng &
Novick, 1990; Spellman, 1997). Following Morris, Phillips,
Gerstenberg, and Cushman (2019), our goal is not to evalu-
ate these models in their original context, but rather to test
whether the measures they provide (construed as quantifica-
tions of difference-making for single events) predict causal
judgments in this domain.

For instance, the ∆P model uses a measure that corre-
sponds to the difference between the value that E would have
taken if C = 1 (denoted EC=1,A=A′ ) and the value it would
have taken if C = 0 (EC=0,A=A′ ) (Cheng & Novick, 1990).
The Power PC model uses the same metric as ∆P but with a
different normalization (Cheng, 1997). The crediting causal-
ity model (Spellman, 1997) is also similar to the ∆P model,
but it uses the average value of the effect overall, and not
the value of the effect when the cause is absent, as baseline.
More recently, the necessity-sufficiency model computes the
impact of C by determining whether it was sufficient for E (if
C′ = 1) or whether it was necessary for E (if C′ = 0) (Icard et
al., 2017). Finally, in our causal structure of interest the coun-
terfactual effect size model is equivalent to ∆P except that it
uses a normalization based on the standard deviations σC′ and
σE ′ of C′ and E ′, respectively (Quillien, 2020).

Given a choice of f , counterfactual sampling generates a
probability distribution P(κC→E), which corresponds to the
belief that C = c caused E = e. These models typically as-
sume that causal judgments are reports of the expected causal
strength E[κC→E ]. This summary creates natural interpreta-
tions for many choices of f . For instance, ∆P reduces to
the average causal effect of C on E, and the counterfactual
effect size model is simply the correlation between C′ and
EC=C′,A=A′ in the sampled possibilities (Cheng & Novick,
1990; Quillien, 2020). Since each of the above models has
seen empirical support, we will extend each of them to pre-
dict confidence in causal judgments.

Counterfactual sampling and metacognition

While research on causal judgment has typically focused on
E[κC→E ], the expected causal strength of C on E, counterfac-
tual sampling models of causal judgment assume that people
have access to samples from the distribution P(κC→E). In
the domains of perception and decision-making, recent mod-
els of metacognition based on Bayesian decision theory have
suggested that the information provided by the distribution
over a decision variable is sufficient (if not necessary) to pro-
duce metacognitive assessments of confidence (Ma & Jaza-
yeri, 2014; Meyniel & Dehaene, 2017; Meyniel et al., 2015;
Navajas et al., 2017; Pouget et al., 2016; Yeung & Summer-
field, 2012). For binary decisions (e.g. whether a stimulus is
present or absent), this distribution allows one to compute the
probability that the decision is correct as a measure of confi-
dence (Fleming & Daw, 2017; Hangya, Sanders, & Kepecs,
2016; Kepecs, Uchida, Zariwala, & Mainen, 2008; Kiani &
Shadlen, 2009). However, even in contexts where all of the
relevant variables are binary, causal judgments are thought
to be continuous or graded such that an event can be seen
as more or less causal (Danks, 2017; Halpern & Hitchcock,
2015; O’Neill, Henne, Bello, Pearson, & De Brigard, 2021).
Thankfully, a number of options exist for quantifying uncer-
tainty in continuous decisions: the variance, the standard de-
viation, the coefficient of variation, and the entropy are all
natural candidates for modeling people’s reports of confi-
dence in their causal judgments (Liljeholm, 2015; Meyniel
et al., 2015). Conceptually, the variance, standard deviation,
and coefficient of variation all propose that people are less
confident in their causal judgments if their belief P(κC→E) is
imprecise or variable, though each measures variability on a
slightly different scale. Similarly, entropy proposes that peo-
ple are more confident in their causal judgments if P(κC→E)
carries more information. Table 2 summarizes each of these
measures and provides their formulae for the case where
κC→E is Bernoulli-distributed, which for the causal structures
of interest applies to all of the models in Table 1 except for the
counterfactual effect size model, in which case the only dif-
ference is that Var(κC→E) =

Var(C′)
Var(E ′)E[κC→E ](1−E[κC→E ]).

Thus, our model of causal metacognition is a simple con-
junction of counterfactual sampling models of causal judg-
ment and Bayesian models of metacognition: causal judg-
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Table 1: Causal strength metrics from five counterfactual sampling models

Model κC→E

∆P (Cheng & Novick, 1990) ∆P(C′, A′, F ) = EC=1,A=A′ −EC=0,A=A′

Power PC (Cheng, 1997) PPC(C′, A′, F ) = ∆P(C′,A′,F )
1−EC=0,A=A′

Crediting Causality (Spellman, 1997) CC(C′, A′, F ) = EC=1,A=A′ −EC=C′,A=A′

Necessity-Sufficiency (Icard et al., 2017) NS(C′, A′, F ) =C′ ∗EC=1,A=A′ +(1−C′)∗ (1−EC=0,A=A′)

Counterfactual Effect Size (Quillien, 2020) CES(C′, A′, F ) =
EC=1−C′,A=A′−EC=C′,A=A′

1−2C′
σC′
σE′

Table 2: Four confidence metrics for counterfactual sampling
models

Measure

Variance Var(κC→E) = E[κC→E ](1−E[κC→E ])

SD σκC→E =
√

Var(κC→E)

CV CV(κC→E) = σκC→E/E[κC→E ]

Entropy H(κC→E) =−ΣP(κC→E) log(P(κC→E))

ments are reports of the expected difference the cause made
to the effect (i.e., E[κc→E ]) and confidence ratings are reports
of the expected certainty in this estimate (e.g., inversely re-
lated to σκc→E ). To test this model, we replicated and ex-
tended a recent study measuring quantitative shifts in causal
judgments with respect to the probabilities of the focal and al-
ternate causes, P(C) and P(A) (Morris et al., 2019). Previous
work has shown that causal judgments of C tend to decrease
with P(C) but increase with P(A) in conjunctive causal struc-
tures and that they increase with P(C) but decrease with P(A)
in disjunctive causal structures (Icard et al., 2017; Kominsky
et al., 2015; Morris et al., 2019). Each of the above mea-
sures of uncertainty predict that people’s confidence in their
causal judgments should also vary with P(C) and P(A). Ac-
cordingly, we also measure participants’ confidence in their
causal judgments.

Methods
Participants
3020 participants were recruited from Prolific
(https://prolific.co). All participants were from the United
States, spoke English as their native language, and provided
informed consent in accordance with Duke University IRB.
Participants completed the task in an average of 7.5 minutes
and were compensated $0.75. 118 (3.9%) participants were
excluded from our analyses because they reported not paying
attention to the task in response to an explicit attention check
after completion of the task. Data were analyzed from the
remaining 2902 participants (mean age = 36.93, standard
deviation age = 13.23, 49% female).

Materials
Stimuli were six vignettes similar to the vignette used in Mor-
ris et al. (2019). Each vignette included a deterministic causal
system involving two candidate causes (which could occur in-
dependently with defined probabilities) and an outcome that
would occur if and only if both candidate causes occurred
(conjunctive structure) or if and only if either candidate cause
occurred (disjunctive structure). In all vignettes, the two can-
didate causes always occurred, and so the outcome also al-
ways occurred. The outcome was positive (e.g., winning a
dollar) in half of the vignettes and negative (e.g., having to
pay for drinks) in the other half. Alongside each vignette,
participants were shown an image that briefly summarized
the vignette and also defined the probability of each candidate
cause. All materials and code are accessible via the Open Sci-
ence Framework. For example, participants were shown the
following vignette along with the image in Figure 2:

A person, Joe, played a casino game where he reached
into two boxes and blindly drew a ball from each box.
In this game, he wins a dollar if and only if he gets a
green ball from the left box and a blue ball from the right
box. If he doesn’t get a green ball from the left box or he
doesn’t get a blue ball from the right box, he doesn’t win
a dollar. Joe closed his eyes, reached a hand into each
box, and chose a green ball from the left box and a blue
ball from the right box. So Joe won the dollar.

To what degree did Joe win the dollar because he
drew a green ball from the left box?
How confident are you in your response to the previ-
ous question?

Procedure
In a 10× 10× 2× 6 within-participants design (probability
of focal cause: {.1, .2, . . .1}; probability of alternate cause:
{.1, .2, . . .1}; causal structure: Conjunctive/Disjunctive; vi-
gnette), participants read one version of each of the six vi-
gnettes. The probability of each candidate cause and the
causal structure were randomly assigned for each vignette.
The probability of each candidate cause could take any value
between .1 and 1 with increments of .1, and the order of vi-
gnettes was randomized. For each vignette, participants read
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Figure 2: Example stimulus. In this example, a character
wins a dollar if and only if they draw a green ball from the
left box (with probability .3) and they draw a blue ball from
the right box (with probability .6).

the vignette and inspected an image which added informa-
tion about the probability of each event. On the same screen,
participants responded to the questions "To what degree did
[the outcome occur] because [the focal cause occurred]?" and
"How confident are you in your response to the previous ques-
tion?" on 1000-point continuous slider scales ranging from
"not at all" (coded as 0) to "totally" (coded as 1).

Analysis
To determine the effects of the probability of the focal and al-
ternate causes on both causal judgments and confidence rat-
ings, we fit a bivariate Gaussian process (GP) model using
the probabilistic programming language Stan (Carpenter et
al., 2017; Stan Development Team, 2020, 2021). We esti-
mated mean causal judgment and mean confidence as the in-
ferred mean from separate GPs for conjunctive and disjunc-
tive causal structures. Importantly, using a GP model allowed
us to account for known non-linear effects of probability on
causal judgments in a way that maximizes statistical power
(Morris et al., 2019) and to account for known correlations
between mean confidence, mean causal judgment, and vari-
ability in causal judgments (O’Neill et al., 2021). To test for
changes in causal judgments and confidence ratings with re-
spect to the probability of each cause, we also jointly esti-
mated the gradients of each GP (Riihimäki & Vehtari, 2010;
Solak, Murray-Smith, Leithead, Leith, & Rasmussen, 2003).
All GPs were modeled on a latent logit scale with an Or-
dered Beta likelihood (Kubinec, 2020), which accounts for
the fact that both causal judgments and confidence ratings
were bounded between 0 and 1 with many responses at pre-
cisely these bounds. Full specification of the model and prior
distributions is available via the Open Science Framework.
We considered any parameter with a 95% highest density pos-
terior interval excluding zero as statistically significant.

Results
Causal Judgment
We first sought to replicate previous results showing that
causal judgments vary as a function of the probability of the
focal cause (i.e., the cause that we ask participants to judge)
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Figure 3: Inferred mean causal judgment (A) compared to
model predictions (B). Arrows indicate significant gradients
in mean causal judgment with respect to the probability of the
focal or alternate causes. Color scales differ between the data
and the model predictions to better illustrate trends.

and the alternate cause (i.e., the cause that participants do not
judge; Icard et al., 2017; Kominsky et al., 2015; Morris et
al., 2019). Figures 3A and 3B depict mean causal judgment
and predictions from each model, respectively. In conjunctive
structures, causal judgments of the focal cause C tended to
decrease with the probability of the focal cause and increase
with the probability of the alternate cause. In disjunctive
structures, we found the opposite result: causal judgments
tended to increase with the probability of the focal cause and
decrease with the probability of the alternate cause. The white
arrows in Figure 3 indicate regions where these trends were
significant.

We then asked whether these patterns in causal judgments
were predicted by counterfactual sampling models. To an-
swer this question, we computed correlations between in-
ferred mean causal judgment and the predictions from each
model. Figure 5 (left panel) depicts the performance of each
model along this metric. As found in previous work (Mor-
ris et al., 2019; Quillien, 2020), we found that counterfactual
sampling models were largely successful in predicting causal
judgments. In particular, the counterfactual effect size model
had the highest correlation with mean causal judgment for
both conjunctive (r = .88, 95% HDI = [.81, .93]) and disjunc-
tive (r = .74, 95% HDI = [.50, .93]) causal structures. All
models significantly predicted causal judgments in conjunc-
tive structures, and all models except the Power PC (r = 0)
and Crediting Causality (r = −.04, 95% HDI = [−.37, .29])
models significantly predicted causal judgments in disjunc-
tive structures.

Confidence
Next, we asked whether people’s confidence in their causal
judgments also varied with respect to the probability of the
focal and alternate causes. Figure 4 depicts mean confidence
in causal judgments alongside predictions from each model.
Because model predictions were naturally on the scale of un-
certainty (with larger numbers indicating less certainty), we
normalized all model predictions to the range [0, 1], with 0 in-
dicating uncertainty and 1 indicating certainty. In conjunctive
structures, people tended to be more confident in their causal
judgments as the probability of the focal cause decreased and
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Figure 4: Mean confidence in causal judgment (A) compared
to model predictions using the standard deviation of predic-
tions of causal judgments (B). Arrows indicate significant
gradients in mean confidence with respect to the probabil-
ity of the focal or alternate causes. For visibility, color scales
differ between the data and the model predictions, and model
predictions were normalized to the range [0, 1], with 0 indi-
cating uncertainty and 1 indicating certainty.

as the probability of the alternate cause increased. In con-
trast, in disjunctive structures, people tended to be more con-
fident as the probability of the focal cause increased. White
arrows in Figure 4 depict regions where these effects were
significant. However, we note that confidence was very high
overall (M = .84, SD = .22) and that the observed effects on
confidence were small compared to the corresponding effects
on causal judgment. As such, the confidence judgments may
have been subject to a ceiling effect, limiting the generaliz-
ability of these findings.

Finally, we tested whether Bayesian models of metacogni-
tion, in conjunction with counterfactual sampling models of
causal judgment, predicted participants’ confidence in their
causal judgments. As with causal judgments, we correlated
the inferred mean confidence with the predictions from each
model. For simplicity, we depict results only using the stan-
dard deviation σκC→E . Results were qualitatively similar us-
ing other metrics, which can be found via the Open Science
Framework. Figure 5 (right panel) depicts the performance of
each model along this metric. While the counterfactual effect
size model again performed the best in conjunctive structures
(r = .69, 95% HDI = [.48, .85]), it performed the worst in
disjunctive structures (r = −.42, 95% HDI = [−72.,−.12]).
Other models were significantly able to predict confidence
in either conjunctive structures or disjunctive structures, but
the only model to significantly predict confidence in both
conjunctive (r = .77, 95% HDI = [.66, .85]) and disjunctive
(r = .66, 95% HDI = [.46, .85]) structures was the necessity-
sufficiency model.

Discussion
In this article, we proposed an extension of counterfactual
sampling models of causal judgment to additionally model
participants’ confidence in their causal judgments. Our ex-
tension, following recent work in metacognition, is sim-
ple: whereas people report causal judgments as the expected
causal strength E[κC→E ], they report confidence as the un-
certainty in this estimate, using e.g. the standard deviation

Causal Judgment Confidence
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Delta P

Power PC
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Necessity
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Counterfactual
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M
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Figure 5: Model performance for causal judgments and con-
fidence ratings in conjunctive (orange) and disjunctive (blue)
causal structures. While most models perform well at predict-
ing causal judgments, only the Necessity-Sufficiency model
predicts causal judgments and confidence for both causal
structures. Points indicate posterior medians, thick error bars
indicate 66% highest density intervals, and thin error bars in-
dicate 95% highest density intervals.

σκC→E . This extension of counterfactual sampling models
made the novel prediction that people should be more or less
confident in their causal judgments depending on the proba-
bility of each of the contributing causes of the effect. How-
ever, different variations of the model differed in exactly how
confidence should change: some predicted confidence should
increase with the probability of the focal cause, others pre-
dicted that it should depend only on the probability of the
alternate cause, some predicted that confidence would be a
nonlinear function of the two probabilities, and still others
predicted no changes in confidence whatsoever.

To test the different variations of our model, we replicated
and extended an experiment by Morris et al. (2019) which
demonstrated that causal judgments tended to decrease with
the probability of the focal cause and increase with the prob-
ability of the alternate cause in conjunctive causal structures
(i.e., when both causes are individually necessary for the ef-
fect), but they tended to increase with the probability of the
focal cause and decrease with the probability of the alternate
cause in disjunctive causal structures (i.e., when either cause
is individually sufficient for the effect). Our experiment re-
produced these results, and most variations of the model were
able to significantly predict causal judgments in both causal
structures (Morris et al., 2019; Quillien, 2020).

Extending these findings, we also measured the degree to
which participants were confident in their causal judgments.
As with causal judgments, we found that participants’ confi-
dence decreased with the probability of the focal cause and
increased with the probability of the alternate cause in con-
junctive causal structures, but their confidence increased with
the probability of the focal cause in disjunctive causal struc-
tures. These patterns were only significantly predicted by a
single version of the model: the necessity-sufficiency model
(Icard et al., 2017). Because each measure was developed
solely to explain causal judgments (with no regard for con-
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fidence), testing their metacognitive predictions provides an
especially strong test of the generalizability of these models.
In this sense, it is not surprising that most models were unable
to predict the observed changes in confidence. In contrast, we
take the ability of the necessity-sufficiency model to account
for such changes as a clear sign of its predictive utility.

However, more work is needed to investigate how people
make metacognitive assessments of their causal judgments in
more ecologically valid domains. In our task, participants had
full information about the relevant variables, the causal struc-
ture, and the actual events that took place. They accordingly
reported very high confidence overall. But people most often
make causal judgments in the presence of these types of un-
certainty, in addition to mere probabilistic uncertainty. In ad-
dition, people usually obtain information relevant for causal
judgment from a range of sources and modalities which may
vary in their degrees of credibility. In contrast, in our study,
participants were provided full information from a single reli-
able source. Relaxing this assumption may help in determin-
ing how and when people update causal judgments and how
this updating affects their confidence. Future work should
also explore the ways in which metacognitive assessments of
causal judgments impact subsequent cognition, particularly
in relation to real-world domains like elections (Quillien &
Barlev, 2021) where outcomes have a significant and lasting
impact. It is widely known that metacognition of perceptual
and value-based decisions affects learning, exploration, and
changes of mind (Folke, Jacobsen, Fleming, & De Martino,
2016; Kepecs et al., 2008; Shea et al., 2014). We would ex-
pect causal metacognition to have similar effects on behavior.

Finally, future work may explore alternative mechanisms
for confidence in causal judgments. Our model of causal
metacognition is a first-order model in that both causal judg-
ments and confidence ratings emerge from a distribution over
the same underlying variable κC→E (Fleming & Daw, 2017).
Causal metacognition, however, may be better modeled as
a second-order phenomenon whereby causal judgments and
confidence arise from separate decision variables. Alterna-
tively, confidence in causal judgments may come from a more
heuristic approach (Adler & Ma, 2018). In addition to deep-
ening our understanding of the human ability to track con-
fidence in causal judgments, adjudicating between these dif-
ferent architectures may provide crucial insights toward the
development of metacognitive artificial agents.

In sum, we proposed an extension of counterfactual sam-
pling models of human causal judgment to additionally pre-
dict confidence in those judgments. When compared to judg-
ments made by participants, one version of this model (us-
ing the necessity-sufficiency measure of causal strength) was
able to simultaneously predict causal judgments and confi-
dence in those judgments (Icard et al., 2017). Our results, in
addition to furthering our understanding of causal judgment,
are an important step in determining the mechanisms behind
metacognitive assessments of complex decisions.
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