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Structure and Evolution of Chlorate Reduction Composite
Transposons

Iain C. Clark,a Ryan A. Melnyk,b Anna Engelbrektson,b John D. Coatesb

Department of Civil and Environmental Engineeringa and Department of Plant and Microbial Biology,b University of California, Berkeley, California, USA

ABSTRACT The genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A
newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechlora-
tans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published
sequences (Alicycliphilus denitrificans BC plasmid pALIDE01 and Pseudomonas chloritidismutans AW-1). De novo assembly of
genomes failed to join regions adjacent to genes involved in chlorate reduction, suggesting the presence of repeat regions. Using
a bioinformatics approach and finishing PCRs to connect fragmented contigs, we discovered that chlorate reduction genes are
flanked by insertion sequences, forming composite transposons in all four newly sequenced strains. These insertion sequences
delineate regions with the potential to move horizontally and define a set of genes that may be important for chlorate reduction.
In addition to core metabolic components, we have highlighted several such genes through comparative analysis and visualiza-
tion. Phylogenetic analysis places chlorate reductase within a functionally diverse clade of type II dimethyl sulfoxide (DMSO)
reductases, part of a larger family of enzymes with reactivity toward chlorate. Nucleotide-level forensics of regions surrounding
chlorite dismutase (cld), as well as its phylogenetic clustering in a betaproteobacterial Cld clade, indicate that cld has been mobi-
lized at least once from a perchlorate reducer to build chlorate respiration.

IMPORTANCE Genome sequencing has identified, for the first time, chlorate reduction composite transposons. These transposons
are constructed with flanking insertion sequences that differ in type and orientation between organisms, indicating that this mo-
bile element has formed multiple times and is important for dissemination. Apart from core metabolic enzymes, very little is
known about the genetic factors involved in chlorate reduction. Comparative analysis has identified several genes that may also
be important, but the relative absence of accessory genes suggests that this mobile metabolism relies on host systems for electron
transport, regulation, and cofactor synthesis. Phylogenetic analysis of Cld and ClrA provides support for the hypothesis that
chlorate reduction was built multiple times from type II dimethyl sulfoxide (DMSO) reductases and cld. In at least one case, cld
has been coopted from a perchlorate reduction island for this purpose. This work is a significant step toward understanding the
genetics and evolution of chlorate reduction.
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Perchlorate (ClO4
�) and chlorate (ClO3

�) have natural and
anthropogenic sources. While recent evidence suggests that

these compounds are formed in the atmosphere (1, 2), contami-
nation of drinking water is often a result of human activity. Chlo-
rate has been used as an herbicide and defoliant and as a bleaching
agent in the paper industry; perchlorate is a solid oxidant found in
flares, explosives, and propellants (3). Bacterial remediation of
contaminated water is a viable treatment option, which has
spurred both applied (4) and basic (5) science research. Perchlo-
rate and chlorate are respired by dissimilatory perchlorate-
reducing bacteria (PRB) and chlorate-reducing bacteria (CRB),
respectively, almost all of which are Proteobacteria (6), with a few
exceptions (7, 8) (see Fig. S1 in the supplemental material). While
all PRB isolated are also chlorate reducers, the reverse is not true.
The distinction is at least partly a result of the specificity of the
terminal reductase; the perchlorate reductase (PcrAB) can reduce

perchlorate and chlorate (9), while the chlorate reductase (Cl-
rABC) can reduce only the latter (10, 11). Chlorite is an obligate
intermediate in both pathways and is detoxified by the chlorite
dismutase (Cld), which produces chloride and molecular oxygen
that is respired. The chlorate reductases of Ideonella dechloratans,
Pseudomonas chloritidismutans AW-1, and Pseudomonas sp. strain
PDA have been purified as soluble heterotrimers (�1�1�1) (10–
12). ClrABC in I. dechloratans and that in PDA are probably
periplasmic, and while fractionation experiments support a cyto-
plasmic ClrABC in AW-1, a twin-arginine signal motif is pre-
dicted (13), suggesting periplasmic localization. By comparison to
structurally characterized enzymes EbdABC (14) and NarGHI
(15), the � subunit is predicted to contain a bis(molybdopterin
guanine dinucleotide)-molybdenum cofactor and a [4Fe-4S]
cluster coordinated by one histidine and three cysteines (10). The
� subunit is predicted to contain four Fe-S clusters that form an
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electron transfer pathway between a cytochrome b in the � sub-
unit (16) and the Fe-S cluster in the � subunit. The � subunit is
homologous to NarJ and most likely participates in proper inser-
tion of the molybdenum cofactor but is not part of the active
enzyme (17, 18).

To date, three CRB (Ideonella dechloratans, P. chloritidismutans
AW-1, and Alicycliphilus denitrificans BC) have had their genes for
chlorate reduction sequenced. As part of our continuing effort to
understand the genomics of chloroxyanion respiration by bacte-
ria, genome sequences were completed for four CRB: Ideonella
dechloratans, Pseudomonas sp. strain PK, Dechloromarinus chloro-
philus NSS, and the newly isolated Shewanella algae ACDC. How-
ever, after de novo assembly, the genes for chlorate reduction were
found on small contigs, with no information about neighboring
regions. Short reads from next-generation sequencing (NGS)
technologies often do not unambiguously connect regions sur-
rounding repeats, and as a result, assemblers produce many con-
tigs instead of contiguous finished genomes. A fragmented ge-
nome may not be a research impediment if the genes of interest are
on a large contig. This was the case in our recent comparative
analysis of genes for perchlorate reduction, in which conserved
synteny and evidence of horizontal gene transfer led to the iden-
tification of a perchlorate reduction genomic island (PRI) that
contained metabolic, regulatory, and electron transport chain
components (19).

Using a bioinformatics approach, contigs containing genes for
chlorate reduction (clrABDC and cld) were extended, connected
to neighbors, and confirmed with finishing PCRs. In all four newly
sequenced chlorate-reducing bacteria, these genes are flanked by
insertion sequences, forming composite transposons. Insertion
sequences are small, autonomous, mobile genetic elements that
encode a transposase and accessory genes enclosed by terminal
repeat sequences (20). Insertion sequences are widely recognized
as drivers of bacterial evolution; they are often present in large
numbers and serve as sites for homologous recombination and
therefore chromosomal rearrangements, plasmid integration, and
deletions (21). As composite transposons, they construct and dis-
seminate novel metabolic pathways, including those involved in
the catabolic degradation of substituted aromatics and xenobiot-
ics (22, 23). The identification of chlorate reduction composite
transposons is an important step toward understanding the for-
mation and horizontal transfer of this metabolism.

RESULTS

After de novo assembly, genome sequences of PK, NSS, and ACDC
contained cld on a contig with a gene cluster encoding a dimethyl
sulfoxide (DMSO) reductase family type II enzyme. This was in-
ferred to be the chlorate reductase based on its proximity to cld
and phylogenetic clustering with other putative chlorate reducta-
ses (10, 11). Since no genetic system is available, the physiological
chlorate reductase remains to be validated experimentally in all
CRB. For newly sequenced chlorate reducers, the larger genomic
context of the chlorate reductase was obscured by fragmented
assembly of NGS reads, which produced clrABDC and cld on con-
tigs of less than 16 kb. To resolve neighboring genes, assemblies of
I. dechloratans, PK, ACDC, and NSS were improved by mapping
reads to the ends of contigs, extending them computationally
(24), and predicting links to other contigs (see Materials and
Methods).

Shewanella algae ACDC and Dechloromarinus chlorophilus
NSS. ACDC was isolated from the same marine sediment enrich-
ment from which NSS was previously isolated (6). Details of the
physiology of ACDC will be published elsewhere. After improved
assembly and annotation (Fig. 1A), two ISPpu12 insertion se-
quences flanked clrABDC and cld (Fig. 1A). Five copies of this
composite transposon were found in ACDC: two chromosomal
insertions and one on a multicopy (~3) plasmid (Fig. 1D). The
insertion sequences flanking the plasmid-borne copy are iso-
forms, designated ISPpu12a and ISPpu12b, and contain 68 single
nucleotide polymorphisms in the transposase gene, as well as a
small deletion of 12 bp in czcD (Fig. 1B). The chromosomal com-
posite transposons contain matching flanking copies of ISPpu12b.
The reason for the discrepancy between plasmid and chromo-
somal insertion sequence isoforms is unknown but was the cause
for negligible assembly of this region (Fig. 1C and D). Imperfect
24-bp inverted repeats are located at the boundaries of both
ISPpu12 isoforms and are identical to those reported for ISPpu12
in the Pseudomonas putida plasmid pWW0 (Fig. 1E).

Insertion of the composite transposon into the ACDC chro-
mosome occurred in the open reading frames of nrfA
(ammonium-forming nitrite reductase) and barA (hybrid sensor
kinase). This finding is supported by conserved synteny surround-
ing nrfA and barA in closely related species, by the continuous
coverage of mapped reads over the insertions, and by PCRs con-
necting nrfA and barA to the interior of the composite transposon
(Fig. 1C). Presumably due to the insertion in nrfA, ACDC reduces
nitrate to nitrite but does not reduce nitrite to ammonium (I. C.
Clark, unpublished data). Duplications of 8 bp found surround-
ing composite transposon insertions in nrfA, barA, and the plas-
mid (Fig. 1E) have been previously observed in other ISPpu12
elements following transposition (25).

Assembly of the NSS genome produced contigs that matched
ACDC’s plasmid with 99.9% nucleotide identity (Fig. 1D). The
plasmid contains tra and trb gene clusters putatively involved in
self-transmissibility. Unlike in ACDC, coverage of the composite
transposon in NSS is consistent with it being only plasmid borne.
However, NSS does have a full and partial copy of ISPpu12b in its
chromosome (Fig. 1F). This is not surprising, considering that
ISPpu12 transposes independently, in multiple copies (25), and
functions in alpha-, beta-, and gammaproteobacteria (26).

Pseudomonas chloritidismutans AW-1 and Pseudomonas sp.
strain PK. P. chloritidismutans AW-1’s published sequence (Gen-
Bank accession no. GQ919187) contains cld and a cytochrome c,
which are separated from clrABDC by an insertion sequence. Sim-
ilar architecture is observed in PK, which contains an insertion
sequence in the exact same location (Fig. 2C). However, despite
their identical positions, PK’s insertion sequence is ISPst12, while
AW-1’s insertion sequence is ISPa16 (Fig. 2C). In both genomes,
these insertion sequences have formed tandem duplications of
TTAG. Insertion at CTAG has been previously observed for both
elements (27). In PK, ISPpu12 insertion sequences again flank the
genes for chlorate reduction (Fig. 2A). The ISPpu12 insertion se-
quences in PK are 99% identical to each other, but one
(ISPpu12d) contains a notable 12-bp deletion in czcD. Compared
to ACDC and NSS, PK’s ISPpu12 sequences are in the opposite
orientation with respect to cld and clrABDC, indicating that the
composite transposons found in these bacteria were formed inde-
pendently. Mapping coverage over this region (Fig. 2C) shows
that the genes for chlorate reduction are present in one copy

Clark et al.

2 ® mbio.asm.org July/August 2013 Volume 4 Issue 4 e00379-13

mbio.asm.org


38 51 1112
6

12
3 78 97 43 7

 Coverage (bp)

NGS contigs

12
6

12
3 78 97 5112
6

12
3 78 97 12
6

12
3 78 97

B
IRL -1 IRR-1

Tr
an

sp
os

as
e

Li
po

pr
ot

ei
n 

si
gn

al

H
ea

vy
 m

et
al

 e
ffl

ux
m

er
R 

re
gu

la
to

r

ISSal1

cl
d

A

IRL-1           GGGTATACGGATTTAATGGTTGAT
                |||||  |||||| ||||||||||
rev comp IRR-1  GGGTAAGCGGATTAAATGGTTGAT

ISPpu12a and ISPpu12b inverted repeats

cl
rA

cl
rB

cl
rC

cl
rD

cy
to

ch
ro

m
e 

c5
53

AT
Pa

se
  P

ar
A

/M
in

D

gl
yc

os
yl

 lt
ra

ns
fe

ra
se

fa
m

ily
 p

ro
te

in

pr
ot

ei
n 

of
 u

nk
no

w
n 

fu
nc

tio
n

m
et

hy
l a

cc
ep

tin
g

ch
em

ot
ax

is
 fa

m
ily

 p
ro

te
in

or
f3

or
f2

or
f1

C

F 

Tr
an

sp
os

as
e

lip
op

ro
te

in
 si

gn
al

 p
ep

tid
e

he
av

y 
m

et
al

 e
ffl

ux
m

er
R 

re
gu

la
to

r

trbA
-N

traO-C

RM
T/

AT
rp

oN
 

repAklcAklcB 

korCkleE 

parA

parB

kfrA
 

clrABDC

cld 

D

0

Coverage = 600                   

NSS contigs

PCR reactionsACDC

25

48
44

46

43

23

32
34

35

33

26

44
45

4335

50

13
4

12
3

12
7

97

44

72
75

78

73

51
123 126

9778

200

400

600

0

200

400

600

0

na
pC

Dsui_0143

Dsui_0144

Dsui_0145

Dsui_0146

plasmid ...CAAAAATC - ISPpu12a - contig 51 - ISPu12b - CAAAAATC...
nrfA    ...CAAATGGT - ISPpu12b - contig 51 - ISPu12b - CAAATGGT...
barA    ...CTTTGATG - ISPpu12b - contig 51 - ISPu12b - CTTTGATG...

Duplications surrounding composite transposons

ISSal1 inverted repeat
IRL-2          GTAAGCGTCTAGCTAACTCACCT
              |||| |||| | | ||| || ||  
rev comp IRR-2 GTAACCGTCCGCCGAACCCATCT

Duplication surrounding ISSal1
AAAATAGC - ISSal1 - AAAATAGC

ISPpu12a

ISPpu12b

ACDC and  NSS

E

71,7991 bp
NSS chromosomal ISPpu12 insertions

IRL -2 IRR-2 IRL -1 IRR-1

ISPpu12b 

IS
Pp

u1
2a

 

ISPpu12b ISPpu12b ISPpu12b ISPpu12b

contig 22 contig 12

contig 19 contig 8

ISPpu12b

ISPa38-like

ISPpu12a/b ISPpu12b

PIS PIS

ACDC and NSS 

ISSal1

PCR reactions

10 kb

S. algae ACDC

1

0.89

0.75

S. loihica PV-4 

S. piezotolerans WP3

 S. halifaxensis HAW-EB4

barA nrfA

A. suillum PS

ACDC 

FIG 1 Comparison of genes involved in chlorate reduction in ACDC and NSS. (A) Structure and annotation of chlorate reduction composite transposons in
ACDC and NSS, including synteny with the PRI of A. suillum PS. (B) Locations of single nucleotide polymorphisms (black) in the transposase genes of ISPpu12a
and ISPpu12b. (C) Composite transposon insertions in barA and nrfA of ACDC contain two flanking ISPpu12b insertion sequences. (D) Plasmids from ACDC
and NSS are nearly identical and contain a chlorate reduction composite transposon flanked by isoforms ISPpu12a and ISPpu12b. T/AT and RM represent
toxin/antitoxin and restriction modification systems, respectively. (E) Sequences of inverted repeats and duplications from ISPpu12a/b and ISSal1. (F) ISPpu12b
inserted in several chromosomal locations in NSS.

Chlorate Reduction Composite Transposons

July/August 2013 Volume 4 Issue 4 e00379-13 ® mbio.asm.org 3

mbio.asm.org


(~chromosomal coverage) but that the ISPpu12d element is pres-
ent in at least three other locations. We predicted these locations
and confirmed them with PCR. These insertions appear to have
generated duplications (Fig. 2D). In contrast, duplications at the
outer edges of the composite transposon or surrounding individ-
ual insertion sequences making up the composite transposon were
not found.

The left ISPpu12 insertion sequence was absent in the previ-
ously published AW-1 sequence, but the chlorate reduction genes
are in the same location in the chromosome and in the middle of
a conserved region in other Pseudomonas sequences (Fig. 2C).
This allowed PCR primers to be designed outward from clrC to a
conserved part of ompG in order to finish the rest of AW-1’s se-
quence in this region. In contrast to PK, which contains two copies
of ISPpu12, AW-1 contains only one copy and is therefore not a
composite transposon (Fig. 2C).

I. dechloratans and A. denitrificans BC. Ideonella dechlora-
tans was one of the first characterized chlorate-reducing bacteria
(28), and several fragments of genes putatively involved in chlor-
ate reduction have been sequenced, including cld and a conserved
hypothetical gene (GenBank accession no. AJ296077.1) (29), a
cytochrome c and molybdopterin-guanine dinucleotide biosyn-
thesis gene (GenBank accession no. EU768872.1) (30), and clr-
ABDC with the insertion sequence ISIde1 (GenBank accession no.
AJ566363.1) (10) (Fig. 3A). The genome sequence of I. dechlora-

tans presented here expands previous sequencing efforts, identi-
fying an arsR regulator, a partial methionine sulfoxide reductase
gene (msrA), and a cupin 2 domain gene, as well as an insertion
sequence that we designate ISIde2 (Fig. 3A).

Most interesting, however, is the presence of matching inser-
tion sequences that flank this entire region in I. dechloratans and
form a composite transposon (Fig. 3A). The insertion sequences
are 99% identical to ISAav1 (27) from Acidovorax citrulli AAC00-1
(GenBank accession no. AF086815), which forms a composite
transposon with s-triazine ring cleavage genes, and 99% identical
to part of an insertion sequence on Pseudomonas sp. strain ADP’s
plasmid pADP-1 (RefSeq accession no. NC_004956), which con-
tains genes for atrazine degradation. The ISAav1 isoform in I. de-
chloratans has perfect 26-bp inverted repeats (Fig. 3B). Due to the
relatively poor quality of the assembled genome (see Table S1 in
the supplemental material) and highly variable coverage (Fig. 3A),
it was not possible to completely resolve the location(s) of the
composite transposon or deduce copy number. However, the
presence of high-coverage areas (�200- versus 96-bp average cov-
erage) suggests that it may exist in more than one copy.

Alicycliphilus denitrificans BC was isolated as a benzene-
degrading chlorate reducer and has been genome sequenced (31).
Genes for chlorate reduction are located on a 119,718-bp plasmid,
pALIDE01 (GenBank accession no. CP002450). Apart from the
absence of ISIde1, the region within the I. dechloratans composite
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transposon is remarkably similar to a region on A. denitrificans BC
pALIDE01, with just 14 single nucleotide polymorphisms in
12,546 aligned bases. A 6-bp sequence (AAAATA) that was most
likely duplicated during transposition of ISIde1 in I. dechloratans
is present only once on pALIDE01. The syntenic region (Fig. 3C,
gray) includes everything carried within the I. dechloratans com-
posite transposon, except for the ArsR family regulator and a small
hypothetical gene.

The A. denitrificans plasmid pALIDE01 shows a history of
transposition and recombination in the region surrounding chlo-
rate reduction genes (Fig. 3C). An insertion sequence, 99.8% iden-
tical to IS1071 after reconstruction, is fragmented and found in
multiple copies (Fig. 3D). The plasmid contains two copies of an
ISPsy30-like transposon, which have variable 5= regions with a
conserved resolvase and transposase bound by inverted repeats
(Fig. 3D). This transposon, designated ISAde1, carries a toxin/
antitoxin module, as well as the cld-like gene and a cupin 2 domain
gene. ISAde1 flanks genes for chlorate reduction on pALIDE01
(Fig. 3C), again forming a composite architecture, although the
ability of ISPsy30 transposons to mobilize large regions has not
been demonstrated.

Phylogenetic analysis of ClrA and Cld. Four new genomes
expand the known sequences of ClrA and Cld and provide insight

into the evolution of chlorate reduction. Within the larger family
of type II DMSO reductases, ClrA resides in a functionally diverse
clade that includes ethylbenzene dehydrogenase (EbdA), dimeth-
ylsulfide dehydrogenase (DdhA), and selenate reductase (SerA)
(Fig. 4A). ClrA proteins from I. dechloratans and A. denitrificans
BC group with SerA from Thauera selenatis AX, while ClrA pro-
teins from PK, AW-1, ACDC, and NSS group with DdhA from
Rhodovulum sulfidophilum (Fig. 4B). In addition to the canonical
���� organization of genes within this clade, two additional genes
appear to be conserved in the subclade containing PK, AW-1,
ACDC, and NSS. The first gene is annotated as an ATPase and
contains MipZ and ParA domains, and the second gene is anno-
tated as a glycosyl transferase (Fig. 4B). The role of these genes in
relation to their neighboring reductase is unknown but worthy of
further investigation.

Cld proteins in ACDC, NSS, PK, and AW-1 group phyloge-
netically with a betaproteobacterial clade of Cld proteins from
perchlorate reduction islands (Fig. 5A and C). In ACDC and NSS,
cld is surrounded by a napC fragment and a small 3= portion of
pcrD that matches the conserved gene organization of Dechlo-
romonas aromatica RCB and Azospira suillum PS (Fig. 1A) (19). In
PK and AW-1, a small 3= portion of pcrD is present. This is highly
suggestive that the direction of horizontal gene transfer was from
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an RCB/PS-type PRI to a chlorate reduction composite trans-
poson.

In A. denitrificans BC, I. dechloratans, and PK, an additional
cld-like gene was found unassociated with chlorate reduction
genes. These encode Cld-like proteins that form a unique type II
subclade (Fig. 5A), with exaggerated signatures of horizontal gene
transfer (Fig. 5B). In I. dechloratans, the cld-like gene is a passenger
on an ISPa38-like transposon, designated ISIde3. ISPa38 trans-
posons contain a cupin 2 domain gene and are found in the ge-
nomes of Aeromonas caviae (pFBAOT6), P. aeruginosa DK2, and
NSS. In Burkholderia cepacia, a cld-like gene appears to have re-
placed a portion of the ISPa38 transposase (Fig. 5B). In A. denitri-
ficans BC, the cld-like gene is colocated with a cupin 2 domain gene
on the plasmid-borne transposon ISAde1. ISAde1 is found in Ral-
stonia pickettii 12D and 12J and in partial form in Cupriavi-
dus metallidurans CH34 (Fig. 5B). The model tree species Populus
trichocarpa, which can reduce perchlorate and chlorate (32), con-
tains a cld-like gene that is 99.6% identical to the copy in ISAde1.
The contig with the Populus trichocarpa cld also contains a small
portion of the antitoxin gene from ISAde1, suggesting that it is
bacterial in origin (Fig. 5B). PK contains a cld-like gene and a
cupin 2 domain gene that share synteny with a Pseudomo-
nas stutzeri A1501 region comprising phage-associated, UV resis-
tance genes (Fig. 5B).

DISCUSSION

Despite a series of analogous biochemical reactions, genes for
chlorate and perchlorate reduction have different genomic ar-
chitectures and a distinct, yet intertwined, evolutionary his-
tory. Composite transposons containing chlorate reduction
genes with different flanking insertion sequences (type and ori-
entation) have been identified in five chlorate-reducing bacte-
ria. The transposon ISAde1 that surrounds cld and clr in
A. denitrificans BC (Fig. 3C) has not been reported to mobilize
genes as a composite and may not be relevant to horizontal
transfer of chlorate reduction. However, ISPpu12 and ISAv1
isoforms have been observed in a composite architecture pre-
viously, and the former can transpose as a composite (26).
Identification of 8-bp direct repeats at the outermost edges of
the composite transposon in nrfA, barA, and the plasmid
(Fig. 1E) in ACDC strongly suggest that the entire element
transposed into these locations. These duplications probably
occurred when staggered cuts in the target site were filled in
following transposon insertion (20). This, together with the
fact that chlorate reduction composite transposons can be plas-
mid borne, provides a conceivable mechanism by which the
metabolism moves horizontally. Indeed, the 99.9% nucleotide
identity between plasmids in ACDC and NSS is indicative of
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recent transfer from one to the other, which is plausible con-
sidering that they were isolated from the same enrichment.

The genomic architecture of chlorate reduction genes has im-
plications for the study of this metabolism. In all of the chlorate
reducers examined, except for AW-1, which lacks the composite
structure, the location and copy number of chlorate reduction
genes have the potential to change. The loss of the metabolism by
homologous recombination of flanking insertion sequences is
possible and has been observed in other composite transposons
(22, 23, 33). This is expected at some frequency when cells are
grown without chlorate and can dominate in a culture if loss of the
metabolism is adventitious. For example, if no regulatory system
exists for controlling transcription under chlorate-free condi-
tions, the presence of the composite transposon becomes a meta-
bolic burden and provides a selective advantage to cells that have
lost or silenced the metabolism. Composite transposons can also
increase in copy number (Fig. 1C) and confound transcriptional
studies that assume a single stable locus.

Insertion sequences can activate transcription of neighboring
genes by providing full or partial promoters (34). In ACDC, a
�35/�10 promoter in ISPpu12 is located upstream of clrABDC.
In PK, the promoter is on the opposite strand and could poten-
tially drive cld transcription. It has been suggested that this pro-
moter is active and constitutive in P. putida (25). Insertion se-
quences are also located between cld and clr in PK, AW-1, and
I. dechloratans and could serve to change transcription of sur-
rounding genes. While we cannot rule out the possibility that the
repeated localization of insertion sequences between cld and clr is
random, it is suggestive either of a physiological role for these
insertion sequences or of the historical mechanism of colocaliza-
tion of cld with clrABDC.

With the exception of A. denitrificans BC, most chlorate reduc-
ers are unable to reduce nitrate (AW-1 [35], ASK-1 [36], PDA
[37], I. dechloratans [28], and NSS [unpublished data]). I. dechlo-
ratans was reported to lose the ability to reduce nitrate after culti-
vation on chlorate (28), and AW-1 has been reported to regain the
ability to denitrify after repeated aerobic subculturing in the pres-
ence of nitrate (38). We have identified insertions in the nitrite
reductase (nrfA) in ACDC and a putative nitrate-responsive his-
tidine kinase (narX) in PK but have yet to find a genetic basis for
NSS’s inability to reduce nitrate, given that it contains genes for a
complete denitrification pathway (nar, nir, nor, and nos). The abil-
ity of the nitrate reductase NarGHI to reduce chlorate to toxic
chlorite has been widely reported (39–41). Early experiments ex-
ploited this to isolate chlorate-resistant cells with mutations in
parts of the nitrate reduction pathway. This identified the nitrate
reductase, as well as genes for Mo cofactor biosynthesis, molyb-
date transport, and nitrate regulation (42). Given this, it is not
surprising that parts of nitrate reduction pathways are inactivated
in some chlorate reducers, but more work is needed to fully ap-
preciate the interplay between these metabolisms.

Perchlorate, despite having a high redox potential, has a large
activation energy that slows inadvertent reduction by metals and
enzymes (43). In contrast, chlorate will react abiotically with
Fe(II) or Mn(II), and the evolution of an enzyme that overcomes
the activation barrier for chlorate was conceivably less difficult
than for perchlorate. Many related enzymes, including PcrA (9),
NarG (39, 40), and SerA (44), can reduce chlorate in vitro (Fig. 4A;
starred clades contain at least one characterized enzyme with chlo-
rate reductase activity). In the case of DdhA, evolution to oxidize

a hydrophobic substrate may have precluded turnover of chlorate
(45). The most parsimonious hypothesis consistent with these
phylogenetic data is that enzymes in this clade evolved from an
ancestral enzyme capable of chlorate reduction. If this is correct,
the key step in the evolution of chlorate reduction was the pres-
ence of a chlorite detoxification system.

Type I Cld proteins involved in respiratory perchlorate and
chlorate reduction are monophyletic (Fig. 5A) (46) but, based on
incongruence between protein and species trees, are predicted to
have undergone horizontal gene transfer (46, 47). We provide
evidence that cld found in four chlorate reduction composite
transposons originated from a PRI, based on the transfer of small
PRI-specific regions surrounding cld, including part of pcrD
(ACDC, NSS, PK, and AW-1) (Fig. 5C) and in some cases a napC
homolog (ACDC and NSS) (Fig. 1A). Given that a PRI cld has
been coopted for chlorate reduction, why has an active type II
chlorite dismutase (46) (Fig. 5A) yet to be associated with a respi-
ratory metabolism? One barrier is the lack of a signal sequence and
therefore cytoplasmic localization, which would not protect cells
from chlorite produced periplasmically. Another difference is
structural: the type II Cld from Nitrobacter winogradskyi is dimeric
(48) compared to the tetrameric (49, 50) or pentameric/hexam-
eric (51, 52) type I Cld proteins, but the implications of this dif-
ference are unknown. It is also possible that the diversity of respi-
ratory Cld has not been fully surveyed.

In addition to type I Cld, several chlorate reducers contain
Cld-like proteins located elsewhere on the chromosome that form
a subclade within the type II lineage (Fig. 5A, orange). This sub-
clade contains a set of cld-like genes that are part of transposons
(ISPa38-like, ISPsy30-like, and IS26 composite), or associated
with phage-related genes, and are therefore presumably highly
mobile (Fig. 5B). In all but Acinetobacter baumannii OIFC074, a
cupin 2 domain gene is colocated with cld; this occurs in multiple
configurations and on different transposons (Fig. 5B). Colocaliza-
tion of type I cld and cupin genes also occurs in some chlorate
reduction composite transposons (Fig. 3A) and PRIs, and as a
result, we hypothesize a functional connection between these
genes.

Comparative analysis of composite transposons identified the
core metabolic genes and several additional genes that may be
important for chlorate reduction. These are relatively scarce com-
pared to those in perchlorate reduction islands, suggesting that
this mobile metabolism often relies on endogenous systems for
electron transport, cofactor biosynthesis, and regulation. At the
least, a connection to the host’s electron transport chain must be
established. By analogy to the closely related enzymes SerABC (53)
and DdhABC (54), and as previously proposed (55), it is possible
that ClrABC connects to a quinol oxidase via a cytochrome c.
ACDC, NSS, PK, and AW-1 all contain a cytochrome c next to cld
that is a possible candidate. However, in I. dechloratans, the cyto-
chrome c in the chlorate reduction composite transposon does not
donate electrons to ClrABC in vitro, suggesting that it does not
provide the necessary link to the electron transport chain (30).
Another cytochrome c in I. dechloratans has been shown to donate
electrons to ClrABC in vitro (56), and we identified its sequence
(see Fig. S2 in the supplemental material) based on the fragment
reported in the literature (55). A quick search (57) for similar
proteins gave NirM, the electron donor for nitrite reductase NirS
(58), as a top hit.

Regulation of chlorate reduction with respect to other electron
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acceptors is not well understood. Lack of regulatory genes in the
composite transposons of ACDC, NSS, PK, AW-1, and BC implies
that regulation may be absent or controlled by a chromosomal
system. In I. dechloratans, an ArsR family regulator was identified
that may be involved in the observed increase of cld or clrA tran-
scription under anaerobic conditions in the presence of chlorate
(59). Although this family of regulators is usually associated with
sensing metals, evidence exists for nonmetal signals (60).

The discovery of multiple, independently formed, chlorate re-
duction composite transposons advances our understanding of
this metabolism at the gene level and supports the idea that chlo-
rate reduction is a highly mobile metabolism. Flanking insertion
sequences help define a set of genes that move with clrABDC and
cld, and although some of these genes may be passengers that were
captured as the composite transposons formed, others are likely to
have roles in chlorate reduction. We have identified these genes by
comparative analysis and hypothesized functions for several. The
next step is to develop a genetic system in a chlorate reducer and
make clean deletions to test these predictions.

MATERIALS AND METHODS
Genome sequencing. Whole-genome shotgun sequencing and initial as-
sembly of four chlorate-reducing bacteria, Ideonella dechloratans, Pseu-
domonas sp. strain PK, Dechloromarinus chlorophilus NSS, and Shewanella
algae ACDC, were completed by Eureka Genomics (Hercules, CA). A
summary of this sequencing effort is provided in Table S1, and a summary
of the assembly is provided in Table S2, both in the supplemental material.
Gene calling and annotation were performed using the IMG/ER server
(61). Genomes are publically available through IMG (http://img.jgi.doe-
.gov/cgi-bin/w/main.cgi). A summary of genes internal to chlorate reduc-
tion composite transposons is provided in Table S3. Annotation of the
manually assembled plasmid from ACDC and NSS was performed using
RAST (62).

Improving draft assemblies. Bowtie (63) was used to map reads
(Bowtie -q -n 3 -l 60 -e 200 – best) to assembled genomes. Multiple hits
were not allowed in the Bowtie mapping stage. IMAGE (24) was used to
extend assembled contigs when possible, and extensions were blasted
against all other contigs to search for potential linkages (BLASTn
-word_size 10) (64). It should be noted that not all extensions were valid;
some were later determined to be erroneous after finishing PCRs were
completed. Linkages were used to create a contig graph surrounding chlo-
rate reduction genes. The graph was further simplified using coverage to
understand the relative abundance of duplicated regions, which was im-
portant for the identification of composite transposons. This workflow is
further detailed in Text S1 and Fig. S3 in the supplemental material. PCR
and sequencing were performed to confirm linkages. A list of finishing
primers is found in Table S4. To further support predicted in silico link-
ages, reads were remapped to contig junctions and coverage was deter-
mined with samtools mpileup (65).

Gene visualization. Visualization of genes was performed using py-
thon scripts and the GenomeDiagram package (66). Additional modifi-
cations to diagrams were performed in Adobe Illustrator. ApE was used
for viewing and comparing nucleotide sequences and for manually anno-
tating features. Mapped reads and sequenced PCR products were visual-
ized by overlaying them on assembled contigs. Horizontal bars represent
PCR products, with black indicating the portion that was Sanger se-
quenced. Inverted repeats are shown as black vertical lines at the outer
edges of insertion sequences. Syntenic regions of high nucleotide identity
are highlighted in gray.

Phylogenetics. Phylogenetics was performed using a compute cluster
running CentOS 5.6 at UC Berkeley’s QB3 Computational Genomics Re-
source Laboratory. Proteins are labeled in figures with an identification
code reflecting their source: uniprot � UniProtID, refseq � NCBI RefSeq
ID, gi � NCBI GI number, gb � GenBank locus or accession number, and

img � IMG GeneID. The alpha subunit of chlorate reductase (ClrA) from
ACDC was used as the query to search IMG and NCBI (nr database) for
closely related proteins (BLAST-P). After duplicates were removed, the
top 100 sequences were added to prealigned DMSO reductase type II
family proteins (Pfam 00384 and 17524 sequences; http://pfam.sanger-
.ac.uk/, accessed 4 December 2012). CD-HIT (67) was run with a cluster-
ing threshold of 0.7, the reduced protein alignment was trimmed with
Gblocks (b1 � N/2�1 -b2 � N/2�1 -b3 � N/2 -b4 � 2 -b5 � h, where N
is the number of sequences) (68), and the protein phylogeny was recon-
structed with FastTree (69) in order to obtain an outgroup basal to the
clades of interest. Sequences exterior to this outgroup were discarded, and
the remaining sequences were realigned and retrimmed. The best amino
acid substitution model was determined with ProtTest (70) to be MT-
MAM. Subsequent phylogenetic analysis was performed using RAxML
with 500 bootstraps (71). The same procedure was followed when build-
ing a phylogeny for the subclade containing ClrA. Chlorite dismutase
(Cld) sequences were obtained with a PSI-BLAST against NCBI (three
iterations, e � 10�3) using ACDC’s type I Cld as the starting query. These
sequences were combined with the top 100 hits from a BLAST-P search of
both IMG and NCBI (nr) that used the A. denitrificans Cld-like protein as
a query. The same workflow as above was used to select an appropriate
outgroup and reconstruct the phylogeny with RAxML. 16S rRNA gene
sequences from perchlorate- and chlorate-reducing bacterial isolates were
obtained from NCBI and newly sequenced genomes. Three nearest-
neighbor matches were found and aligned using Ribosomal Database
Project tools (72). Phylogenetic analysis was performed with MrBayes 3.2
(73) until the average standard deviation of the split frequencies was less
than 0.01. Posterior probabilities were estimated after discarding the first
25% of samples from the cold chain.
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