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Three-dimensional Object Tracking in Panoramic
Video and LiDAR for Radiological Source-Object

Attribution and Improved Source Detection
M. R. Marshall, D. Hellfeld, T. H. Y. Joshi, M. Salathe, M. S. Bandstra, K. J. Bilton, R. J. Cooper, J. C. Curtis,

V. Negut, A. J. Shurley, K. Vetter

Abstract—Networked detector systems can be deployed in
urban environments to aid in the detection and localization
of radiological and/or nuclear material. However, effectively
responding to and interpreting a radiological alarm using spec-
troscopic data alone may be hampered by a lack of situational
awareness, particularly in complex environments. This study
investigates the use of LiDAR and streaming video to enable
real-time object detection and tracking, and the fusion of this
tracking information with radiological data for the purposes of
enhanced situational awareness and increased detection sensitiv-
ity. This work presents a novel object detection, tracking, and
source-object attribution analysis that is capable of operating
in real-time. By implementing this analysis pipeline on a custom
developed system that comprises a static 2× 4× 16 inch NaI(Tl)
detector co-located with a 64-beam LiDAR and 4 monocular
cameras, we demonstrate the ability to accurately correlate
trajectories from tracked objects to spectroscopic gamma-ray
data in real time, and use physics-based models to reliably
discriminate between source-carrying and non-source-carrying
objects. In this work, we describe our approach in detail and
present a quantitative performance assessment that characterizes
the source-object attribution capabilities of both video and Li-
DAR. Additionally, we demonstrate the ability to simultaneously
track pedestrians and vehicles in a mock urban environment, and
use this tracking information to improve both detection sensitivity
and situational awareness using our contextual-radiological data
fusion methodology.

Index Terms—Source attribution, object detection, radiological
search, object tracking

I. INTRODUCTION

THE detection and localization of radiological and/or
nuclear material remains a key challenge in homeland

security, particularly in urban environments [1], [2]. These
environments are dynamic and highly cluttered from both a
physical and radiological perspective, making the detection
and localization of radiological threats extremely challenging.
The presence of static and dynamic objects, and the constantly
evolving nature of the environment, makes the attribution of a
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radiological signal to a particular physical object (e.g. a given
vehicle or person) particularly difficult.

Augmenting spectroscopic radiation data with contextual
information, such as streaming video, can provide important
situational awareness in these scenarios and help inform the
interpretation and adjudication of radiological alarms. While
contextual data can undoubtedly aid the analysis of radiolog-
ical data by a human operator, recent advances in computer-
vision based object detection now make it possible to perform
radiological-contextual data fusion in real-time, and provide
automatic associations between radiological signals and the
physical objects in a scene. This has the potential to im-
prove the speed and efficiency with which radiological/nuclear
sources can be detected and localized in complex environments
while providing significantly enhanced situational awareness
to a human operator.

In this paper, we explore the application of this concept
by using video and Light Detection and Ranging (LiDAR) to
augment a static radiation detector. We demonstrate the use
of real-time object tracking information to attribute measured
radiological signals to source-carrying objects in the scene.

Previous work has demonstrated the use of video and
rudimentary vehicle tracking to enhance the performance of
a large gamma-ray imaging system for portal monitoring [3],
[4]. More recent advances in contextual sensing, and the
processing of contextual data, have enabled the exploration
of object tracking and the correlation of the trajectories of
objects in a scene with data from isotropic radiation detectors.
Such methods have the potential to provide source localization
in poorly constrained measurement environments, and without
the need for large, complex gamma-ray imagers.

More recently, object tracking and radiological attribution
was demonstrated using a LiDAR point cloud projected onto
the X-Y plane [5]. This top-down LiDAR projection was used
to identify objects in the scene, the 2D trajectories associated
with these 2D objects were then correlated with the data
recorded by co-located radiation detectors. This correlation
was performed using a non-negative least squares method
and was used to attribute the radiological data to the person
carrying the source. This approach neglects static sources
when performing attribution, performs object tracking only in
2D, and is unable to handle dynamic occlusions. Therefore,
while they may be adequate in certain situations, these specific
methods are likely to offer limited utility in complex, real-
world environments.

mailto:mattmar2410@berkeley.edu
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In this work, we demonstrate 3D object tracking and ra-
diological data fusion using multi-camera video and LiDAR.
LiDAR and video are analyzed independently and the object
tracking performance from these sensors are combined with
radiological signals and their performance compared. Object
detection is performed using lightweight neural networks that
can be run in real-time on board the sensor system, and
object tracking is performed in three dimensions using a class-
specific (e.g. pedestrians, vehicles) Kalman filter. Tracking
in a 360-degree field of view (FOV) is achieved by using
four cameras and a 64-beam LiDAR. These tools are then
used to evaluate the performance of object tracking on radio-
logical alarm attribution and optimized spectroscopic search,
with the objective of demonstrating these concepts and their
performance in a challenging mock urban environment. It
should be noted that given the scenario we consider in this
paper, a mock urban environment with minimal constraints
in the 3D motion of people and vehicles and with various
occluding objects, a system without video or LiDAR would
be limited so we do not draw comparisons between our system
and one without video or LiDAR. The attribution analysis is
triggered by spectroscopic alarming using a method based on
non-negative matrix factorization [6]. During the attribution
analysis, models that describe the time-dependent photopeak
count-rate expected in a detector from each trajectory are
calculated and compared with the time-series photopeak data.
A model for each trajectory includes the 1/r2 profile of the
trajectory (r is the distance from the detector to the source),
the angular detector response, and gamma-ray attenuation
in air and in intervening tracked objects. An estimate of
goodness-of-fit is used as a discrimination metric to perform
attribution (or exclusion) between the radiological data and the
model from each trajectory. Optimized spectroscopic search
is performed using the same models from trajectories to
identify the temporal segments for each trajectory that provide
and optimize the signal-to-noise ratio (SNR), demonstrating
enhanced detection sensitivity via data fusion. All of these
methods are implemented in a framework that is capable of
running in real-time (∼ 15 Hz) on a compact multi-sensor
system.

The paper is outlined as follows: in Section II, we provide
a description of the object detection, tracking, and attribution
analysis pipeline as well as an optimized spectroscopic search.
In Section III, we detail the results of a study in which
we performed a quantitative assessment of the tracking and
attribution capabilities as applied to a static system using
multi-camera video or LiDAR. In addition, we present object
tracking and source-object attribution in a mock urban environ-
ment with both pedestrians and vehicles and show the ability
to improve detection performance using tracking information.
The performance of the methods and their current limitations
are discussed in Section IV, and we summarize the work and
consider future research opportunities in Section V.

II. METHODS

Our complete analysis pipeline was implemented on a
custom developed platform which is shown in Fig. 1. This

Fig. 1: Object detection, tracking, and source-object attribution
system. The system consists of an Ouster 64-beam LiDAR that
is mounted above 4 AR1335 monocular cameras to provide a
full panoramic field of view. A NVIDIA Xavier is located in
the base of the setup for on-board processing. The system is
powered by a 296 Watt-hour (24V) battery.

system includes an Ouster 64-beam LiDAR unit [7] and four
AR1335 monocular cameras [8] arranged to provide a 360-
degree panoramic view around the system. A NVIDIA Jetson
AGX Xavier computing platform with 512-core Volta GPU
[9] is used to readout the camera and LiDAR sensor and
perform on-board data processing. The system is designed
as a standalone contextual sensor package (CSP) and can
be used to augment a range of radiation detectors. In this
work, a 2 × 4 × 16 inch (in) NaI(Tl) gamma-ray detector
(hereby referred to as simply the “detector”) was co-located
with the system. The detector was instrumented with an
Ortec DigiBASE [10] multi-channel analyzer and configured
to publish gamma-ray spectra at 20 Hz. The system was
powered by a 296 Watt-hour (24 V) battery. Sensor readout
and synchronization was handled with the Robot Operating
System (ROS) [11].

Fig. 2 shows an example output from running our analysis
pipeline for both video and LiDAR. Each process of the
pipeline will be explained in more detail in the subsequent
sections.

A. Object Detection and Tracking

Object detection from video frame images was performed
using the open-source You only look once (YOLO) [12]
detector and the ROS implementation, YOLO ROS [13]. In
this work, we used YOLOv3-tiny - a lightweight model pre-
trained on the COCO dataset [14] capable of inference times
of 66 ms on our system. We note that while higher performing
YOLO models exist, such as YOLOv3-608, they cannot be run
in real-time on our system due to the additional computational
burden and limited resources.
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YOLO ROS returns identification labels for the detected
objects with confidence scores and 2D bounding boxes in
image coordinates (see Fig. 2a). The distance (depth) of the
detected object to the camera is inferred by comparing the
height of the 2D bounding box to the height of a person or a
car. For a person, we use a nominal height of 1.75 meter (m)
[15] and for a car, we use 1.43 m, which is what we consider
to be an average size of a compact car. Heights of 1.80 m,
0.80 m, and 2.5 m are used for labels of truck, motorcycle, and
bus, respectively. The 2D bounding boxes are mapped to 3D
using the camera intrinsic parameters and the inferred object
depth.

A separate object detection process is performed for each of
the four cameras on the system. The four camera frames are
synchronized, and the object detections from all four cameras
are collated. This is done to avoid double-counting detections
that take place in regions where the camera images overlap.

The object detection in LiDAR point clouds was performed
using the sparsely embedded convolutional neural network
(CNN) detection framework SECOND [16] with the PointPil-
lars fast feature encoding [17]. A multi-class detector model
was trained on the nuScenes dataset [18] (32-beam LiDAR
spinning at 20 Hz) developed for autonomous driving research.
In accordance with SECOND, the model was trained on point
clouds generated from 10 LiDAR scans to achieve higher
point density for inference. It is worth noting explicitly that
because the LiDAR provides data which is inherently three-
dimensional, the object detection algorithm is able to return
3D bounding boxes, removing the need to infer the distance
to the object that is necessary in the case of video.

In the application presented here for our static system, two
scans of the Ouster 64-beam LiDAR generated sufficiently
dense point clouds without significant motion blurring from
dynamic objects. The inference time on the NVIDIA Xavier
GPU is sufficiently fast (∼125 ms) to enable the object
detection to keep up with the point cloud data (200 ms).
The LiDAR object detection returns labelled 3D bounding
boxes with associated confidence scores using the same ROS
message format as the video results (see Fig. 2b).

To convert sequences of detections into object tracks, we
used the Kalman-filter-based Simple Online Realtime Tracking
(SORT) algorithm [19]. SORT was extended to process both
video and LiDAR detections in three-dimensions. We further
modified SORT by replacing the method used to associate
detections with the most likely corresponding track. The con-
ventional intersection-over-union (IOU) method was replaced
with a multivariate normal (MVN) representation of the 3D
bounding boxes and the Hellinger Distance (HD) in order to
provide a more statistically founded approach which is capable
of accounting for variable uncertainties in object extent. The
HD is a measure of similarity between two MVNs that is
scaled between 0 and 1, where 0 represents high similarity
[20].

To create the MVN representation of a 3D bounding box,
the center of the bounding box is converted to the mean of the
MVN, and scaled dimensions of the bounding box populate
the covariance matrix for position uncertainty. Different scaled
dimensions are used for video and LiDAR 3D bounding boxes.

In the modified SORT algorithm, we employ a multivariate
Kalman filter to track two state variables: position (x, y,
z) and velocity (vx, vy , vz). The diagonals of the velocity
uncertainty in the covariance matrix are populated according
to the detection label. For vehicles, we use 4.44 m2/s2 and
0.28 m2/s2 for pedestrians; thus, enabling the Kalman filter
to simultaneously track both pedestrians and vehicles. Data
association between the detected objects and the most likely
corresponding track is performed using the HD. Detections
with a calculated HD of less than 0.8 are consolidated to
a single track. The velocity uncertainties and HD thresholds
for pedestrians and vehicles were found by running an op-
timization over those variables on a scene only containing
either pedestrians or vehicles. The objective was to reduce
the number of objects with disjoint tracks while also ensuring
a low number of incorrect associations by the data association
algorithm.

In order to track objects across multiple cameras, the MVNs
are transformed from the image frame into a global coordinate
frame prior to computation of the HD. Small FOV overlaps
exist between the four cameras and thus it is possible for
multiple cameras to independently detect the same object.
However, once the MVNs are transformed into the global
frame, these bounding boxes will overlap. To prevent the same
object from being tracked more than once, these overlapping
bounding boxes are merged if the calculated HD is less
than 0.6. This merging of bounding boxes supplements the
nonmax suppression being performed with YOLOv3-tiny in
each independent camera frame.

The tracker output is presented to an operator using the
object’s label (e.g., person or vehicle) and a track ID, where
the track ID increases by 1 for each newly generated track.
An example is shown in Fig. 2c and Fig. 2d for both video
and LiDAR, respectively. The bounding boxes displayed are
MVN representations of bounding boxes and will no longer
match the bounding boxes output from the object detection
CNN. Also, it should be noted that an object’s orientation is
not considered so all the bounding boxes will have the same
orientation.

Given the nature of the object detectors, false detections
can occur so the track ID will normally be higher than the
total number of objects that have been present in the system’s
FOV. Additionally, untracked objects and detections not being
assigned right away to the correct track contribute to a higher
total track ID number. To limit the number of tracked objects,
a track is discarded from the Kalman filter if the track is not
associated with a detection in 5 consecutive frames, and a new
track will be spawned for the object if it is detected again.

B. Modeling and Fitting Radiation Data to Trajectories

The source-object attribution process is invoked when a
radiological anomaly is observed. The presence of an anomaly
is determined by the Berkeley Anomaly Detection (BAD)
algorithm, a spectroscopic detection algorithm based on Non-
negative Matrix Factorization (NMF) [6]. BAD provides high
sensitivity detection, even in low signal-to-background regimes
and serves as a robust trigger for the source-object attribution
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(a) (b)

(c) (d)

(e) (f)

Fig. 2: The object detection, tracking, and attribution pipeline for both video ((a), (c), and (e)) and LiDAR ((b), (d), and (f)).
The bounding boxes shown in (a) and (b) are the object detection CNN outputs for video and LiDAR, respectively, with the
object label and confidence score. In (b) ”ped/cyc” refers to pedestrians or cyclists. The LiDAR CNN groups both labels into
the same category. The bounding boxes displayed in (c) and (d) are the object tracking outputs, and the bounding boxes are
MVNs converted back to bounding boxes and will not match the bounding boxes in (a) and (b). In (d) the object’s trajectory up
to that point is indicated by the line proceeding each respective bounding box. In (b) and (d) the white grid squares represent
1m2, and the area of no points exist from the field of view of the LiDAR. In (e) and (f) the best-fit models for each trajectory
from (c) and (d), respectively, to the count-rate data are displayed. The pink bars represent the time interval for a radiological
alarm, and the count-rate from the 2× 4× 16 in NaI(Tl) detector is shown in black. Additionally, the dashed lines in (e) and
(f) depict the moment in time these images were taken from. See supplementary material for the full video.

algorithm. This algorithm also provides an isotope ID which
is used to define a spectral region of interest (ROI) for the
extraction of time-series count-rate data. The source-object
attribution analysis is performed on all trajectories that are
within 7 seconds of the start and stop of the radiological alarm.

The first step in the source-object attribution process is the
generation of a set of models that describe the time-dependent
count-rate that would be expected to be observed were each
track to be associated with the detected anomaly. To model
the expected counts in the detector, we use the following
approach. For a given discrete time step, i, the expected
number of detected events, ci, within a spectral ROI, E, from
a radioactive source with gamma-ray flux α in the presence
of a constant background b can be described by

ci(E) =
ε(Ω̂, E)αe−µ(E)ri

4πr2i
·∆ti + b , (1)

where ε is the effective area of the detector, ri is the distance
from the detector to the source, ∆ti is a given integration time,
and µ is an energy and medium dependent linear attenuation
coefficient. The effective area is a function of energy and
the direction between the tracked object’s position and the
detector, Ω̂. In our current implementation, ε takes the form
of a pre-computed response matrix which is used as a look-
up table based on the spectral ROI and the direction between
the object and the detector at any given time. Details of the
process through which this response matrix was generated are
provided later in this section.

The best-fit model for each trajectory is found by extracting
the time-series ROI count-rate in a time window around the
radiological alarm, and maximizing the Poisson likelihood be-
tween Eq. 1 and the observed count-rate data with a maximum
likelihood estimation algorithm [21], where α and b are free
parameters. For the example in Fig. 2, the images in panels
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Fig. 2e and Fig. 2f show the best-fit models for the tracks
extracted from the video and LiDAR data, respectively, along
with the measured count-rate.

The directional response matrix that describes the detector’s
energy and effective area was generated using a Geant4
simulation [22]. The matrix was populated by modeling the
2× 4× 16 in NaI(Tl) detector in air and, for each of several
discrete energies, placing a gamma-ray source at 3072 equal-
area discretized pixels on a sphere [23] at a constant distance
of 10 m (R2

sim) from the detector. At each source position,
the total number of counts within the relevant ROI (Xcnts)
was computed. For a given energy and source position (i.e.,
direction), ε is given by

ε =
4π ·R2

sim ·Xcnts

NSimParticles
, (2)

where NSimParticles is the total number of particles emitted
into 4π.

These directional response simulations were previously val-
idated against experimental measurements made using a 137Cs
source placed at several positions around the detector [24].

The total attenuation coefficient, µ, describes the combi-
nation of attenuation in air and in occluding objects in the
scene. Before this can be applied, it is necessary to determine
whether a given object track is subject to occlusion from
another object. To do this, the MVNs are converted back to
2D bounding boxes, and the IOU is calculated. If the IOU
is greater than 90%, an object in the scene is considered
to be obstructing another object. To determine which object
is occluded, the distance from the system to each object is
calculated using the pose positions from the Kalman filter and
the object farthest from the system is considered to be the
one subject to occlusion. However, when objects pass within
1 m or less of each of other, their Kalman filter pose positions
can overlap, especially using video trajectories where depth
is inferred, making it difficult to accurately determine which
object is occluded in the scene. This is a limitation of the
current attenuation approach.

The total attenuation imposed by the occluding object is
then determined by its size and an estimated linear attenuation
coefficient which is based on the label associated with the
object. For example, pedestrians are modeled using the average
elemental composition of a human (65% Oxygen, 18.5% Car-
bon, 9.5% Hydrogen, 3.2% Nitrogen, 1.5% Calcium, 1% Phos-
phorus) [25] while vehicles are modeled as hollow Aluminum
boxes with 2 in thick sides. In the current implementation,
additional attenuation from other components of the vehicle
are not modeled and the orientation of the vehicle is not
accounted for. This results in a slight underestimate of the
total attenuation in some situations.

Once the attenuation has been calculated, the size of the
bounding box is subtracted from the object’s total distance
from the system, and the remaining distance to the detector
is considered to be air. This process is then repeated for each
object in the image frame or LiDAR scan. This allows the
model to account for cases in which a given object is subject
to occlusion by multiple objects. It is important to note that

if an object is occluded for more than 5 frames, a new track
will be spawned for the object when it is detected again.

Accounting for the effect of occlusion when computing
the best-fit models improves the source-object attribution
performance by allowing tracks which would otherwise be
degenerate, e.g., those which overlap closely in time and
space, to be distinguished. A limitation of the current approach
is that it accounts only for attenuation in tracked objects.
Including attenuation in the environment would likely improve
the source-object attenuation power in particularly complex
scenes.

C. Attributing Trajectories to Radiological Data

The final step of the attribution analysis identifies the tra-
jectories that are unlikely to be associated with a radiological
alarm through the use of an estimated goodness-of-fit metric.
The Poisson deviance or log-likelihood ratio statistic [26] was
selected as the appropriate statistic for estimating goodness-
of-fit. Its distribution is approximated by using the best-fit
model to estimate its first three moments and adjusting the
moments according to the number of model parameters (e.g.,
the mean is decreased by 1 for every model parameter). A
shifted Gamma distribution that matches these moments was
then used to calculate a p-value from the deviance statistic
given this distribution. Finally, an S-value [27] was calculated
from the p-value and used hereafter, and the S-value enables
principled rejection of trajectories that are inconsistent with
the data.

The computation assumes that the source is located at the
Kalman filter pose estimate. If the source is not located at
this position, such as in the case of a source located in the
trunk of a vehicle when the pose estimate is at the center of
the vehicle, then an offset between the best-fit model and the
photopeak count-rate could occur. To account for this potential
offset between the assumed and true source location, the best-
fit model is calculated multiple times over a two second
window while the track is shifted in 0.1 second increments.
The Poisson S-value is computed each time and the lowest
value is used to determine the best fit. It should be noted that
this only accounts for source offsets in the direction of travel,
but does not account for potential source offsets in the other
two dimensions that could exist.

D. Track-informed Signal-to-Noise Ratio Optimization to Im-
prove Detection Sensitivity

With knowledge of an object’s trajectory, it is possible to
identify a combination of time-segments that, when combined,
maximize the expected signal-to-noise ratio (SNR) for spectral
analysis of that object. For this analysis we consider the SNR
for a trajectory, present across N discrete time windows, as,

SNR = (

N∑
i

si∆ti)(

N∑
i

bi∆ti)
−1/2 (3)

where si = ε(θ,E)αe−µ(E)ri/(4πr2i ) is the photopeak count-
rate within a fixed integration window ∆t at a point in time i,
and bi is the background rate within ∆ti. From this equation it
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can be seen that SNR may be maximized by considering only
a subset of time-segments (T ∈ [1, N ]). Since the radiological
sources we want to detect are long-lived (i.e., half-lives on the
order of hours or greater) and our analysis system is static, we
introduce the reasonable assumptions that source strength and
mean background are constant in time, and we describe the
sensitivity ($T ) which is proportional to the SNRT ;

SNRT ∝ $T =

∑
i∈T

ε(Ω̂, E)∆ti
4πr2i

e−µ(E)ri

√∑
i∈T

∆ti

. (4)

Eq. 4 may then be used to solve for the subset of measurements
T , that maximizes $ and, in turn, maximizes SNR for the
trajectory in question. We note two observations about this
formulation. First, the optimal time windows do not need to be
contiguous. Second, under the assumption of constant source
strength and background, the optimal integration windows
are independent of source strength and background and are
entirely determined using tracking information.

To test this concept, we apply a spectroscopic analysis
to either fixed integration windows (1.0, 2.0, 3.0, 4.0, and
5.0 seconds), a common analysis approach, or to each trajec-
tory’s optimized integration window. The spectroscopic analy-
sis computes an anomaly value, the Poisson deviance between
the observed data and a mean background spectrum scaled to
match the observed counts. We then compare the magnitude
of the anomaly value for the different integration windows, a
larger anomaly value for the optimized integration window
suggests improved detection sensitivity through this track-
informed analysis. We present this comparison as a proof-
of-concept and note that quantitative evaluation of increased
detection sensitivity would require appropriate handling of
anomaly thresholds, which must vary with the number of
statistical tests performed to maintain a fixed False Alarm Rate
(FAR). Such a quantitative analysis would, in turn, require
definition of strategies for when to used fixed integration
windows (because tracking is not perfect) and when to use
track-optimized windows.

III. RESULTS

In the following section we show experimental results using
the methods for object detection, tracking, and attribution pre-
viously described. First, we evaluate the ability of the attribu-
tion analysis to discriminate degenerate tracks by determining
the minimum separation between two tracks (in the worst
case scenario of identical time of closest approach and ve-
locity) required to allow correct identification of the trajectory
associated with the radiological alarm. We then demonstrate
the performance of the source-object attribution analysis in a
mock urban environment. Finally, using this experimental data,
we demonstrate the potential for tracking-enhanced detection
sensitivity by showing spectroscopic anomaly values can be
increased using track-informed integration windows.

Fig. 3: Discrimination of orthogonal trajectories in the alarm
attribution analysis relative to 5 m with both LiDAR and
video trajectories. The simulated data represents synthetic
trajectories and count-rate data that was randomly sampled
for 1000 trials and subjected to the same analysis as the
experimental data. The large uncertainties in the synthetic
trials reflects the sensitivity of the goodness-of-fit metric. The
exclusion metric is the S-value.

A. Track Discrimination in Source-Object Attribution

Most encounters with a radioactive source traveling along
a straight trajectory will result in count-rate distributions as
a function of time that mimic 1/r2, the falloff of detection
efficiency with the square of the source distance from the
system, and will exhibit the highest count-rate at closest
approach. The worst case situation from an attribution per-
spective are two objects travelling at identical speeds and
reaching the closest approach distance simultaneously. How-
ever, even slight variations in closest approach distance and
the angular sensitivity of the detector prevent full degeneracy.
To judge the performance of the attribution pipeline in this
type of scenario, a systematic study was performed using a
189 µCi (6.993 MBq) 137Cs source to determine the distance
needed between two nearly degenerate tracks to correctly
identify the trajectory associated with the radiological alarm.
In this analysis occlusion/attenuation from objects was not
present/considered because the trajectories for this study were
created by a single person walking in front of the system.
Radiation data and object trajectories were collected from 3-
8 m distance of closest approach in 1 m increments. For each
source distance, the 137Cs source was walked past the system
at a walking speed of approximately 0.30 m/s, and at each
distance, the person carrying the source walked in front of the
system 8 times. This analysis was done by using the photopeak
ROI (614 keV - 685 keV) for 137Cs.
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The radiation data and trajectory from the 5 m source
distance at closest approach were chosen as reference. The
trajectory at 5 m was replaced with the trajectories from 3,
4, 6, 7, and 8 m to determine how well these trajectories
would correlate with the radiological data produced by the
5 m trajectory. The peak count-rate from each trajectory was
aligned temporally with the radiation data at 5 m to ensure the
trajectories were compared in the most degenerate scenario.

To supplement the limited statistics of these measurements,
synthetic count-rate data and trajectories were generated. At
each distance from the system, the mean and standard de-
viation of the position uncertainty for each trajectory was
calculated as a function of both distance and angle from the
system. These experimentally measured position uncertainties
were used to noise simulated trajectories. Count-rate data were
sampled according to Poisson statistics from the expected
number of detected events calculated through Eq. 1. 1000 trials
of this random sampling process were then subjected to the
same analysis as the experimental data.

The Poisson S-values from analysis of these experiments,
comparing 5 m count-rate data with different trajectories, are
shown in Fig. 3. We find that the experimental trajectories from
video and LiDAR are both within one standard deviation of
each other and their synthetic trials.

S-value thresholds, 11.75 for video and 5.25 for LiDAR,
were defined based on a 95% true positive rate for 5 m
synthetic trajectories with the 5 m synthetic count-rate data.
Under these criteria, degeneracy is successfully broken 45%
(58%) of the time for video (LiDAR) trajectories with 1 m
difference from the true trajectory. When there is a 2 m
separation, we find degeneracy to be successfully broken 99%
(99%) of the time for video (LiDAR) trajectories. These
results demonstrate the ability of an object tracking and alarm
attribution analysis, using either video or LiDAR, to be quite
robust against track degeneracy.

An additional phenomena that modulates the radiological
signal is attenuation, and in dynamic scenes one would ex-
pect objects occluding a particular object to also attenuate
a radiological signal associated with that object. This could
help to break the degeneracy in tracks, particularly, when two
objects cross in front of the detector system. Synthetic data
were used to study how occlusion, in conjunction with 3D
object tracking, might further improve attribution in scenarios
where degenerate tracks are present.

For this analysis, two objects with similar stand-off dis-
tances and walking velocities were considered, such that the
two objects crossed paths at the distance of closest approach.
In each trial, the source-carrier was 5 m from the system at
closest approach, and the non-source-carrier was either 6 m or
7 m from the system. To simulate two objects crossing paths,
synthetic detections were generated, and random noise based
on the derived track uncertainties from LiDAR or videos was
applied. The detections were then fed into the MVN SORT
algorithm to create tracks. This procedure accounts for the data
association algorithm potentially switching track IDs when the
two objects cross paths. The count-rate data was simulated
based on the object at 5 m using the same approach as outlined
in the previous section. 1000 trials were simulated for both

when the source-carrier was at 5 m and the non-source-carrier
was at 6 m and when the source-carrier was at 5 m and the
non-source-carrier was at 7 m.

The attribution analysis was again applied to this synthetic
data, with the inclusion of an attenuation factor in the response
calculation. The applied attenuation factor accounted for either
air or people. The attenuation factor for people was applied
for portions of trajectories where objects were being tracked
but occlusion was occurring. Using the S-value thresholds of
11.75 (5.25) for video (LiDAR), degeneracy was considered
successfully broken if the source-carrier at 5 m had a S-value
score below the S-value threshold while the other trajectory at
6 m or 7 m was above the same threshold amount. The results
of this analysis show that when the two objects are separated
by 1 m, degeneracy is successfully broken 39% (69%) of the
time for synthetic data with track uncertainties derived from
video (LiDAR). When the distance between the two objects is
2 m, degeneracy is broken 82% (96%) of the time for video
(LiDAR).

In theory, by accounting for the effect of occlusion in the
attribution analysis, the ability to break degeneracy should
increase. However, here we observe that the results are only
better for LiDAR at 1 m separation. In the other cases,
by including MVN tracking through SORT, the position
uncertainties sometimes lead to wrong data associations or
disjoint tracks, which negates the gains from occlusion and
results in worse performance. While the results, including
attenuation, are not better, they provide a more realistic picture
of crossing scenarios, where often, it is challenging to track
through an occlusion without losing or misidentifying the
two tracks, relying on only HD as a metric. Without this
problem, occlusion should be an effective tool to deal with
track degeneracy, but disentangling the two effects is beyond
the scope of this publication.

B. Source-Object Attribution in a Mock Urban Environment

To evaluate the system’s source attribution performance for
encounters with multiple vehicles and pedestrians simulta-
neously, data was collected at the University of California’s
Richmond Field Station (RFS) in a mock urban environment.
The contextual system, co-located with the detector, were
placed at one corner of an intersection containing traffic lights
and crosswalks. The detector was oriented vertically with the
4 × 16 in face towards the center of the intersection. Long-
dwell measurements, spanning ∼30 minutes, were performed
with dynamic pedestrian and vehicle traffic with vehicle speeds
ranging from 0-9 m/s. During data collection a 1.87 mCi
(69.19 MBq) 137Cs source was placed in the trunk of a
vehicle (white station wagon) and was shielded by 1.5 cm
of lead reducing the activity of the 137Cs source to 318 µCi
(11.78 MBq). The following analyses are associated with
individual source encounters triggered by the spectroscopic
alarm.

An example of a single alarm encounter, showing multi-
camera object tracking and attribution analysis results, is
shown in Fig. 4. The colors used for each trajectory are
consistent across the sub-figures. Fig. 4a shows images from
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(a)

(b)
(c)

Fig. 4: Source-object attribution in a mock urban scene with both pedestrians and vehicles using camera data. The progression
of the scene as the vehicle - Track 7 (the white station wagon) - carrying the radiological source moves past the system is
shown in (a). The associated trajectories for each object in the scene with each camera’s FOV overlaid on top of it is displayed
in (b), and the different letters correspond with (a). In (b), Track 20 corresponds with the pedestrian in the background of (a)
image B. Track 5 and Track 18 are examples of disjoint tracks, and both tracks correspond with the black car in (a) image
C. The black car is not tracked continuously through the occlusion temporarily caused by Track 3. The top plot in (c) is the
associated best-fit models of each object in the scene to the ROI count-rate data from the 2 × 4 × 16 in NaI(Tl) detector,
which is shown in black, and the dashed lines correspond with (a) starting with the upper left image, then upper right image,
then lower left image, and finally the lower right image. The * indicates the source-carrier, and the † indicates the tracks were
generated by the same object. The bottom plot in (c) displays the exclusion metric as a function of time for each trajectory.
The full video is available in the supplementary material.

the four cameras (at different times throughout the alarm
encounter), overlaid with the 3D bounding boxes of the labeled
object trajectories, illustrating the consistent tracking of the
white vehicle through the encounter. A top-down view of the
object trajectories during this encounter are shown in Fig. 4b,
with the FOV of the cameras also shown. The noise in the
trajectories is expected given the heuristic approach to depth
estimation used for visual tracking.

The best-fit results from the attribution analysis and the
conclusion of the encounter are shown in the top plot of
Fig. 4c. The majority of tracks are clearly excluded as having
an association with the alarm, but three tracks (Track 7 (white
vehicle), Track 20 (pedestrian in the background of Fig. 4a
image B), and Track 5 (black car)) show consistency with
the radiological signals. Of these, the source-carrier (Track 7)

is tracked for an extended period of time, while the other
trajectories were not continuously tracked throughout the
alarm encounter and cannot be excluded.

The temporal evolution of the attribution analysis scores
(S-values) are shown in the bottom plot of Fig. 4c. Short
trajectories often have little modulation of 1/r2 and are thus
likely to result in a model that fits the radiological data.
Furthermore, before and after the alarm window, tracks are
associated mostly with flat background, which, with α set
to zero in Eq. 1, can always be well described by the
model. However, continuous and consistent tracking of objects
throughout an alarm encounter allows for effective attribution
(or exclusion).

In this encounter, it is seen that the total number of objects
present (6) does not correspond with the total track ID number,
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which is 20 by the end of the alarm encounter. This is caused
from both a high number of untracked objects and detections
not being assigned right away to the correct track. Short
trajectories, which we define as 5 or less Kalman filter poses,
are more easily fit to the count-rate data and therefore, cannot
be excluded from the analysis. In an effort to reduce false
positives in the attribution analysis, the attribution analysis is
only performed on tracks that have 3 or more Kalman filter
poses.

In Fig. 5a we show the results from the same source-
encounter, but now using LiDAR tracking. The color-coding
of the tracked objects (but not their labels) has been kept
consistent with Fig. 4. The accurate depth estimates from the
LiDAR result in substantially smoother object trajectories. In
addition, it is seen again that the track ID’s are higher than the
total number of objects present in the scene, and this is due to
false detections from the object detection CNN and detections
not being assigned right away to the correct track.

Furthermore, the LiDAR object detector is more robust at
detecting objects further away from the system and tracking
through temporary occlusions compared to the visual object
detector. In particular, Track 8 was continuously detected and
tracked throughout the scene with the LiDAR; whereas, the
same pedestrian using video data (Track 20, the pedestrian
from the background of Fig. 4a image B) was not continu-
ously detected or tracked. Additionally, Track 44 was tracked
through a temporary occlusion from Track 3 driving straight,
but with the video-based trajectories, this same object (Track 5
and Track 18 which are both associated with the black car
from Fig. 4a image C) has disjoint tracks from the temporary
occlusion. The improved tracking from LiDAR allowed both
this pedestrian and vehicle to be rejected as source-carriers,
which was not the case in video. As seen in Fig. 5b, by
continuously tracking objects, the source-object attribution
analysis is able to take advantage of the full dynamics in the
scene to exclude trajectories that do not correlate with the
count-rate data.

In this scenario, the best-fit model (Track 50 - white
station wagon from Fig. 4a) clearly follows the count-rate
data observed in the detector. This attribution is correct as the
137Cs source was located in the trunk of Track 50. The time-
dependence of the source-object attribution metric is shown
in Fig. 5c. The continuous tracking of object through LiDAR
allows rapid exclusion of all tracks except Track 50 by the
time of closest approach (38 sec).

Though there is a clear correlation for both Track 7 and
Track 50 in video and LiDAR, respectively, the S-values are
larger than the statistically motivated thresholds for association
defined in Sec. III-A. This result is most likely driven by
using a simple physics model within a scenario that contains
anisotropic shielding/attenuation, which is not included in the
model.

Fig. 6 shows the results from all of the alarm encounters at
RFS for both video and LiDAR. The exclusion metric for both
video and LiDAR show large variability between trials mainly
due to the use of the simple physics model. Nonetheless, with
LiDAR trajectories, the source-carrier was still assigned the
lowest S-value score in 21 out of 26 alarm encounters. In

the 5 encounters where the source-carrier could potentially
be excluded as the object responsible for the radiological
alarm, there is a clear correlation between the count-rate data
and the best-fit model for the source-carrier, and an operator
monitoring the system in real-time would be able to sift
through the trajectories present to identify the most likely
trajectory for alarm adjudication.

Using video trajectories, the results show a large number of
tracks that have 5 or fewer poses in a majority of the alarm
encounters. These short tracks are caused by YOLOv3-tiny’s
inability to consistently detect objects, especially pedestrians,
more than about 10 m from the system. This results in short
trajectories that are more easily fit to the count-rate data and
therefore, cannot be excluded from the analysis. In addition,
inconsistent tracking allows tracks to only associate mostly
with flat background, which will be well described by the
model since α will be set to zero in Eq. 1; thus, preventing
these tracks from being excluded from the analysis. However,
in 16 out of the 26 alarm encounters an operator monitoring
the system would be able to correctly identify the trajectory
responsible for the radiological alarm. In these 16 cases, there
was a clear correlation between the source-carrier and the
radiological data. Of these 16, there were 5 alarm encounters
where the source-carrier had both a clear correlation and the
lowest S-value score. There were 10 alarm encounters out
of the 26 where a clear correlation did not exist because
the source-carrier had disjoint tracks from either inconsistent
tracking or the data association incorrectly assigning the wrong
track id to the source-carrier when it passed closely by another
vehicle.

These results, collected in the mock urban environment,
demonstrate that situational awareness can be improved for
both LiDAR and video using our source-object attribution
analysis. In the majority of alarm encounters for both LiDAR
and video, a connection between the object carrying the
radiological source and the radiological data could be made.

C. Improved Detection Sensitivity with Track-informed Opti-
mized Integration Windows

In addition to enabling automated identification of pedes-
trians and/or vehicles correlated with radiological alarms,
object tracking has the potential to enable increased detection
sensitivity through track-specific time integration windows.
As discussed in Section II-D, using a model encapsulating
the geometric and detector response associated with a tra-
jectory, one may identify the selection of time-segments that
should optimize SNR under the assumption of isotropic source
emission and constant background. This optimum integration
window analysis was performed on the same alarm encounters
in the mock urban environment as the previous analyses and
compared with fixed integration times.

In Fig. 7 we show the results for a single alarm encounter,
showing the maximum relative anomaly value, normalized
against the maximum anomaly value with a 1.0 second in-
tegration time, for all tracks in the scene as well as different
fixed integration times. The trajectories used for this analysis
correspond with the trajectories from Fig. 4 and Fig. 5,
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(a)

(b) (c)

Fig. 5: Source-object attribution in a mock urban scene with both pedestrians and vehicles using LiDAR data. The same
source-encounter from Fig. 4a, where a vehicle - Track 50 (white station wagon from Fig. 4a) - carrying a 137Cs source drove
past the system, is shown in (a), and the * in (a) indicates the source-carrier. (a) corresponds with camera image C in Fig. 4a.
The bounding box colors (but not the labels) for each object are consistent with Fig. 4a. In (a), the trajectory of each object
in the scene up to that point in time is indicated by the lines proceeding each respective bounding box. The white grid lines
represent 1 m2, and the area in the middle without points is caused by the field of view of the LiDAR. The count-rate data
from the 2× 4× 16 in NaI(Tl) detector (black line) and the best-fit models to the ROI count-rate data is displayed in (b). The
dashed line corresponds with the image from Fig. 5a, and (c) displays the evolution of exclusion metric as a function of time
for each trajectory, and he pink bars indicate the time interval for the radiological alarm. The full video is available in the
supplementary material.

and the color-coding for the tracked objects is consistent
with the color-coding from each respective figure. In this
encounter we find results consistent with the hypothesis that
the optimized time-window for the source-carrying trajectory
should yield a larger anomaly value. However, in both video
and LiDAR, the source-carrying trajectory did not have the
maximum anomaly value amongst the different integration
times which was produced using a 4 second integration time.
In this case, the optimal window does not produce the highest
anomaly value due to anisotropic shielding from the vehicle,
which is significant enough such that the assumptions of the

analysis fail. We also observe an elevated anomaly value for
another track which corresponds to the researcher who was
operating the system, who was nearby and stationary during
this particular alarm encounter.

The results from applying this analysis to the 26 different
alarm encounters in a mock urban environment are shown
in Fig. 8 for both video and LiDAR. The results show that
using a tracking-informed integration window can improve
the anomaly value, a proxy for detection sensitivity, compared
to various fixed integration windows. Two alarm encounters
(22∗∗ and 24∗∗), in particular, produced large relative anomaly
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Fig. 6: Source-object attribution analysis results from 26 alarm encounters in a mock urban environment. The total number of
tracks generated during each alarm encounter for pedestrians, vehicles, and the source-carrier are presented. The top (bottom)
plot was performed with LiDAR (video) trajectories. † indicates that the source carrier went straight past the operator during
the trial. ‡ indicates that the source carrier was first stopped at a red light then proceeded straight past the operator during the
trial. ∗ indicates that the source carrier turned right during the trial, and ∗∗ indicates that the source carrier was stopped at
a red light and then turned right. Lastly, ∆ indicates a left turn by the source carrier during the trial, and ∆∆ indicates the
source carrier was stopped at a red light and then performed a left-hand turn.

values compared to fixed integration windows for both video
and LiDAR. In both of these cases, the vehicle carrying the
source was stopped at a red light next to the system for an
extended period of time before the vehicle proceeded making
a right-hand turn past the system.

From the results in Fig. 8, we find that the LiDAR-generated
trajectories are more consistent than the video-based trajecto-
ries in yielding this enhanced sensitivity. This is consistent
with the previous results showing that the LiDAR detection
and tracking is more effective than video at consistently
tracking objects through the scene. Even in the case of LiDAR
tracking, there are alarm encounters where a fixed integration
window of 1, 2, 3, 4, or 5 seconds yields larger anomaly
values. These cases were often driven by the object not being
detected or fully tracked across the system’s entire FOV.
In several cases, however, the object was fully tracked and
again we hypothesize that the anisotropic shielding from the
vehicle was sufficiently significant that the assumptions of
the analysis fail. On the whole, this analysis suggests that
contextual information can be used to improve the detection
sensitivity of a static spectrometer.

IV. DISCUSSION

The results of this study have shown that our source-object
attribution analysis has the ability to improve both situational
awareness and detection sensitivity. These results reveal that
effectively leveraging video or LiDAR data, combined with
edge computing, can enhance the localization and detection

performance of a single radiation detector. However, the
methods employed in this work have several limitations.

The attribution analysis does not account for uncertainties
related to trajectories. Tracks are considered to be fixed and
assumed to be the source of the radiation signal. The result of
this assumption is that S-values are often quite large and don’t
reflect realistic probabilities, particularly for situations, where,
when inspected by eye, a clear association between tracks
and radiological data is obvious. Furthermore, large S-values
are often caused by an inadequate physics model not taking
into account anisotropic attenuation, as would be expected
for sources inside of vehicles. While some uncertainty, for
example those originating from tracking, could be incorporated
into an improved attribution metric, many other uncertainties
are of systematic nature and are not known. In these cases,
the S-value, providing a statistical assessment of the situation,
might not be the optimal metric and another description might
provide an answer closer to the system operator’s needs.

Considering attribution capabilities based on video, it can
be noted that, first, it is limited by the unreliable distance
estimate of objects in the scene. Track switching and disjoint
tracks are a result of this uncertainty, particularly, for objects
in close proximity to each other. There are depth extractor
CNNs that produce depth maps for monocular cameras. They
should provide better distance information but are currently
too GPU intensive to run in parallel with object detection on
a low-power system. Given the rate of improvement of these
depth-estimating algorithms, we expect that a depth estimating
CNN could be run along with an object detection, tracking, and
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(a)

(b)

Fig. 7: Relative anomaly values from track-informed optimized
integration windows and fixed integration window of 1, 2,
3, 4, and 5 seconds for both video (Fig. 7a) and LiDAR
(Fig. 7b) data. The anomaly values are normalized to the
1.0 second fixed integration window. These results are from
the alarm encounter shown in Fig. 4 and Fig. 5. The star
indicates the track carrying the source in each scenario, and
the time duration for each optimal window is provided in the
parentheses.

source-object attribution analysis in the near future. Another
approach to improving distance estimation for video data is to
use a stereoscopic camera, which provides a depth map. We
currently have a setup that runs our attribution analysis with
a single stereoscopic camera with reduced coverage compared
to a 4 camera setup. Second, the current object detection
network is not built to deal with small objects in images
that are far away from the system. At distances larger than
10 m pedestrians cannot reliably be tracked anymore. This
leads to short or split tracks that often score better on the
attribution metric than the true source-carrier’s trajectory. New
developments, particularly feature pyramid networks [28], are
trying to address these issues and might result in lightweight
networks with better detection performance. Recent tests with
yolov4 [29] show very promising results but it is currently
too computationally demanding to be run on a low-power

system. Finally, tracking of objects within 1 m to 2 m of
each other is restricted by the distance uncertainties in the
multi-variate normal representation, which can cause overlaps
and result in wrong assignments. By using additional object
appearance descriptions (features) derived from imagery, more
reliable tracking could be achieved, and notably the issue of
track switching could be resolved. An implementation of such
a method that can already run on a low power system is
described in [30], and will be explored in future studies.

The analyses presented in Section III suggest that object de-
tection and tracking with LiDAR is currently more robust than
a video-based approach. This is mostly driven by the direct
availability of distance information. However, there is a benefit
to running both video and LiDAR. SECOND/PointPillar’s
object detector doesn’t work reliably for people standing
near walls or large objects so the object may go undetected
for LiDAR, and we believe this is because spurious points
interfere with its anchoring algorithm. A training set including
more data with pedestrians nearby objects could potentially
increase the networks sensitivity, but is not readily available.

As discussed in Section III-A, the inclusion of attenuation
in the attribution analysis could potentially help to break
degeneracies that exist when objects approach the system in
a similar fashion. In our current implementation, attenuation
through an object in the scene is only calculated when an
object is fully occluded. We neglect how the fraction of
the solid angle covered by an occluding object between the
detector and radiological source changes with time, which
influences the expected counts in the detector. While this
is a reasonable assumption for the occlusion that occurs
between two pedestrians, for objects with larger extents, such
as vehicles or trucks, this assumption is not valid. To better
account for how the expected time-dependent count-rate in
our physics model changes as two objects pass by each other,
we need to determine how the fraction of the solid angle
between the detector and radiological source changes as a
function of time. This will require more complex experimental
data and simulations to better understand both the attenuation
effect of objects in the scene as well as the attenuation
effect of the environment. In addition, to better account for
attenuation in the physics model, we need to improve our
tracking capabilities through occlusions to limit the number
of track switches or disjoint tracks that currently occur. With
better handling of attenuation and tracking capabilities through
occlusions, the improvements yielded by including attenuation
in the attribution analysis may improve compared to the
attenuation results presented in this work.

V. CONCLUSION

We have developed and demonstrated a system that per-
forms multi-class object detection, 3D tracking, and source-
object attribution in real-time using either LiDAR or visual
cameras. This system, and the methods it implements, can
improve the localization of radiological/nuclear materials in
urban environments by enhancing situational awareness and
allowing non-directional detectors to provide localization in-
formation. Furthermore, in urban environments, this system
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(a) (b)

Fig. 8: Maximum relative anomaly values from each alarm encounter using either track-optimized time-windows or fixed
integration windows from 26 alarm encounters in a mock urban environment. The anomaly values are normalized to the
1.0 second fixed integration window. Results from the video and LiDAR are shown in sub-figure (a) and (b), respectively.
The green squares, circles, stars, or diamonds indicate the encounters where the optimal integration window yielded a higher
anomaly value than a 2, 3, 4, or 5 second integration window, respectively. The time duration for each optimal window is
provided in the parentheses, and in the case for (a) the time duration with the longest window is provided in certain alarm
encounters where the source-carrier had disjoint tracks. † indicates that the source carrier went straight past the operator during
the trial. ‡ indicates that the source carrier was first stopped at a red light then proceeded straight past the operator during the
trial. ∗ indicates that the source carrier turned right during the trial, and ∗∗ indicates that the source carrier was stopped at
a red light and then turned right. Lastly, ∆ indicates a left turn by the source carrier during the trial, and ∆∆ indicates the
source carrier was stopped at a red light and then performed a left-hand turn.

has the potential to improve detection of radiological/nuclear
materials by increasing detection sensitivity.

The findings from this study demonstrate that radiological
sources can be successfully attributed to objects derived from
video and LiDAR in a mock urban environment.

The findings further show that LiDAR offers superior track-
ing performance as compared to video, and this improves
the ability of the source-object attribution analysis to reject
trajectories that are inconsistent with the data, while providing
a more apparent correlation between the object responsible for
the radiological alarm and the count-rate data. Additionally,
it is shown that by using track-specific integration windows,
object tracking can improve the anomaly value, a proxy for de-
tection sensitivity, compared to fixed integration windows for
both video and LiDAR. From these results, we conclude that
using video and LiDAR to augment a static radiation detector
does enhance situational awareness and strongly suggests that
contextual information can be used to improve the detection
sensitivity of a static radiation detector.

Future work will explore improving tracking capabilities for
video to limit track switches and disjoint tracks by using object
features derived from imagery. We will also explore different

lightweight neural networks that offer better performing object
detection algorithms for video as well as methods to improve
the distance estimation of objects for video. Furthermore, we
will explore other attribution metrics to identify the trajectories
that are most (and least) likely to have been associated with a
radiological alarm. Finally, the results presented were limited
to a static system. Future work will investigate application of
tracking and attribution performance for mobile systems where
both sensors and objects are in motion.
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