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THE TECHNOLOGY OF SUPERCONDUCTING ACCELERATOR DIPOLES* 

W. V. Hassenzahl, R. B. Meuser, and C. Taylor 

I. INTRODUCTION 

Superconducting magnets have been extensively used by high energy 

physics experimenters since the discovery in 1960 of several alloys and 

compounds capable of carrying practical current densities at high mag.-

netic field. The initial rush to utilize these remarkable materials and 

current densities was frustrated by the degradation that was widely 

observed in the wire when it was wound into superconducting coils. The 

conductor In large coils often carried less current than when tested in 

short saples. This "unstable' behavior is now known to be caused by 

- heat generated in superconducting wire when the magnetic field and cur-

rent are changed. The anount of energy released is very small, but, 

because the superconductor is at a very low temperature, the specific 

heats of the magnet components are very small and local temperature 

excursions can cause a loss of superconductivity. The current passing 

through the resistive coil then causes Joule heating and leads to a 

rapidly spreading temperature increase or "quench'. A small, local, 

transient temperature rise can ultimately result in the transition of 

an entire magnet winding from the superconductive to the resistive 

state. 

*Thjs work was supported by the Director, Office of Energy Research, 
Office of High Energy and Nuclear Physics, High Energy Physics Division, 
U. S. Dept. of Energy, under Contract No. DE-ACO3-76SF00098. 



To develop a technology of superconducting accelerator dipoles 1  

and to understand their behavior during a transition we must study: 

1. The basic properties of practical superconductors, 2  2. their sta-

bility3  and 3. the physical characteristics 4  of other magnet 

components. In this chapter some of the phenomena that lead to heat 

generation in magnets are explained, the material characteristics that 

affect coil performance are described, and several possible designs for 

accelerator dipoles are discussed. 

In this chapter we discuss accelerator dipoles and their character-

istics Other types of magnets, in particular bubble chamber magnets 

have been quite successful. Their performance is based on "cryogenic 

stability" which is addressed only briefly in this chapter. This type 

of stability is not available to the accelerator designer because of the 

large quantities of copper or other stabilizer that would reduce the 

current density in the windings to an unacceptably low value. 

H. STABILITY 

Superconducting magnets, which can function only at very low ten-

peratures, are subject to thermal and mechanical disturbances that may 

cause all or part of the superconductor in the magnet to undergo a 

superconducting to normal transition or quench. Two major goals of 

superconductor and magnet design are: 1, to eliminate or at least reduce 

the frequency and magnitude of these disturbances, and 2, to reduce the 

susceptibility of the magnet system to these disturbances. The stabil-

ity of a superconducting coil may thus be defined as the ability of the 

coil to withstand or recover from the effects of a disturbance, 

2 



The disturbances may be local or distributed and may be continuous 

or pulsed. The types of disturbances and the appropriate dimensions are 

given in Table 1. Obvious sources of disturbances includes resistive 

regions in the superconductor, conductor motion, eddy currents induced 

by field changes and flux motion and, for accelerator magnets, beam 

dunps. 

If a disturbance causes some heating in the coil but does not drive 

the coil normal, the energy deposited must still be removed from the 

magnet to avoid any longtime temperature rise. The heat that is depos-

ited in the magnet but does not quench it is referred to as a loss. 

This heat must be removed during cyclic operation. 

TABLE I 

The Units of Different Types of Disturbances Possible 

in a Superconducting Magnet 

Spatial Characteristic 
• Temporal 
Characteristic 	 Point 	Distributed 

Transient 	 Joules 	Joules/m 3  

Continuous 	 Watts 	Watts/rn3  

The stability of a magnet and thelosses in the magnet are closely 

related because there is simply a quantitive difference between the 

energy or power input leading to the two different results. 

The ability of a coil to withstand a given heat input depends on 

many of the physical characteristics of the coil materials, in 

3 



particular superconductivity, specific heat or enthalpy, normal conduc. 

tivity or resistivity, thermal conductivity, strength, elastic modulus, 

and the friction coefficients and heat transfer from one material to 

another. Though the precise quantitive values of each of these param-

eters is needed for a detailed magnet design, only the general trends 

and characteristics are important to understand the effects of these 

parameters on stability. Therefore, some of these characteristics are 

described briefly in a subsection at the end of this chapter. 

The stability of a superconductor depends on the maintenance of the 

combination of current, field, and temperature below a combined limit. 

This is best seen in Fig. 1. The surface shown represents the boundary 

between the superconducting and normal state. The goal of the magnet 

designer is to keep the superconductor in the superconducting state or 

to have it return to this state if there is a disturbance that raises 

the temperature to too high a value. In general current and field tran-

sients can drive a coil normal just as increased temperature does. 

However, large changes in these parameters are needed so they only 

affect performance near the field or current limit. The stability of a 

magnet thus depends on maintaining the temperature low enough to assure 

the superconducting state. Several disturbances, as mentioned above, 

can cause the superconductor to heat up and become normal. Each of 

these will be discussed below. 

First let us look at a tiny filament of superconductor embedded in 

a normal conducting matrix and make an approximation that it is a slab 

instead of a circular filament. In our model of superconductivity, the 

local current that flows in the conductor can be either zero or the 

4 
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XBL 836-10137 

Fig. 1. Critical current density in a superconductor as a 
function of temperature and magnetic field - Tc 
is the critical temperature at zero field and zero 
current, and H,- is the critical field at zero 
temperature and zero current. When operating at a 
bath temperature TB'  the critical field is reduced 
to Hc(T). 



critical current. This local current can be a shielding current to keep 

magnetic flux from entering the conductor or can be a net current flow-

ing in the conductor. When a small current flows in the conductor it 

is all at the surface and penetrates deeper as the current increases; 

this is shown in Fig. 2a. A more complicated situation is shown in 

Fig, 2b where the field, which is a maximum at the surface, is seen to 

decrease with depth in the conductor; and the shielding currents on dif-

ferent sides of the conductor are in opposite directions. As the cur-

rent, or the field, or both are increased there is a motion of flux 

across the surface current that results in some energy dissipation and 

heats the conductor. The subsequent temperature rise decreases the 

critical current and thus allows flux to penetrate further into the 

superconductor. The events described above are shown in a general case 

in Fig. 3. 

The criteria for stability is that the amount of heat released by 

a given flux motion will cause a smaller amount of flux to enter the 

conductor than entered in the original disturbance. If more flux is 

allowed to penetrate then an Slavalanchell  occurs and the conductor is 

quickly heated to the normal state. 

To determine in a quantitive sense the parameters that affect sta-

bility against this type of disturbance we consider a slab having a 

thickness 2a, and an external field B on each side as shown in Fig, 4. 

A small temperature rise will allow additional flux to penetrate the 

superconductor because the critical current decreases. 

A stability criteria can be derived, based on the condition that 

the energy deposited when the maximun flux enters the superconductor is 

less than the enthalpy of the superconductor between the operating 



XBL 836-10135 

Fig. 2a. Field and current in a current-carrying supercon-
ducting slab. 

Fig. 2b. A superconductor in a magnetic field generates a 
shielding current at its surface that excludes flux 
from its center. 
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Fig. 3. 	The sequence of events in a "Flux Jump". The cri- 
tenon for stability is that the secondary flux 
motion generated by a disturbance be less than the 
initial motion, 



L,J 
I1 

itial 
T) 

B ext 

itial 

2a 

XBL 836-10136 

Fig. 4. 	The effect of flux motion or a temperature rise 
on the current and flux distribution within a - 	
superconductor. 



temperature and the critical temperature. The stability relation is: 

.2 2 
0 	a 

PC(T_T0) 	
3 

where 	j, 	is the critical current density 	(A/rn2 ), 	2a 	is the 

slab thickness (m), the product pC 	is the specific heat per unit 

volume (J/m 3 ) and 
Tc  is the critical temperature. The question 

is, "how large can the filament be under the operating condition in the 

magnet?" We give examples here of the maximum stable filament size for 

Nb-Ti at 4.2 and 1.8K as shown in Table II, using data taken from the 

section below on material characteristics. 

TABLE II 

The Maximum Stable Nb-Ti Filament Size (.iii) at 4.2 and 1.8K 

Temperature (K) 4.2 1.8 1.8 

Field 	(T) 6 6 8 

Critical 	Temperature (K) 6.5 6.5 4 

c 	
(A/rn 3 ) 1.5x109  2.5x10 9  1.5x109  

pC 	(J/m 3 ) 5.4x103  6x102  6x102  

Radius 	(ii) 115 47 38 

Generally, in designing a conductor one attempts to use a filament 

size that is less than the value given here, say half or less. The rea-

son is that this type of instability, which is called a flux jump, seems 

to occur at low and intermediate fields where the critical current is 

10 



very high. (In fact, as will be seen below, keeping the ac losses in the 

conductor below an acceptable level is often more restrictive than the 

flux junp limit.) 

Because the size of the filaments that affects the stability of the 

conductor depends on the specific heat or enthalpy of the superconductor 

itself, the use of fine filaments is called enthalpy stabilization. 

Using the formula above, the relationship between temperature and field 

can be predicted as shown in Fig. 5. Experimentally observed flux jump 

fields are shown to agree quite well with this theory. 

Early superconducting wires usually had one filament and the larger 

wires were generally unstable. The theory of enthalpy stabilization, 

which was first developed by Wilson in the late 60's, led to the use of 

superconducting wires with many fine filaments, as shown in Fig. 6. 

The superconductor is usually imbedded in a normal conducting 

matrix that serves several purposes. Mainly it is there to carry cur-

rent when one or more of the filaments goes normal. The calculation 

above for the stability of each filament also applies to the composite 

strand because the many filaments in the strand are coupled electri-

cally by the normal conductor. 

By twisting the strand the flux jumps due to external field can be 

limited to a conductor section shorter than the twist length, which is 

usually a few conductor diameters. (The twisted conductor has a smaller 

flux linkage between strands resulting in smaller eddy currents and 

reduced ac losses.) There is, however, a problem associated with pene-

tration of the flux generated by the conductor itself. The maximum 

strand self field must be limited to the flux jump field for a strand 

of radius r, or, following the previous calculation for a slab of 

11 
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Fig. 5. Experimental measurements of the flux jumping 
field in NbTi compared with the theoretical value. 

12 



XBB 833-2525 

Fig. 6. Cross section of a rnultifilamentary superconductor. 
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superconductor but including the specific heat and other stabilizer 

characteristics; 

2 .2 2 
ji 0 A J r 

PC(T_T0) 	
12 

where x is the fraction of superconductor in the cxiiposite (nonnally, 

A = 0.3 to 0.5). Again, solving for a typical conductor: 

2r e 0.5mm 

If we solve the same problem for a circular conductor, the result 

is; 

2r=2mm 

In fact this solution is known to be wrong because it assumes there 

is no stabilizing affect from conductivity of the normal conductor and 

the flux motion is very fast. In practice this self-field limit is too 

small by about a factor of 2. 

In addition to flux jumps, mechanical disturbances can also intro-

duce heat into the conductor. The heat generated may be due to the con-

ductors motion in the field, or the frictional force between the con-

ductor and its support. If enough heat is deposited a section may go 

normal. The stability of the coil then depends on the balance between 

cooling and heating within and near the normal region. The heating per 

unit volume after the disturbance is simply Joule heating of the form 

14 



and the cooling is due to heat transfer to helium at the 

surface of the conductor and thermal conductivity along the conductor. 

If the heating is greater than the cooling then the normal region 

will expand, and if the cooling is greater then the region will 

contract. We consider here only axial heat conduction (which applies 

to an epoxy impregnated coil) and devise an expression for the length 

of a normal region that can recover where k is the thermal conductiv-

ity and A is the cross section of the conductor, giving 

j2pAL > 2kA(T_T0)/L 

2 	2k(T_T0) 
L > 
	.2 

or L = 2mm for a 1 to 1, Nb—Ti to Cu cc*nposite. 

Thus normal regions on the order of a few centimeters will expand. 

To give an exnple of the minute energy needed to drive a superconductor 

normal, using the data on specific heat, the energy required to raise 

the temperature of a 2mm length of Fermilab doubler conductor by 1K is 

about 10 J. 

The source of heating as mentioned above can be wire motion. For 

- 	 the section of doubler conductor 2mm long, and at the operating current 

near 4000A and operating field of 51, the energy released in motion is 

I x B as = 4000A 51 As 

15 



Assuming B, I, and the motion of the wire are all perpendicular, then 

the motion as required to release 10 5J is about 2.5 pm. 

Cracking of insulation such as epoxy, in particular the insulation 

in direct contact with the conductor, can deposit large anounts of heat 

in the conductor. The strain energy in the resin is on the order of, 

a2 /2E, where a is the stress and E is the Young's modulus. At 

4K the modulus of epoxy is about 7x103  MPa (106  psi) and the yield 

stress of the epoxy bond is about 30 MPa (5000 psi), The elastic or 

strain energy is thus: 

E = 6x10 5  J/mm3  
cy 

Thus, enough energy is available to initiate a normal zone in a Doubler 

cable if the stress in 0.16 mm 3  of epoxy is reduced to zero, by 

cracking for exanpie. 

There have been many calculations as above of the disturbance that 

might exist or of the size of disturbance that a conductor can withstand 

but few observations of real disturbances. The voltage observed across 

an accelerator dipole constructed at LBL is shown in Fig. 7. The energy 

associated with the pulse is f VI dt = 10J. If we ascribe this.to  con-

ductor motion it corresponds to several cubic centimeters moving. 

Yet we observe only a small fraction of one turn going normal at 

first. Obviously all the energy associated with conductor motion does 

not go into the conductor, some of it goes into the power supply and 

into a readjustment of the magnetic field. The observed voltage spike 

is just a measure of the energy available in a disturbance. 

16 
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Fig. 7. Signal observed across a normal going region of 
the "north pole" of O-8A during a quench. 
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One last type of stability "cryostatic stability" is important in 

many large magnets such as bubble chamber and fusion magnets where rela.-

tively low current densities are possible.. As the size of the magnet 

increases the regions that must be capable of recovering from a quench 

also increase.. For a conductor to recover from a normal region without 

a magnet quench requires the local cooling to exceed the local heating. 

The heating is given by: 

Q = 

and the cooling is due to heat transfer to the helium bath 

Q = Ah q 

where A 	 is the wetted surface area per unit length and q is the 

minimum heat flux that can be transmitted from the conductor to the 

heliign. 	Using a fully exposed round wire as an example 	(A = irr 

Ah = 2wr), and assuming the heat transfer is not dependent on surface 

orientation: 

(j A) 2 . ( 	)Ah q 

or 

'Jp 

In practice the value of q 	 depends on surface conditions and 

orientation and generally must be measured. 	The value of the 



resistivity p 	is a characteristic of the stabilizing material and the 

magnetic field. Examples are given for both of these parameters below. 

The general dependence in the equation above however, gives some insight 

into the choice of operating current and conductor shape. The larger 

the conductor, the smaller the stable current density or the current den-

sity at which it can recover. 

III. LOSSES 

The losses in superconducting coils can, in a general sense, be 

ascribed to current flowing through a resistive component. The most 

obvious resistance in a magnet is at joints or splices between two 

conductors. These joints may be necessary for two reasons: first they 

may facilitate coil fabrication, and second there may be restrictions 

on available conductor lengths. In most magnets the number of joints 

is small and the resistance of each joint is on the order of nano-ohms. 

In a Fermilab conductor, for example, the resistance of a 10cm-long 

joint, based on an effective solder thickness of 0.1 mm, will be about 

10 8  2. At 5000A the power dissipated in the joint will be about 

0.25W. 

The resistance of superconducting materials is zero only when a 

continuous current is flowing. When currents change there is a flux 

flow in the filaments of superconductor that leads to a power 

dissipation. 

The force required to 11push" flux across the current flowing in 

the filament, JxB, integrated over the conductor can be expressed as 

a loss: 

19 
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p 

	

loss 	1 
q = vol = 	

dx = 

0 

where p is the dimension of maximum flux penetration, 2a is the slab 

thickness, and J, B 
p 9 and Ba  are given by J = 12 1, 

0 P= 

Ba/2;ioao The change In flux aO a distance x out from the point of 

maximum penetration (refer to Fig. 4) is: 

= U0 J c 2 

The loss during a full cycle is 2q or 

2 	2 	23 Q = 2q = 	p0 	p = 

The ratio p/a is equal to the ratio of the maximum field in a 

cycle B to the field at complete penetration 	Ba• 	If we call 	this 

ratio a, then the loss per cycle 	is 

8 2  

This loss, which is called the hysteresis loss, has no time depen-

dence and will be the same for a short as for a long cytle. 

20 



For a cycle that has a maximum field that exceeds the field at full 

penetration, B > Ba the flux penetration is slightly different 

and the loss has a different characteristic. The flux is of the form 

= (Bp_B a )X 	then, solving for the total loss we get 

Q - 2 (B -B 	
jC  a. 

p a) 	 7 

The total loss is the sum of these two, giving for a complete cycle 

B{()} 

This function F(s) is seen to have a peak at approximately full pene-

tration, a = 1. 

Just as the losses described above depend only on the superconduc-

tor, there are other losses associated with the current that flows in 

the normal, stabilizing conductor. These are due to eddy currents and 

can be calculated once the geometry and the resistivity of all the corn-

ponents are known. In addition to these single component loss mecha-

nisms, there are currents induced that flow partly in the superconductor 

and partly in the normal matrix. Several different types of losses are 

described in the references. 

21 



The two major losses to be considered are: 

• Self—field losses; which is due to the penetration into the 

conductor of the field it produces0 The derivation is much 

the same as for the hysteresis loss described above0 

s Coupling loss; which is due to the penetration into the 

conductor of an externally produced field. 

This loss may be thought of as being due to current flowing over a 

relatively large distance in the superconductor and a short distance in 

the normal stabilizer. 

In most conductors the major part of this loss is controlled by 

twisting the superconducting strands to limit the flux linking or cou-

pling any circuit. 

IV. QUENCHES AND QUENCH PROTECTION 

The quench process in a large magnet is generally either a two or 

three dimensional propagation of a normal region through the coil 

windings, starting from either a local or a distributed disturbance. An 

expression for the propagation velocity of the quench was initially 

derived by Cherry and Gittleman for a thermal wavefront in a conductor 

under adiabatic conditions (i.e. a conductor embedded in epoxy). 

22 



I(Tm_2Tc) 'J_k • p 
Vquench = 	 T . T (T —T c 	mm c 

I(Tm_2T) 	I 	L 
=C 	Tc(Tm_Tc) 

where I is the current, k is the thermal conductivity, p is the 

resistivity, C is the specific heat, Tm  is the difference between 

the maximum temperature in the quench region and the bath temperature, 

and T is the difference between the critical temperature and the 

bath temperature. The Lorenz relationship, which is described later in 

the section on thermal conductivity, has been used to simplify the 

expression. 

The quench propagation velocity is reduced considerably in the 

presence of helium and also depends somewhat on conductor geometry and 

orientation. Figure 8 shows the observed dependence of quench velocity 

on operating current in a model accelerator dipole. The equation indi-

cates the velocity should become infinite as the critical current or 

critical temperature is approached. In fact this doesn't occur because 

of several reasons, the most important of which is the normal variation 

of field within the coil so that conductor is in the peak field region 

over only a very short distance. The maximum quench velocity observed 

in conductors is about 60 m/s. 

The quench also propagates from turn to turn and from layer to 

layer. The velocity of propagation perpendicular to the conductor 

depends on the relative thermal conductivities. Usually, there is some 

insulation between turns, and some helium and insulation between layers. 

23 
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The thermal conductivity and the interface effects of the insulation are 

easy to determine quantitatively whereas the consequences of helium in 

the winding are hard to evaluate exactly. The quench propagation veloc-

ity depends on k. Thus the relative velocities are given by: 

jkj/kq  
V q  

Since k = 10 	k 

v -I.  
= 0.01 

q 

As shown in Fig. 8, for the model dipole, the transverse propaga-

tion velocity was about 0.7% of the axial propagation velocity. 

More detailed discussions of quench in superconducting coils are 

given in the references. 

Protection 

The protection of a superconducting coil depends on many factors 

including quench velocity. This dependence is not simple, however. The 

most relevant parneter for coil protection, assuming voltages are low 

enough that no arcing occurs, is the ultimate temperature reached in the 

coil. If this is less than about 400 or 500K then few adverse effects 

are possible. When higher temperatures are reached parts of the insula-

tor can be destroyed, or solder in the conductor may melt. 

The conductor temperature is determined by the energy stored in the 

coil 	and the 	physical 	characteristics 	of the coil 	materials 	such as 

25 



specific heat and resistivity. As the coil begins to go normal, the 

local temperature change is given by 

= 2 

Both p and C depend explicitly on the temperature, so the 

local temperature is given by the relationship 

f dT f 
=2 

 dt 

Because it is the final temperature that is of interest, this 

process is generally simplified by setting limits on the expression 

I I 2dt where I is the current in the conductor rather than the 
0 
current density. 

Using the Fermilab Doubler magnets as 	an example, 	the left 	hand 

integral 	between 4 	and 500K 	is about 5x106  A 2 S 	(sometimes referred 

to as 5M1115). 	If we assume the current decays as an exponential, 

Icc e_tT, then 

t 	t 
. f  1 2  dt = f I 	 T 2 e_ 2 t/Tdt = 	
10 

0 	0 

Since the current is initially about 4000A, the acceptable time 

constant for discharge of the Doubler coils is about 112 second. Of 

course the decay of the current does not follow a perfect exponential, 

26 



but the approximation is good enough to give us some insight into the 

requiruents on quench detection and coil protection. 

Several approaches can be used to protect a high current density 

superconducting coil. 

- 	 1. The quench propagation 	velocities, 	axial and 	transverse, can 

be made so high that enough of 	the coil 	is normal. for the coil 	to self 

protect, L/Reff < 	-t, 	where Reff 	is the effective (average) 

resistance of the coil 	during 	the discharge. This approach is 	used 	in 

the CBA accelerator. 

If the intrinsic quench velocity is not fast enough, the coil may 

still be protected with a modification of this technique that includes 

the addition of a heater which Is triggered by the detection of a normal 

region, as done in the Fermilab doubler magnets. 

2. Another protection schene involves 	an 	external 	dump resistor. 

When a quench is observed the coil can be rapidly discharged through the 

resistor as shown in the schenatics, Figs. 9 and 10. 

In either of these circuits the coil is protected if the sum of the 

delay time, td, which is the unavoidable delay between quench ini-

tiation and the transfer of current into the dump resistor, and the 

characteristic decay time, L/R, are less than Ta the acceptable 

decay time: 

td + L/R < T a 

generally td = 0.05 to 0.10s. 
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X8L 836-10133 

Fig. 9 	A protection circuit using an external dump resistor. 
When a normal region is detected the switch S is 
opened and the power supply voltage is reduced to 
zero or reversed. 
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Fig. 10. A different protection circuit using an external dump 
resistor. When a normal region is observed the switch 
S is opened and the current flows through the resistor 
and diode. 
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The coil can be protected by having an inductivity coupled 

electrical circuit that can accept some of the stored energy. An exam-

ple is shown in Fig. 11. 

The switch S 2 may or may not be in the circuit, but, in either 

case, as the current begins to decrease in the primary, L 1 , after 

S1  is opened, the current in L 2  increases and energy is deposited 

in R2 . This resistance and the coil L2  may be one and the same. 

Also the elnents S 1  and R1  may or may not be part of the circuit. 

A modification of this technique is to have the secondary L2 closely 

coupled electrically and magnetically to the coil L 1  and to use the 

heat generated in the normal coil L 2  to drive a major portion of 

the superconducting coil L 1  normal. 

As mentioned above, a coil can be self protected if the quench 

propagation velocity is fast enough. A method of increasing the quench 

propagation velocity is to introduce a current pulse that causes the 

current in all or part of the coil to increase quickly to a value higher 

than the critical current. This pulse can be accomplished by means of 

a capacitive dump. Several circuits are possible, and one is shown in 

Fig. 12. The value of C must be chosen to give a short but high-

current pulse into the section of the coil, L', which is best accom-

plished if L' 	is small and C is large. 

A slight modification of this approach is to have a coil wound 

with two conductors in parallel with very small mutual inductance. 

Then a capacitor is discharged across one circuit driving it normal 

very quickly. The transient current -increase in one conductor is 
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S2 

X8L 836-O3 

Fig. ii. A protection circuit in which the coil Li  is dis-
charged through an inductivily coupled resistor R2. 
Addition protection can be supplied by having a resis-
tor R1 in the circuit as shown in Fig. 9. 
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Fig. 12. A protection circuit that combines the features of 
Fig. 9 and pulsed discharge into part of the circuit. 
Depending on the polarity of the capacitor section L 
or LS  will be quenched when the capacitor is 
discharged. 
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counter-balanced by a current decrease in the other. The heating in the 

one section then causes the other to be driven normal. All of the coil 

may or may not go normal, but the quench, once started by the voltage 

and current transient, will then propagate through the coil. 

V. COIL STRESSES 

Mechanical stress developed within the windings and in the struc-

tural material around the windings of a superconducting coil is gener-

ally very high to minimize material costs. As mechanical limits are 

approached, accurate prediction of stresses is required, necessitating 

complex analysis and measurenents that are difficult, especially at low 

tenperatures. However, we can calculate approximate stresses from very 

simple models that represent a highly idealized magnet. 	The following 

results have been found to be useful: 

The Idealized coil has winding layers bounded by concentric circles 

as shown in 	Fig. 13; 	the current density per unit circumference varies 

as 	J = J
o cos 0, 	independent of radius. 	We call this an ICT 

(Idealized Cosine Theta) coil. 	If the coil thickness h is small corn- 

pared to its radius (a "thin" ICT coil) the central field is 

B 0  = ( 112) p J0h[1 + ( a /b) 2] 

The Lorentz body forces per unit length x circumference(N/m 2 )are: 
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Fig. 13. Nomenclature for coils. 
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= —(1/4) p 0  (Jh) a[l + (a/b)2] sin 20 

= (1/4) p (1 0h) 2  a (a/b) 2  (1 + cos 20) 

The circumferential compressive pressure Pt and the radial pressure 

r acting outward (N/rn2 ) are: 

p = (1/8) P
o

(10h) 2  (a/h) 11+ ( a/b)2] (1 + cos 20) 

Pr  = (118) u 0  (1 0h) 2  [i + 3(a/b)2] (1 + cos 20) 

where the radial outward pressure is due to both the local radial body 

force and the acciinulated tangential pressure. 

For a 1tthick" ICT coil, the circumferential and radial pressures 

again vary as 1 + cos 20. The thick—coil results are shown in Fig. 14 

in comparison with those for the thin ICT coil of radius a = (1/2)(a 1  

+ a2 ) that produces the same aperture field. Fig. 14a shows how the 

total radial force at radius a2  and the total circumferential force 

at 0 = 0 are affected by coil thickness and iron radius. Fig. 14b 

shows how the variation of circumferential stress through the thickness 

of the coil is affected by coil thickness and iron radius. 

Two more realistic coils are represented in Figs. iSa and 15b. We 

will refer to these as the "layer—" and "block—type" coils, often 

referred to as "intersecting ellipse" and "cosine theta" coils 

respectively. 
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Fig. 15. Coil cross sections: 	(a) layer type; (b) block type; 
(c) rectangular—block type. 
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These two coil configurations have been analyzed for a wide range 

of parameters: One through three blocks or layers, coil radius ratios 

(a2 /a1 ) of 1.5 and 2.0, and for both close-fitting iron and no 

iron. The total radial and circumferential forces have been compared 

with those for thick ICT coils that produce the same aperture field. 

For the one-block or one-layer coils, which are identical, the sc dif-. 

ferences are at most 15 percent, For two or more layers or blocks the 

differences are 7 percent or less. 

The outside radial pressure distributions only roughly approximate 

those of the ICT coil as shown in Fig. 16. For the block-type coils, 

the circumferential pressure distributions are indistinguishable from 

those for the equivalent ICT coils, For the layer-type magnet, the cir-

cumferential stress, Fig. 17, in the innermost layers is substantially 

greater because those layers carry more current. 

A third family of coils, Fig. 15c, which bear little reseblance 

to the ICT coil, has been investigated along with the surrounding ring 

structure. 	The distribution of circumferential stresses within each 

block is similar to that for the ICT coil. 	The radial forces are 

extr8nely irregular, there being large concentrated loads at each wedge-

shaped spacer. For only a single current Hbl o cku the total circumfer-

ential force is 20 to 25 percent lower than that for the equivalent 

thick ICT coil, depending on the iron radius, the maximum bending moment 

in the ring is 10 to 26 percent greater, and the maximum displacement 

of the ring is 4 to 8 percent greater. These differences decrease 

rapidly as the number of blocks increases; all are less than 7 percent 

for three blocks. 
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VI. SUPPORTING STRUCTURE STRESS AND DEFLECTION 

We present in turn: results for a thin, uniform, circular ring 

with the simplest possible radial load distribution; results for a thin 

ring with more complex loading, and results for a thick circular ring 

of uniform cross section with simple loading. All are based on an exact 

solution of the equations of the Theory of Elasticity. 

The loading produced by an ICT coil is of the form p = p 0  cos 20 + 

p1 (N/rn2 ). The resulting internal forces and the displacements 

depicted in Fig. 18 for a thin, uniform ring are: 

Bending moment (N) 

Hoop tension 	(N/rn) 

Radial shear 	(N/rn) 

Radial displacement: 

Circisnferential displacement: 

M = - (1/3) p 0  a2  cos 20 

T- (1/3) p0 acos20p1  a 

V = (2/3) p0  a sin 20 

u = u 0  cos 20, where u0 = p0  a4 /(9 E I) 

v = -(u 0/2) sin 20 

M, 1, and V are per unit axial length, a is the ring radius (m), 

I is the moment of inertia of the ring cross section per unit axial 

length (m3 ), and E is the elastic modulus (N/rn2 ). 

But the loading produced by real coils is not the smooth loading 

produced by the ICT coil. For example, in the block coil of Fig. 15c 

the radial loading on the spacer is much greater than in this region on 

a ICT coil because of the direction of the compressive loads at each 

side of the spacer. To determine the effect of the irregularity of the 

loading, we considered the effect of a set of concentrated loads that 

approximate a continuous 1 + cos 20 loading. For two loads, the 
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maximum bending moment and displacement are 10 percent higher than for 

the continuous case. Each doubling of the number of loads was found to 

reduce the difference to 1/4 of its previous value (thus 10% * 25% 

0.6%). 

An exact solution of the equations of elasticity theory for a 

thick ring with surface pressure and shear forces is available. For a 

loading, p - 	p 0  cos 20 + p 1  on 	the inside 	surface the 	relevant 

stresses and displacements are expressed by the following formulas: 

a t,in = - 2 K1 P0  (a1 /h) 2  cos 20 + K5 P  (a1 /h) 

= + 2 K2 p 0  (a1 /h) 2  cos 20 + p 1  (a1 /h)/K 6  

T 	= K3  P 0  (a 1 /h) sin 20
max 

4  = 	K 4 	 20 ~ K 7 
0  a 1 (a 1 /h) 3 	 p 1 a 1 (a 1 /h) 

V 	- 	 K4 p
0  a1 (a1 /h) 3  

sin 20 

The K-factors are presented in Fig. 19. Depending on the relative 

magnitudes of the p 0  and p 1  terms, the maximum circumferential 

stress can occur at either the inside or outside surface at either the 

0 = 0 or 900  positions. 

With the exception of the circumferential stresses in the layer-

type coils and the radial forces produced by the one-block coils, the 
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stresses and displacements of the more realistic coils are closely 

approximated by those of the idealized cosine theta configuration. 

VII. POSSIBLE DIPOLE MAGNET CONFIGURATIONS* 

We present here a collection of dipole magnet cross sections 

together with a partial description of how they are related 

geometrically. The relationships indicated do not necessarily imply the 

actual historical or evolutionary path of development. Because higher 

multipole fields are often required in accelerators, brief consideration 

is given to cross sections of magnets of higher rnultipole order. 

The magnets under consideration (Fig. 20) have currents parallel 

to the axis except at the ends, and are long. The relationship between 

current distribution and magnetic field is essentially two dimensional. 

The coils are usually surrounded by an iron yoke, but the emphasis is 

on conductor-dominated configurations capable of producing a rather uni-

form magnetic field in the aperture; the iron usually has a small 

effect. 

Most of the cross-section sketches show only the first quadrant; 

the entire cross sections include reflections into the other three 

quadrants with currents in the senses +,-,-,+, perpendicular to the 

plane of the cross section, in quadrants 1 through 4, respectively. The 

iron yoke is shown (represented by its inner boundary) only for those 

configurations where the iron is an essential part of the design or 

*An excerpt from R.B. Meuser, Structural Analysis of Superconducting 
Bending Magnets, LBL-10950, Lawrence Berkeley Laboratory. 
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for a superconducting dipole. 

Figs. 21-48. Cross sections of windings for accelerator 
dipoles. The details of each configuration 
are described in the text. 

46 



2. 

31 	J'co8 
	

32 	J.. F(r)c&3 
	33' 	JI(r) Co 

3 4 r r je 	 36' 
	

36 	
L::3 

37' 	J.t(r 
	

38 	Junf. 

xeL 833-8991 

Figs. 
21-48. Cross sections of windings for accelerator 

dipoles. 	The details of each configuration 
are described in the text. 

47 



40L'J 
411 	 42 

S 	4\ 

l 

43 
	

44 	Jf(r 
	 45; -  Icoe 

0 
	 0 

• 1 

4ei 

	Av- 	

47 

	
A\~ 	

48 	
SJ 

88(. 8338990 

Figs. 21-48. Cross sections of windings for accelerator 
dipoles. The details of each configuration 
are described in the text. 



where the optimized coil configuration is independent of the iron. The 

outer iron boundary can be assymetrical. 

In concentrating our attention on the cross section we necessarily 

ignore the practical matter of the design and construction of the ends, 

which is where many of the problems lie. And too, we carefully sidestep 

consideration of iron—saturation effects, important as they are, and of 

the virtues of one configuration compared with those of another. 

Only a few references are presented; the list is far from complete. 

A cited reference does not necessarily represent the invention or first 

use of a particular configuration. 

Configuration 

The most general configuration, of which all of the other config-

urations are simply special cases, is illustrated in Fig. 21. In prin-

ciple one can choose almost any shapes for the coil inner and outer 

boundaries and the iron boundary, and then find a current density dis-

tribution that produces a uniform field in the aperture. If one choses 

circles for these boundaries, for example, then one current density 

distribution (not the only one, incidentally) that produces a uniform 

field is J = J 0  f(r) cos 0, where J is a constant, and f(r) 

is any function of r. 

The simplest configuration (Fig. 22) consists of a pair of current 

sheets, with opposite currents, extending to infinity. With uniform 

lineal current density, a uniform field is produced in the region 

between the two sheets. The sheets can become infinite in thickness by 

superposition (Fig. 23). To overcome the practical nuisance of coils 

extending to infinity, the coil can be cut off and iron reflectors added 
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above and below the aperture (Fig. 24). With the further addition of 

iron at the sides (Fig. 25), the current-sheet pair evolves into the 

familiar "picture frane" (or is it "window frarie"?) configuration 

(Fig. 26). Addition of pole tips (Fig. 27) increases the field 

strength, and renoval of part of the coil near the horizontal axis 	P 

(Fig. 28) permits the use of flat coils. However, both of these modifi- 

cations destroy the uniformity of the field. 

If the coil is cut off at some point and iron reflectors are not 

added, the field uniformity is destroyed. But part of the loss of uni-

formity can be recaptured by adding current lumps at the extremities of 

the coil (Fig. 29). By further refinenents of the coil shape the con-

figurations could evolve into some of the more complex ones considered 

later. 

The general configuration of Fig. 21 can be specialized somewhat 

to a thin coil of arbitrary shape (Fig. 30) and further to a thin circu-

lar coil (Fig. 31), in which case a uniform field is produced in the 

aperture if the linear current censity in the coil varies as cos . The 

thin shell can be made thick by superposition, with the current density 

a function of r (Fig. 32). 

A continuous azimuthal variation of current density cannot be 

achieved in practice, and so a number of approximations have been 

invented. One such configuration, (Beth, Ref. 5), is shown in Fig. 33. 
I 

The current density within each region is uniform in 0 . If the number 

of regions is N, then 2N-1 higher-order multipole coefficients can 

be made exactly zero. If the inner and outer boundaries of the coil are 

circular, then the only kind of radial variation of current density that 

can be readily achieved in a superconducting magnet, either by tapering 
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the conductor radially or by inserting wedge—shaped spacers between the 

turns, is an inverse variation (f(r) = 1/r). For a homogeneous, 

resistive conductor of keystone—shaped cross section, the current den-

sity could be uniform. But for a twisted cable flattened to a keystone 

cross—section, as used in some superconducting coils, the macroscopic 

current density varies inversely with radius. 

By making the sides of the current "blocks" parallel (Fig. 34) to 

accommodate conductors of rectangular cross section, one achieves a 

current density that varies inversely with radius in an overall sense, 

while the current density in the region is uniform. The Beth prescrip-

tion demands that the current density in each region be proportional to 

the angle to the centerline of the region. The average, current density 

in a block can be varied by varying the number of conductors and replac-

ing the missing conductors with spacers. But it is not possible to 

satisfy Beth's prescription for current density exactly if only one kind 

of conductor is used throughout. So, in practice, one makes the current 

density approximate the Beth prescription, then juggles the angular 

positions of the boundaries to get the best field quality. The original 

BNL Isabelle magnets were close approximations to the kind shown in 

Fig. 34. 

To achieve a practical approximation to Beth's prescription in a 

different way, the current blocks can all have the same current density, 
(I 

but the sizes of the blocks can be varied by varying either the depth 

(Fig. 35) or width (Fig. 36) of the block. Again, the angular positions 

of the blocks are adjusted to produce the best field quality. 

In another sort of approximation to a cos 13 coil (Fig. 37) 

(Halbach, Ref. 6), the current density is uniform in azimuth within each 
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current block, but the azimuthal positions of the block sides are 

adjusted to produce the best field quality. 

If two elliptical regions having uniform current densities in 

opposing senses are superimposed, leaving a zero-current hole in the 

region of overlap, then provided the ellipses have the same aspects 
	r 

ratios the field in the hole is uniform. This result is true even if 

the ellipses are not equal in size. In a magnet the net current must 

be zero, so the two ellipses must be equal (Fig. 38). 	The central 

region in this figure appears to be a circle, but it is in fact the 

boundary of the two intersecting ellipses. 	A specialization is the 

classical 	overlapping circle configuration (Rabi, 1934, Ref. 7). 

Various practical approximations to the intersecting ellipse geometry 

have been used or proposed involving horizontal conductor layers 

(Fig. 39), vertical layers (Fig. 40), flat layers set at an angle 

(Fig. 41), which is specialized to that in (Fig. 42), and cylindrical 

layers (Fig. 43). The conf i gurat i on involving cylindrical layers 

(Fig. 43) is commonly referred to as an "intersecting ellipse" magnet. 

But the order of the layers can be inverted or scrambled (Fig. 44) in 

which case the nomenclature becomes severely strained. Thin coils, at 

least, of this sort might equally well be called "cosine theta" coils; 

the conductor density per unit angle indeed varies as a stepwise 

approximation to cos 0. 

Various arrangeients of single conductors or small bundles of con-

ductors that produce rather uniform fields can be devised. The one 

shown in Fig. 45 stems directly from the Beth design (Fig. 34), and the 

same number of higher order multipole coefficients are zero; the magni-

tudes of the non-zero ones are larger than for the Beth design, however. 
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The one in Fig. 46 (Rechen, Ref. 8) involves conductors having 

equal currents. For the configuration shown, three higher-order multi-

poles are exactly zero. If a different criterion for field uniformity 

is used, presumable a more cosine-like distribution of conductors could 

be obtained. 

Many of the designs illustrated can be improved, as regards field 

uniformity, by increasing the number of "layers" or "blocks" of conduc-

tors, but often this is not feasible or is costly. Another method that 

sometimes works is to add spacers, which effectively increases the num-

ber of "degrees of freedom" of the design. On illustration is the 

configuration boundary, designed by Palmer (Fig. 47, Ref. 9) as the 

alternative design for the Isabelle magnets. 

A configuration that appears to have come about by the process of 

spontaneous creation, defying any conceivable path of evolution from 

simpler forms, is illustrated in Fig. 48 (Ref. 10). (Assymmetrical 

forms are also considered in the reference, which incidentally is a 

rather snazzy piece of work.,) The sides can be at any angle. The cur-

rent density in the corner regions is different from that in the flat 

sides. In particular, if the angle is 450, then the current density in 

the top corner is zero, and that in the side pockets is twice that in 

the sloping sides. The field at the iron surface can be made as small 

a fraction of the field in the aperture as desired by thickening the 

coil, but that increases the quantity of conductor required, perhaps 

intolerably. Despite some practical problems, the design stands almost 

alone, accompanied only the window frame configuration, among the con-

figurations considered here, that not only creates an absolutely uniform 

magnetic field but also can be built at all. 
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Most of the designs illustrated can be transposed into magnets of 

higher multiple order. For iron-free magnets, or magnets having a cir-

cular iron boundary, if the angular position of each infinitesimal ele-

ment is halved, and the number of quadrants (now "octants') is doubled, 

then a quadrupole magnet is produced.. This is only practical when the 
	p 

configuration is basically cylindrical. 
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APPENDIX 

I. Superconducting Materials 

Three superconducting materials are now being considered for accel-

erator dipoles. The first is Nb-Ti, a ductile alloy, that has been used 

in many large magnets and can be used up to about 81 at 4.4K and 101 at 

1.8K. The second, Nb-Ti-Ta, is a relative newcomer in terms of commer-

cial availability and promises to extend the performance at 1.8K to 

about 121. The third superconductor is Nb 3Sn, which is a brittle 

compound that may operate effectively at fields as high as 12T at 4.4K. 

The maximum current densities that these superconductors can carry as a 

function of field are shown in Fig. 49. To be useful in an accelerator 

dipole the superconductor must carry about 1000 A/mm2 .The current 

carrying capacity of the superconductor also depends on the temperature 

as well as the magnetic field. The surface defining the superconducting 

region and magnitude of the critical current as a function of both 

field, current, and temperature was shown in Fig. 1. Though this figure 

shows that the critical current increases as the temperature drops, the 

effect is much more pronounced for some materials than others. For 

example, at 4.4K the critical current of Nb-Ti and Nb-Ti-Ta are about 

the same, but Nb-Ti-Ta is much better at 1.8K even though Nb-Ti has also 

improved considerably. On the other hand Nb3 Sn improves some, but 

very little between 4.4 and 1.8K. Some upper critical fields and upper 

critical temperatures of superconductors are presented in Table III. 
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TABLE III 

Critical Temperatures and Fields of Several Superconductors 

Material 

(k) (T) 

Nb—Ti 9.5 11 

Nb—Zr 10.9 10 

Nb 3 Sn 18.0 25 

Nb3Ge 23.2 36 

V3Ga 14.8 21 

Nb3A1 18.7 32 
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IL, Conductor Matrix Material 

A good normal conductor is placed in contact with the superconduc-

tor to carry the current should the superconductor undergo a transition 

to the normal state. The metals normally used as stabilizers are rela-

tively pure copper and aluminun. The resistivity of pure metals gener-

ally decreases as the temperature decreases as shown in Fig. 50. As the 

temperature drops the resistivity of practical materials appears to 

reach a lower limit. Typically, the copper used in superconducting mag-

nets is of a type called oxygen free, high conductivity (OFHC). This 

type of copper is available from several manufacturers, and, in bulk, 

has a residual resistivity ratio (RRR), 300K/4K, of about 300. 

In the fabricated conductor this ratio is typically between 50 and 100 

because of size effects, impurities that have been added during process-

ing, and some work hardening that is produced during the wire drawing 

process and is not removed by a final heat treatment. 

This limit and the temperature at which it is reached depend on the 

conductor and its purity and hardness as shown in Fig. 51. Impurities 

and work hardening raise the resistivity. The background magnetic field 

also effects the resistance. This effect is called magnetoresistance. 

The magnetoresistance of copper is given in Figs. 52 and 53. The 

effects of impurities, magnetic field, and work hardening are basically 

additive. Thus the highest purity material, which is generally the most 

expensive, is not always used even though the lowest resistance is 

desirable. 

The other stabilizing material that is used occasionally in super-

conductors is aluminun. Aluminum has several advantages over copper. 

First, aluminum can be made fairly pure with little difficulty. Thus, 
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though its resistivity is about 2.8 x 10_ 8  Qm at room temperature 

compared to 1.8 x 10 8 cm for copper, resistance ratios of 5000 are 

fairly easy to achieve and values as high as 50000 have been observed 

in ultra pure aluminum. Second, because aluminum does not form alloys 

so easily as other materials and because the anneal ing temperature of 

aluminum is low, it is easy to achieve a RRR of 1000 in a magnet. 

Finally, the magnetoresistivity is much smaller in aluminum than in 

copper. Which allows it to be a very effective stabilizer at the high-

est fields. 

Aluminum has certain disadvantages, however. The characteristic 

that makes it easy to purify aluminum also makes it difficult to bond 

to the superconductor or the copper that is used during superconductor 

fabrication; and the pure aluminum is so soft that it cannot be used in 

direct contact with the Nb—Ti during the extrusion and drawing process 

and must be added later. It is also very difficult to solder to the 

pure aluminum. Special plating and tinning processes must be used to 

achieve an adequate bond. 

III. Thermal Conductivity 

The thermal conductivity k of metals is fairly easily determined 

from the relationship. 

L 

where p is the electrical resistivity, I is the temperature and L = 

2.4x1O 8V 2 /K 2 	is a constant that is the same for all metals. 	This 

fonula reflects the fundamental relationship between electrical and 
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thermal conductivity in metals, which are both determined by the conduc-

tion electrons. 

The thermal conductivity of other materials, in particular insula-

tors, is not so easily estimated; in fact it must be measured. Some 

curves of the temperature dependence of k are given in Fig, 54. The 

thermal conductivity is much lower in the insulators than in the metals. 

However, the insulators are usually quite thin in regions where the 

electrical insulation is important and another thermal impedence becomes 

important. This is the boundary or Kapitza resistance that exist 

between any two materials and is high between metals and insulators. 

Assuming good mechanical bonding, epoxy to metal, we find there is a 

boundary resistance of about 5K/Wcm2 , For insulation such as a kap-

ton or mylar sheet wrapped around the conductor this boundary effect is 

much greater than the thermal impedance of the insulator itself. Also, 

if a thin layer of helium exists between a metal and an insulator this 

already significant resistance can increase by a factor of 10. 

IV. Specific Heat 

The specific heat of the components of a coil affect 	its stability 

by determining 	the 	initial temperature 	excursion associated 	with 	a 

disturbance. The reason magnets are so sensitive to disturbances 	is that 

the specific 	heat 	is 	about a 	factor 	of 	102 	to 10 4 	smaller 	at 	4K 

than at 	300K. 	The specific heats of 	copper 	and 	aluminum are 	given 	in 

Fig. 55 	and the specific heat of epoxy 	is 	given 	in Fig. 	56. 	The speci- 

fic heat of 	a superconductor depends 	on 	the 	superconducting 	state 	and 

the background field. 
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Though it is the specific heat of the conductors (normal and super) 

that affects stability, the specific heat of the insulating materials 9  

including the enthalpy of the liquid helium, contribute to protection 

and safety by limiting the maximum temperature rise when a quench 

occurs. 

V. Heat Transfer 

We briefly described a heat transfer problem above when discussing 

thermal conductivity between two dissimilar materials. The most impor -

tant heat transfer mechanism in a superconducting coil is from the con-

ductor surface to the helium. The conductor and the bath are at two 

distinctly different temperatures during a disturbance and often during 

normal operation. For low temperature differences the conductivity of 

the helium itself, which is quite low, dominates. As the temperature 

increases bubble formation occurs and the heat transfer increases. At 

some point a maximum is reached and as the temperature increases the 

heat transfer drops as film boiling becomes the dominant mechanism.. 

This "peak nucleate boiling" maximum, and the general shape of the boil-

ing curve, see Fig. 57, vary some from conductor to conductor and depend 

on orientation and surface preparation. 

Several characteristics of helium below the lambda point, 2.16K, 

make it a very effective fluid for cooling superconducting coils. They 

are discussed in Ref. 11 and include high transient heat transfer, a 

heat transfer characteristic that increases with temperature and high 

thermal conductivity in the fluid itself. 

The maximum 	transient heat transfer 	observed in 	normal 	helium 	is 

about 10 W/on 	for periods of a few milliseconds. Similar 	experiments 
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in superfluid helium show the transient heat transfer limit is greater 

than 40 W/cm2 . 

The steady state heat transfer to superfluid helium is dominated 

by the Kapitza conductance at the solid—liquid interface. This 

mechanism yields a heat transfer characteristic of the form 

q a 81 • i 2 . 8  

where the exponential 2.8 is eipirica1. 

Heat renoval over large distances is by a thermal conductivity in 

the fluid rather than by convection as in normal heliian. This mecha-

nism allows heat to be rnoved in many directions from a local hot spot, 

which is very important in high current density accelerator magnets 

which contain little helium and have restricted helium passages. 
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